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Abstract4

Quantifying the dependence of future water availability on changing climate5

is critical for water resources planning and management in water stressed6

countries like India. However, this remains a challenge as long-term stream-7

flow data is scarce and there are significant uncertainties regarding future8

climate change. We present a bottom-up probabilistic Budyko framework that9

estimates the vulnerability of available water to changing climate using three10

hydro-climatic variables: long-term precipitation, potential evapotranspira-11

tion and actual evapotranspiration. We assimilate these variables within a12

probabilistic Budyko framework to derive estimates of water availability and13

associated uncertainty. We then explore a large range of possible future cli-14

mates to identify critical climate thresholds and their spatial variation across15

India. Based on this exploratory analysis, we find that Southern India is most16

susceptible to changing climate with less than 10% decrease in precipitation17

causing a 25% decrease in water availability.18
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1. Introduction

With rapidly increasing population and urbanization, India is heading towards acute19

water scarcity resulting from an ever increasing gap between supply and demand of fresh-20

water [IDFC , 2011]. Past efforts at quantifying the availability of freshwater resources21

across the country have relied mainly on estimating streamflow trends either through22

measurements or empirical estimation techniques [CWC , 2013]. Hydrologic models have23

also been employed to predict future water availability although this approach, too, relies24

on streamflow records [Mondal and Mujumdar , 2015; Raje et al., 2014]. Despite an esca-25

lation in the spatial extent of water stressed regions across the country, streamflow data26

remains scarce hindering the growth and development of hydrologic modeling frameworks27

to provide management solutions [Mujumdar , 2015; Rockstrom et al., 2009; UNEP , 2008].28

In addition, there is significant uncertainty about trajectories of future water supply due29

to large uncertainties in projected precipitation changes over the region [Mall et al., 2006;30

Hijioka et al., 2014]. This necessitates the development of frameworks that can fare well31

in such a data limited setting and accommodate large uncertainties in future precipitation32

change.33

One way to overcome the challenges posed by limited data and uncertain future precip-34

itation change is to combine advances in Budyko curve based techniques with bottom-up35

approaches. The recently introduced probabilistic Budyko framework enables the esti-36

mation of water availability along with their associated uncertainty [Greve et al., 2015].37

The application of the bottom-up approach to this framework provides a way to explore38

changes in water availability independent of future projections of climate [Weaver et al.,39
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2013; Singh et al., 2014; Poff et al., 2015]. The term ’bottom-up’ here refers to decision40

making approaches that use exploratory modeling analysis to assess a wide range of future41

climates and identify combinations that lead to vulnerable regimes in the indicator of in-42

terest (left panel in Fig. 1). Available data from climate models can also be assimilated in43

this approach aposteriori, i.e., after a large range of possibilities of future climate change44

have been explored.45

In this study, we propose and test a bottom-up probabilistic Budyko framework to46

identify critical climate thresholds for water availability across India. It offers three basic47

advantages. First, it serves as a standalone baseline to compare estimates based on48

streamflow data and hydrologic modeling. Second, it provides uncertainty in estimates49

on freshwater availability that are either overlooked [CWC , 2013] or if accounted for, are50

mainly driven by uncertainties from the input climate [Mondal and Mujumdar , 2015]. A51

probabilistic framework enables the quantification of uncertainties from additional sources52

such as physical characteristics of the region. Third, the proposed framework is simple in53

design and computationally inexpensive, thus increasing the potential for aiding a wide54

range of decision makers by providing a first order estimation of likely changes in future55

water supply as well as their sensitivity to changing climate.56

2. Methodolody

We follow a three-step procedure to estimate critical climate thresholds for changes in57

water availability across India (right panel in Fig. 1). In Step 1, we identify possible58

future climates expressed here as different combinations of precipitation and temperature59

(represented through potential evapotranspiration) change. In Step 2, we apply the prob-60
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abilistic Budyko framework to obtain projections of evaporation ratio (AE/P) for each61

climate combination identified in Step 1. This allows us to estimate water availability and62

associated uncertainty in Step 3. Finally, we identify critical climate change thresholds63

that lead to a decrease in water availability below a selected level. We begin our method-64

ological description with the probabilistic Budyko framework (Section 2.1). Following65

this, we describe the process of estimating the long-term water availability for a region for66

historical (validation) and assumed future (bottom-up approach) climates based on the67

relationship between water availability and variables of the Budyko curve (Section 2.2).68

