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Abstract—In this paper, exact statistics for the linear com-
bination of gamma conditionally Gaussian random variables
(CGRYVs) are obtained. In particular, the probability density
function (PDF), the cumulative distribution function (CDF) and
the moment generating function (MGF) are derived. Closed
form expressions are obtained for both integer and noninteger
parameters, using the Mellin-Barnes integral representation of
the extended Fox-A function. The significance of these results is
then explained by obtaining performance metrics for decode and
forward (DF) cooperation in Nakagami-m fading.

Index Terms—Cooperative diversity, Residue theorem, DF.

I. INTRODUCTION

Conditionally Gaussian random variables (CGRVs) appear
in the decision variables for decode and forward (DF) coop-
eration [1]-[3]. While they also figured in the derivation of
performance metrics for various fading channels in additive
white Gaussian noise (AWGN), they did not attract enough
attention, since knowledge of their statistics was not really
necessary. However, the difficulty in the performance analysis
for cooperative systems led to interest in the statistics of this
new distribution.

Conditionally Gaussian distributions (CGDs) were first de-
fined in [1] and their statistics subsequently derived for obtain-
ing the bit error rate (BER) for maximum-likelihood decode
and forward (ML-DF) cooperation in Rayleigh fading. Similar
results were obtained for Gamma-CGDs in [3]. Related work
can also be found in [4] and [5].

In this paper, we obtain statistics for a linear combination of
Gamma-CGDs that are independent, with arbitrary parameters
(integer as well as noninteger). This is done by using a
Mellin-Barnes integral representation of special funtions [6]—
[8]. The usefulness of these results is then demonstrated by
obtaining the BER for --MRC (Maximal Ratio Combining)
DF cooperation in Nakagami-m fading channels.

II. ProBLEM DEFINITION

Definition II.1. X is gamma CG with parameters a,b > 0 if
X | A~ N(aA,bA),A ~ G(c,m) being Gamma distributed [9]
with scale parameter ¢ > 0 and order m > 0 with PDF [9]
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We wish to obtain the statistics of

N
Y = Z X,
i=1

where X; | A; ~ N(a;A;, biA;), A; ~ G(ci,m;) are independent
and A; € R. We begin by listing the complete statistics of X,
which are partially available in the literature [3], [5].
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III. Statistics oF Gamma CGD
Lemma III.1. The PDF and MGF of X are given by
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where K(-) is the modified bessel function of the second kind.

Proof. See Appendix A. Note that the above expressions are
valid for arbitrary m and the proof is straightforward. The
following Lemmas gives the expressions for the CDF for
integer and noninteger m separately.

Lemma IIL.2. (noninteger m) The CDF of X is given by
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and H is the Fox-H function, [7, (T.L1)], [8],
Proof. See Appendix B.
Lemma IIL.3. (integer m) The CDF of X in this case is
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Proof. See Appendix C

IV. STATISTICS OF THE LINEAR COMBINATION OF GAMMA CGD
Lemma IV.1. The MGF of Y = Zf\il A X;, defined in (2) is
given by

N
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where B;, ¢ = ————

Aib;
Proof. (10) is trivially obtained from (5) by noting that X; are
independent.

Corollary IV.1. The sum of i.i.d Gamma CGD variables is
Gamma CGD

In the following, we obtain the expressions for the CDF and
PDF of Y for integer and noninteger m. Note that the MGF is
the same for both cases.

A. Integer m
Theorem IV.2. (integer m) The CDF of Y is
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G®,H® are their k th derivaties and B(,(-) is the Bell
polynomial [6].

Corollary IV.3. (integer m) The PDF of Y is
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Proof. See Appendix D
B. Non Integer m
Theorem IV4. (noninteger m) The CDF of Y is
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Proof. Using the approach in Appendix B, the above expres-
sion can be easily obtained after some algebra.

