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Abstract

Rank aggregation mechanisms have been used in solving problems from various domains such as bioinfor-
matics, natural language processing, information retrieval etc. Metasearch is one such application where
a user gives a query to the metasearch engine, and the metasearch engine forwards the query to multiple
individual search engines. Results or rankings returned by these individual search engines are combined
using rank aggregation algorithms to produce the final result to be displayed to the user. We identify few
aspects that should be kept in mind for designing any rank aggregation algorithms for metasearch. For exam-
ple, generally equal importance is given to the input rankings while performing the aggregation. However,
depending on the indexed set of web pages, features considered for ranking, ranking functions used etc.
by the individual search engines, the individual rankings may be of different qualities. So, the aggregation
algorithm should give more weight to the better rankings while giving less weight to others. Also, since the
aggregation is performed when the user is waiting for response, the operations performed in the algorithm
need to be light weight. Moreover, getting supervised data for rank aggregation problem is often difficult.
In this paper, we present an unsupervised rank aggregation algorithm that is suitable for metasearch and
addresses the aspects mentioned above.

We also perform detailed experimental evaluation of the proposed algorithm on four different bench-
mark datasets having ground truth information. Apart from the unsupervised Kendall-Tau distance measure,
several supervised evaluation measures are used for performance comparison. Experimental results demon-
strate the efficacy of the proposed algorithm over baseline methods in terms of supervised evaluation metrics.
Through these experiments we also show that Kendall-Tau distance metric may not be suitable for evaluating
rank aggregation algorithms for metasearch.
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1. Introduction and Motivation

The input to the rank aggregation problem is a number of rankings obtained from different sources. The
sources can be human judges or algorithms. The task is to combine these input rankings and produce an ag-
gregate ranking. Rank aggregation techniques have been used to solve problems from different applications
domains. We mention here a few expert and intelligent systems applications or application domains where
rank aggregation techniques have been used to arrive at solutions to different problems.
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• Voting: For voting applications, there is a fixed list of candidates. There are voting schemes where
the voters are allowed to rank the candidates based on the order of their choices. For such schemes,
it is often necessary to combine the rankings provided by the voters to produce an aggregate ranking
of the candidates, to obtain a consensus ordering of the candidates. This aggregate ranking can be de-
termined by rank aggregation algorithms (de Borda, 1781; Davenport and Kalagnanam, 2004; Elkind
and Lipmaa, 2005).

• Metasearch: Metasearch engines (e.g. MetaCrawler (http://www.metacrawler.com/), Dog-
pile (http://www.dogpile.com), Entireweb (http://www.entireweb.com/) etc.) ac-
cept queries from users, and forward that query to several second-level search engines. Each of these
second-level search engines returns a ranked list of items for the query. The metasearch engine then
combines these ranked lists to produce an aggregate list. This aggregate list is displayed to the user
as a response to his/her query (Aslam and Montague, 2001; Jansen et al., 2007; Chen et al., 2008;
Thomas and Hawking, 2009). Thus rank aggregation is a central task for successful working of any
metasearch engines.

• Multi-criteria decision making: There are systems where the objects (documents/ products/ candi-
dates) might be scored or ranked based on multiple criteria. However, a single ordering of the objects
is required as the final ranking. Rank aggregation algorithms are often used in tasks such as selecting
product or services for recommendation (Shao et al., 2010), combining feature based rankings for pro-
ducing a single ranking for web search queries (Farah and Vanderpooten, 2007), candidate screening
for hiring process in a large organization (Mehta et al., 2013), diversifying search results (Ozdemiray
and Altingovde, 2015) etc.

• Recommender systems: Recommender systems have traditionally recommended items to individual
users. Recently there has been a proliferation of recommender systems that recommend items to
groups of users (Jameson and Smyth, 2007). Examples of such scenarios include a group of users
listening to music, watching a movie, going to a restaurant or a museum etc. For recommending items
to a group of users, Baltrunas et al. (2010) presents a methodology where the system first gets ranked
recommendation list for each member of the group, and then aggregates the individual lists to produce
the recommendation for the group. (Sohail et al., 2015) aggregate user feedbacks to provide evaluation
in product recommender systems.

• Natural Language Processing: For the language translation task, algorithms are suggested that for
a source sentence, consider the ranked list of translations returned by different translator algorithms,
and combine them to produce a final ranking of the candidate translations (Rosti et al., 2007). Similar
techniques of combining ranked lists of candidate solutions for finding the final output are used for
approaching the problems of syntactic dependency parsing (Sagae and Lavie, 2006) and word sense
disambiguation (Brody et al., 2006).

• Networking: In the networking domain, a number of metrics have been proposed to quantify the in-
herent robustness of a network topology against failures. However, each single metric usually offers
only a limited view of network vulnerability. When applied to certain network configurations, differ-
ent metrics rank the network topologies in different orders, and no single metric fully characterizes
network robustness against different modes of failure. To overcome this problem, Alireza Yazdani
(2013) proposes a multi-metric approach where the ordering of the topologies given by different in-
dividual metrics are combined to get an overall ranking of robustness for the network topologies. In
social networking domain, (Tabourier et al., 2014) uses rank aggregation for link prediction. Ordering
of a user’s neighbors according to various network-based features (such as Adamic-Adar, Jaccard In-
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dex, Katz measure etc.) are identified. These orderings are aggregated to suggest set of possible new
connections for the user.

• Healthcare: In (Fields et al., 2013), the authors present a system where in an emergency department of
a hospital, nurses provide orderings of the patients in terms of the severity of the patient’s conditions.
Nurses put patients requiring medical attention more urgently than others near the top of the list. Such
orderings provided by multiple nurses are aggregated to produce a single ranking of patients and the
patients are attended in that order.

• Bioinformatics: Rank aggregation algorithms are used on the bioinformatics domain also, for cluster
validation in microarray data analysis (Pihur et al., 2007), identifying differentially expressed genes
(Fang et al., 2011), high throughput screening in nanotoxicology (Patel et al., 2012), multimodal
biometric systems (Monwar and Gavrilova, 2013), feature selection (Sarkar et al., 2014) etc.

It is evident from the discussion above that rank aggregation algorithms are used to solve problems in
different expert and intelligent systems. Most of the rank aggregation algorithms discussed in literature are
unsupervised in nature. This is because unsupervised methods can be easily ported across different applica-
tions. Supervised approaches to rank aggregation need supervised ranked data, which is expensive to acquire
(Klementiev et al., 2008; Wu et al., 2010). Therefore, unsupervised rank aggregation is an important prob-
lem to be studied. We wish to develop an unsupervised rank aggregation algorithm. Our main motivation
is to work on the metasearch problem. In metasearch, ranked responses from different search engines are
combined and the aggregate ranking is displayed as the output. As the aggregation is performed in runtime
when the user is waiting for the final result for his query, it is essential for the algorithm to be of low com-
plexity, and also the steps involved in performing the aggregation should involve low cost operations. Also,
the quality of the input rankings given by individual search engines are affected by various factors such as
indexed set of web-pages, features used for ranking, ranking function used etc. Due to this fact, qualities
of the input rankings may not be equal. So, in metasearch, there is a need to identify the qualities of the
input rankings and use that quality information while performing the aggregation. We have not come across
any work in literature that emphasizes on these requirements while developing unsupervised algorithms for
metasearch. The unsupervised algorithm proposed in this paper is developed keeping these aspects in mind.

Several unsupervised rank aggregation algorithms and their analysis are presented in the works (de Borda,
1781; Aslam and Montague, 2001; Dwork et al., 2001; Schalekamp and van Zuylen, 2009; Betzler et al.,
2014). These algorithms are widely used in metasearch engines and in metasearch literature. However, all
these methods consider the input rankings to be equally good. Equal importance is given to the rankers for
computing the aggregate ranking. (Cohen et al., 1998) learns quality weights of the rankers and uses that
information for aggregation. The algorithm maintains a single query vector over the rankers at any time,
which is irrespective of the query. However, relative qualities of the rankers can be different for different in-
put queries. This is often true for metasearch, due to different sets of indexed pages maintained by different
search engines. Also, the method learns the quality weights from user feedback data, which as mentioned
earlier, may be difficult to get. Several other recent researches also use supervised approaches for rank
aggregation (Liu et al., 2007; Pujari and Kanawati, 2012; Tabourier et al., 2014). The work in (Rajkumar
and Agarwal, 2014) discusses desirable theoretical properties for rank aggregation algorithms and provides
a supervised algorithm for rank aggregation.

The method proposed in this work considers each input ranking as a preference graph and aggregates the
preference graphs to generate the aggregate ranking. We want to give different weights to different rankers
(or the corresponding preference graphs) depending on their qualities or goodness on a given query. We
want to assign the weights in an unsupervised manner. At the same time, we want the weight assignment
and ranking aggregation algorithms to involve low cost operations, so that the algorithm is fast and suitable
for real time processing. Although the algorithm is developed keeping in mind the metasearch problem,
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it can be used for all the applications/frameworks mentioned earlier in this section (except for the voting
application, where it is mandatory to give equal importance to all the voters).

