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NONNEGATIVE MOORE-PENROSE INVERSES OF

UNBOUNDED GRAM OPERATORS

T. KURMAYYA AND G. RAMESH

Abstract. In this paper we derive necessary and sufficient conditions for
the nonnegativity of Moore-Penrose inverses of unbounded Gram operators
between real Hilbert spaces. These conditions include statements on acuteness
of certain closed convex cones. The main result generalizes the existing result
for bounded operators [11, Theorem 3.6].

1. Introduction

Monotonicity of Gram matrices and Gram operators has received a lot of atten-
tion in recent years. This has been primarily motivated by applications in convex
optimization problems.

A real square matrix T is called monotone if x ≥ 0, whenever Tx ≥ 0. Here
x = (xi) ≥ 0 means that xi ≥ 0 for all i. Collatz [4] has shown that a matrix is
monotone if and only if it is invertible and the inverse is nonnegative. Gil gave
sufficient conditions on the entries of an infinite matrix T in order for T−1 to
be nonnegative [5]. An extension of the notion of monotonicity to characterize
nonnegativity of generalized inverses in the finite dimensional case seems to have
been first accomplished by Mangasarian [13]. Berman and Plemmons [2] made
extensive contributions to nonnegative generalized inverses by proposing various
notions of monotonicity. The book by Berman and Plemmons [2] contain numerous
examples of applications of nonnegative generalized inverses that include Numerical
Analysis and linear economic models.

The question of monotonicity and their relationships to nonnegativity of general-
ized inverses in the infinite dimensional setting, have been first taken up by Sivaku-
mar ([14] and [15]). Three other types of operator monotonicity were studied later
by Kulkarni and Sivakumar [10]. For applications of nonnegative Moore-Penrose
inverses of operators to the solution of linear systems of equations defined by op-
erators between infinite dimensional spaces, we refer to Kammerer and Plemmons
([6, Section 6]).

There is a well known result by Cegielski that characterizes nonnegative invert-
ibility of Gram matrices in terms of obtuseness (or acuteness) of certain polyhedral
cones. (See for instance [3, Lemma 1.6]). The results of Cegielski were general-
ized by Kurmayya and Sivakumar [11] in two directions; from finite dimensional
real Euclidean spaces to infinite dimensional real Hilbert spaces and from classical
inverses to Moore-Penrose inverses.
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In this paper we consider linear operators (not necessarily bounded) between real
Hilbert spaces and obtain necessary and sufficient conditions for the nonnegativity
of Moore-Penrose inverses of Gram operators in terms of acuteness of certain closed
convex cones. This can be achieved by taking cones in the domain of the Gram
operator. Because of this slight modification, we observe that there is a slight
change in some of the existing results (see Lemmas 3.1 and 3.2, and the condition
(2) in Theorem 3.4). Our results generalizes the existing results due to Kurmayya
and Sivakumar [11] and the related results (See for instance Lemma 1.6, [3]) in the
literature.

The paper is organized as follows. In section 2 we introduce some basic notations,
definitions and results. In section 3, we present some preliminary results and prove
the main theorem. In section 4, we illustrate the main theorem with some examples.

2. Notations and Preliminary results

Throughout the article we consider infinite dimensional real Hilbert spaces which
will be denoted by H,H1, H2 etc . The inner product and the induced norm are
denoted by 〈, 〉 and ||.|| respectively.

A subset K of a Hilbert space H is called cone if, (i) x, y ∈ K ⇒ x + y ∈ K

and (ii) x ∈ K, α ∈ R, α ≥ 0 ⇒ αx ∈ K. For a subset K of a Hilbert space H ,
the dual of K denoted K∗ is defined as K∗ = {x ∈ H : 〈x, t〉 ≥ 0, for all t ∈ K}
and K∗∗ = (K∗)∗. Note that in general, K∗∗ = K, where the bar denotes the
closure of K. If H = ℓ2, the Hilbert space of all square summable real sequences
and K = ℓ2+ = {x ∈ ℓ2 : xi ≥ 0, ∀i}, then K∗ = ℓ2+ and hence K∗∗ = ℓ2+. A cone C
is said to be acute if 〈x, y〉 ≥ 0, for all x, y ∈ C.