Finally, we discuss the criteria behind the selection of possible climates and identifica-69

tion of critical climate thresholds to demonstrate the feasibility of the proposed approach70

(Section 2.3).71

2.1. The Probabilistic Budyko Framework

The Budyko curve relates long-term values of three hydro-climatic variables in a basin:72

long-term precipitation (P), potential evapotranspiration (PE), and actual evapotranspi-73

ration (AE). It represents the relationship between aridity index, PE/P, and evaporation74

ratio, AE/P, for a control volume. The Budyko curve has primarily been employed for75

watershed scale analysis as AE/P is estimated using long term streamflow records,76

AE

P
= 1 − Q

P
(1)

where Q is the long-term streamflow, and other variables are defined before. However,77

if we use an independent estimate of AE, the curve can be developed for any spatial78

extent as water and energy balance must be satisfied in a control volume. Several global79
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estimates of AE at various spatial and temporal resolution are now available enabling the80

development of Budyko frameworks in any spatial extent [Wagner et al., 2009; Mueller81

et al., 2011]. Since many decisions regarding water management in India are still political82

driven, we use political units (districts) instead of topographically defined watersheds to83

locate regions on the Budyko curve [Shah and Koppen, 2006]. Also, precipitation data84

was available at district level and could be directly used without losing much information85

in upscaling it to a watershed scale.86

While originally proposed as a space-time invariant relationship [Budyko, 1958; Pike,87

1964], it has now been shown that catchment and climatic characteristics do affect the88

position of a basin on the curve [Donohue et al., 2007; Potter et al., 2005; Gentine et al.,89

2012; Berghuijs and Hrachowitz , 2014]. Thus, several parametric forms of the Budyko90

curve have been suggested but they remain deterministic in their formulations [Fu, 1981;91

Zhang et al., 2004; Wang and Tang , 2014]. Our approximation of the Budyko curve is92

based on the analytical expression of Fu [1981] that relates PE/P to AE/P using a single93

parameter (ω):94

AE

P
= 1 +

PE

P
−

(
1 +

(PE

P

)ω)(1/ω)

. (2)

The long term mean climatic condition represented through PE/P is the primary con-95

trolling factor for the AE/P. The parameter ω integrates the secondary effects of climate96

variability and bio-geo-physical characteristics including as terrain, soils, vegetation, etc.97

[Donohue et al., 2007; Potter et al., 2005; Gentine et al., 2012; Berghuijs and Hrachowitz ,98

2014]. Recently, Greve et al. [2015] have proposed a way to estimate the parametric un-99

certainty in the Budyko curve thus extending the deterministic formulation of the curve100
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to a probabilistic one. Based on this approach, we calibrate the Fu’s equation using101

historically available data sets to obtain optimal estimates of ω for each control volume102

(district). Not desired but inevitable, the calibrated ω accounts for errors in data sets103

and the socio-economic factors influencing water budgets in the control volume. The cal-104

ibrated district level ω are then grouped together to (six) higher political units to obtain105

distinct regional distribution of ω over India.106

We implement two key modifications that enable us to extend the framework by Greve107

et al. [2015] to a data scarce region like India. First, we do not assume any underlying108

functional form of the Budyko curve parameter (ω), instead directly use its empirical dis-109

tribution. In this way, we do not lose any information provided by the data while keeping110

the assumptions on uncertainty bounds of projections to a minimal. Second, we apply111

this method to political units (districts) and derive regional distribution of ω across major112

regional divisions of India. Budyko curve based applications can potentially be applied to113

a wide range of spatial scales, conditional on appropriate calibration and validation of the114

curve’s parameter [Donohue et al., 2007]. We also note that the calibration process likely115

accounts for the socio-physiographic control on partitioning of incoming precipitation into116

evapotranspiration and surface/sub surface water.117

2.2. Water Availability Estimation

The water budget in a control volume can be expressed as,118

dSt

dt
= Pt + GWin,t + Qin,t −GWout,t −Qout,t − AEt (3)

,where, S is the hydrologically active storage, GWin(out) is the inflow (outflow) of ground119

water from the control volume, Qin(out) is the inflow (outflow) of surface water from the120

D R A F T October 30, 2015, 1:41pm D R A F T



X - 8 SINGH AND KUMAR 2015: INDIA WATER AVAILABILITY

control volume at time t, and remaining variables are defined before. The water availability121

is given by,122

WAt = GWout,t + Qout,t −GWin,t −Qin,t (4)

