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Abstract— This paper introduces a novel low complexity highly 
accurate on- chip architecture for the detection of fragmented 
QRS (f-QRS) feature including notches and local extrema in the 
QRS complexes and subsequently identifies its various 
morphologies (Notched S, rsR’, RsR’ without elevation etc.) 
under the real-time environment targeting remote personalized 
health care. The proposed architecture uses the outcome of 
recently proposed Hybrid feature extraction algorithm (HFEA) 
[1] Level 3 detailed coefficients and detects and identifies the 
fragmentation feature from the QRS complex based on the 
criteria of the positions, and the magnitudes of the extrema 
(maxima and minima) and notches from the wavelet coefficients 
with no extra cost in terms of arithmetic complexity. To verify 
the proposed architecture 100 patients were randomly selected 
from the MIT-BIH PhysioNet PTB database and their ECG was 
examined by two experienced cardiologists individually and the 
results were compared with those obtained from the 
architecture output wherein we have achieved 95 % diagnostic 
matching. 

Keywords- fragmented QRS (f-QRS), Electrocardiography, 
morphology, wavelet transform, Remote Health Care 

I.  INTRODUCTION  
Cardio Vascular Disease is one of the prime causes of 

human mortality responsible for around 30% deaths as per the 
WHO statistics. With the advent of Cyber Physical System 
(CPS), Internet of Things (IoT) based system and with the 
advancement of information and communication technology 
along with the huge growth in the VLSI industry is gradually 
making the remote CVD monitoring a reality. In this context 
recently we proposed a low-complexity Hybrid Feature 
Extraction Algorithm (HFEA) [1] which would detect the 
conventional ECG features including, QRS duration, R peak, 
P and T wave etc. on-chip to facilitate the remote personalized 
continuous health monitoring. However, as per the recent 
medical studies [4, 5], bio-markers based on these 
conventional features, fail to detect fatal CVD diseases 
including myocardial infarction, cardiac sarcoidosis, non-
ischemic cardiomyopathy etc. myocardial infarction, cardiac 
sarcoidosis, non-ischemic cardiomyopathy etc. in a non-
invasive way, which on the contrary, can be detected by 
recently proposed f-QRS complex. To expedite and enhance 
the CVD diagnosis, we recently proposed an automated f-
QRS Detection and Morphology Identification (FDMI) 
methodology in [3, 6].  

In this paper, our aim is to take this idea further to the 
system level from the concept and propose a low-complexity 
but medically reliable architecture which can be integrated 
with the state-of-the art ECG feature extraction algorithm [1, 
2] on-chip like HEFA without increasing any extra arithmetic 
complexity of the circuit.  

The paper is organized as follows. Section II provides the 
necessary theoretical background and the proposed 
architecture for both f-QRS detection and f-QRS morphology 
identification, Section III presents the experimental results 
and validates the proposed architecture against the algorithm 
and doctor’s diagnosis and finally Section IV concludes the 
discussion. 

II. PROPOSED ARCHITECTURE 

A. Theoretical Background 
We proposed an automated algorithm in [3] to implement 

a raw ECG signal preprocessing module followed by 
fragmentation detection and morphology identification. The 
flow of the FDMI algorithm [3] is shown in Fig.1. 

In Figure.1 HFEA extract the crucial points of the ECG 
signal and provides the QRS complex, which is then 
interpolated to enhance the detection of all the discontinuities 
for a better accuracy. FDMI module takes the interpolated 
QRS complex signal as input to detect the fragmentation and 
identify the morphologies as output to the corresponding QRS 
complex. 

Fundamentally there exists six morphologies (Notched-S, 
Fragmented-QRS, Notched-R with Q, Notched-R without Q 
etc.) of the fragmented QRS complex and several other RSR’ 
variations [3, 6]. Morphology identification step begins after 
getting the information regarding the number of notches, 
maxima(s) and minima(s), and their point of occurrence. 
Based on the conditions [3] we get morphology as the output 
for that corresponding QRS complex. 

 
 
 
 
 
 
 
 
Figure 1. Algorithm for f-QRS detection and morphology identification 
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1. Baseline wandering removal and Denoising:
DWT (Discrete Wavelet Transform), SWT 

(Stationary Wavelet Transform) [8], UWT (Undecimated 
wavelet Transform) [9] and TIWT (Translation Invariant 
Wavelet transform) are main four approaches for baseline 
wandering removal and denoising [10-11] the ECG signal, 
all these approaches are based on wavelet transform and use 
different wavelet filters. All these techniques were 
employed and from the observation of all these approaches 
on 40 subjects it was found that approach 3 and 4 gives 
better performance in retracing the original signal by 
removing the artifacts. In this work we have taken approach 
4 as the denoising technique. 