We provide detailed experimental evaluation of the proposed algorithm. Different supervised and un-
supervised evaluation metrics are used as evaluation measures. Generally unsupervised rank aggregation
algorithms are evaluated using the unsupervised metric Kendall-Tau distance. This metric computes the
number of inversions between to rankings. Lower number of inversions lead to lower values of the metric
and are preferred by the algorithms. However, this metric is known to have some drawbacks (Yilmaz et al.,
2008; Carterette, 2009) as it does not distinguish between inversions at the top and bottom of the rankings.
Recently, some benchmark datasets (Qin et al., 2009; Chapelle and Chang, 2010) with ground truth informa-
tion have been released for the rank aggregation task. It is possible to use supervised evaluation measures for
these datasets. We use these datasets for experimentation. The experimental results indicate the effectiveness
of the proposed algorithm. From the results, we also see that algorithms that obtained good Kendall-Tau dis-
tance measure performed badly according to supervised evaluation measures and vice-versa. The ordering
of the algorithms according to the Kendall-Tau distance measure was completely different from the ordering
obtained using the supervised evaluation measures. Supervised measures use ground truth information for
determining the quality of results. Hence the experimental evaluations indicate that if supervised labels are
available, then it might be better to use supervised evaluation measures for evaluating the performances of
the rank aggregation algorithms for metasearch.

The specific contributions of the work are three-fold:

• We propose an unsupervised rank aggregation algorithm that assigns weights to the rankers depending
on their qualities. These quality weights are different for different queries and are assigned in an
unsupervised manner.

• The algorithm is developed keeping in mind that the operations need to be fast for real time aggregation
of the input rankings.

• We perform detailed evaluation of different unsupervised rank aggregation algorithms. Four different
benchmark datasets are used for experimentation. Apart from the Kendall-Tau distance, we also use
several supervised evaluation measures like Precision, NDCG, MAP, mean NDCG, ERR as evaluation
metrics. By using both supervised and unsupervised evaluation measures for performance evaluation,
we show that Kendall-Tau distance may not be suitable for evaluating Rank aggregation algorithms
for metasearch.

The rest of the paper is organized as follows. We discuss the related work from literature in Section
2. A formal definition of the rank aggregation problem for metasearch is given in Section 3. The rationale
behind using preference relations is described in Section 4. Section 5 describes a data structure that can
be used to store the preference relations. The details of the proposed algorithm is presented in Section 6.
Experimental results are presented and analyzed in Section 7. Section 8 concludes the discussion and also
provides pointers for future research directions.

2. Related Work

In this section, we describe some of the existing rank aggregation methods and discuss their merits and
demerits.

2.1. Existing Methods: Unsupervised

We classify the existing unsupervised rank aggregation algorithms into different categories based on the
ways the aggregation is performed and review each of these categories in detail.
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2.1.1. Positional score based methods
Borda Count (de Borda, 1781) is the most widely used rank aggregation algorithm that is based on

positional scores. In Borda Count, scores are assigned to the items or candidates based on their absolute
ranks in the different input lists. For each ranking, the lowest item is assigned a score of x. The candidate at
the second lowest position in that list is given a score x + 1, the third lowest item is given a score of x + 2
and so on. The value of x is often set to 1. For each item, the scores that it gets for the different lists are
added up, and the items are sorted in decreasing order based on their total scores. This sorted list is output
as the aggregate list. Amin and Emrouznejad (2011) present a positional score based algorithm that assigns
weights to each position dynamically, by looking at the data. However, if there are N documents in the set
and the length of the longest list is L, then the method needs to solve N linear programming problems, each
with O(N + L) constraints.

2.1.2. Markov chain based methods
Several Markov chain based methods were used for rank aggregation in (Dwork et al., 2001). The items

in the ranked lists were considered as states. For each pair of items i1 and i2, the corresponding state
transition probability depends on what fraction of the input rankers have ranked both the items, and also
how many lists have i1 before i2. Four such methods were proposed, namely, MC1, MC2, MC3, and MC4.
The methods are different from each other in the ways the transition probabilities are calculated.

2.1.3. Kemeny optimal aggregation
Methods belonging to this category try to optimize the average Kendall-Tau distance or the Kemeny

distance between the aggregate list and the input lists. Kemeny distance between two ranked lists is defined
as the number of item pairs (i, j) for which the two lists disagree on their relative ordering, i.e. one list
places i above j, and the other has j above i.

Several researchers have posed the task of optimizing average Kemeny distance as the minimum feed-
back arc set problem and proposed algorithms for the task. There are weighted versions of the problem as
well, and people have tried to find efficient approximate algorithms for these versions (Coppersmith et al.,
2010; van Zuylen and Williamson, 2007; Ailon et al., 2008; Schalekamp and van Zuylen, 2009).

2.1.4. Condorcet procedure
This is a pairwise method and comes from the literature of voting theory. Condorcet winner for an elec-

tion is the candidate who wins over or ties with every other candidate in the election. Repetitive application
of the Condorcet procedure produces the aggregate ranking of the candidates (Condorcet, 1785).

For rank aggregation, the input rankings are viewed as the preference ordering of candidates as given by
different voters. The aggregation is then performed in a number of steps, by selecting one Condorcet winner
(which corresponds to an item from the input ranked lists) in each step. However, it is not necessary for
an election to always have a Condorcet winner. Variations of the basic Condorcet procedure are suggested
to address such situations. Montague and Aslam (2002) view the input lists as a preference graph over the
candidates. It then partitions the graph into strongly connected components (SCC). Items in a single SCC
are equally preferable. Edges between two SCCs denote the preference of one SCC over the other. There is
another rule called Black rule (Jean, 1961) that combines Borda and Condorcet policies for rank aggregation.
If there is a Condorcet winner, then Black rule selects that item. Otherwise Borda count is used to determine
the winner.

2.1.5. Linear aggregation
This scheme is often used when scores are available from the input rankers. Several data fusion ap-

proaches using linear aggregation of scores are suggested in literature for the learning to rank task. Weighted
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sum or its variations are used as aggregation operators (Shaw and Fox, 1994; Lee, 1997; Farah and Vander-
pooten, 2007; Wu et al., 2014). (Shaw and Fox, 1994) introduced CombSUM, CombMIN, CombMAX,
CombANZ, CombMNZ strategies for data fusion. CombSUM ranks items based on sum of scores they
have obtained from the rankers. The next two strategies consider for ranking the maximum and minimum
scores respectively that an item has obtained. Scores are often normalized to a bounded range to make
them comparable across different rankers. Different variants of these strategies are suggested in (Farah and
Vanderpooten, 2007; Wu et al., 2014).

2.1.6. Probabilistic models
Several research work in recent literature (Klementiev et al., 2008, 2009; Clémençon and Jakubowicz,

2010) suggest the use of probabilistic models such as the Mallows model on permutations to solve the
problem of unsupervised rank aggregation. Algorithms that use Mallows model perform well, but have a
complexity of O(n!). Reduction in complexity is possible using sampling techniques (Klementiev et al.,
2008). However, this affects the effectiveness of the model. Mallows model has also been used to aggregate
“typed rankings” coming from domain-specific experts – where the type or domain of the candidate items
are known (Klementiev et al., 2009).

Clémençon and Jakubowicz (2010) applies Luce model for performing rank aggregation, using general-
ized Kantorovich distances between rankings. The problem of measuring disagreement between rankings is
cast as discrete mass transportation problem, by embedding the set of permutations in a convex set of doubly
stochastic permutation matrices. Let the set of all doubly stochastic matrices of size n × n be denoted as
Kn. Each input ranking σi can be represented as an element Ai ∈ Kn. If there are m such input rankings,
then any A∗ ∈ Kn having minimum average distance from A1, A2, ..., Am is called as the median ranking.
The algorithm first finds one such A∗. It then builds the aggregate ranking sequentially, by including one
new item in each step. This part of building the list sequentially is governed by the Luce model, where the
probability of an item being included as the next item is computed based on the entries in the median matrix
A∗ already chosen. Complexity of the method is high. The step of distance computation between rankings
takes O(n6) time in general. The complexity can be reduced by using certain specific cost functions.

2.2. Existing Methods: Supervised

The majority of the algorithms for the rank aggregation problem are unsupervised in nature. However,
recently, due to the availability of few rank aggregation datasets with supervised information (Qin et al.,
2009), people are discussing supervised algorithms also for the task. Here we briefly review some of the
supervised methods for the rank aggregation task.

2.2.1. Probabilistic models
A supervised Probabilistic Fusion method for rank aggregation is presented in (Lillis et al., 2006). The

approach is based on the assumption that a ranker that does well on past queries, will do well for future
queries also. Scores are treated as probabilities of relevance. The rank positions are divided into k segments.
Given a ranker and a segment, the probability that the ranker has placed a relevant item in that segment is
calculated from the training data. Score for a test item is calculated based on this probability as well as the
scores given to the test item by the different rankers.

