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Abstract—In this paper, we propose two different algorithms
for Shannon Factor Graph (SFG) construction, which can be
used for cut-less mapping, to improve the runtime, graph size and
required memory size. The first SFG construction algorithm does
not consider the nature of the nodes (constant one or zero, non-
decomposed and shared nodes) while building the SFG, whereas
the second SFG construction algorithm finds out the nature of
the nodes on-the-fly. We observed that the constant one and zero,
shared and non-decomposed nodes can be used at the time of SFG
construction to minimize the runtime and graph size significantly
and to make the graph semi-canonical. The theoretical analysis
and experiments performed on the standard benchmark circuits
show that, by finding the constant one and zero, shared and non-
decomposed nodes on-the-fly reduces the graph size by a factor
of 126 and the runtime by a factor of 5.5.

Index Terms—Logic synthesis, Cut-enumeration, Cut-based
technology mapping, Cut-less technology mapping, Shannon
decomposition theorem.

I. INTRODUCTION

The logic synthesis is one of the important processes in the

digital IC design automation flow, which decides the quality of

the final physical layout [1]. Logic synthesis converts the input

RTL/behavioral description into a network of standard cells

(gates), called the gate-level netlist. Traditional logic synthesis

process includes translation, optimization and technology map-

ping [2]–[4]. Technology mapping is the critical and final step

in the logic synthesis process. The objective of the technology

mapping in standard-cell logic synthesis is to express a given

Boolean function as a network of gates chosen from a given

standard-cell library to optimize some objective function such

as total area or delay [1]. To simplify the mapping problem,

first the Boolean function is represented as a good initial multi-

level network of simple gates called the subject graph [1]

through technology independent mapping. Finally the subject

graph is transformed into multi-level network of library gates

through the technology dependent mapping.

The technology dependent mapping is usually carried out

using the cut-based Boolean matching [5]–[8]. Cut-based

technology mapping techniques require the computation of

K-feasible cuts and pruning, truth-tables of enumerated cuts,

finding an appropriate gate for each node in the network, for

every cut, using Boolean matching, and choosing the best

cover based on delay and area. The cut-based technology

mapping has unpleasant property of growing exponentially

with the cut-size and the graph size. If there are n nodes

in the graph and K is the cut size then the possible number

of cuts will be O(nK). Therefore the number of cuts to be

enumerated will increase exponentially with the cut size and

the number of node of the graph, which increases the runtime

and required memory to store the cuts drastically.

Here we propose two different algorithms for Shannon

Factor Graph (SFG) construction, which can be used for

cut-less mapping and analyze the effect of nature of nodes

(non-decomposed, constant one and zero, and shared nodes)

on the graph size and building time. The nodes of the

SFG represent the Cofactors or cube cofactors value and

the level, which will be used as node ID for finding the

appropriate cell in the pre-computed library, and edges rep-

resent the connecting wires among the nodes. Unlike Binary

Decision Diagrams (BDD) [9]–[11] and And-Inverter graph

(AIG) [1], [12], the structure of the SFG helps in eliminating

the cut-enumeration and pruning, computation of truth-tables

and Negation-permutation-Negation (NPN) class representa-

tives [13], [14] for each cut. Thereby it improves the runtime

and reduces the required memory drastically. We found that,

computation of constant zero and one, non-decomposed, and

shared nodes (explained in next section) is critical in mini-

mizing the runtime and graph size for complex circuits. By

considering the nature of nodes while constructing the graph

makes the SFG semi-canonical, because the nodes at each

level of the SFG will have uniquely represented nodes. The

proposed SFG construction algorithm (algorithm 2) computes

the constant one and zero, non-decomposed and shared nodes

on-the-fly, thereby it improves the overall size of the graph,

which in turn reduces the final area and building time.

The remainder of the paper is organized as follows. Section

II explains the basic terminology used in the paper. Section

III discusses the construction of SFG and computation of non-

decomposed nodes, constant one or zero nodes and shared

nodes. Section IV presents the experimental results and finally

section V concludes the paper.