Let T be a linear operator with domainD(T ), a subspace ofH1 and taking values
in H2, then the graph G(T ) of T is defined by G(T ) := {(x, Tx) : x ∈ D(T )} ⊆
H1 × H2. If G(T ) is closed, then T is called a closed operator. If D(T ) is dense
in H1, then T is called a densely defined operator. For a densely defined operator
there exists a unique linear operator T ∗ : D(T ∗) → H1, where

D(T ∗) := {y ∈ H2 : the functional x→ 〈Tx, y〉 for allx ∈ D(T ) is continuous}

and 〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ D(T ) and y ∈ D(T ∗). This operator is called the
adjoint of T . Note that T ∗ is always closed whether or not T is closed.

The set of all closed operators between H1 and H2 is denoted by C(H1, H2)
and C(H) := C(H,H). By the closed graph Theorem [18], an everywhere defined
closed operator is bounded. Hence the domain of an unbounded closed operator
is a proper subspace of a Hilbert space. For, T ∈ C(H1, H2), the null space and
the range space of T are denoted by N(T ) and R(T ) respectively and the space
C(T ) := D(T ) ∩N(T )⊥ is called the carrier of T . In fact, D(T ) = N(T )⊕⊥ C(T )
[1, page 340]. For a closed subspace M of H , we denote the orthogonal projection
on H with range M by PM .

If T ∈ C(H1, H2) and S ∈ C(H2, H3), then D(ST ) = {x ∈ D(T ) : Tx ∈ D(S)}
and (ST )(x) = S(Tx) for all x ∈ D(ST ).

If S and T are closed operators with the property that D(S) ⊆ D(T ) and
Sx = Tx for all x ∈ D(S), then S is called the restriction of T and T is called an
extension of S. For the details we refer to [16, 7, 18].

Next, we recall some of the definitions and important results that we use through-
out the article.
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Definition 2.1. For a linear map T : H1 −→ H2, the operator T ∗T is said to be
the Gram operator of T .

Definition 2.2. (Moore-Penrose Inverse)[1, definition 2, page 339] Let T ∈ C(H1, H2)
be densely defined. Then there exists a unique densely defined operator T † ∈
C(H2, H1) with domain D(T †) = R(T ) ⊕⊥ R(T )⊥ and has the following proper-
ties:

(1) TT †y = P
R(T ) y, for all y ∈ D(T †)

(2) T †Tx = PN(T )⊥ x, for all x ∈ D(T )

(3) N(T †) = R(T )⊥.

This unique operator T † is called the Moore-Penrose inverse of T .
The following property of T † is also well known. For every y ∈ D(T †), let

L(y) :=
{

x ∈ D(T ) : ||Tx− y|| ≤ ||Tu− y|| for all u ∈ D(T )
}

.

Here any u ∈ L(y) is called a least square solution of the operator equation Tx = y.
The vector x = T †y ∈ L(y), ||T †y|| ≤ ||u|| for all u ∈ L(y) and it is called the
least square solution of minimal norm. A different treatment of T † is given in [1],
where it is called “the Maximal Tseng generalized Inverse”.

We have the following equivalent definition:

Definition 2.3. Let P := P
R(T ). If y ∈ R(T )⊕⊥ R(T )⊥, the equation

(2.1) Tx = Py

always has a solution. This solution is called a least square solution. If x ∈ D(T )
is a least square solution, then

||Tx− y||2 = ||Py − y||2 = min
z∈D(T )

||Tz − y||2.

The unique vector with the minimal norm among all least square solutions, is called
the least square solution of minimal norm of the Equation 2.1 and is given x = T †y.

Here we list the properties of the Moore-Penrose inverse, which we need to prove
our main results.