2. Hybrid Feature extraction Algorithm and 
interpolation:  

Hybrid Feature Extraction Algorithm (HFEA): HFEA [1] 
takes PQRST complex as input and gives QRS complex as 
output, it is the combination of MMA applied on the Discrete 
Wavelet Transform (DWT) decomposition levels and the 
time-domain morphological analysis of the ECG signal.  

 The analysis is performed at five decomposition 
levels of DWT, each level having a highpass and lowpass 
filter. The Detail wavelet coefficients (WT) (cD lx) and 
Approximate WT coefficients (cA lx) are obtained at the 
output of highpass filter and lowpass filter respectively. We 
extract QRS complex and P/T waves by using the third and 
fifth decomposition level of DWT respectively. 

The main advantage of using this DWT with Haar as basis 
function compared to other WT based approaches for feature 
extraction is it allows for a major reduction in computational 
complexity in terms of required mathematical operations. 

B. Proposed Architecture 
The overview of proposed FDMI architecture is shown in 

Fig. 2 and the detailed internal block diagram of the same is 
shown in Fig.4. 

1. Proposed Fragmentation Detection Architecture 

Fragmentation detection module is used to detect all 
the kind of discontinuities which may be present in the QRS 
complex.  It provides the information regarding the number 
of notches, maxima(s) and minima(s) and their positions as 
the output. The proposed architecture for the fragmentation 
detection module is shown in Fig.4. 

 We have tried to reduce the complexity of the 
proposed fragmentation detection architecture by bypassing 
the process of interpolation and detailed DWT coefficient 
calculation, since the DWT block is present in the HFEA 
module proposed earlier [1] and the level 3 detailed 
coefficients are already computed, thus the fragmentation 
detection block would only use these coefficients and not 
recomputed, thereby removing the need of any extra 
arithmetic computations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Proposed Fragmentation Detection and Morphology 
Identification Block 

The behavior of the DWT coefficients is altered based on 
the discontinuities occurring in the QRS complex [3]. The 
DWT coefficients are 16 bits long. They are transferred 
serially to the DWT storage unit (Fig.4) using a 16 bit data-
bus, i.e. one DWT coefficient per clock cycle. The DWT 
storage unit consists of four registers, each having a word 
length of 16 bits. For the first four clock cycles, only the data 
storage is carried out and no further processing is initiated. 

At the end of fourth clock cycle, when all the four register 
of the DWT storage unit are filled, the device passes on the 
data from these four registers in parallel to the various 
decision branches (Fig.4). These branches checks for the 
presence of a maxima (or peak), or a minima (or nadir) or a 
notch in the QRS complex data points corresponding to the 
detailed DWT coefficients under processing. The decision 
branches (Fig.4) use the rules [3] for detection of 
discontinuities to make all the decisions. This procedure is 
followed till the analysis of all the detailed coefficients is over. 

The patterns for the detection of notches are categorized as 
A1, A2, A3, A4, B1 and B2, whereas the patterns C1 to C6 
are classified as extrema’s, as shown in Fig.3 The decision 
branches (Fig.4) are connected only with the sign bit line and 
not to entire data lines of the DWT storage unit (except for 
the branches A2, A3, B1 and B2, which require magnitude of 
the DWT coefficient as well) thereby it results in reducing 
the hardware complexity. For example to detect the pattern 
A1 and A3 we require only the sign bit of the data bus where 
as to detect the pattern A2 and A4 we require both the sign 
bit and the 16 bit absolute value of the DWT coefficient. 
These connections are shown in Fig.4.  The connection in this 
fashion, of only the sign bit line instead of the entire data line, 
helps in reducing the area consumed for routing. The module 
begins its evaluation from left to right side of the bar plot of 
DWT coefficients and if it recognizes any of the patterns 
matching to those rules for identification of discontinuities 
[3], the corresponding discontinuity is noted. To keep the 
count of the DWT coefficients which are being transferred to 
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the DWT storage unit, an algorithm pointer (Pointer 
increment unit block in Fig.4) ‘k’ is used. For each condition 
[3] there exists a corresponding condition on the increment of 
the pointer ‘k’. The pointer ‘k’ points to the position of the 
data to be transferred to the DWT storage unit with respect to 
the DWT coefficients currently under analysis. The 
fragmentation detection module accomplishes the pointer 
increment by bypassing the DWT coefficients as per the 
desired increment condition. For example, if the condition 
which is satisfied by a particular set of four detailed DWT 
coefficients corresponds to a pointer increment of 3, then the 
module will bypass the incoming DWT coefficients for the 
next three clock cycles.  Meanwhile, the previously stored 
data in the DWT storage unit will be shifted to free one 
register, by discarding the least recent data. This free register 
will then store the incoming DWT coefficient after three 
clock cycles. The output of the fragmentation detection 
module is stored in Indices Storage Unit and counter Blocks 
(Fig.4) comprises of the number of notches, maxima(s) and 
minima(s) along with the indices where the maxima, the 
minima and the notch (i.e., the notch-maxima and the notch-
minima) will lie in the QRS complex.  Meticulous study of 
the FDMI algorithm has enabled us to accomplish the 
processing of the morphology identification module 
(explained later) with the usage of only the first three                      
notch maxima, the first three notch-minima, the first two 
local-maxima and the first three local-minima out of the 
entire set of the QRS complex data points. The device thus 