II. PRELIMINARIES

This section explains the basic terminology used in this

paper.
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A. Shanon Decomposition Theorem

A Shannon Decomposition is a method to represent any

Boolean function as the sum of two sub-functions of the

original function. A cofactor is a sub element of a Shannon

Decomposition generated by setting the value of a given

variable to either “0” or “1”. A cofactor, which is generated

for a function F by setting a variable xi to 0 is called

the negative cofactor of the function F with respect to xi,

otherwise it is called positive cofactor (setting to “1”). A

cube-cofactor is obtained by setting more than one variable

to “0” and/or “1”, i.e a cube-factor is a cofactor from a

cofactor. Equation (1) shows the mathematical representation

of Shannon decomposition theorem.

F (x0, x1, ..., xi) = x0 ∗F (1, x1, ..., xi) + x0′ ∗F (0, x1, .., xi)
(1)

Where * and ′ represent the AND and NOT functions respec-

tively.

For an example, the negative cofactor of the function

F(x0,x1,x2,x3)=x0*(x1+x2)+x3 with respect to x0 is x3,

whereas the cube-cofactor with respect to x0(= 0) and

x3(= 1) is 1.

B. Non-decomposed , Constant one, Constant zero and Shared
nodes

Non-decomposed, constant one and zero, and shared nodes

represent the nature of SFG nodes. A non-decomposed node
is the node which has similar node(s) in the SFG, which

have the same cofactor or cube cofactor value and level. Non-

decomposed nodes improve the logic sharing, minimize the

graph size and final area. If the building time of a non-

decomposed node is tb and the number of non-decomposed

nodes in the SFG is L, then the building time and graph

size will be reduced by a factor (L-1)tb and L-1 respectively.

A node which receives two constant zeros (ones) is called

constant zero (one) node, i.e the constant zero(one) node will

have all zeros(ones) in its corresponding truth-table. If there

are no constant zeros or ones as input to the node, then the

node represents function of a typical Shannon cofactor (two

AND gates, one inverter and one OR gate), otherwise the node

represents an AND gate or AND gate followed by an OR

gate. If the two primary outputs have the nodes, which have

the same functionality and level, then those nodes are called

shared nodes. Shared nodes minimize the size of the SFG.

III. CONSTRUCTION OF PROPOSED SFG

This section explains the construction of the SFG with and

without considering the non-decomposed, constant one and

zero, and shared nodes and cut-less mapping technique in

brief.

A. SFG Construction without Considering the Non-
decomposed, Constant one and zero, and Shared nodes

Algorithm 1 shows the pseudo code for the SFG construc-

tion without considering the non-decomposed, constant one

and zero, and shared nodes. The input to the SFG construction

algorithm is truth-table and input size of the largest cells

(MaxCellSize) available in the library. Using the equation

(1) the Shannon cofactors and cube cofactors of the given

truth-tables will be computed by successively dividing the

truth-table into two equal halves. Initially, the given truth-

table will be into divided two equal halves, the first half of

the truth-table represents the negative cofactor and second

half represents the positive cofactor. Again these two equal

halves will be considered for the next phase of decomposition.

This process continues till the cofactors/cube cofactors of

all variables are calculated. Decimal values of the computed

Shannon cofactors/ cube cofactors and their levels (number

of primary input variables that are in the fan-in cone of a

node) will be used as the node IDs. Fig. 1 (a) shows the basic

structure of the SFG, without considering the nature of nodes,

for an arbitrary 6-input Boolean function F
SFG construction algorithm takes the advantage of the size

of the library cells during graph construction to improve the

graph size and runtime. the The SFG is constructed to a level

that the bottom most nodes of the SFG will have a level

of MaxCellSize. This is because of the fact that the nodes

which receive inputs from MaxCellSize number of primary

input variables can be mapped with the library cells whose

size is not less than MaxCellSize. For an instance, if F is

a 10-input Boolean function and MaxCellSize is 4, then the

bottom most nodes of SFG of the Boolean function F will

have a level of 4, i.e only 6-variables are considered for the

Shannon decomposition. Since bottom most nodes have a level

4, they can be mapped directly with the 4-input library cells. In

this way, by considering the size of the library cells, the SFG

construction algorithm reduces the graph size and improves the

graph building time. The SFG constructed using the algorithm

1 is not canonical, because it has nodes which are redundant.