,where, WAt represents the water availability at time period t represented by net outflow123

of surface and ground water from a given control volume. For sufficiently long time scales124

such as decades, the net change in hydrologically active storage in a basin can be assumed125

to be zero. This leads to the following simplified representation for water availability,126

WAt = Pt − AEt. (5)

As we intend to obtain projections of water availability for a given climatic condition,127

we assimilate these hydro-climatic variables within the probabilistic Budyko framework128

(Section 2.1). This approach requires estimates of P, PE, and AE to estimate water129

availability for a given control volume.130

2.3. The bottom-up approach

When uncertainties regarding future climate trajectories increase to such an extent that131

even the direction of change in affected variables (such as water availability) becomes132

unclear, bottom-up approaches become pertinent [Weaver et al., 2013]. They reverse the133

traditional forward propagation approaches that generally force a hydrologic model using134

available climate change projections to obtain future changes in water availability (Fig.135

1). In contrast, bottom-up approaches begin with the identification of vulnerable ranges136

of water availability and then find the regions in the climate space that are likely to cause137

this vulnerability [Singh et al., 2014].138
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We apply the bottom-up approach by identifying a large number of possible climates for139

India that encompass the projected changes in precipitation and temperature for the South140

Asia region. We sample 100 equally spaced values each climate variable, thus resulting141

in 10,000 possible climate combinations of P and PE, each of which is represented by its142

aridity index (PE/P). We then obtain the distribution of water availability under each143

climate based on the probabilistic Budyko framework (see Section 2.1). The vulnerability144

of available water resources to changing climates is calculated based on relative change145

from historical estimates:146

V I =
∆WA

WA
× 100 (6)

,where, VI is the vulnerability index, WA is the long-term historical water availability147

defined in equation (5), and ∆WA is the change in long-term water availability. The148

estimation for vulnerability index across a range of climates allows us to identify a critical149

climate threshold for a chosen level of vulnerability. Furthermore, this approach can help150

us to locate hot spots, or, regions that are highly vulnerable to changing climate across151

India.152

3. Study area and data sources

We perform the analysis using all India data set spanning over more than 600 political153

units (districts) each of which is assumed to be an independent control volume. The154

districts areas range from 10-80420 km2 and 94% districts have an area greater than 1000155

km2. We obtain the district wise monthly precipitation data from 1901-2000 from the156

Indian Meteorological Department, Pune (India). Daily maximum and minimum temper-157

ature estimates are available from the same source at a spatial resolution of (1 × 1)◦ for158
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the period 1951-2000. Due to limited data availability, we used the temperature-based159

[Hargreaves and Samani , 1985] method to estimate gridded fields of potential evapotran-160

spiration.161

Another essential element in establishing the Budyko curve is the long term estimates162

of actual evapotranspiration (AE). There are several AE products available in the litera-163

ture each having their own potential and limitations [Mueller et al., 2011]. Here we use164

the remote sensing based monthly AE product derived by Zhang et al. [2009] that was165

validated using eddy-covariance tower flux data sets. The spatial resolution of 0.073◦ (≈166

8 km) and the global availability of this AE products for a relatively long time period167

(1983-2006) makes it ideal for its application in this study. We note that the same product168

has been also used in a recent study by Xu et al. [2013] for validating simulated AE of the169

Budyko framework. Finally, both PE and AE estimates are estimated for each district170

using area-averaging.171

A common overlapping period of eighteen years, 1983-2000, across all three variables172

(i.e., P, PE, and AE) is selected for further analysis. Districts that do not have at least173

10 years of overlapping data for all three variables are removed from further analysis. We174

also remove districts that violate the physical constrain of the atmospheric water supply175

(AE <P) and demand (AE < PE) laws (i.e., points lying outside the energy or water limit176

lines). Thus, we construct the Budyko curve using data from 520 districts out of a total177

636 districts over India.178

4. Results and Discussion

4.1. Validation of the probabilistic Budyko framework
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The value of Fu’s parameter ω that minimized the root mean squared error between ob-179

served and simulated AE/P is estimated for each district (Fig. 2a). We find a substantial180

scatter in the values of ω, which span over a broad range of 1.1 to 21.9 with 1.4, 1.7 and181