V. BER AnNarLysis: A-MRC witH N RELAYS

Consider a A-MRC cooperative system [10] wih N relay
nodes between the source and destination. For BPSK modu-
lation, the expression for the BER is given by

Pe:Z ﬁ (e,]%(l —er)%)Pr(ZN:/liXi<0|x0= 1,x
X r=l i=0

(20)



where X;|h; ~ N (aihiz, bih?) account for the parameters on the
source (S) - destination (D) link and the relay (R) - destination
link [3]. The 0 index is used to represent the source parameters
with 1y = 1. Without loss of generality, the different variables
involved in (20) are listed in Table I. From Theorems IV.2

h Nakagmi-m fading coefficient
E Transmit power at a node
4Ex
a No_
g =
c,m Nakagami fading figure
X Transmitted symbol at a node
£ BER on the S-R link
N Number of relays
No Noise variance
y Average signal to noise ratio (SNR)
X Set of all N tuples of the relay symbols x
TABLE T

DESCRIPTION OF PARAMETERS IN (20)

and IV.4, (20) can be expressed in closed form for integer and
noninteger fading parameters respectively. This is explained in
the following.
A. Single Relay Performance

For N = 1, we use the subscripts 0 and 1 for the source and
relay parameters. The expression in (20) can then be expressed
as

Pe =& PI‘(Y < leo =1,x = ])

+(1-e)Pr(Y <0lxo=1,x=-1) (21)

where Y=X0+/I]X] ( /l()z ])

(21) consists of two error probabilities obtained with a) correct
(x1 = 1) and b) incorrect (x; = —1) decision at the relay which
can be more conveniently written as

P, = &1 Fyj=1,x=—1(0) + (1 — £1) Fy|xy=1,,=1(0) (23)

1) Correct Decision at the Relay: Noting that Xy and X
are gamma CGD and using Lemma IV.4,
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where Y, r? consist of tuples involving
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Fig. 1. Analysis and Simulation for Single Relay for 1 =1
Note that x; = —1 results in different values for 8y, @; above

and distinguishes (27) from (24). Substituting (24) and (27)
in (21) we obtain the final expression for BER. In Figure 1
the simulation and analytical results for various combinations
of m across different links are provided for a single relay.
my is the Nakagami fading figure on the S-R link. The
expressions in (24), (27) are used in (21) to evalute the exact
BER. We have assumed E; = E, for generating the results.
The simulations perfectly follow the analysis, validating the
expressions obtained for single relay.

VI. CoNCLUSIONS

Exact statistics for the linear combination of Gamma CGDs
have been obtained in this paper. A relatively new approach,
using the Mellin-Barnes integral representation of the extended
Fox-H function, was employed for this. The usefulness of the
results was then demonstrated by obtaining the exact expres-
sion for the BER for a single relay .-MRC cooperative system.
While general closed form expressions for arbitrary values
of m were obtained, computationally efficient expressions
for integer m were also obtained separately. Exploiting the
expressions for choosing appropriate A values for cooperative
diversity gain is a likely topic for further research.
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APPENDIX A
The MGF of X|A is [9]

: b2
M}(|A(S) _ eaSA+#A _ ( as+h2 )A (30)
and Ma(9) = E[e=] = 1+ f)f . 31)
C
Averaging (30) over A yields
bst\M 2\—Mm
as— =
My(s) = [1 + —2] = (1 + 2 bi) (32)
C C (&

which can be expressed as (5). The pdf of X is [5]
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where we have substituted for p4(z) from (1). After simplify-
ing the above, we obtain (3).

ApPENDIX B
The CDF of X can be expressed as'

M
Fx(x) = .2 {—X(S)}
s
MX(Y) sX
_ + 55 %’ ( s) dy x>0 (33)
2m§c == dy  x <0

Isee [12] for mathematical details

where C is a suitable contour encompassing all poles of the
above integrand(s) in the left half complex plane. Since

(aB)"

= @ oo
Mx(s) m L(8) IM@—-sI" B+ s)
= (@) Tl+s)Im(1+a-)"(1++5) (35
2
where B8, @ = w. (36)

b
Thus, the integrals in (33) fit into the Mellin-Barnes integral
expression for the Fox A function, [7, (T.I.1)], [8]. Using [7,
(T.I.1D)], [8] in (33), we obtain (6).
AprpENDIX C
From (33), the CDF of X for integer m can be expressed as
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Using Leibniz rule for differentiation,
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Substituting from (42) and (43) in (38), we obtain (9) after
simplification.



ApPENDIX D
From (33), the CDF of Y can be expressed as,
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Using the Faa Di Bruno formula [13] in (44) and the above
derivatives, we obtain (11). The PDF of Y can be expressed
in terms of the MGF as
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Using the Faa Di Bruno formula [13] in (53), we obtain (14).