In order to make the SFG semi-canonical, there should not

be any constant one and zero, shared and non-decomposed

nodes. The proposed algorithm 2 takes this into consideration

and makes the SFG semi-canonical.

B. SFG Construction-Considering the Non-decomposed, Con-
stant one and zero, and Shared nodes

Algorithm 2 shows the pseudo code for the SFG construc-

tion and computing the non-decomposed , constant one and

zero, and shared nodes on-the-fly. It considers the size of

the library cells and nature of nodes to minimize the graph

building time and size. Fig. 1 (b) shows the basic structure

of the SFG, with considering the nature of nodes, for an

arbitrary 6-input Boolean function F. At every level, the value

of Shannon cofactors or cube cofactors are checked to find

the non-decomposed, constant one and zero nodes before

proceeding to the next phase of decomposition. The cofactor

or cube cofactor values of the nodes having the same level

will be compared, then the nodes which are having the same

cofactor or cube cofactor value in their truth-table (output

decimal value) are classified as non-decomposed nodes and

only one out of all non-decomposed nodes will be considered

for the next phase of Shannon decomposition. If there are m
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Fig. 1. Basic structure of the Shannon Factor Graph (SFG), assuming that size of the largest cells in the pre-computed library is 2 (MaxCellSize) (a) without
considering the nature of nodes and b) considering the nature of nodes of a 6-input Boolean function F. The variable ’a’ represents the hidden variable which
will be used as the selection line of the multiplexer and F0 and F1 represent the negative and positive cofactors respectively

Algorithm 1 SFG Construction without considering the non-

decomposed , constant one and zero, and shared nodes

1: int Truth2ShannonFactorGraph(truthtable, MaxCellSize)

2: {
3: int j,f, numvar, truthlength, tempTruth;

4: tempTruth=truthtable;

5: truthlength=length of the tempTruth;

6: numvar=log2(truthlength);

7: compute the decimal value of tempTruth save in f;

8: for j=1 to numvar-MaxCellSize

9: {
10: compute the Shannon cofactors and cube cofactors by

successively dividing the tempTruth;

11: compute the decimal values of the cofactors and cube

cofactors and save in f;

12: }
13: return f;

14: }

number of non-decomposed nodes, then only one out of m will

be considered for the decomposition and the remaining m-1
will be implemented from the decomposed node. So, there is

no need to spend time to decompose all m non-decomposed

nodes,which is runtime overhead. As the number of non-

decomposed nodes increases, the graph building time and size

decrease.

The constant one and zero nodes are found by identifying

the nodes whose cofactors have all zeros or ones in their

truth-table or corresponding decimal value. Once the constant

one or zero nodes are found, they are no more considered

for the Shannon decomposition and will be used to simplify

their parent nodes. Even if the constant one or zero nodes

are decomposed, the resulting nodes (children) will also be

constant one or zero nodes. So considering the constant one or

zero nodes for decomposition is redundant, runtime overhead

Algorithm 2 SFG construction and computation of non-

decomposed, constant one and zero nodes on-the-fly

1: graphconstruct(int truth table, int LibraryCell Size)

2: {
3: int num previousCubecofactor, number of variables,

temp table, i, j, k=1;

4: num previousCubecofactor←1

5: number of variables=log2(length(truth table));

6: temp truthtable=truth table;

7: ShannonCofactor(1,1)=truth table;

8: for i = 2 to num of variables-LibraryCell Size+1

9: {
10: if all Cube cofactors are constant one/zeros

11: Break;