3.6 being the 5%, 50% and 95% quantiles, respectively. The district level optimal values182

of ω are then grouped to higher spatial units based on pre-defined regions. The districts183

are combined to form states (higher political units) which are further combined to form184

six larger political regions within India based on location (southern, central, northeast-185

ern, northwestern, northern states excluding Himalaya dominated regions, and Himalaya186

dominated regions). In this manner, the regional distribution of ω is obtained (Fig. 2b-g).187

The regional distribution of ω is used to predict AE/P for each district and obtain the188

associated uncertainty estimates.189

After obtaining the regional distribution of ω, we cross-validate the efficiency of the190

distributions at three scales: i) all-India level, ii) regional level, and iii) district level. To191

validate the distribution of ω at a given scale, we estimate the observed area averaged192

values of long term AE/P for the control volume and compare it against the projected193

values based on ω distributions. The full set of ω is used to project the distribution194

of AE/P for all-India scale, while regionally grouped ω values are used for obtaining195

AE/P projections each of the six regions and at district level. We considered the spatial196

distribution of ω and the decision making context of the water resources problems in the197

study region to determine the regional grouping of ω. As the spatial distribution of ω is198

fairly uniform, uncertainty bounds resulting from proximity based groupings (eg. nearest199

neighbors) will be relatively small (Fig. S1). Note that Greve et al. [2015] use the full200
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distribution of ω across all catchments for projecting of AE/P for each catchment. Here,201

we chose groupings midway between a full distribution and nearest neighbors approach.202

Finally, as we analyze water budget for political divisions (districts), we upscale the ω203

distributions to larger political regions.204

The bias in the median projected values of AE/P at regional scales range from 2.5%205

to 17.5% of the observed values (Table 1). The bias in median projections is largest for206

southern India but remains less than 10% for the remaining regions with sufficient data.207

The area averaged estimates for northeastern India and northern India dominated by Hi-208

malayan mountainous regions are not calculated due to lack of sufficient data (when more209

than 33% of constituting districts have missing data). The simulated AE/P at district210

level also shows satisfactory performance with observed values falling within 5% and 95%211

percentiles bounds of projected AE/P for 89% of the districts. Significant regional vari-212

ations are observed in the water partitioning behavior of districts across India (Fig. 3).213

For the same value of PE/P, regions in northwestern India tend to have lower AE/P214

than those in northern India. The central India region tends to have relatively narrow215

uncertainty bounds when compared with the rest of India.216

4.2. Identifying critical climate thresholds

We estimate the vulnerability of future water availability to changing climate across a217

wide range of possible climates (10,000) at different spatial resolutions ranging from all218

India level to regional and district levels. According to the latest IPCC report, the 5%-219

95% range of precipitation and temperature changes for the South Asia region is between220

-25% to 50% and 0◦C to 6◦C, respectively [Stocker et al., 2013]. We vary the precipitation221
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and potential evapotranspiration (a proxy for temperature changes) from -50% to 80%222

and 0% to 20%, of their historical estimates, respectively.223

This exploratory analysis allows us to estimate the median and inter-quartile range of224

the vulnerability indices at all India scale, which are shown as filled colored and grey225

contours in Figure 4a, respectively. The inter-quartile range reflects the uncertainty in226

the estimates of vulnerability index due to uncertain ω values of the Budyko curve. The227

downscaled projections of precipitation and potential evapotranspiration for five CMIP-5228

models under two extreme representative concentration pathways (RCP2.6 and RCP8.5)229

are also shown in the figure (Tables S1-S2). These CMIP-5 models form a part of the230

recently coordinated global scale effort of the Impact Model Intercomparison Project (ISI-231

MIP) that provides a rough estimate of likely climate change over the study region [Hempel232

et al., 2013; Warszawski et al., 2014]. The contours for mean value of vulnerability indices233

reveal that precipitation change has a much stronger control on water availability than234

temperature change. The contours also reveal that regions undergoing drying trends have235

lower uncertainty ranges and vice-versa at the scale of all India, reflected in the lower236

values of the inter-quartile range as compared to that observed in regions undergoing237

wetting trends. Similar patterns of climatic controls and uncertainties were found in a238

previous analysis using the Budyko curve within a hydrologic modeling framework for the239

United States by Singh et al. [2011].240

We now extend this analysis to identify critical climate thresholds for a selected level of241

vulnerability. As an example, we evaluate changes in precipitation that will lead to a 25%242

reduction in water availability with a fixed level of change in potential evapotranspiration243
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(10%). Other scenarios can easily be tested with the proposed framework. The critical244

precipitation threshold is identified for each district based on the regional ω distributions245