2

Decision 
Change 
Feedback 

   16 (*3) 

16 

16 

 6(*11) 

2(*3) 
Morphology 

Check - J 

f-QRS type 
data 

        bus 

4 

2(*2) 

Indices Storage 
Unit 

   16 
(*4) 

   16 

1(*4) 16 
16 

Sign Bit 

Index feedback 

Pointer increment feedback 

16

Incoming data (Level 3 
Detailed Coefficients of 

HFEA) 
 

Pointer 
Increment 

Unit 

DWT 
Storage 

Unit 

Decision 
Branch 
A1, A3 

Decision Branch 
C1, C2, C3 
C4, C5, C6 

Decision 
Branch 
A2, A3 
B1, B2 

Absolute Value Transfer Line 

Counter feedback 

   1 (*4) Sign Bit 
1 

Notch MAX 
1, 2, 3 

Notch MIN 
1, 2, 3 

MAXIMA 1, 2 

MINIMA 1, 2, 3 

Memory 
Module 

(Containing 
ECG Samples) 

Counters

Notch Count 

Maxima Count 

Minima Count 1st Notch MAX 

1st Notch MIN 

2nd MINIMA 

    3rd MINIMA 

16(*11) 

Data 
Extraction 

Unit 

1st MAXIMA 

2nd MAXIMA 

1st MINIMA 

Absolute 
Value 

4 

4 
Morphology 

Check –  
B, C, D1, E, 

F, H 

Morphology 
Check –  

A, D2, G, I 
 

Morphology 
Output 

Sign Bit 
Transfer 

Line 

16Absolute Value Transfer Line 

Figure 4. Detailed internal view of overall proposed FDMI Architecture 

Figure.3 Rules for the identification of discontinues 

122



has only eleven registers, each of word length 16 bit, 
dedicated for the storage of these indices. 

2. Proposed Morphology Identification Architecture 
The various morphologies of fragmented QRS are 

demonstrated in literature [3]. Fig.4 shows the internal 
dataflow for the morphology identification architecture, 
where it can be noted that as discussed in section III A the 
indices storage unit and the counter registers (Notch Count, 
Maximum Count, and Minimum Count) blocks (Fig.4) are 
already used, this avoids us in having the need of extra 
hardware by reusing them in morphology identification 
block. 

The data extraction block has two inputs. One of its inputs 
is from memory which gives the 16 bit QRS complex data and 
it is received at each clock cycle. This incoming data is stored 
in a register of word length 16 bit and is overwritten at each 
clock cycle. The second input to the data extraction block 
consists of the indices of notches, maxima(s) and minima(s) 
which is received from the output of the fragmentation 
detection module. Data extraction module analyzes the 
incoming QRS complex data corresponding to the indices 
received at its second input. This analysis produces the value 
of the sign bits of the first notch-maxima, first notch-minima 
and the second and third-minima and the amplitude (absolute 
value) of the first minima and the first and second maxima as 
the output of the data extraction block. 

