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The three-dimensional linear stability characteristics of pressure-driven two-layer channel flow are
considered, wherein a Newtonian fluid layer overlies a layer of a Herschel–Bulkley fluid. We focus
on the parameter ranges for which Squire’s theorem for the two-layer Newtonian problem does not
exist. The modified Orr–Sommerfeld and Squire equations in each layer are derived and solved
using an efficient spectral collocation method. Our results demonstrate the presence of
three-dimensional instabilities for situations where the square root of the viscosity ratio is larger
than the thickness ratio of the two layers; these “interfacial” mode instabilities are also present when
density stratification is destabilizing. These results may be of particular interest to researchers
studying the transient growth and nonlinear stability of two-fluid non-Newtonian flows. We also
show that the “shear” modes, which are present at sufficiently large Reynolds numbers, are most
unstable to two-dimensional disturbances. © 2010 American Institute of Physics.
�doi:10.1063/1.3502023�

I. INTRODUCTION

Two-fluid flows are common in many practical applica-
tions, such as the cleaning of first-moving consumer good
plants, transportation of crude oil in pipelines,1 mixing of
liquids using centerline injectors, up-stream of static mixers,2

and the removal of highly viscous or elastoviscoplastic ma-
terial adhering to pipes by using fast-flowing water streams.3

The two-dimensional instability of two-fluid Poiseuille
flows has been addressed by many authors via asymptotic4–7

and linear stability analyses,8–11 as well as experimental
techniques.12 An extended review can be found in Ref. 13.

Recently, Sahu et al.14 studied the linear instability of
two-dimensional disturbances in a pressure-driven two-layer
channel flow, wherein a Newtonian fluid layer overlies a
layer of a Herschel–Bulkley fluid. Their results indicate that
increasing the yield stress, prior to the formation of un-
yielded zones, and shear-thickening tendency are destabiliz-
ing. They also conducted an energy analysis to study the
mechanism of this instability. Frigaard et al.11 studied the
two-dimensional linear stability of two-layer Poiseuille flow
of two Bingham fluids in which only a fraction of the
Bingham fluid has yielded. Unlike in the study of Sahu
et al.,14 the case studied by Frigaard et al.11 involves an
unyielded region between the Newtonian fluid and the
yielded part of the Bingham fluid. Interfacial waves would
not develop under such conditions; this suppression of inter-
facial modes then leads to superstable two-layer flows,11,15

similar to single-fluid pressure-driven flows.16,17 The effect
of three-dimensional disturbances on the stability of
pressure-driven channel flow, however, has received less at-
tention than that of two-dimensional ones.

Squire18 studied the stability of viscous fluid flow
through parallel walls and found that every unstable three-
dimensional disturbance is associated with a more unstable
two-dimensional disturbance at a lower value of the
Reynolds number. This result is commonly known as
“Squire’s theorem”19 and the connection between the two-
and three-dimensional disturbances is known as “Squire’s
transformation.” Extending this to two superposed fluids in
plane Poiseuille flow, Yiantsios and Higgins5 showed that
three-dimensional disturbances are associated with smaller
Reynolds numbers, and larger capillary contributions and
density stratifications. The larger capillary contributions are
stabilizing for all parameter values, as is density stratification
provided the density of the upper fluid is lower than that of
the lower one. Thus, although a Squire’s transformation can
exist for all flow parameters, a Squire’s theorem can only
exist provided the Reynolds number has a destabilizing ef-
fect. In the absence of surface tension and gravitational ef-
fects, Squire’s theorem is valid for tr��m since the
Reynolds number is destabilizing; here, tr is the thickness
ratio of the two fluids and m is the viscosity ratio. For
tr��m, the Reynolds number is stabilizing and Squire’s
theorem no longer exists. This is also true in the presence of
destabilizing density stratification. As remarked by Yiantsios
and Higgins5 in the absence of a Squire’s theorem, it is nec-
essary to perform a three-dimensional linear stability analy-
sis in order to determine whether or not two-dimensional
disturbances correspond to the most dangerous ones.