Theorem 2.4. [1, theorem 2, page 341] Let T ∈ C(H1, H2) be densely defined.
Then

(1) D(T †) = R(T )⊕⊥ R(T )⊥, N(T †) = R(T )⊥ = N(T ∗)
(2) R(T †) = C(T )
(3) T † is densely defined and T † ∈ C(H2, H1)
(4) T † is continuous if and only R(T ) is closed.
(5) T †† = T

(6) T ∗† = T †∗

(7) N(T ∗†) = N(T )
(8) (T ∗T )† = T †T ∗†

(9) (TT ∗)† = T ∗†T †.

Proposition 2.5. [1] Let T ∈ C(H1, H2) be densely defined. Then

(1) N(T ) = R(T ∗)⊥

(2) N(T ∗) = R(T )⊥

(3) N(T ∗T ) = N(T ) and
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(4) R(T ∗T ) = R(T ∗).

Proposition 2.6. [1, 7] For a densely defined T ∈ C(H1, H2), the following state-
ments are equivalent:

(1) R(T ) is closed
(2) R(T ∗)is closed
(3) R(T ∗T ) is closed. In this case, R(T ∗T ) = R(T ∗)
(4) R(TT ∗) is closed. In this case, R(TT ∗) = R(T ).

Theorem 2.7. [12, Theorem 4.1] Let T ∈ C(H1, H2) be densely defined. Assume
that R(T ) is closed. Then

(T ∗T )†T ∗ ⊂ T ∗(TT ∗)† = T †.

For more information on generalized inverses we refer to [19, 20, 17].

3. Main results

For proving the main theorem (Theorem 3.4) we consider the following results.
Let H1 and H2 be real Hilbert spaces, T ∈ C(H1, H2) be densely defined with

closed range. Let K be a closed convex cone in D(T ∗T ) such that K∗ ⊂ D(T ∗T ).
Let C = TK and D = (T †)∗K∗.

Lemma 3.1. u ∈ C∗ ∩D(T ∗) =⇒ T ∗u ∈ K∗.

Proof. Let u ∈ C∗ ∩D(T ∗) and r ∈ K. Then 0 ≤ 〈u, T r〉 = 〈T ∗u, r〉. �

Lemma 3.2. The following are equivalent :

(1) C∗ ∩D(T ∗) ∩R(T ) is acute.
(2) For all x, y ∈ D(T ∗T ) with T ∗Tx ∈ K∗, T ∗Ty ∈ K∗, the inequality 〈T ∗Tx, y〉 ≥

0 holds.

Proof. (1) =⇒ (2): Let x, y ∈ D(T ∗T ) satisfy T ∗Tx ∈ K∗ and T ∗Ty ∈ K∗. For
r ∈ K, we have Tr ∈ C and hence

〈Tx, T r〉 = 〈T ∗Tx, r〉 ≥ 0.

So, Tx ∈ C∗. Similarly, we can show that Ty ∈ C∗. Since C∗ ∩ D(T ∗) ∩ R(T ) is
acute, we have 0 ≤ 〈Tx, T y〉 = 〈T ∗Tx, y〉.

(2) =⇒ (1): Let u, v ∈ C∗ ∩ D(T ∗) ∩ R(T ). Let u = Tx for some x ∈ D(T ).
Since u ∈ D(T ∗), T ∗u is defined. That is x ∈ D(T ∗T ). Similarly, v = Ty for some
y ∈ D(T ∗T ).

Next we show that 〈u, v〉 ≥ 0. Since u ∈ C∗, for r ∈ K we have

0 ≤ 〈Tx, T r〉 = 〈T ∗Tx, r〉.

Thus T ∗Tx ∈ K∗. With a similar argument, we can conclude that T ∗Ty ∈ K∗. By
assumption,

〈u, v〉 = 〈Tx, T y〉 = 〈T ∗Tx, y〉 ≥ 0.

Hence C∗ ∩D(T ∗) ∩R(T ) is acute. �

Lemma 3.3. D is acute if and only if 〈r, (T ∗T )†s〉 ≥ 0, for every r, s ∈ K∗.