A probabilistic model for supervised rank aggregation by using a combination of Mallows and Luce
models is suggested in (Qin et al., 2010a). A coset-permutation distance based stagewise (CPS) model is
used for this purpose. Specifically, the final permutation π of n objects is generated in n sequential stages.
At the k-th stage, the task is to select the k-th object in the permutation π. The probability of this selection is
defined using the coset-permutation distance between the right coset Sn−kπ and the input rankings σ, where
Sn is the symmetric group of order n. The aggregated list can be computed in O(mn4) time if there are m
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input rankings. However, the authors mention that the runtime complexity can be brought down to O(mn2)
by using efficient implementation techniques.

2.2.2. Machine learning based methods
An online learning based method for combining ranking “experts" is given in (Cohen et al., 1998), which

gives weights to each ranker. For each query in the training set, weights of the rankers that performed poorly
for that query were reduced. When the next query comes, the algorithm starts with the current value of
weights, and the process goes on. Clicklog data or document relevance information is used to measure
the performance of a ranker for a query. In (Liu et al., 2007), supervised versions of markov chain based
approaches (Dwork et al., 2001) were proposed. (Wang et al., 2013) takes the differences among queries
into consideration and proposes a query similarity based supervised rank aggregation framework. First, the
framework sets up a number of base rankers for each query. Next, the base rankers are aggregated to get the
final ranked lists. A supervised approach is used to tune the weights of these base rankers. Semisupervised
rank aggregation is proposed in (Chen et al., 2008).

2.3. Learning To Rank
The Learning to Rank task has as input scores given to different query-document pairs by different

ranking features (Li, 2011; Chapelle and Chang, 2011). Given a collection of such scores and also the
relevance labels for different query-document pairs, ranking functions are learned. Given a new query,
feature scores for documents are first determined. Then the learned ranking functions are applied on these
feature scores to determine the final ranking. Different methods have been proposed for the task. The
methods differ from each other in the (a) family of functions considered for ranking like feature-weighted
linear aggregation (Cao et al., 2006), boosting trees (Chen et al., 2011), (b) family of loss functions used
(Burges et al., 2006; Acharyya et al., 2012; Weston et al., 2013), (c) instances considered for training the
ranking function - pointwise (Li et al., 2008), pairwise (Sculley, 2009), listwise (Cao et al., 2007) etc., (d)
comparing different ways of supervision information (Chen and Hofmann, 2015) etc. Also, there are works
that use the feature scores to generate additional intermediate features and use them for a two-stage learning
of the ranking function (Keyhanipour et al., 2015). Semi-supervised approaches for the task by using both
labeled and unlabeled data for training are also proposed (Pan et al., 2011). It should be noted that, for
the rank aggregation problem, the feature scores are not available as input. Only the relative orderings of
documents are available. Still, one can assume the different features as rankers, induce rankings based on
the feature scores, and combine these rankings using rank aggregation techniques.

As described in this section, both supervised and unsupervised algorithms exist for rank aggregation.
In this paper, our focus is to develop unsupervised rank aggregation algorithm that is suitable for a real
time application like metasearch. As input, we have only rankings obtained from different sources and
not the scores given to the items by the different rankers. Hence, aggregation algorithms that combine
scores for the different items in the rankings can not be used for the task at hand. Also, majority of the
rank aggregation algorithms discussed in literature consider each input ranking to be equally good. Due
to various reasons as mentioned in Section 1, the input rankings for metasearch may not be equally good.
There are rank aggregation algorithms that rely on supervised data for determining the weights of the input
rankers. However, our focus is to estimate the goodness of the input rankings without using any supervised
data and use that infomation for determining the aggregate ranking. We now give a formal definition of the
rank aggregation problem and explain our solution for approaching the problem.

3. Rank Aggregation: Problem Formulation

Before describing our proposed algorithm for solving the problem, we formally introduce the task of
rank aggregation.
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Rank Aggregation: Let I be a set of items. A ranked list or ranking RI w.r.t. I is a permutation of the
items from a set S ⊆ I . In other words, RI = 〈x1, x2, · · · , xd〉, where each xi ∈ S. If xi appears
before xj inRI , it is said that xi is ranked above xj inRI . GivenN such ranked listsRI1, R

I
2, · · ·RIN ,

the Rank Aggregation problem attempts to find an aggregate ranking RIA over the same item set I .

4. The Rationale Behind Using Preference Relations

We wish to consider the relative ordering between items appearing in the input rankings for solving the
rank aggregation task. If item i appears above item j in a ranking, we consider that i is more preferable to
j in the ranking. This is intuitive, as several applications put better items at the top of the list. We use this
relative ordering or preference relations between items for producing the aggregate ranking.

The inputs from human experts or algorithms about a set of items may come in different forms: (a)
Scores for all the items, (b) Rankings of items and (c) Pairwise preference relations. Inputs represented as
scores or rankings can be easily converted to preference relations. Also, there can be cases where giving
opinions in the form of preference relations might be easier. For example, if there is a set of movies to be
ranked by a user, giving a set of preference relations might be less confusing than giving absolute scores to
the movies or ranking the movies in order of user satisfaction. Different algorithms also may find it easier
to provide relative ordering between items (possible translations for machine translators, pairs of matching
texts for plagiarism detection etc.). Hence, it is imperative to look at preference relations based algorithms
for such aggregation tasks.

5. A Data Structure for Storing the Preference Relations
We use a data structure called preference graph for storing the preference relations. Our algorithm views

each ranked list as a collection of preference relations, and hence as a preference graph over the items present
in that list.

Representing a ranking as a preference graph: A preference graph is a data structure where there is
one directed edge between each pair of nodes. The edge denotes the preference relation between the
items it connects. In our representation, the nodes in the preference graph represent the items present
in the ranked list. If the list contains item i above item j, then the graph contains a preference edge (a
directed edge) from node j to node i. The weight of this edge is set to one. As the input is a ranking
where there is no tie, there can be exactly one edge between every node pair in this preference graph.
Figure 1 gives an example of representing a ranking as a preference graph.

Original Ranking Corresponding preference graph

d1

d4

d2

d3

D1

D4D2

D3

Figure 1: Converting a ranking to a preference graph. d1, · · · d4 are the documents. D1, · · ·D4 are the corresponding nodes in the
preference graph. Edges denote preference relations.
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6. A Preference Relations Based Unsupervised Rank Aggregation Algorithm

We now describe the proposed rank aggregation algorithm. The algorithm works in two phases. The
first phase views the input rankings as preference graphs. It then assigns weights to the input rankings (or
the corresponding preference graphs) based on their qualities. A weighted combination of these preference
graphs is performed to construct an aggregate graph. The second phase induces a ranking from the aggregate
graph. This ranking is the output of the rank aggregation algorithm. These steps are described in detail in
the next subsections.

6.1. Creating an Aggregate Graph from the Input Rankings

The first phase of the proposed algorithm creates an aggregate graph. For this, first the input rankings
are viewed as preference graphs. All the input rankings (equivalently, the input preference graphs) may not
be equally good in terms of representing the actual (ground truth) preference relations between items. If
we can identify the rankings that are good and the ones that are bad, we may give higher importance to the
better rankings during the aggregation process. We keep a weight vector on the input rankings. The weight
of a ranking is indicative of the confidence that the algorithm has on that ranking. So, we expect the better
rankings to have higher weights. This phase first computes the quality weights for the rankings, and uses
these weights to produce the aggregate preference graph.

Identification of better rankings can be easily done if supervised information is available in the form of
document relevance scores or clicklogs. In absence of supervised information, one can consider the majority
opinion to be indicative of the supervised label for the relative importance between a pair of items. i.e., if
more than half of the rankings say that i is better than j, then i is considered better than j in the ground truth
setting. This is common for voting applications.

However, this may not be a good choice for metasearch. If there are 20 rankers and 9 say that i is better
than j, it is difficult to say whether i is actually better than j. Again, if 5 rankers say that i is better and
the remaining say otherwise, then the metasearch engine may assume that i is indeed better than j. In other
words, if a webpage is preferred over another by many ranked lists, chances are high that the user will have
more satisfaction for that page. To model this scenario, we consider the opinion of a ranker to be incorrect
if it fails to agree with a fraction α of rankers that rank both the items. In this context, we first define what
we mean by disagreement with α-majority.

Definition: Disagreement of a ranking with α-majority: Suppose there are N rankings. α and β are two
constants such that 0 ≤ α ≤ .5 and 0 ≤ β ≤ 1. For each item pair (i, j), the rankings may give their
opinions. The set of possible opinions is X = {0, 1}. Also, there can be rankings that do not provide any
opinion about the item pair. For the pair (i, j), let the number of rankings which give the opinion x ∈ X is
denoted as nx.

Suppose the opinion by a ranking k is x(k) ∈ X . We say that ranking k has disagreed with the α-
majority if and only if both the following conditions are satisfied.

n0 + n1 ≥ dβNe (1)
nx(k) < α(n0 + n1). (2)

Inequality 1 signifies that if a minimum number of opinions is not available for the item pair, no ranking is
marked as incorrect. Inequality 2 indicates that a ranker failing to agree with at least α fraction of available
opinions for the same pair is marked as incorrect (in disagreement with α-majority).

An Example: We now explain the above definition using examples. Suppose the number of rankings is
N = 20. Also assume α = 0.3 and β = 0.5.