Malik and Hooper20 recently studied the effect of three-
dimensional disturbances on two-fluid channel flow, wherein
both the fluids are Newtonian. Using an energy analysis they
showed that maximum amplification of the disturbances is
due to the “lift-up effect” as in case of single phase flow.
They also found that, for some parametric regime, thea�Electronic mail: ksahu@iith.ac.in.
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maximum disturbance energy growth is associated with
three-dimensional disturbances. In a series of papers, Nouar
and co-workers15,21,22 studied the three-dimensional linear
instability of pressure-driven channel flow of a Bingham
fluid. Frigaard and Nouar21 investigated the effects of in-
creasing Bingham number Bn on the stability of plane
Poiseuille flow using energy bounds. They achieved three-
dimensional instability as Bn→� for a Reynolds number
bound of the form Re=O�Bn3/4�. Nouar et al.15 studied this
problem using both modal and nonmodal approaches; they
found the flow to be always linearly stable. To identify a
possible pathway toward transition Nouar et al.,22 revisited
this problem and found transient amplification to be the main
mechanism of transition in this case.

In the present study, we extend the previous work of
Malik and Hooper,20 and Frigaard and Nouar21 to examine
the three-dimensional linear stability of two-layer plane Poi-
seuille flow wherein a Newtonian layer flows past a layer of
a Herschel–Bulkley fluid. We focus on the range of param-
eters for which Squire’s theorem does not exist in the
Newtonian two-layer case; here, by “Newtonian” we refer to
the flow in the absence of a yield stress and a constant,
shear-rate-independent viscosity in both layers. Through a
linear stability analysis, we demonstrate the presence of
three-dimensional instabilities corresponding to “interfacial
modes” that are more unstable than their two-dimensional
counterparts; this was not possible for the “shear modes.”
Our results may be of particular interest to researchers study-
ing the transient growth of disturbances and their nonlinear
growth in two-fluid flows.

The rest of this paper is organized as follows. Details of
the problem formulation are provided in Sec. II, and the
results of the linear stability analysis are presented in Sec.
III. Concluding remarks are provided in Sec. IV.

II. FORMULATION

We consider a pressure-driven immiscible two-fluid
channel flow, wherein the upper and lower fluids are as-
sumed to be Newtonian and non-Newtonian, respectively;
both fluids are incompressible. The Herschel–Bulkley model
is employed to describe the rheological characteristics of the
non-Newtonian fluid. A rectangular coordinate system
�x ,y ,z� is used to model this flow, where x, y, and z denote
the streamwise, spanwise, and wall-normal coordinates, re-
spectively, as shown in Fig. 1. The rigid and impermeable
channel walls are located at z=0 and z=H, respectively; the

sharp interface, which separates the immiscible fluids, is at
z=h0. The height of the channel, H, and V�Q /H are used as
the length and velocity scales, respectively, in order to non-
dimensionalize the equations of motion, where Q denotes the
total flow rate. The viscosity and density have been scaled
with those of the upper, Newtonian fluid, i.e., �2 and �2,
respectively. The reduced dimensionless pressure Pi in fluid i
is related to the corresponding total dimensional pressure pi

through

Pi =
H

�2V
�pi + �ig�z − h�� �i = 1,2� , �1�

where g is the gravitational acceleration. The subscripts “1”
and “2” are used to represent quantities associated with the
lower and upper fluids, respectively.

The dimensionless viscosity of the non-Newtonian fluid
is given by

�1 = m�n−1 + Bn�−1, �2�

where ���2EijEij�1/2 represents the second invariant of
the rate of strain tensor, Eij =

1
2 ��ui /�xj +�uj /�xi�; Bn

��0H /�2V is a Bingham number and m��2
−1	�V /H�n−1 is a

viscosity ratio, wherein �0 is the yield stress; 	 and n are the
consistency and flow index, respectively. Note that we re-
strict the analysis to sufficiently low value of �0 so that there
are no unyielded regions in 0
y
h �Ref. 14�.