Proof. Let x, y ∈ D. Then x = (T †)∗r, y = (T †)∗s for some r, s ∈ K∗. Then D is
acute if and only if

0 ≤ 〈x, y〉 = 〈(T †)∗r, (T †)∗s〉 = 〈r, T †(T †)∗s〉 = 〈r, (T ∗T )†s〉,

by (8) of Theorem 2.4. �
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We are now in a position to prove the main result of this paper.

Theorem 3.4. Let T ∈ C(H1, H2) be densely defined with closed range. Let K be
a closed convex cone in D(T ∗T ) with T †TK ⊆ K. Let C = TK and D = (T †)∗K∗.
Then the following conditions are equivalent:

(1) (T ∗T )†(K∗) ⊆ K

(2) C∗ ∩D(T ∗) ∩R(T ) ⊆ C

(3) D is acute
(4) C∗ ∩D(T ∗) ∩R(T ) is acute
(5) T ∗Tx ∈ PR(T∗)(K

∗) =⇒ x ∈ K

(6) T ∗Tx ∈ K∗ =⇒ x ∈ K.

Proof. (1)=⇒ (2): Let u ∈ C∗ ∩D(T ∗) ∩ R(T ). Then u = Tp for some p ∈ C(T ).
Then T †u = T †Tp = PN(T )⊥p = p. Since u ∈ D(T ∗), by Theorem 2.7, T †u =

(T ∗T )†T ∗u. Set z = T †u. Then Tz = TT †u = PR(T )u = u. Also T ∗u ∈ K∗, by

Lemma 3.1. So by the assumption, z = (T ∗T )†T ∗u ∈ K. Thus u ∈ C.
(2)=⇒ (3): Let x = (T †)∗u and y = (T †)∗v with u, v ∈ K∗. Since

R((T †)∗) = R((T ∗)†) = C(T ∗) = D(T ∗) ∩N(T ∗)⊥

= D(T ∗) ∩R(T )

= D(T ∗) ∩R(T ),

x, y ∈ D(T ∗) ∩R(T ). Let r ∈ K. We have r′ = T †Tr ∈ K (as T †TK ⊆ K). Then

〈x, T r〉 = 〈(T †)∗u, T r〉 = 〈u, T †Tr〉 = 〈u, r′〉 ≥ 0.

Thus x ∈ C∗. Since C∗ ∩D(T ∗)∩R(T ) ⊆ C, we have x ∈ C. Thus x = Tp for some
p ∈ K.

Finally, with p′ = T †Tp ∈ K, we have,

〈x, y〉 = 〈Tp, (T †)∗v〉 = 〈T †Tp, v〉 = 〈p′, v〉 ≥ 0.

Hence D is acute.
(3)=⇒ (4): Let x, y be such that r = T ∗Tx ∈ K∗ and s = T ∗Ty ∈ K∗. Since D

is acute, by Lemma 3.3,

0 ≤ 〈r, (T ∗T )†s〉 = 〈T ∗Tx, (T ∗T )†T ∗Ty〉

= 〈x, (T ∗T )(T ∗T )†(T ∗T )y〉

= 〈x, (T ∗T )y〉

= 〈T ∗Tx, y〉.

By Lemma 3.2, C∗ ∩D(T ∗) ∩R(T ) is acute.
(4)=⇒ (5): Let T ∗Tx = PR(T∗)w for some w ∈ K∗. Since, R(T ∗T ) = R(T ∗), we

have T ∗Tx = PR(T∗T )w. Hence x = (T ∗T )†w (By Definition 2.3 ).
Let r ∈ K∗. Then

〈x, r〉 = 〈(T ∗T )†w, r〉 = 〈T †(T †)∗w, r〉 = 〈(T †)∗w, (T †)∗r〉.

Set u = (T †)∗w, v = (T †)∗r. Then, as was shown earlier, u, v ∈ R(T )∩D(T ∗). For
t ∈ K, with t′ = T †T t ∈ K, we have

〈u, T t〉 = 〈(T †)∗w, T t〉 = 〈w, T †T t〉 = 〈w, t′〉 ≥ 0.