B Case 1: 12 rankings say that i is better than j (consider this as opinion 0). 5 rankings say that j is better
than i (consider this as opinion 1). So, n0 = 12 and n1 = 5.
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n0 + n1 = 17, dβNe = d.5× 20e = 10.
So, Equation 1 is satisfied.
Now, α(n0 + n1) = .3× (12 + 5) = 5.1
As n1 = 5 < α(n0 + n1), Equation 2 is satisfied for x = 1.
Hence, according to Definition, all the rankings which say j is better than i are in disagreement with the
α-majority for the pair (i, j).

B Case 2: 5 rankings say that i is better than j. 10 rankings say that j is better than i. So, n0 = 5 and
n1 = 10.
n0 + n1 = 15, dβNe = d.5× 20e = 10.
So, Equation 1 is satisfied.
Now, α(n0 + n1) = .3× (5 + 10) = 4.5
As n0 = 5 > α(n0 + n1) and n1 = 10 > α(n0 + n1), Equation 2 is satisfied for neither x = 0 nor
x = 1.
Hence, according to the definition none of the rankings are in disagreement with the α-majority.

Based on this definition, we now design a weight assignment rule for the input rankings.

6.1.1. Assigning quality scores to input rankings:
Let R1 to RN be the input rankings. Also, let dijl denote the preference relation between items i and

j as obtained from the ranking Rl. As discussed in Section 5, preference relation between two items is
determined by considering the relative positions of the items in the ranking. For each input ranking Rl,
we also consider that all items that are present in Rl are preferred over all other items that are not in Rl.
However, if both i and j are not present in Rl, we can not comment on the opinion of Rl on the preference
relation involving this item pair. We define the disagreement of Rl with input rankings (R) as the number of
item pairs for which Rl differs from α-majority opinion on the relative ordering of the items. We define the
disagreement score for ranking Rl as:

∆l =
∑
(i,j)

∈S×S

δijl. (3)

Where,

δijl =


0, if Rl does not disagree with α-majority for (i, j)

1, if Rl disagrees with α-majority for (i, j)

.5, if both i and j are not ranked by Rl.
(4)

Here S is the set of distinct items that appear in the input rankings. Disagreements with α-majority are
determined using the conditions described in the previous section. α and β are parameters of the algorithm.
Their values remain same for all input cases. Weight of the ranking Rl is then set as

wl = 1− ∆l(|S|
2

) . (5)

wl denotes the fraction of item pairs for which Rl agrees with α-majority. Rankings which agree with
α-majority for more number of item pairs get high weights according to this scheme.

6.1.2. Weighted aggregation of input preference graphs:
Once the weights of the input rankings are determined, an aggregate graph (GA) can be constructed by

taking a weighted combination of the preference relations obtained from the rankings. GA contains as nodes
all the items in S, i.e. the items appearing in at least one of the input rankings. Weight of the edge from i to
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j in GA, denoted as eijA, is computed as:

eijA =
∑

eijk is inGk

(wkeijk) . (6)

In Equation 6, the summation runs over the individual rankings that provide preference relations for the pair
(i, j). wk is the weight of the ranking Rk, and eijk denotes the weight of the preference edge from i to j in
the preference graph corresponding to the input ranking Rk. Similarly, weight for the directed edge from j
to i in GA is set to ejiA =

∑
ejik is inGk

(wkejik).
It may be recalled from Section 5 that the weight of the edge from i to j is set to 1 in a preference graph

iff the corresponding ranking prefers j over i. Hence, from Equation 6 it can be said that: the weight of
directed edge (i, j) in GA represents the total weighted votes in favor of the preference relation j is better
than i as given by the input rankings. This weight is high if many of the good rankings place j above i in
their orderings.

6.2. Inducing Linear Order

The aggregate graph GA may not represent a total order. However, the output of rank aggregation has
to be a total order. So, we have to induce a total order from the preference relations stored in GA. This can
be achieved in several ways. The different algorithms suggested for the minimum feedback arc set problem
try to pose this as an optimization problem. Extended Markov Chain procedure explained in (Dwork et al.,
2001) also can be used for this purpose.

However, Methods that use the extended Markov Chain or the minimize feedback arc set are of higher
complexity. On the other hand, in metasearch, the aggregation is performed in runtime, when the user is
waiting for the results. Hence, we wanted a fast algorithm that can be used for finding the total order. We
use a heuristic based method for this purpose. It first computes the weighted indegree of each node of
GA. The weighted indegree of a node j is given by σj =

∑
i∈S eijA. From the way the values eijA are

computed, it can be seen σj is high if many good rankers consider item j to be better than many other items.
The heuristic sorts the nodes of the aggregate graph in decreasing order of their weighted indegrees. This
sorted order of the nodes gives the final output of the algorithm. The unweighted version of this algorithm,
where all rankers are given equal weights, was proposed in (Copeland, 1951).

6.3. Complexity of the Algorithm

We now analyze the complexity of the proposed rank aggregation algorithm.
•Aggregating preference graphs: In this phase, the algorithm finds the α-majority opinion for each

each item pair. The time complexity for finding this information for an item pair is O(N) where N is the
number of input rankings. Once the majority opinion is obtained, updating the disagreement count ∆l of the
N rankings requires O(N) time. If the total number of distinct items is m, then there are O(m2) item pairs,
and finding disagreement counts of all rankings requires O(Nm2) time.

Once disagreement counts of all the rankings are computed, computing the quality weights of the N
rankings need O(N) time. Hence the total complexity of this phase is O(Nm2 +N) = O(Nm2). It can be
noted that any pairwise method for rank aggregation must have a complexity of Ω(Nm2), as it has to look
at all pairs in all the input rankings.

•Inducing linear order: This phase sorts the nodes in the graph by their weighted indegrees. As there
are m nodes in the graph, computing the weighted indegrees takes O(m2) time. Sorting can be done in
O(m logm) time. Hence, the complexity of this phase is O(m2 +m logm) = O(m2).

Hence the complexity of the entire algorithm is O(Nm2). It is worth mentioning that almost all of these
operations involve comparisons and additions. Moreover, careful examination of the algorithm will indicate
that the constants involved in the order notations are also very small. As a result, the method is very fast and
suitable for real-time processing.
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7. Experimental Results

In this section, we compare the performance of the proposed algorithm against existing unsupervised
rank aggregation algorithms.

7.1. Datasets Used
We used Yahoo Learning to Rank Challenge (LTRC) dataset, Microsoft Learning to Rank (MSLR-

WEB10K) dataset and LETOR 4.0 rank aggregation datasets (MQ2007-agg, MQ2008-agg) for our experi-
ments. The LETOR datsaets are specifically for rank agrgegation and we use them directly.

The other two datasets viz. Yahoo-LTRC and MSLR-WEB10K datasets contain scores given to different
documents based on different features. We considered each feature as a ranker. For each feature, we obtained
the ranked list for a query by sorting the documents in decreasing order of the scores. For MSLR-WEB10K
dataset, we considered the top 30 features according to the number of distinct scores assigned by the feature
in the dataset. This was to reduce the number of ties in the input rankings. Typically, rankings received
by metasearch engines do not have any ties. Upon cross-referencing with the feature list given in (Qin
et al., 2010b), we found that these top 30 identified features are (in order): (1) LMDIR.ABS for whole
document, (2) BM25 score for the whole document, (3) LMIR.DIR score for the whole document, (4)
LMDIR.JM score for the whole document, (5) LMIR.ABS for the document body, (6) BM25 score for
the document body, (7) LMIR.DIR score for the document body, (8) LMIR.JM score for the document
body, (9) mean of tf*idf for the whole document, (10) sum of tf*idf for the whole document, (11) mean
of tf*idf for the document body, (12) sum of tf*idf for the document body, (13) variance of tf*idf for the
whole document, (14) variance of tf*idf for the document body, (15) vector space model score for the whole
document, (16) vector space model score for the document body, (17) PageRank score, (18) SiteRank score,
(19) sum of stream length normalized term frequency for the whole document , (20) max of tf*idf for the
whole document, (21) LMIR.ABS score for the document title, (22) sum of stream length normalized term
frequency for the document title, (23) max of tf*idf for the document body, (24) mean of stream length
normalized term frequency for the whole document, (25) LMDIR.DIR score for the document title, (26)
mean of stream length normalized term frequency for the document body, (27) BM25 score of the title,
(28) max of stream length normalized term frequency for the whole document, (29) LMIR.JM score for the
document title and (30) max of stream length normalized term frequency for the document body. It can be
noted that, intuitively, all the features mentioned above are good indicators of a document’s relevance for a
given query. Hence we decided to use these features as rankers.

We also changed each relevance label from rel to
⌊
rel
2

⌋
. This was done for two reasons: (a) As there are

5 relevance labels (0 to 4), having a document with relevance label 1 in the original data would increase the
precision, whereas there are other documents that are much more relevant than this. We wanted to have those
in the top results. (b) If a document with relevance label 4 appears at the top, then it influences the NDCG a
lot. Changes in ordering at remaining places may get unnoticed as a result. We performed experiments with
original values of the relevance labels also. Ordering of the algorithms in terms of performance metrics were
the same as the ordering that we obtained using the modified labels. Here we report the results obtained
using the modified relevance labels.