A. Base state

The base state whose linear stability characteristics will
be analyzed, corresponds to a steady, parallel, fully devel-
oped flow in both the layers separated by a flat interface, i.e.,
h=h0 and V=W=0; Ui�i=1,2� is only a function of z and
pressure distribution �P1= P2= P� is linear in x

U1 =
n

n + 1

�dP/dx�−1

m1/n �dP

dx
z + c3 − Bn	�n+1�/n

+ c4, �3�

U2 =
dP

dx

z2

2
+ c1z + c2. �4�

We obtained Eqs. �3� and �4� by integrating the steady, fully
developed dimensionless Navier–Stokes equations, imposing
the no-slip conditions at the walls and demanding continuity
of velocity and the tangential component of the stress at the
interface. The pressure gradient, dP /dx and the integration
constants, c1, c2, c3, and c4 are obtained by solving the fol-
lowing simultaneous equations:

n�dP/dx�−1

�n + 1�m1/n
�dP

dx
h0 + c3 − Bn	�n+1�/n

− �c3 − Bn��n+1�/n�
−

1

2

dP

dx
�h02 − 1� − c1�h0 − 1� = 0,

c3 = c1, c2 = −
1

2

dP

dx
− c1, �5�

c4 = −
n�dP/dx�−1

�n + 1�m1/n �c1 − Bn��n+1�/n,

�����������������������������

������������������������������
������������������������������

H

Non-Newtonian fluid (1)

Newtonian fluid (2)

h

Interface

x

yz
0

FIG. 1. Schematic of a two-layer flow in a channel of height H, where h
represents the thickness of the lower, non-Newtonian fluid.
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and �
0

h

U1dz + �
h

1

U2dz = 1. �6�

The pressure gradient, dP /dx, is obtained from the constant
volumetric flow rate condition, i.e.,

�
0

h0

U1dz + �
h0

1

U2dz = 1. �7�

It is possible to generate an algebraic relationship between
m ,n ,h0 ,Bn,dP /dx to characterize the case wherein the
lower layer is fully yielded by first determining the condition
for which the lower layer will just begin to yield: by setting
�=0. In the base state, �=dU1 /dz, which from Eq. �3� is
given by

� =
dU1

dz
=

1

m1/ndP

dx
z + c3 − Bn�1/n

. �8�

�=0 for a particular value of z, Y; this is the “yield surface”

Y =
Bn − c3

dP/dx
, �9�

where dP /dx and c3=c3�m ,n ,h0 ,Bn,dP /dx� are given by
Eqs. �5� and �7�, respectively; note that dP /dx�0 in this
work. By equating Y =h0, i.e., by assuming that the whole
lower layer will yield, we arrive at

Bn − c3 − h0dP/dx = 0, �10�

which provides a relationship that can be then be used to
determine the appropriate combination of m ,n ,Bn,h0 ,
dP /dx for the fully yielded regime.

Typical basic state profiles of the steady, streamwise ve-
locity component for h0=0.5 and h0=0.2 are shown in Figs.
2�a� and 2�b�, respectively. The rest of the parameter values
are Re=100, Bn=5, and n=1. These parameter values are
chosen such that they satisfy h0 / �1−h0���m for which
there is no Squire’s theorem.5 Inspection of Fig. 2 reveals
that increasing the value of m leads to an increase in maxi-
mal velocity contrast between the upper and lower fluids.

B. Linear stability analysis

We examine the linear stability of the base state, ob-
tained by solving Eqs. �3� and �4�, to infinitesimal, three-
dimensional �3D� disturbances. Only the essential steps
involved in the derivation of the linear stability equations
are included below; a detailed derivation can be found in
Appendix A.

Each flow variable is expressed as the sum of a base
state and a 3D perturbation,

�ũi, ṽi,w̃i, P̃i��x,y,z,t�

= �Ui�z�,0,0,Pi� + �ûi, v̂i,ŵi, p̂i��x,y,z,t� , �11�

with i=1,2. Similarly the viscosity, �1 and h can be ex-
pressed as

�1��� = �1
0 + � ��1

��
�0

�� − �� � �1
0 + S�̂ , �12�

h�x,y,t� = h0 + ĥ , �13�

where S= �n−1�m�n−2−Bn�−2; the linearized form of �̂ is
given by

�̂ =
� û

�z
+

�ŵ

�x
, �14�

where û, v̂, and ŵ denote the streamwise, spanwise, and
wall-normal components of the disturbance velocity vector,
respectively. The superscript “0” designates the base state
quantities. Substitution of Eqs. �11�–�13� into the governing
equations followed by subtraction of the base state equations,
subsequent linearization, and elimination of the pressure per-
turbation yields in linear stability equations in terms of pri-
mary variables. These equations are reexpressed in terms of
the wall-normal perturbation velocity, ŵi, and wall-normal
component of vorticity, �̂i��ûi /�y−�v̂i /�x, and then de-
composed into an amplitude and a wave part by using a
normal modes analysis

