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Abstract—In this paper, exact statistics for the linear com-
bination of gamma conditionally Gaussian random variables
(CGRVs) are obtained. In particular, the probability density
function (PDF), the cumulative distribution function (CDF) and
the moment generating function (MGF) are derived. Closed
form expressions are obtained for both integer and noninteger
parameters, using the Mellin-Barnes integral representation of
the extended Fox-Ĥ function. The significance of these results is
then explained by obtaining performance metrics for decode and
forward (DF) cooperation in Nakagami-m fading.

Index Terms—Cooperative diversity, Residue theorem, DF.

I. Introduction

Conditionally Gaussian random variables (CGRVs) appear

in the decision variables for decode and forward (DF) coop-

eration [1]–[3]. While they also figured in the derivation of

performance metrics for various fading channels in additive

white Gaussian noise (AWGN), they did not attract enough

attention, since knowledge of their statistics was not really

necessary. However, the difficulty in the performance analysis

for cooperative systems led to interest in the statistics of this

new distribution.

Conditionally Gaussian distributions (CGDs) were first de-

fined in [1] and their statistics subsequently derived for obtain-

ing the bit error rate (BER) for maximum-likelihood decode

and forward (ML-DF) cooperation in Rayleigh fading. Similar

results were obtained for Gamma-CGDs in [3]. Related work

can also be found in [4] and [5].

In this paper, we obtain statistics for a linear combination of

Gamma-CGDs that are independent, with arbitrary parameters

(integer as well as noninteger). This is done by using a

Mellin-Barnes integral representation of special funtions [6]–

[8]. The usefulness of these results is then demonstrated by

obtaining the BER for λ-MRC (Maximal Ratio Combining)

DF cooperation in Nakagami-m fading channels.

II. Problem Definition

Definition II.1. X is gamma CG with parameters a, b > 0 if

X | A ∼ N(aA, bA), A ∼ G(c,m) being Gamma distributed [9]

with scale parameter c > 0 and order m > 0 with PDF [9]

pA(y) =
cm

Γ(m)
xm−1e−cy, y, c > 0. (1)

We wish to obtain the statistics of

Y =

N
∑

i=1

λiXi, (2)

where Xi | Ai ∼ N(aiAi, biAi), Ai ∼ G(ci,mi) are independent

and λi ∈ R. We begin by listing the complete statistics of X,

which are partially available in the literature [3], [5].

III. Statistics of Gamma CGD

Lemma III.1. The PDF and MGF of X are given by

pX(x) =
αmβme−

(β−α)x

2

Γ(m)
√
π

(

|x|
α + β

)m− 1
2

Km− 1
2

(

(α + β) |x|
2

)

(3)

MX(s) = E
[

e−sX
]

=
(αβ)m

(α − s)m(β + s)m
where (4)

β, α =

√
a2 + 2bc ± a

b
(5)

where K(·) is the modified bessel function of the second kind.

Proof. See Appendix A. Note that the above expressions are

valid for arbitrary m and the proof is straightforward. The

following Lemmas gives the expressions for the CDF for

integer and noninteger m separately.

Lemma III.2. (noninteger m) The CDF of X is given by
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Ĥ

1,2

3,3

[

ex
∣

∣

∣

∣

Υ1

Υ2

]

x ≥ 0
(

2c
b

)m
Ĥ
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(6)

where

Υ1 =















{(1, 1, 1) , (1 − β, 1,m) , (1 + α, 1,m)} x ≥ 0

{(1, 1, 1) , (1 − α, 1,m) , (1 + β, 1,m)} x < 0
(7)

Υ2 =















{(0, 1, 1) , (α, 1,m) , (−β, 1,m)} x ≥ 0

{(0, 1, 1) , (β, 1,m) , (−α, 1,m)} x < 0
(8)

and Ĥ is the Fox-Ĥ function, [7, (T.I.1)], [8],

Proof. See Appendix B.