The Yahoo-LTRC dataset also was used in a similar way. We considered top 45 features according to the
number of distinct scores. However, names of the exact features are not available for this dataset.

7.2. Algorithms Used for Comparison
We compare the proposed algorithm with several other unsupervised rank aggregation algorithms, namely,

BORDA (uses positional score) (de Borda, 1781), MC4 (uses Markov Chain based method) (Dwork et al.,
2001), QSORT (optimizes Kendall-Tau score), (Schalekamp and van Zuylen, 2009) LUCE-R (uses proba-
bilistic model) (Clémençon and Jakubowicz, 2010). We refer to our algorithm as WT-INDEG. We imple-
mented another algorithm, EQ-INDEG, as a baseline for our algorithm. EQ-INDEG gives equal weight to
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each ranking. EQ-INDEG was used as a baseline in (Schalekamp and van Zuylen, 2009) and is a variant
of the Copeland method (Copeland, 1951). We did not implement LUCE-R due to complexity issues. For
LUCE-R, we only compare the NDCG values reported in (Clémençon and Jakubowicz, 2010).

We also include for comparison performances of two supervised rank aggregation algorithms. The first
algorithm is based on Coset Permutation Distance (Qin et al., 2010a). We denote this method as CPS(sup).
For CPS(sup), the values for the supervised evaluation measures on the MQ2007-agg and MQ2008-agg
datasets are available at (Qin et al., 2009). We use these values in our comparisons. The other supervised al-
gorithm that we compare with is a tree adaptation based supervised algorithm (Chen et al., 2011). We denote
the algorithm by TRADA(sup). For training, TRADA(sup) uses feature scores for the query-document pairs.
Such scores are not available in the LETOR datasets. Hence we do not have metric values of TRADA(sup)
for MQ2007-agg and MQ2008-agg datasets. We report the results of this algorithm for the Yahoo dataset
only.

For CPS(sup) and TRADA(sup), the word “sup" indicates that the algorithms are supervised. Compar-
isons with supervised algorithms should only be used as reference. Supervised algorithms are expected to
perform better than unsupervised algorithms as they look at additional ground truth data for training.

7.3. Evaluation Metrics
We have used one unsupervised evaluation metric, namely, Average Kendall-Tau (KT) distance and

several supervised evaluation metrics such as Precision, NDCG, MAP, mean NDCG and ERR (Chapelle
et al., 2009) for determining the qualities of the aggregate rankings.

7.4. Parameter Values for the Proposed Algorithm
As explained in Section 6.1, the proposed algorithm uses two parameters α and β for determining the

quality weights of the rankers. We set α to 0.5 for all the datasets to indicate that we want the opinions
given by the rankers to agree with majority (50% of the rankers). We used a small set of validation data
to determine the value of β, that indicates the number of rankers that must have provided opinion for a
document pair.

Ideally, high value of β indicates we want many rankers to provide relative orderings for each document
pair. If β is set to 0, that means, we are not bothered about how many rankers provide relative rankings for
the document pairs. Among the ones that provide opinion for the pair, we compute the majority opinion
and adjust disagreement count accordingly. On the other hand, if β is set to the maximum value 1.0, then
it means that we want all the rankers to provide opinions about the document pairs. In metasearch, it is
unlikely that all the rankers provide relative ranking opinion for the document pairs. As a result, in this
case, the disagreement count for all the rankings would remain as 0. Hence, all rankings would have equal
weight, which, as explained in Section 6.1, may not be desired. It appears that β should be set to some
moderate value. To determine that value, we used a subset of the data as validation set. In our experiments
with validation data, we varied β from 0.0 to 1.0 in steps of 0.1. Based on the results of this experiment,
we selected β = 0.3 for MQ2008-agg and β = 0.5 for the other datasets. Effect of different β on complete
MQ2007-agg, MQ2008-agg, Yahoo and MSLR-WEB10K datasets are mentioned in the Table 1, Table 2,
Table 3 and Table 4 respectively.

It can be seen that, for MQ2007-agg and Yahoo as β increases, the metric values do not change initially.
However, after some time, (β = 0.9 for MQ2007-agg and β = 0.7 for Yahoo), the values start degrading.
This behavior is expected, as high value of β results in less number of document pairs for which disagreement
values can be updated. As a result, weights assigned to different rankers become almost similar, and the
performance of the algorithm degrades. For MSLR-WEB10K data, the values were affected only when β
was set to 1.0.

The behavior is quite different for MQ2008-agg. The degradation in preformance starts much earlier.
After β = 0.5, the metric values start degrading quickly. We tried to analyze the reason behind this difference
in behavior. To do so, we calculated the the average number of opinions for each document pair in the
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β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
mean NDCG 0.359 0.359 0.359 0.360 0.360 0.359 0.359 0.357 0.356 0.355 0.314
MAP 0.350 0.351 0.351 0.351 0.351 0.351 0.351 0.349 0.348 0.346 0.309
KT 0.408 0.409 0.409 0.409 0.409 0.409 0.409 0.408 0.407 0.407 0.509
ERR 0.204 0.204 0.204 0.204 0.205 0.204 0.204 0.203 0.202 0.201 0.162

Table 1: Effect of parameter β on the MQ2007-agg dataset

β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
mean NDCG 0.450 0.450 0.448 0.445 0.438 0.435 0.418 0.401 0.307 0.297 0.307
MAP 0.437 0.437 0.434 0.430 0.425 0.423 0.407 0.391 0.310 0.295 0.301
KT 0.403 0.403 0.405 0.405 0.404 0.403 0.398 0.393 0.385 0.291 0.396
ERR 0.266 0.266 0.266 0.264 0.261 0.261 0.253 0.243 0.175 0.168 0.175

Table 2: Effect of parameter β on the MQ2008-agg dataset

β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
mean NDCG 0.486 0.487 0.487 0.489 0.489 0.489 0.490 0.493 0.452 0.406 0.355
MAP 0.459 0.459 0.459 0.461 0.461 0.461 0.462 0.463 0.434 0.400 0.364
KT 0.345 0.345 0.346 0.346 0.346 0.346 0.347 0.347 0.362 0.391 0.435
ERR 0.280 0.280 0.280 0.282 0.282 0.282 0.282 0.286 0.259 0.226 0.191

Table 3: Effect of parameter β on the Yahoo dataset

β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
mNDCG 0.389 0.389 0.389 0.389 0.389 0.389 0.389 0.389 0.390 0.382 0.251
MAP 0.277 0.276 0.276 0.276 0.276 0.277 0.277 0.276 0.276 0.267 0.170
KT 0.172 0.171 0.171 0.171 0.171 0.172 0.172 0.171 0.172 0.171 0.084
ERR 0.235 0.237 0.237 0.237 0.237 0.237 0.238 0.239 0.243 0.272 0.449

Table 4: Effect of parameter β on the MSLR-WEB10K dataset

three datasets. This value for MQ2007-agg, Yahoo and MSLR-WEB10K datasets were 0.5, 0.7 and 0.9
respectively. Whereas, for MQ2008-agg, the value was only 0.18. As a result, even when β was set to a
moderate value of 0.5, it was difficult to get sufficient number of opinions for the document pairs. Based on
the observations, we recommend the following heuristic for setting the value of β. If there are N rankers
and the average number of opinions available for each document pair is more than 50% of N, then set the
value of beta as 0.5. Otherwise set the value of β to 0.3.

In the following section, we compare the performance of the proposed algorithm WT-INDEG with other
algorithms mentioned in Section 7.2. Metric values reported in the remaining paper for our algorithms
correspond to α = 0.5 and β = 0.5 for MQ2007-agg, Yahoo and MSLR-WEB10K datasets, and α =
0.5 and β = 0.3 for MQ2008-agg. However, it can be noted that, for any dataset and any evaluation
metric (except KT distance), the proposed method produces better result than the competitor algorithms for
moderate values (e.g. 0 ≤ β ≤ 0.5) of the parameter β.

7.5. The Results

7.5.1. Comparing Average Kendall-Tau (KT) Distance
The KT value for LUCE-R is not mentioned in the corresponding paper. The KT scores obtained by

the other unsupervised algorithms are shown in Table 5. Kendall-Tau distance between two rankings is
computed by counting the number of item pairs (i, j) such that i is placed above j in one ranking and below
j in another. Average KT distance for the aggregate ranking is the average of the Kendall-Tau distances of the
aggregate ranking with all the input rankings. For this measure, lesser value indicates better performance.
It is clear from the table that QSORT is the best algorithm for this evaluation metric. In fact QSORT is
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designed to optimize the average KT distance of the aggregate ranking from the input rankings. On the other
hand, our algorithm WT-INDEG performs poorly according to this metric as it obtains very high KT scores
for all the datasets.