By examining all the morphologies [3] we deduced that to 
identify the morphologies B, C, D1, E, F, H we require only 
the sign bit of the corresponding QRS complex data (the first 
notch-maxima, first notch-minima, the second and third 
minima) and to identify the morphologies A, D2, G, I we 
require both the absolute value and the sign bit of the 
corresponding QRS complex data (absolute values of the first 
minima and the first and second maxima). Using this fact, we 
have optimized the architecture by taking only four registers, 
each of word length 1 bit, to store the sign of the first notch 
maxima, first notch minima, the second and third minima and 
three registers, each of word length 16 bits, to store the 
absolute value of the first minima and the first maxima and 
second maxima. This description is shown Fig.4. To identify 
the ‘J’ morphology, we only need to know the number of 
notches and extrema in the QRS complex. Hence, only 
register values of the count registers (Fig.4) is the input to the 
‘J’ morphology detection unit (Fig.4) 

The morphology identification process starts after all the 
relevant information about the notches, maxima(s) and 
minima(s), i.e. their number, position on the horizontal axis 
and relative position on the vertical axis, is obtained from the 
fragmentation detection module and the data extraction block. 
Based on the criteria [3] of the number of notches and 
extrema and their relative position at vertical and horizontal 
axis, we get the output of the morphology identification 
module. 

III. RESULTS AND DISCUSSIONS 

A. Implementation  
The results obtained from the Fragmentation detection 

and morphology identification algorithm [3] (coded in 
MATLAB) and the proposed architecture (coded in 
VERILOG, simulated in ModelSim and synthesized in RTL 
compiler using 130 nm technology at 1 MHz with Vdd =1.3 v) 
compares favorably with 100% matching between the 
algorithm [3, 6] and the proposed architecture’s outcome. 
The morphologies detected by the proposed architecture for 
the corresponding QRS complex was tested independently by 
two experienced cardiologists (acknowledged at the end of 
this paper). The design occupies 0.19 mm2  and consumes 
32 W power  at 1MHZ. 

B. Low Complexity Justification 
We have achieved the low complexity f-QRS 

architecture as follows 
 

1. By eliminating the interpolator and DWT generation   
block in the proposed architecture wherein these were the sub 
blocks in the algorithm [3, 6].  
2. Some of the decision branches (Fig.4) are fed with the 
sign bit from the DWT storage unit (Fig.4) instead of feeding 
the entire data line. 
3. Indices storage unit and the counter registers (Notch 
Count, Maximum Count, and Minimum Count) blocks (Fig.4) 
of fragmentation detection are being reused in the 
morphology identification process. 

In this way we have achieved low complexity by removing 
some of the extra arithmetic complex blocks which drastically 
reduce both power and area consumption. 

 
TABLE I. FDMI Performance Results 

 
 

 
 

Fragmentation 
Type 

 
QRS complex     
interpretation 

by 
Cardiologist  

QRS COMPLEX 
OUTCOME FROM 
ARCHITECTURE 

 
 

Matching 
Accuracy (%) 

Notched-S 25 24 96 

Fragmented-QRS 700 674 96 

RsR’ without ST 
elevation 67 63 94 

RSr’ 38 36 95 

Notched-R Q 
present 44 42 95 

rSR’ 26 25 96 

No fragmentation 100 97 97 
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Figure 5. Correlation between cardiologist Interpretation and Architecture 

outcome 
 

C. Architecture Validation and Accuracy Justification 
For testing the proposed architecture and obtaining the 

result we have randomly selected 100 patients from each 
patient we have taken 10 ECGs to get 1000 ’QRS’ complexes 
(classified into various fragmented features like Notched-S, 
Fragmented QRS etc.) from the MIT-BIH PhysioNet PTB 
database [7], the diagnostic results and the matching accuracy 
obtained from the cardiologist to that of the proposed 
architecture are shown in Table. I. We observed that the type 
of FDMI for a given 'QRS' complex' is same as in the 
algorithm developed in MATLAB in comparison with the 
architecture developed using Verilog, while the architectural 
outcome (verilog results) was 95% accurate when compared 
to the interpretation obtained from cardiologists.  

 The results are shown in Fig. 5 which demonstrates 
the number of ’QRS’ complex identified with the given type 
of fragmentation by the proposed architecture to that of the 
cardiologist. The proposed architecture has been tested for 
1000 such 'QRS' complexes for validation and the 
corresponding results are shown in Table I. 

IV . CONCLUSION 

In this paper we introduced on-chip architecture for 
fragmented QRS detection and identification of its various 
morphologies targeting remote personalized health care 
applications. Cardiologist interpretation has taken into 
consideration and compared with the architecture results 
which match 95% of accuracy. The proposed architecture low 
complexity has also been discussed in details which makes it 
suitable for low power applications like remote healthcare.  
Chip fabrication and the system design form part of our 
feature work. 
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