Lemma III.3. (integer m) The CDF of X in this case is
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βme−βx
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1
βi +

∑m
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αk−1(k+i)!
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αmeαx
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1
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x < 0
(9)

Proof. See Appendix C

IV. Statistics of the linear combination of Gamma CGD

Lemma IV.1. The MGF of Y =
∑N

i=1 λiXi, defined in (2) is

given by

MY (s) =

N
∏

i=1

(αiβi)
mi

(αi − s)mi (βi + s)mi

where βi, αi =

√

a2
i
+ 2bici ± ai

λibi

(10)

Proof. (10) is trivially obtained from (5) by noting that Xi are

independent.

Corollary IV.1. The sum of i.i.d Gamma CGD variables is

Gamma CGD

In the following, we obtain the expressions for the CDF and

PDF of Y for integer and noninteger m. Note that the MGF is

the same for both cases.

A. Integer m

Theorem IV.2. (integer m) The CDF of Y is

FY (x) =
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(11)

where

G(s) = ln
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, (13)

G(k),H(k) are their k th derivaties and B(.,.) (·) is the Bell

polynomial [6].

Corollary IV.3. (integer m) The PDF of Y is

fY (x) =
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G̃(s) = ln























esx

N
∏

j=1

(

α jβ j

)m j

(α j − s)m j

N
∏

j=1
j,i

1

(β j + s)m j























(15)

H̃(s) = ln























e−sx

N
∏

j=1

(

α jβ j

)m j

(β j − s)m j

N
∏

j=1
j,i

1

(α j + s)m j























, (16)

Proof. See Appendix D

B. Non Integer m

Theorem IV.4. (noninteger m) The CDF of Y is

FY(y) =
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(17)
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{(1, 1, 1) , (1 − β1, 1,m1) ,
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y ≥ 0

{(1, 1, 1) , (1 − α1, 1,m) ,
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(18)
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(0, 1, 1) , (α1, 1,m1) , }
(−β1, 1,m1) , (α2, 1,m2) , (−β2, 1,m2)

. . . (αN , 1,mN) , (−βN , 1,mN)} y ≥ 0

{(0, 1, 1) , (β1, 1,m1) ,

(−α1, 1,m1) , (β2, 1,m1) , (−α2, 1,m2)

. . . , (βN , 1,mN) , (−αN , 1,mN)} y < 0

(19)

Proof. Using the approach in Appendix B, the above expres-

sion can be easily obtained after some algebra.

V. BER Analysis: λ-MRC with N Relays

Consider a λ-MRC cooperative system [10] wih N relay

nodes between the source and destination. For BPSK modu-

lation, the expression for the BER is given by

Pe =
∑

x

N
∏

r = 1

(

ε
1−xr

2
r (1 − εr)

1+xi
2

)

Pr
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∑
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λiXi < 0|x0 = 1, x















(20)



where Xi|hi ∼ N
(

aih
2
i
, bih

2
i

)

account for the parameters on the

source (S) - destination (D) link and the relay (R) - destination

link [3]. The 0 index is used to represent the source parameters

with λ0 = 1. Without loss of generality, the different variables

involved in (20) are listed in Table I. From Theorems IV.2

h Nakagmi-m fading coefficient

E Transmit power at a node

a 4Ex
N0

b 8E
N0

c,m Nakagami fading figure

x Transmitted symbol at a node

ε BER on the S-R link

N Number of relays

N0 Noise variance

γ Average signal to noise ratio (SNR)

x Set of all N tuples of the relay symbols x
TABLE I

Description of parameters in (20)

and IV.4, (20) can be expressed in closed form for integer and

noninteger fading parameters respectively. This is explained in

the following.

A. Single Relay Performance

For N = 1, we use the subscripts 0 and 1 for the source and

relay parameters. The expression in (20) can then be expressed

as

Pe = ε1 Pr (Y < 0|x0 = 1, x1 = 1)

+ (1 − ε1) Pr (Y < 0|x0 = 1, x1 = −1) (21)

where Y = X0 + λ1X1 (∵ λ0 = 1) (22)

(21) consists of two error probabilities obtained with a) correct

(x1 = 1) and b) incorrect (x1 = −1) decision at the relay which

can be more conveniently written as

Pe = ε1FY |x0=1,x1=−1(0) + (1 − ε1)FY |x0=1,x1=1(0) (23)