Dataset→ YAHOO MQ2007-agg MQ2008-agg MSLR-WEB10K
WT-INDEG 0.346 0.409 0.405 0.237
EQ-INDEG 0.311 0.379 0.357 0.216
BORDA 0.307 0.330 0.275 0.218
MC4 0.306 0.345 0.287 0.217
QSORT 0.151 0.307 0.244 0.214
TRADA(sup) - - 0.349 -

Table 5: Comparing Average KT Distances

This can be attributed to the following facts: (a) the proposed method is a modification of EQ-INDEG
which itself does not perform well according to the measure, and (b) we do not give equal importance to all
the rankers during the aggregation process. We give lesser importance weights to the poor rankers to keep
the aggregate ranking far from them. This increases the average distance of the aggregate ranking from the
input rankings, which increases the average Kendall-Tau distance. It has been pointed out in (Yilmaz et al.,
2008; Carterette, 2009; Desarkar et al., 2011) that Kendall-Tau distance may not be suitable for evaluating
of rank aggregation algorithms. Moreover, as the datasets used for experimentation contain ground truth
information in the form of document relevance, supervised evaluation metrics can be used to measure the
performances of the algorithms. So we did not try to modify our algorithm to obtain better KT score, but
wanted to see see how it works according to the supervised evaluation metrics.

7.5.2. Comparing NDCG and Precision
We now compare the performances of the algorithms based on the supervised evaluation metrics. We

first consider NDCG and Precision. For both these measures, higher values indicate better performance.
A comparison of NDCG values of the different algorithms for the MQ2007-agg, MQ2008-agg, Yahoo and
MSLR-WEB10K datasets are shown in Table 6, 7, 8 and 9 respectively. Compared to the other unsupervised
algorithms, our method WT-INDEG obtains better NDCG scores for all four datasets.

Performances of CPS(sup) and TRADA(sup) have been included in Table 6, 7 and 8 for reference. Su-
pervised algorithms are expected to perform better than unsupervised algorithms. However, it is interesting
to note that WT-INDEG performs better than CPS(sup) for MQ2008-agg. Trada(sup) performs better than
all other algorithms for the Yahoo dataset.

The Precision values of the algorithms are compared in Figure 2. Comparison with LUCE-R is not shown
as Precision values are not reported in the corresponding paper. From the figures it is clear that WT-INDEG
is the best unsupervised algorithm according to Precision for all the four datasets.

7.5.3. Comparing MAP and Mean NDCG
For MAP and MeanNDCG measures, higher value indicates better performance. The comparison of

MAP values is shown in Table 10. WT-INDEG obtains the best MAP value among the unsupervised al-
gorithms for all the datasets. For all these datasets, EQ-INDEG appears as the second best unsupervised
algorithm according to MAP. For MQ2007-agg, WT-INDEG achieves a 4.8% improvement over the clos-
est baseline. For MQ2008-agg and Yahoo datasets, performance improvement by the proposed method are
2.6% and 5.2% respectively. This improvement is 2.2% for the MSLR-WEB10K dataset.

The comparison of Mean NDCG values is shown in Table 11. The results indicate that WT-INDEG
performs the best among the unsupervised algorithms used for comparison according to this evaluation
metric also. For all the four datasets, EQ-INDEG emerged as the second best unsupervised algorithm.
For MQ2007-agg, MQ2008-agg and Yahoo datasets, the improvements by the proposed methods can be
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(d) Precision@k for MSLR-WEB10K dataset
Figure 2: Comparison of Precision values of different unsupervised algorithms.

computed to be 7.5%, 4.7% and 10.1% respectively. The improvement is small (2.1%) for the MSLR-
WEB10K dataset.

7.5.4. Comparing Expected Reciprocal Rank (ERR)
For ERR, higher value indicates better performance. To obtain high ERR value, an algorithm has to

put the first relevant document near the top of the list. The comparisons are shown in Table 12. It can be
seen from the table that the proposed method WT-INDEG obtains highest ERR score among the methods
we compared. For MQ2007-agg, MQ2008-agg, Yahoo and MSLR-WEB10K datasets, the improvements
in ERR by WT-INDEG can be computed to be 11%, 6%, 14.6% and 8.2% respectively. High ERR score
obtained by the proposed method suggests that in most of the cases, the method is able to put a relevant
document near the top of the aggregate ranking.

7.6. Discussions

Unsupervised rank aggregation algorithms are generally compared against Kendall-Tau distance metric.
However, as discussed in Section 7.5.1, it is better to evaluate rank aggregation algorithms against supervised
evaluation measures. The proposed method WT-INDEG performed poorly according to Kendall-Tau and
the explanation is given in Section 7.5.1. However, detailed evaluations using various supervised measures
such as Precision, NDCG, MAP, Mean NDCG and ERR indicate the efficacy of the proposed method.
WT-INDEG consistently outperformed all other unsupervised algorithms for all the supervised evaluation
metrics across all the datasets that we used for experimentation. Difference between the proposed method
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and other baselines were quite large for the MQ2007-agg, MQ2008-agg and Yahoo datasets. For MSLR-
WEB10K dataset, although WT-INDEG was the best performer, all algorithms performed reasonably well.
This is because the features used as rankers all are individually good and intuitively, they individually are
strong signals for the relevance of a document for a query. As a consequence, the rankings induced from the
individual features were quite similar. In other words, there were not too much disagreement between the
rankings. Hence the performance of WT-INDEG was close to the performance of EQ-INDEG, which was
the closest competitor for this dataset as well.

The experimental results provide a concrete evidence that Kendall-Tau distance may not be the best
metric for metasearch. Average Kendall-Tau distance measures the distance of the aggregate ranking from
the input rankings in terms of pairwise disagreements. On the other hand, Precision, NDCG, ERR measure
the quality of the ordering in the complete aggregated ranking (including the position information), which
is more important for metasearh application. The supervised metrics take into consideration the relevance
labels of the document and hence aim to measure the user satisfaction for the aggregate ranking. A list that
is good according to the Kendall-Tau measure may not be able to provide high user satisfaction. QSORT
is the best algorithm according to Kendall-Tau distance for all the datasets, however it obtains poor scores
for the supervised measures. In fact, QSORT is designed to optimize the Kendall-Tau measure. On the
other hand, WT-INDEG gets the worst score according to Kendall-Tau distance. However, it appears as the
best algorithm across all the datasets according to the supervised metrics. All other unsupervised methods
used for experimentation achieve moderate Kendall-Tau scores but perform much better than QSORT on the
supervised measures.

8. Conclusions

In this work, we propose a fast, simple, easy to implement and efficient algorithm for unsupervised rank
aggregation. The algorithm has been designed keeping in mind the specific requirements for metasearch
application. It assigns varying weights to the input graphs to reduce the influence of the bad rankers on
the aggregation process. Detailed experimental comparisons against existing unsupervised rank aggregation
algorithms were performed on several benchmark datasets related to web search. The proposed method con-
sistently performed better than the other unsupervised methods used for experimentation. From complexity
point of view, the proposed method runs in O(Nm2) time, where N is the number of input rankings and m
is the total number of distinct items appearing in the lists. The algorithm mostly involves low cost opera-
tions such as comparison and addition. This makes the algorithm fast and suitable for applications such as
metasearch which require low response time. Involvement of low cost operations in the process allows the
algorithm to recompute the quality weights afresh for each query. Poor quality results produced by a ranker
for a query does not affect the quality weight assigned to the ranker for other queries. This may be desirable
in metasearch, since quality of results given by a single search engine may vary with queries.

Also, our experiments provide concrete evidence that Kendall-Tau distance metric is not a suitable metric
for evaluating metasearch algorithms. If supervised information like relevance labels of the documents for
different queries is available, then it is better to use supervised metrics for evaluating the algorithms. The
proposed algorithm can also be used in other expert and intelligent systems where input rankings need to be
combined, but it is not necessary to give equal importance to the input rankers. Examples of such applications
are multi-criteria document selection, feature identification for data mining tasks, group recommendation etc.
However, it is necessary to evaluate the algorithm on benchmark data for these applications to understand
the algorithm’s performance on these tasks.

Though WT-INDEG shows good performance on real world benchmark datasets, few limitations of
the work should be pointed out to complete the discussion. WT-INDEG algorithm uses two parameters to
determine the qualities of the input rankings. Determining the values of these parameters in an unsupervised
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manner may be a challenge. It may be better to use properties or compositions of the input rankings to
determine the qualities of the rankings, without needing to set up the parameter values explicitly.

As future work, we plan to improve the quality weight assignment method, with special attention to
outlier detection. We would like to investigate what happens if we can detect the input rankings which are
outliers, and whether ignoring the outlier rankers improves the quality of the aggregate ranking. Another
interesting approach will be to have the pairwise preference relations labeled with the strength of the rela-
tion. For example, one can assign higher weights to a preference edge if the corresponding nodes are placed
far apart in the ranking. In the paper, we demonstrated the efficacy of the proposed algorithm using detailed
empirical evaluation on multiple benchmark datasets. It might be interesting to see whether the algorithm
has any theoretical properties, using which it is also possible to theoretically establish the superiority of the
algorithm. Since Kendall-Tau distance was shown to be not perfect for evaluating metasearch algorithm, de-
signing of alternative unsupervised evaluation metrics for metasearch problem would be another interesting
research direction.

Acknowledgment

The research is supported by a PhD Fellowship from Microsoft Research India.