12: for j = 1 to num previousCubecofactor

13: {
14: ShannonCofactor(i,k)=temp truthtable(1:end/2);

15: k=k+1;

16: ShannonCofactor(i,k)=temp truthtable((end/2+1):end);

17: k=k+1;

18: }
19: num previousCubecofactor ←number of cofactors in the

Shannon Cofactor for i
20: Compare all the Cubecofactors and remove non-

decomposed nodes and Constant one or zero Nodes

21: } }

and increases the graph size. The shared nodes among the

primary outputs are determined by comparing the nodes of

one primary output with the other primary output. If there

are any shared nodes, only one of them will be considered

for the Shannon decomposition and remaining nodes will be

implemented from the decomposed node. From the Fig. 1 it is

clear that, the size of the SFG can be minimized significantly

even for small functions by identifying the nature of nodes on-
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the-fly (from 31 to 15) and experimental results show that, the

reduction in SFG size is more prominent for bigger functions.

C. Cut-less Mapping in Brief

The mapping of the SFG to the library cells starts from the

bottom most nodes. The decimal value and level of the bottom

nodes of the SFG will be compared with the output decimal

value and size of the library cells to find the appropriate match

for each node. Once the bottom nodes are mapped with the

library cells, then the level of the graph will be reordered to

get the actual level of each node. Now, the nodes above the

bottom most nodes are selected based on the multiplexers size

that are presented in the library and . Every node of the SFG

will have hidden variable which can be used as selection line

of the multiplexer. Therefore, once the bottom most nodes are

mapped with the library cells, the remaining nodes are mapped

with the appropriate library cells (multiplexers) in a bottom-up

fashion. Mapping continues till all nodes in the each primary

output are covered.

IV. EXPERIMENTAL RESULTS

We extensively verified the proposed algorithms for SFG

construction with the standard benchmark circuits [16], [17].

The proposed algorithms are implemented in MATLAB run-

ning on a Xeon processor (3.4GHZ, 4GB RAM) operating

in Linux-based environment. The benchmark circuits taken

from [17] (circuits 10-14 in Table I), which are PLA format,

converted into truth-tables manually and using the Simple-

Solver [18]. Benchmark circuits taken from [16] (circuits 1-

9 in Table I), which are in verilog format, converted into

Boolean equations using the ABC tool [19], then truth-tables

are harvested from the Boolean equations.

Table I shows the variation of graph size and runtime (graph

building time) of the SFG with and without considering the

non-decomposed, constant one and zero, and shared nodes.

Column 1 represents the standard benchmark circuit name.

Column 2 shows the number of primary inputs and outputs of

the benchmark circuit. Column 4 and 5 represent the time

taken to build the SFG and number of nodes of the SFG

(graph size) without considering the nature of the nodes (non-

decomposed, constant one and zero, and shared) respectively.

Column 6 and 7 gives the graph size and time taken to build

the SFG, considering the nature of nodes.

we considered 3-input library cells, so the SFG is decom-

posed to a level where the bottom most nodes will have a level

of 3. The size of the SFG graph increases drastically, when

the non-decomposed, constant one (zero) and shared nodes are

not considered in constructing the SFG. This is because, these

nodes will also be considered for the Shannon decomposition,

which augments the graph building time and size of the SFG.

Since the non-decomposed nodes will have a representative

node, which will be considered for the decomposition, all

these nodes can be implemented from the decomposed node

assuming that there is no fan-out limitation on a node. Thus, by

considering only one representative for m nodes can improve

the runtime and graph size significantly.

Assume that there are S sets of non-decomposed nodes, each

set has n nodes ( level and decimal values of the cofactors are

same) and td is the time required to decompose each node.

Now each set can be implemented (n-1 nodes) from a single

node, which is considered for the Shannon decomposition. So

the total time taken to decompose the nodes will be m*tb,

which saves O(m*n) ((n-1)*m*tb) time and reduces the graph

size of similar amount. Same is applicable for shared nodes

case also. Non-decomposed nodes represent the nodes within

a primary output, whereas shared nodes represent among the

primary outputs.