1) Correct Decision at the Relay: Noting that X0 and X1

are gamma CGD and using Lemma IV.4,

FY |x0=1,x1=1(0) =
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where Υ1,Υ2 consist of tuples involving

β0, α0 =
1
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(√

1 +
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)

(25)
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(√
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)

(26)

2) Incorrect Decision at the Relay: Similarly,

FY |x0=1,x1=−1(0) =
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where

β0, α0 =
1

2

(√

1 +
m0

γ0

± 1

)

(28)

β1, α1 =
1

2λ1

(√

1 +
m1

γ1

∓ 1

)

(29)
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Fig. 1. Analysis and Simulation for Single Relay for λ = 1

Note that x1 = −1 results in different values for β1, α1 above

and distinguishes (27) from (24). Substituting (24) and (27)

in (21) we obtain the final expression for BER. In Figure 1

the simulation and analytical results for various combinations

of m across different links are provided for a single relay.

ms1 is the Nakagami fading figure on the S-R link. The

expressions in (24), (27) are used in (21) to evalute the exact

BER. We have assumed Es = Er for generating the results.

The simulations perfectly follow the analysis, validating the

expressions obtained for single relay.

VI. Conclusions

Exact statistics for the linear combination of Gamma CGDs

have been obtained in this paper. A relatively new approach,

using the Mellin-Barnes integral representation of the extended

Fox-Ĥ function, was employed for this. The usefulness of the

results was then demonstrated by obtaining the exact expres-

sion for the BER for a single relay λ-MRC cooperative system.

While general closed form expressions for arbitrary values

of m were obtained, computationally efficient expressions

for integer m were also obtained separately. Exploiting the

expressions for choosing appropriate λ values for cooperative

diversity gain is a likely topic for further research.
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Appendix A

The MGF of X|A is [9]

MX |A(s) = easA+ bs2

2
A = e

(

−as+ bs2

2

)

A
(30)

and MA(s) = E
[

e−sA
]

=

(

1 +
s

c

)−m

. (31)

Averaging (30) over A yields
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−m

=
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1 +
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c
− bs2

c

)−m

(32)

which can be expressed as (5). The pdf of X is [5]

pX(x) =

∫ ∞

−∞
pX |A pA(z) dz

=
1
√

2πb

∫ ∞

−∞

1
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∫ ∞
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(
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√
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)

where we have substituted for pA(z) from (1). After simplify-

ing the above, we obtain (3).

Appendix B

The CDF of X can be expressed as1

FX(x) = L
−1

{

MX(s)

s

}

=















1 + 1
2π

∮

C

MX (s)

s
esxdy x ≥ 0

− 1
2π j

∮

C

MX(−s)

s
e−sxdy x < 0

(33)

1see [12] for mathematical details

where C is a suitable contour encompassing all poles of the

above integrand(s) in the left half complex plane. Since

MX(s) =
(αβ)m

(α − s)m (β + s)m , (34)

MX(s)

s
= (αβ)m Γ(s)

Γ(1 + s)

Γm (α − s) Γm (β + s)

Γm (1 + α − s) Γm (1 + β + s)
(35)

where β, α =

√
a2 + 2bc ± a

b
. (36)

Thus, the integrals in (33) fit into the Mellin-Barnes integral

expression for the Fox Ĥ function, [7, (T.I.1)], [8]. Using [7,

(T.I.1)], [8] in (33), we obtain (6).

Appendix C

From (33), the CDF of X for integer m can be expressed as

FX(x) =
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Substituting the above in (39),
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Substituting from (42) and (43) in (38), we obtain (9) after

simplification.