So u ∈ C∗. Along similar lines it can be shown that v ∈ C∗. Thus for all r ∈
K∗, 〈x, r〉 = 〈u, v〉 ≥ 0. So x ∈ (K∗)∗ = K.
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(5)=⇒ (6): Choose x such that T ∗Tx ∈ K∗. We have

T ∗Tx = PR(T∗T )(T
∗Tx) = PR(T∗)(T

∗Tx) ∈ PR(T∗)(K
∗).

Hence by (5), x ∈ K.
(6)=⇒ (1): Let u = (T ∗T )†v with v ∈ K∗.
Then T ∗Tu = T ∗T (T ∗T )†v = PR(T∗)v = T †Tv. Then for r ∈ K with r′ =

T †Tr ∈ K, we have

〈T ∗Tu, r〉 = 〈T †Tv, r〉 = 〈v, T †Tr〉 = 〈v, r′〉 ≥ 0.

Thus T ∗Tu ∈ K∗. As (6) holds, u ∈ K. Thus (T ∗T )†(K∗) ⊆ K.

This completes the proof of the theorem. �

Remark 3.5.

(1) In [11], conditions (5) and (6) were shown to be equivalent to each other
and also equivalent to the nonnegativity of (T ∗T )† under an assumption
that x ∈ R(T ∗) by Kurmayya and Sivakumar. Here, we make a remark that
the above mentioned assumption is redundant to prove equivalence of those
conditions. If T ∗Tx ∈ PR(T∗)(K

∗) then it can be shown that x ∈ R(T ∗).

(2) If K ⊆ C(T ∗T ), then the condition T †TK ⊆ K is satisfied automatically.
(3) If T is one-to-one, then T †T = I and hence in this case T †TK ⊆ K holds

for any cone in D(T ).

4. Examples

In this section, we illustrate Theorem 3.4 with examples.

Example 4.1. Let H = ℓ2 and D(T ) =
{

(x1, x2, . . . ) ∈ H :

∞
∑

j=1

|jxj |
2 < ∞

}

.

Define T : D(T ) → H by

T (x1, x2, x3, . . . , xn, . . . ) = (x1, 2x2, 3x3, . . . , nxn, . . . ) for all (x1, x2, . . . ) ∈ D(T ).

Since D(T ) contains c00, the space of all sequences having at most finitely many

nonzero terms, we haveD(T ) = H. Clearly T is unbounded and closed since T ∗ = T .
By [8, example 5.1], R(T ) is closed. In fact, T−1 exists and

T−1(y1, y2, y3, . . . , yn, . . . ) = (y1,
y2

2
,
y3

3
, . . . ,

yn

n
, . . . ), for all (yn) ∈ H.

Note that D(T ∗T ) = {(xn) ∈ H :

∞
∑

n=1

n4|xn|
4 <∞}. Let

K = {(xn) ∈ D(T 2) : xn ≥ 0 for all n ∈ N}.

Clearly, K∗ = K and T †TK = K. Hence K satisfy the Hypothesis of Theorem 3.4.
In this case, D = T †∗(K∗) = T−1(K). Let x, y ∈ D. Then x = T−1u, y = T−1v for

some u, v ∈ H . Then Let u =

∞
∑

n=1

〈u, en〉en and v =

∞
∑

n=1

〈v, en〉en (Here {en : n ∈ N}
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is the standard orthonormal basis for H). Then

〈x, y〉 = 〈T−2u, v〉 ≥ 0

=

∞
∑

n=1

1

n2
〈u, en〉 〈v, en〉

≥ 0 (since 〈u, en〉, 〈v, en〉 ≥ 0).

Therefore D is acute. Hence by Theorem 3.4, (T ∗T )† is nonnegative with respect
to the cone K. This can be easily verified independently by using the definition.

Example 4.2. Let H = ℓ2 and D(T ) =
{

(x1, x2, . . . , xn, . . . ) :

∞
∑

j=2

|jxj |
2 < ∞

}

.