(Fig. 4b). Results indicate that southern India is the most vulnerable to decreasing246

precipitation, where less than 10% decrease in precipitation leads to a -25% decrease in247

water availability. The remaining parts of India show moderate vulnerability, with 10% to248

20% decrease in precipitation required to cross the selected vulnerability threshold. The249

spatial patterns showing the highest vulnerability for southern India are also found for250

other tested threshold criteria (see Fig. S3-S5). Therefore, a key finding of this analysis251

is that Southern India is most vulnerable to changing precipitation with smallest changes252

in precipitation leading to high vulnerability of water availability to changing climate.253

5. Conclusions

The proposed framework in its current form has a few limitations which can form the254

thrust of potential future investigations. First, the estimates of vulnerability depend upon255

the AE data product used. A comparison of various available AE products within the256

probabilistic framework for India would be useful. Second, understanding controls on ω257

values across regions will shed light on the underlying socio-hydrologic dynamics. The258

parameter, ω, essentially represents the balance of available water and energy within a259

control volume. When applied to political units, it should represent the complex hydro-260

climatic as well as socio-economic setting of the region. Finally, the ranges of water261

availability obtained here may be used to constraint hydrologic model response, thus262

complementing the constraints derived from streamflow [Yadav et al., 2007].263
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It is also worth mentioning that the vulnerability index used in the present study only264

considers the natural water supply (through P) and demand (through AE), and does265

not consider any elements of human activities such as changes in water demand, water266

quality requirements, artificial storages in reservoirs and dams, etc. Considering these267

additional elements for the estimation of vulnerability requires a holistic approach which268

is beyond the scope of present study. Another avenue for further analysis is the impact269

of the choice of grouping of ω on the vulnerability levels. Alternative groupings such as270

those based on nearest neighbor approach, or more sophisticated techniques exploiting271

the spatial correlation of ω values can be explored. Despite these limitations, we show272

the benefits of the probabilistic Budyko framework that can be very useful in data scarce273

regions to provide a first order estimate of the spatial variability of vulnerability of a274

region to changing climate.275

The current framework opens up a range of possibilities to assess decision relevant276

vulnerabilities in data scarce regions. It enables the assessment of the spatial distribution277

of water availability in a data scarce and water stressed region like India in the presence of278

large uncertainties in future climate. Our exploratory analysis combining the probabilistic279

Budyko framework with the bottom-up approach shows that Southern India is a highly280

vulnerable region in terms of sensitivity to changing climate. We also find significant281

variation of both vulnerability and associated uncertainty across major regions of India282

indicating the need for diverse approaches to manage water across India.283
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Figure 1. (Left panel) Overview of the bottom-up approach. (Right panel) Application of the

bottom-up approach to assess critical climate thresholds for India. (a) Selecting a wide range

of possible climates for exploration (b) The probabilistic Budyko framework employed to obtain

regional distribution of ω (c) Derivation of water availability statistics based on output from (b).
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Figure 2. (a) Location of districts across India on the Budyko plot with aridity index (PE/P)

on the x-axis and evaporation ratio (AE/P) on the y-axis. Dashed curve shows the value of ω set

at 2.6. (b-g) Histograms showing the distribution of ω values calibrated to individual districts

for each of the six regions. The maps in each histogram subplot show the location of the region.

Vertical dashed lines in histogram plots represent the default ω value at 2.6
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Figure 3. Validation of calibrated ω values for (a) all India (b) southern India (c) central

India, (d) north and northwestern India. The histogram shows the distribution of projected

AE/P values for the area averaged PE/P for the region. The mean values of projected AE/P

are shown by grey filled black bordered circle. Dashed (solid grey) lines represent the envelop

of minimum-maximum (5%-95%) projections for AE/P across the full range of dryness. White

circles with grey border show the observed locations of a district. The maps in each subplot

show the location of the region. Details on the histograms of the projected AE/P values for each

region are provided in Figure S2.
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Figure 4. (a) Vulnerability of water resources at all India level estimated as a function

of precipitation (∆P) and potential evapotranspiration change (∆PE). The colored and grey

contours represent median and inter-quartile range of vulnerability indices respectively. The

projected changes in all India P and PE between 1981-2000 and 2081-2099 from five contemporary

CMIP-5 models and under two extreme representative concentration pathways (RCP2.6 and

RCP8.5) are also overlain. (b) Spatial variation of critical precipitation threshold resulting in a

25% decrease in median water availability across India
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