(a) (b)
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FIG. 2. Basic state profiles of the steady, streamwise velocity component for h0=0.5, �a�, and h0=0.2 �b�, respectively. The rest of the parameter values are
Re=100, Bn=5, and n=1.
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�ŵi,�̂i, p̂i,�̂��x,y,z,t� = �wi,�i,pi,�̃��z�ei�x+�y−�t�,

�15�
ĥ�x,y,t� = h̃ei�x+�y−�t�, i = 1,2,

such that a given mode is unstable if �i�0, stable if
�i�0 and neutrally stable if �i=0.19,23 Here, w̃i, �̃i, p̃, �̃,

and h̃ denote the amplitudes of the wall-normal velocity and

vorticity, pressure, second invariant of the rate of strain ten-
sor, and interfacial perturbations, respectively;  and � de-
note the streamwise and spanwise real wavenumbers, respec-
tively, and ��=c� stands for the complex disturbance
frequency, wherein c is a complex phase speed of the distur-
bance. This yields the following stability equations in both
the layers, following the suppression of the tilde decoration.
In the lower layer

ir Re��w1� − �2 + �2�w1��U1 − c� − U1�w1�

= �1
0�w1

� − 2�2 + �2�w1� + �2 + �2�2w1� + 2�1
0��w1� − �2 + �2�w1�� + �1

0��w1� + �2 + �2�w1�

− iU1��S�� + 2S��� + S��� − 2iU1��S�� + S��� − iU1�S� − i�2 + �2�U1�S� , �16�

ir Re��1�U1 − c� + �U1�w1�

= �1
0��1� − �2 + �2��1� + �1

0��1�

+ i�U1��S�� + S��� + i�U1�S� . �17�

In the upper layer

i Re��w1� − �2 + �2�w2��U2 − c� − U2�w2�

= w2
� − 2�2 + �2�w2� + �2 + �2�2w2, �18�

i Re��2�U2 − c� + �U2�w2� = �2� − �2 + �2��2. �19�

These equations are then subject to the following boundary
conditions: no-slip and no-penetration conditions at the walls
can be written as

w1 = w1� = �1 = 0 at z = 0, �20�

w2 = w2� = �2 = 0 at z = 1. �21�

The kinematic boundary condition gives

h =
w1

i�U1 − c�
=

w2

i�U2 − c�
. �22�

Conditions of continuity of the velocity in the streamwise,
spanwise and normal directions at the interface are expressed
as

w1� − ihU1� = w2� − ihU2�, �23�

�1 + i�hU1� = �2 + i�hU2�, �24�

w1 = w2. �25�

The normal stress jump and continuity of the tangential
stress balance in the streamwise and spanwise directions are
respectively given by

i Re�r�w1��c − U1� + U1�w1� − �w2��c − U2� + U2�w2��

− 2�1
0�2 + �2�w1� + 3�2 + �2�w2� + �1

0

��w1� − �2 + �2�w1�� + �1
0��w1� + �2 + �2�w1�

− i�SU1��� + S�U1�� + SU1��� − w2�

= �2 + �2����2 + �2� + G�
�w2� − w1��

i�U2� − U1��
, �26�

�1
0�w1� + �2 + �2�w1� − iSU1�� −

��1
0U1� − U2��
�U1 − c�

w1

= w2� + �2 + �2�w2, �27�

�1
0�1� + i�SU1�� +

��1
0U1� − U2��

�U1 − c�
�w1 = �2�. �28�

Here, the prime represents differentiation with respect to z,
r��1 /�2 is the density ratio, Re���UmH /�2� is the
Reynolds number, G���1−�2�gH2 /�2V is a dimensionless
gravitational parameter, and ��� /�2V is an inverse capil-
lary in which � denotes the interfacial tension. We have con-
firmed that Eqs. �16�–�19� along with the boundary condi-
tions �20�–�28� describe an eigenvalue problem that can be
recast into the following matrix form:
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�
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