Appendix D

From (33), the CDF of Y can be expressed as,

FY (x) =















1 +
∑N

i=1 Ress=−βi

MY (s)

s
esx x ≥ 0

−
∑N

i=1 Ress=−αi

MY (−s)

s
e−sx x < 0

(44)

=



















































1 +
∑N

i=1
1

(mi−1)!
dmi−1

dsmi−1

×
[

esx

s

∏N
j=1

(α jβ j)
m j

(α j−s)
m j

∏N
j=1
j,i

1
(β j+s)

m j

]

s=−βi

x ≥ 0

−
∑N

i=1
1

(mi−1)!
dmi−1

dsmi−1

×
[

e−sx

s

∏N
i=1

(αiβi)
mi

(βi−s)mi

∏N
j=1
j,i

1
(α j+s)

m j

]

s=−αi

x < 0

Letting G(s) = ln























esx

s

N
∏

j=1

(

α jβ j

)m j

(α j − s)m j

N
∏

j=1
j,i

1

(β j + s)m j























(45)

= sx − ln s +

N
∑

j=1

m j

[

ln
(

α jβ j

)

− (α j − s)
]

−
N

∑

j=1
j,i

m j ln(β j + s), (46)

upon successive differentiation, we obtain

G(1)(s) = x −
1

s
−

N
∑

j=1

m j

(α j − s)
−

N
∑

j=1
j,i

m j

(β j + s)
(47)

G(2)(s) =
1

s2
−

N
∑

j=1

m j

(α j − s)2
+

N
∑

j=1
j,i

m j

(β j + s)2
(48)

G(k)(s) = (k − 1)!























(−1)k

sk
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N
∑
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+
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(−1)k m j
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Similarly, letting

H(s) = ln
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∏
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)m j
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1
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(49)

= −sx − ln s +

N
∑

j=1

m j

[

ln
(

α jβ j

)

− (β j − s)
]

−
N

∑

j=1
j,i

m j ln(α j + s), (50)

upon successive differentiation, we obtain

H(1)(s) = −x − 1

s
−

N
∑

j=1

m j

(β j − s)
−

N
∑

j=1
j,i

m j

(α j + s)
(51)

H(2)(s) =
1

s2
−

N
∑

j=1

m j

(β j − s)2
+

N
∑

j=1
j,i

m j

(α j + s)2
(52)

H(k)(s) = (k − 1)!
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+
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(−1)k m j
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Using the Fàa Di Bruno formula [13] in (44) and the above

derivatives, we obtain (11). The PDF of Y can be expressed

in terms of the MGF as

fX(x) =















1
2π j

∮

C
MY (s)esxdx x ≥ 0

− 1
2π j

∮

C
MY (−s)e−sxdx x < 0

(53)

=



















































∑N
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1
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×
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esx
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m j

(α j−s)
m j

∏N
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j,i

1
(β j+s)

m j

]

s=−βi

x ≥ 0

−
∑N

i=1
1

(mi−1)!
dmi−1

dsmi−1

×
[

e−sx
∏N

i=1
(αiβi)

mi

(βi−s)mi

∏N
j=1
j,i

1
(α j+s)

m j

]

s=−αi

x < 0

Letting

G̃(s) = ln























esx
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)m j

(α j − s)m j

N
∏

j=1
j,i

1

(β j + s)m j























(54)

= sx +

N
∑

j=1

m j

[

ln
(

α jβ j

)

− (α j − s)
]

−
N

∑

j=1
j,i

m j ln(β j + s),

upon successive differentiation, we obtain

G̃(1)(s) = x −
N

∑

j=1

m j

(α j − s)
−

N
∑

j=1
j,i

m j

(β j + s)
(55)

G̃(2)(s) = −
N

∑

j=1

m j

(α j − s)2
+

N
∑

j=1
j,i

m j

(β j + s)2
(56)

G̃(k)(s) = (k − 1)!
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(−1)k m j
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(57)

Similarly, letting

H̃(s) = ln
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∏
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j,i

1
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(58)

= −sx +

N
∑

j=1

m j

[

ln
(

α jβ j

)

− (β j − s)
]

−
N

∑

j=1
j,i

m j ln(α j + s),

upon successive differentiation, we obtain

H̃(1)(s) = −x −
N

∑

j=1

m j

(β j − s)
−

N
∑

j=1
j,i

m j

(α j + s)
(59)

H̃(2)(s) = −
N

∑

j=1

m j

(β j − s)2
+

N
∑

j=1
j,i

m j

(α j + s)2
(60)

H̃(k)(s) = (k − 1)!
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+

N
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(61)

Using the Fàa Di Bruno formula [13] in (53), we obtain (14).