References

Acharyya, S., Koyejo, O., Ghosh, J.. Learning to rank with bregman divergences and monotone retarget-
ing. In: Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence, Catalina
Island, CA, USA, August 14-18, 2012. 2012. p. 15–25.

Ailon, N., Charikar, M., Newman, A.. Aggregating inconsistent information: Ranking and clustering. J
ACM 2008;55(5):1–27.

Alireza Yazdani Leonardo Duenas-Osorio, Q.L.. A scoring mechanism for the rank aggregation of network
robustness. Commun Nonlinear Sci Numer Simulat 2013;.

Amin, G.R., Emrouznejad, A.. Optimizing search engines results using linear programming. Expert Syst
Appl 2011;38:11534–11537.

Aslam, J.A., Montague, M.. Models for metasearch. In: Proceedings of the 24th annual international ACM
SIGIR conference on Research and development in information retrieval. New York, NY, USA: ACM;
SIGIR ’01; 2001. p. 276–284.

Baltrunas, L., Makcinskas, T., Ricci, F.. Group recommendations with rank aggregation and collaborative
filtering. In: RecSys. 2010. p. 119–126.

Betzler, N., Bredereck, R., Niedermeier, R.. Theoretical and empirical evaluation of data reduction for
exact kemeny rank aggregation. Autonomous Agents and Multi-Agent Systems 2014;28(5):721–748.

de Borda, J.C.. MÃ©moire sur les Ã©lections au scrutin. In: Histoire de l’AcadÃ©mie Royale des
Sciences. 1781. .

Brody, S., Navigli, R., Lapata, M.. Ensemble methods for unsupervised wsd. In: Proceedings of the 21st
International Conference on Computational Linguistics and the 44th annual meeting of the Association
for Computational Linguistics. ACL-44; 2006. .

18



Burges, C.J.C., Ragno, R., Le, Q.V.. Learning to rank with nonsmooth cost functions. In: Advances in
Neural Information Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neural
Information Processing Systems, Vancouver, British Columbia, Canada, December 4-7, 2006. 2006. p.
193–200.

Cao, Y., Xu, J., Liu, T.Y., Li, H., Huang, Y., Hon, H.W.. Adapting ranking svm to document retrieval.
In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval. New York, NY, USA: ACM; SIGIR ’06; 2006. p. 186–193.

Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.. Learning to rank: From pairwise approach to listwise
approach. In: Proceedings of the 24th International Conference on Machine Learning. New York, NY,
USA: ACM; ICML ’07; 2007. p. 129–136.

Carterette, B.. On rank correlation and the distance between rankings. In: SIGIR ’09: Proceedings of the
32nd international ACM SIGIR conference on Research and development in information retrieval. 2009.
p. 436–443.

Chapelle, O., Chang, Y.. Yahoo learning to rank challenge data. http://learningtorankchallenge.
yahoo.com/datasets.php; 2010.

Chapelle, O., Chang, Y.. Yahoo! learning to rank challenge overview. In: Proceedings of the Yahoo!
Learning to Rank Challenge, held at ICML 2010, Haifa, Israel, June 25, 2010. 2011. p. 1–24.

Chapelle, O., Metlzer, D., Zhang, Y., Grinspan, P.. Expected reciprocal rank for graded relevance. In:
CIKM ’09: Proceeding of the 18th ACM conference on Information and knowledge management. 2009.
p. 621–630.

Chen, K., Bai, J., Zheng, Z.. Ranking function adaptation with boosting trees. ACM Trans Inf Syst
2011;29(4):18:1–18:31.

Chen, S., Wang, F., Song, Y., Zhang, C.. Semi-supervised ranking aggregation. In: CIKM ’08: Proceeding
of the 17th ACM conference on Information and knowledge management. 2008. p. 1427–1428.

Chen, Y., Hofmann, K.. Online learning to rank: Absolute vs. relative. In: Proceedings of the 24th
International Conference on World Wide Web. Republic and Canton of Geneva, Switzerland: International
World Wide Web Conferences Steering Committee; WWW ’15 Companion; 2015. p. 19–20.

Clémençon, S., Jakubowicz, J.. Kantorovich distances between rankings with applications to rank aggre-
gation. In: Proceedings of the 2010 European conference on Machine learning and knowledge discovery
in databases: Part I. ECML PKDD’10; 2010. p. 248–263.

Cohen, W.W., Schapire, R.E., Singer, Y.. Learning to order things. In: NIPS ’97: Proceedings of the 1997
conference on Advances in neural information processing systems 10. 1998. p. 451–457.

Condorcet, J.A.N.d.C.. Essai sur l’application de l’analyse a la probabilite des decisions rendues a la
pluralite des voix. Paris: Imprimerie royale, 1785.

Copeland, A.. A ’reasonable’ social welfare function. Seminar on Applications of Mathematics to Social
Sciences 1951;.

Coppersmith, D., Fleischer, L.K., Rurda, A.. Ordering by weighted number of wins gives a good ranking
for weighted tournaments. ACM Trans Algorithms 2010;6:55:1–55:13.

19



Davenport, A., Kalagnanam, J.. A computational study of the kemeny rule for preference aggregation. In:
Proceedings of the 19th national conference on Artifical intelligence. AAAI Press; AAAI’04; 2004. p.
697–702.

Desarkar, M.S., Joshi, R., Sarkar, S.. Displacement based unsupervised metric for evaluating rank ag-
gregation. In: Proceedings of the 4th International Conference on Pattern Recognition and Machine
Intelligence. Berlin, Heidelberg: Springer-Verlag; PReMI’11; 2011. p. 268–273.

Dwork, C., Kumar, R., Naor, M., Sivakumar, D.. Rank aggregation methods for the web. In: WWW ’01:
Proceedings of the 10th international conference on World Wide Web. 2001. p. 613–622.

Elkind, E., Lipmaa, H.. Hybrid voting protocols and hardness of manipulation. In: In Proceedings of the
16th International Symposium on Algorithms and Computation. Springer-Verlag; 2005. p. 206–215.

Fang, Q., Feng, J., Ng, W.. Identifying differentially expressed genes via weighted rank aggregation. In:
Proceedings of the 11th International Conference on Data Mining. IEEE Computer Society; ICDM ’11;
2011. p. 1038–1043.

Farah, M., Vanderpooten, D.. An outranking approach for rank aggregation in information retrieval. In:
Proceedings of the 30th annual international ACM SIGIR conference on Research and development in
information retrieval. New York, NY, USA: ACM; SIGIR ’07; 2007. p. 591–598.

Fields, E.B., Okudan, G.E., Ashour, O.M.. Rank aggregation methods comparison: A case for triage
prioritization. Expert Systems with Applications 2013;40(4):1305 – 1311.

Jameson, A., Smyth, B.. The adaptive web. Berlin, Heidelberg: Springer-Verlag; 2007. p. 596–627.

Jansen, B.J., Spink, A., Koshman, S.. Web searcher interaction with the dogpile.com metasearch engine.
J Am Soc Inf Sci Technol 2007;58(5):744–755.

Jean, M.. Black (duncan) - the theory of committees and elections. Revue Economique 1961;12(4):668–668.

Keyhanipour, A.H., Moshiri, B., Rahgozar, M.. Cf-rank: Learning to rank by classifier fusion on click-
through data. Expert Systems with Applications 2015;:–.

Klementiev, A., Roth, D., Small, K.. Unsupervised rank aggregation with distance-based models. In:
Proceedings of the 25th international conference on Machine learning. New York, NY, USA: ACM; ICML
’08; 2008. p. 472–479.

Klementiev, A., Roth, D., Small, K., Titov, I.. Unsupervised rank aggregation with domain-specific
expertise. In: IJCAI. 2009. p. 1101–1106.

Lee, J.H.. Analyses of multiple evidence combination. In: SIGIR ’97: Proceedings of the 20th annual
international ACM SIGIR conference on Research and development in information retrieval. 1997. p.
267–276.

Li, H.. A short introduction to learning to rank. IEICE Transactions 2011;94-D(10):1854–1862.

Li, P., Burges, C., Wu, Q.. Learning to rank using classification and gradient boosting. In: Advances
in Neural Information Processing Systems 20. MIT Press, Cambridge, MA; number MSR-TR-2007-74;
2008. p. 0.

Lillis, D., Toolan, F., Mur, A., Peng, L., Collier, R., Dunnion, J.. Probability-based fusion of information
retrieval result sets. Artif Intell Rev 2006;25(1-2):179–191.

20



Liu, Y.T., Liu, T.Y., Qin, T., Ma, Z.M., Li, H.. Supervised rank aggregation. In: WWW ’07: Proceedings
of the 16th international conference on World Wide Web. 2007. p. 481–490.

Mehta, S., Pimplikar, R., Singh, A., Varshney, L.R., Visweswariah, K.. Efficient multifaceted screening of
job applicants. In: Proceedings of the 16th International Conference on Extending Database Technology.
New York, NY, USA: ACM; EDBT ’13; 2013. p. 661–671.

Montague, M., Aslam, J.A.. Condorcet fusion for improved retrieval. In: CIKM ’02: Proceedings of the
eleventh international conference on Information and knowledge management. 2002. p. 538–548.