��
w1

w2

�1

�2

�
= c�

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B33

��
w1

w2

�1

�2

� , �29�

where c is the eigenvalue, and �w1 ,�1� and �w2 ,�2� are the
eigenfunctions corresponding to the intervals �0−h0� and
�h0−1�, respectively. This eigenvalue problem is then
solved using the public domain software, LAPACK, and the
Chebyshev spectral collocation method.24 The above proce-
dure allows the numerical calculation of the dispersion rela-
tions �i=�i�� ; ,Re,m ,r ,� ,G ,n ,Bn�. A similar technique
had previously been used by Sahu et al.14,25

In the limit �n ,Bn�→ �1,0�, we recover the Orr–
Sommerfeld and Squire equations for a Newtonian fluid as
given in Schmid et al.23 In the same limit, we also obtained
the governing equations of Malik and Hooper20 for two
Newtonian fluids flowing through a channel. By setting
n=1, we also obtain the stability equations of Nouar et al.15

for Bingham fluid. By considering two-dimensional distur-
bances �setting �=0� and rewriting Eqs. �16� and �28� in
terms of stream function, we obtained the corresponding sta-
bility equations and boundary conditions of Sahu et al.,14

although we obtain an extra term in the tangential stress bal-

ance equation in the x-direction, which appears in Eqs. �27�
and �28� and is due to the expansion of the streamwise ve-
locity at the perturbed interface.

C. Numerical procedure and validation

In order to inspire confidence in the predictions of the
numerical procedure, we investigate the dependence of our
numerical solutions upon mesh refinement in Fig. 3 in which
we plot the normalized growth rate, �i /�0 with �, where
�0, the value of �i associated with two-dimensional distur-
bance ��=0� �see Table I for numerical values of the maxi-
mum normalized growth rate, ��i /�0�max in Fig. 3 for dif-
ferent values of N�. The rest of the parameter values are
Re=100, �=0.1, G=−5, m=10, r=1.1, Bn=4, n=1, =0.5,
and h0=0.3. It can be seen that the curves are indistinguish-
able for different values of the order of Chebyshev polyno-
mials, N; N=61 is used to generate the rest of the results.
Our results are also in excellent agreement with those of
Malik and Hooper,20 South et al.,10 and Yiantsios and
Higgins5 for two-layer Newtonian flows.

III. RESULTS AND DISCUSSION

In the results discussed below, we reiterate that we have
chosen parameters for which there is no Squire’s theorem,
h0 / �1−h0���m, which is guided by the work of Yiantsios
and Higgins.5 We begin the presentation of our results by
discussing the behavior of three-dimensional disturbances in
pressure-driven channel flow, wherein both the layers are
Newtonian fluids, i.e., Bn=0 and n=1 in the present formu-
lation. We then focus on the so-called “interfacial” modes,
before presenting a brief examination of shear modes.

In Figs. 4�a� and 4�b�, we show the numerically gener-
ated dispersion curves corresponding to the variation of the
growth rate, �i, with � for h0=0.5 and h0=0.2, respectively,
with  parameterically varying. Here, �i has been normal-
ized by �0 for each value of  used. The rest of the param-
eter values are Re=100, �=0, G=0, m=10, and r=1. As
shown in Figs. 4�a� and 4�b�, the dispersion curves are pa-
raboloidal for the majority of the  values studied. In Fig.
4�a�, it can be seen that these curves exhibit a well-defined
maximum at ��3.5 for an intermediate value of , =3,
and “cut-off” modes for which �i /�0�1 for large � values.
Figure 4�b� also shows that the maximal normalized growth
rate is associated with a finite � value, and the growth rate
increases with decreasing . Thus, the results depicted in
Fig. 4 demonstrate that the linear instabilities accompanying
the flow for this set of parameters are three-dimensional.
Close inspection of Fig. 4 also reveals that the preferred
streamwise wavelength of these instabilities decreases with
h0.