Define T : D(T ) → H by

T (x1, x2, . . . , xn, . . . ) =
(

0, 2x2, 3x3, 4x4, . . .
)

for all (x1, x2, . . . ) ∈ H.

Observe that T is densely defined, T = T ∗ and N(T ) = {(x1, 0, 0, . . . ) : x1 ∈ C}.

Hence C(T ) =
{

(0, x2, x3, . . . ) :

∞
∑

j=2

|jxj |
2 <∞

}

. We can show that R(T ) is closed

(see [8, example 5.2] for details) and

T †(y1, y2, y3, . . . , ) =
(

0,
y2

2
,
y3

3
, . . .

)

, (yn) ∈ ℓ2.

It can be seen that T = T ∗ and D(T 2) = {(xn) ∈ H :
∞
∑

n=2

n4|xn|
4 <∞}. Take

K = {(xn) ∈ D(T 2) : xn ≥ 0 for all n = 2, 3, . . .}.

It is easy to verify that K∗ = K and T †TK ⊆ K. Also D = T †∗(K∗) = T †(K). Let

x, y ∈ D. Then x = T †u, y = T †v for some u, v ∈ H . Then Let u =

∞
∑

n=1

〈u, en〉en

and v =

∞
∑

n=1

〈v, en〉en. Then

〈x, y〉 = 〈T †u, T †v〉 ≥ 0

=

∞
∑

n=2

1

n2
〈u, en〉 〈v, en〉

≥ 0 (since 〈u, en〉, 〈v, en〉 ≥ 0).

Therefore D is acute. Hence by Theorem 3.4, (T ∗T )† is positive with respect to
the cone K.

Example 4.3. Let AC[0, π] denote the space of all absolutely continuous functions
on [0, π]. Let

H := The real space L2[0, π] of real valued functions

H ′ :=
{

φ ∈ AC[0, π] : φ′ ∈ H
}

,

H ′′ := {φ ∈ H ′ : φ′ ∈ H ′}.

Let L :=
d

dt
with D(L) = {x ∈ H ′ : φ(0) = φ(π) = 0}.



8 T. KURMAYYA AND G. RAMESH

It can be shown using the fundamental theorem of integral calculus that L ∈
C(H). Let φn = sin(nt), n ∈ N. Then {φn : n ∈ N} is an orthonormal basis for H
and is contained in D(L), hence L is densely defined. Also C(L) = D(L). i.e., L

is one-to-one. It can be shown that R(L) = {y ∈ H :
π
∫

0

y(t) dt = 0} = span {1}⊥.

Hence in this case D(L†) = H . Let ψn =
√

2
π
cos(nt), t ∈ [0, π], n ∈ N. Then

{ψn : n ∈ N} is an orthonormal basis for R(L).

We have, L∗L = − d2

dt2
with D(L∗L) = {φ ∈ H ′′ : φ(0) = 0 = φ(π)} [1, page 349].

By using the projection method (see [9, example 3.5]), we can show that

(4.1) L†(y) =

∞
∑

n=1

1

n
〈y, ψn〉φn.

Let K = {φ ∈ D(L∗L) : 〈φ, φn〉 ≥ 0, for all n ∈ N}. Then K is a cone and K∗ =
K. We verify condition 1 of Theorem 3.4. First note that, by Equation 4.1, we
have

(4.2) L†∗φ =

∞
∑

n=1

1

n
〈φ, φn〉ψn, for all φ ∈ H.

Now, let f ∈ K. Then

(L∗L)†(f) = L†(L†)∗(f)

=

∞
∑

n=1

1

n2
〈f, φn〉φn.

Since f ∈ K, we have 〈f, φn〉 ≥ 0 for all n ∈ N and so 1
n2 〈f, φn〉 ≥ 0 for all n ∈ N.

This concludes that (L∗L)†(K∗) ⊆ K.

Acknowledgements: We thank Prof.K.C. Sivakumar who studied this article
thoroughly and helped us to improve and bring it in this form.
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