Monwar, M.M., Gavrilova, M.L.. Markov chain model for multimodal biometric rank fusion. Signal,
Image and Video Processing 2013;7(1):137–149.

Ozdemiray, A.M., Altingovde, I.S.. Explicit search result diversification using score and rank aggregation
methods. Journal of the Association for Information Science and Technology 2015;66(6):1212–1228.

Pan, Y., Luo, H., Qi, H., Tang, Y.. Transductive learning to rank using association rules. Expert Systems
with Applications 2011;38(10):12839 – 12844.

Patel, T., Telesca, D., Rallo, R., George, S., Tian, X., Andre, N.. Hierarchical rank aggregation with
applications to nanotoxicology. 2012.

Pihur, V., Datta, S., Datta, S.. Weighted rank aggregation of cluster validation measures: a monte carlo
cross-entropy approach. Bioinformatics 2007;23(13):1607–1615.

Pujari, M., Kanawati, R.. Link prediction in complex networks by supervised rank aggregation. In: Tools
with Artificial Intelligence (ICTAI), 2012 IEEE 24th International Conference on. volume 1; 2012. p.
782–789.

Qin, T., Geng, X., Liu, T.Y.. A new probabilistic model for rank aggregation. In: Advances in Neural
Information Processing Systems. 2010a. p. 1948–1956.

Qin, T., Liu, T.Y., Ding, W., Xu, J., Li, H.. Mslr-web10k feature list. http://research.
microsoft.com/en-us/projects/mslr/feature.aspx; 2010b. Accessed: 27/08/2015.

Qin, T., Liu, T.Y., Xu, J., Li, H.. Letor dataset. http://research.microsoft.com/en-us/um/

beijing/projects/letor/letor4dataset.aspx; 2009.

Rajkumar, A., Agarwal, S.. A statistical convergence perspective of algorithms for rank aggregation from
pairwise data. In: Proceedings of the 31st International Conference on Machine Learning (ICML-14).
JMLR Workshop and Conference Proceedings; 2014. p. 118–126.

Rosti, A.I., Ayan, N.F., Xiang, B., Matsoukas, S., Schwartz, R., Dorr, B.J.. Combining outputs
from multiple machine translation systems. In: In Proceedings of the North American Chapter of the
Association for Computational Linguistics Human Language Technologies. 2007. p. 228–235.

Sagae, K., Lavie, A.. Parser combination by reparsing. In: In Proc. HLT/NAACL. 2006. p. 129–132.

Sarkar, C., Cooley, S., Srivastava, J.. Robust feature selection technique using rank aggregation. Appl
Artif Intell 2014;28(3):243–257.

Schalekamp, F., van Zuylen, A.. Rank aggregation: Together we’re strong. In: ALENEX. 2009. p. 38–51.

Sculley, D.. Large scale learning to rank. In: NIPS Workshop on Advances in Ranking. 2009. p. 1–6.

21



Shao, Z., Chen, Z., Huang, X.. A mobile service recommendation system using multi-criteria ratings. Int
J Interdiscip Telecommun Netw 2010;2(4):30–40.

Shaw, J.A., Fox, E.A.. Combination of multiple searches. In: The Second Text REtrieval Conference
(TREC-2). 1994. p. 243–252.

Sohail, S., Siddiqui, J., Ali, R.. User feedback based evaluation of a product recommendation system using
rank aggregation method. In: El-Alfy, E.S.M., Thampi, S.M., Takagi, H., Piramuthu, S., Hanne, T.,
editors. Advances in Intelligent Informatics. Springer International Publishing; volume 320 of Advances
in Intelligent Systems and Computing; 2015. p. 349–358.

Tabourier, L., Libert, A.S., Lambiotte, R.. Rankmerging: Learning to rank in large-scale social net-
works. In: DyNak-II Workshop in ECML-PKDD Workshops 2014. volume 320 of Dynamic Networks
and Knowledge Discovery (DyKaK-II Workshop at ECML-PKDD 2014; 2014. .

Thomas, P., Hawking, D.. Server selection methods in personal metasearch: a comparative empirical study.
Inf Retr 2009;12(5):581–604.

Wang, Y., Huang, Y., Pang, X., Lu, M., Xie, M., Liu, J.. Supervised rank aggregation based on query
similarity for document retrieval. Soft Comput 2013;17(3):421–429.

Weston, J., Yee, H., Weiss, R.J.. Learning to rank recommendations with the k-order statistic loss. In:
Proceedings of the 7th ACM Conference on Recommender Systems. New York, NY, USA: ACM; RecSys
’13; 2013. p. 245–248.

Wu, G., Greene, D., Cunningham, P.. Merging multiple criteria to identify suspicious reviews. In:
Proceedings of the fourth ACM conference on Recommender systems. RecSys ’10; 2010. p. 241–244.

Wu, S., Li, J., Zeng, X., Bi, Y.. Adaptive data fusion methods in information retrieval. JASIST
2014;65(10):2048–2061.

Yilmaz, E., Aslam, J.A., Robertson, S.. A new rank correlation coefficient for information retrieval.
In: SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR conference on Research and
development in information retrieval. 2008. p. 587–594.

van Zuylen, A., Williamson, D.P.. Deterministic algorithms for rank aggregation and other ranking and
clustering problems. In: WAOA. 2007. p. 260–273.

22



Algorithm Rank positions
Name 2 4 6 8
WT-INDEG 0.234 0.250 0.265 0.279
EQ-INDEG 0.210 0.225 0.237 0.250
BORDA 0.201 0.213 0.225 0.238
MC4 0.179 0.195 0.206 0.218
QSORT 0.122 0.145 0.159 0.172
LUCE-R 0.233 0.245 0.258 0.268

CPS(sup) 0.332 0.341 0.352 0.362

Table 6: NDCG Comparison for MQ2007-agg dataset. Performance of CPS(sup) is used as a reference.

Algorithm Rank positions
Name 2 4 6 8
WT-INDEG 0.346 0.398 0.438 0.464
EQ-INDEG 0.308 0.370 0.416 0.441
BORDA 0.280 0.343 0.389 0.372
MC4 0.241 0.310 0.363 0.389
QSORT 0.155 0.228 0.283 0.325
LUCE-R 0.273 0.328 0.369 0.358

CPS(sup) 0.314 0.376 0.419 0.398

Table 7: NDCG Comparison for MQ2008-agg dataset. Performance of CPS(sup) is used as a reference.

Algorithm Rank positions
Name 2 4 6 8
WT-INDEG 0.416 0.425 0.438 0.451
EQ-INDEG 0.347 0.373 0.389 0.404
BORDA 0.350 0.370 0.386 0.400
MC4 0.333 0.357 0.374 0.392
QSORT 0.341 0.361 0.376 0.394

TRADA(sup) 0.477 0.479 0.487 0.499

Table 8: NDCG Comparison for Yahoo dataset. Performance of TRADA(sup) is used as a reference. Results of LUCE-R and CPS(sup)
are not available for this dataset.

Algorithm Rank positions
Name 2 4 6 8
WT-INDEG 0.249 0.251 0.260 0.265
EQ-INDEG 0.236 0.240 0.247 0.252
BORDA 0.233 0.239 0.244 0.249
MC4 0.213 0.223 0.231 0.238
QSORT 0.211 0.218 0.222 0.231

Table 9: NDCG Comparison for MSLR-WEB10K dataset. Results of LUCE-R and CPS(sup) are not available for this dataset.

Dataset→ MQ2007-agg MQ2008-agg YAHOO textbfMSLR-WEB10K
WT-INDEG 0.351 0.430 0.461 0.277
EQ-INDEG 0.335 0.419 0.438 0.271
BORDA 0.325 0.394 0.436 0.269
MC4 0.316 0.369 0.430 0.263
QSORT 0.276 0.301 0.433 0.259

CPS(sup) 0.407 0.410 -
TRADA(sup) - - 0.486 -

Table 10: Comparing MAP values. The results for CPS(sup) and TRADA(sup), wherever available, are shown as a reference.
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Dataset→ MQ2007-agg MQ2008-agg YAHOO MSLR-WEB10K
WT-INDEG 0.360 0.445 0.489 0.389
EQ-INDEG 0.335 0.425 0.444 0.381
BORDA 0.322 0.390 0.442 0.378
MC4 0.309 0.372 0.430 0.372
QSORT 0.256 0.294 0.433 0.367

CPS(sup) 0.433 0.413 - -
TRADA(sup) - - 0.526 -

Table 11: Comparing Mean NDCG. Results for CPS(sup) and TRADA(sup), wherever available, are shown as reference.

Dataset→ MQ2007-agg MQ2008-agg YAHOO MSLR-WEB10K
WT-INDEG 0.204 0.264 0.282 0.172
EQ-INDEG 0.184 0.249 0.246 0.159
BORDA 0.166 0.198 0.244 0.158
MC4 0.163 0.203 0.232 0.153
QSORT 0.123 0.161 0.227 0.147

TRADA(sup) - - 0.326 -

Table 12: Comparing ERR values. Value of TRADA(sup) for the Yahoo dataset is shown as a reference.
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