If any constant one or zero nodes are found during the SFG

construction at any level, then those nodes will not be consid-

ered for the decomposition to minimize the graph building

time and size of the SFG. The Shannon decomposition of

constant one or zero nodes (parent) results in constant one

or zero (children), which are redundant to consider for the

further decomposition. Constant one and zero nodes reduce the

size and graph building time of the SFG drastically compared

to the non-decomposed and shared nodes. Column 8 sows

the runtime ration with and without considering the nature of

nodes. At an average non-decomposed, constant one and zero,

and shared nodes minimize the runtime by a factor 5.5 (for

few circuits it is around 100). But the interesting observation

is for few circuits, the runtime ratio is 1, this is due to the

presence of the constant one or zero and non-decomposed

nodes near the bottom most nodes which increases the runtime.

Similarly for few circuits the variation in the graph size

(circuits 8, 11-14) is minimum, this is because of, the input

size of the benchmark circuits is almost equal to the size

of the library cells. At an average, considering the constant

one and zero, shared, non-decomposed nodes during graph

construction reduces the size of the SFG by a factor of 126

(for few circuits it is around 700). So, by finding the nature

of nodes on-the-fly makes the SFG semi-canonical, which in

turn minimizes the graph size and runtime.

V. CONCLUSION

The proposed Shannon Factor graph’s structure helps in

eliminating the cut-enumeration, which is computationally

expensive task. Therefore, SFG facilitates the cut-less mapping

to overcome the runtime and memory bottlenecks for the

today’s highly complex designs. The nature of the nodes

of the SFG makes it semi-canonical and are the potential

candidates for minimizing the runtime and graph size. The

constant one and zero, shared and non-decomposed nodes will

not only minimize the runtime and memory but also the final

circuit area also. The proposed SFG construction algorithm

finds the constant one and zero, non-decomposed and shared

nodes on-the-fly,thereby improving the runtime and graph size

significantly. The SFG can also be applied to the methodology

proposed in [7], [8]. Analysis of effect of non-decomposed,

constant one and zero, and shared nodes on the final area and

delay forms the part of our future work.
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TABLE I
COMPARISON OF RUNTIME AND GRAPH SIZES OF THE PROPOSED SFG WITH AND WITHOUT CONSIDERING THE NON-DECOMPOSED, CONSTANT ONE AND

ZERO, AND SHARED NODES

S. No Circuit name Inputs/Outputs
Proposed SFG without NCS* Proposed SFG with NCS*

Speed up (R1/R2) (S1/S2)
Runtime(R1) Graph size(S1) Runtime(R2) Graph size(S2)

1 cm138 6/9 0.0128 135 0.005 27 2.6 5
2 cmb 16/4 0.576 65532 0.0381 85 15.2 770
3 cm163a 16/5 0.717 81915 0.116 131 6.2 625
4 cm162a 14/5 0.17 20475 0.0769 96 106 193
5 cm152a 11/1 0.007 511 0.006 88 1.2 5.8
6 alu2 10/6 0.011 1536 0.01 271 1.1 5.7
7 cm151a 12/2 0.02 2046 0.02 118 1 17
8 ex4 6/9 0.019 135 0.0083 101 2.2 1.4
9 ex1 9/19 0.64 2413 0.11 376 5.7 6.4
10 max46 9/1 0.002 127 0.003 72 0.67 1.8

11 7bit-even parity 7/1 5.76e−4 31 5.12e−4 5 1.12 6.2

12 mux4 6/1 3.68e−4 15 3.1e−4 9 1.2 1.67

13 majority 5/1 2.41e−4 7 2e−4 6 1.2 1.2

14 4gt13 4/1 2.4e−4 3 2.4e−4 3 1 1
Total 2.2 174881 0.4 1388

*NCS=Non-decomposed, Constant one and zero, and shared nodes
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