In order to identify the physical mechanism and the na-
ture of unstable modes, we perform an energy budget analy-
sis, similar to that given in Sahu et al.,14 following the meth-
odology outlined in Appendix B. The energy “budgets”
associated with the points labeled A, B, C, D, and E �the
maxima in the dispersion curves� in Fig. 4�b� are given in
Table II. The figures in Table II represent the contribution

TABLE I. Maximum normalized growth rate, ��i /�0�max in Fig. 3 for dif-
ferent values of N.

N ��i /�0�max

41 1.179 831 001 1

61 1.180 017 574 2

81 1.180 029 599 6

0 1 2 3 4 5
β

0.95

1

1.05

1.1

1.15

1.2

Ω
i/Ω

0

41
61
81

N

FIG. 3. The effect of increasing the order of Chebyshev polynomials in each
layer, N, on the variation of normalized growth rate, ��i /�0�, with �, where
�0 is the growth rate associated with the corresponding two-dimensional
disturbance ��=0�. The rest of the parameter values are Re=100, �=0.1,
G=−5, m=10, r=1.1, Bn=4, n=1, h0=0.3, and =0.5.
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arising from each term in Eq. �B1� scaled by the total spa-
tially averaged rate of change of disturbance kinetic energy,
KIN.

The energy decomposition reveals that, since TANx pro-
vides the largest positive contribution to KIN, the unstable
modes examined are all of the interfacial type, and, in this
case, are driven by viscosity stratification. The other positive,
albeit smaller, contribution to KIN for this set of parameters
is due to the Reynolds stress in the upper fluid, REY2. The
dissipative terms, DIS1 and DIS2 provide negative contribu-
tions; this indicates that viscous dissipation provides a restor-
ing effect and is stabilizing, as expected. TANy is also nega-
tive for intermediate values of  for this set of parameters. It
can be seen that although increasing  increases REY2 for
smaller  values, the negative contribution to KIN by the
total dissipative energy also increases; hence, overall this has
a stabilizing influence. The Reynolds stress term associated
with the lower fluid, REY1, makes a negligible contribution
to KIN.

We have also carried out a similar analysis of the flow
with G�0 for which there is also no Squire’s theorem. Our
results for this case are illustrated in Figs. 5�a� and 5�b� for
G=−10 and the rest of the parameters remaining unaltered
from Figs. 4�a� and 4�b�, respectively; thus, the base flow in
this case is unstably stratified. The results presented in Fig. 5
are similar to those presented in Fig. 4 and indicate that this
case is also characterized by the presence of three-
dimensional instabilities.

In the rest of this paper, we concentrate on studying the
effect of three-dimensional disturbances when the lower
layer is a Herschel–Bulkley fluid. In Figs. 6�a� and 6�b�, we

investigate the effect of varying  values on the dispersion
curves ��i /�0 versus �� with Bn=5 for h0=0.5 and
h0=0.2, respectively. The rest of the parameter values are the
same as those used to generate Fig. 4. It can be seen in Fig.
6�a� that most of these curves exhibit a well-defined maxi-
mum at ��3.5, for an intermediate value of . The stability
behavior of the dispersion curves in Fig. 6�b� is similar to
that in Fig. 4�b�; the maximum growth rate increases with
decreasing  values. We can also see that the value of 
associated with the most-dangerous mode is smaller for
h0=0.2 as compared to that for h0=0.5.

The dependence of the stability characteristics on  can
be explained by inspection of the energy budgets of the
points labeled A, B, C, and D in Fig. 6�a�, which are listed in
Table III. It is seen that the largest contribution to KIN is due
to TANx, confirming the most dangerous mode to be of in-
terfacial type. It can also be seen that for this set of param-
eter values, REY2 increases with increasing , reaching a
maximum for �2.5; a further increase in  values leads to
a decrease in REY2. An opposite effect for the total viscous
dissipation energy can be seen in the Table III; REY1 makes
a negligible contribution to KIN. This may provide an expla-
nation for the nonmonotonic dependence on  shown in Fig.
6�a�. The energy budgets of the points labeled E, F, G, and H
in Fig. 6�b�, which are listed in Table IV reveal that although
increasing  increases REY2, the negative contribution to
KIN by the total dissipative term DIS also increases.
Thus, overall the effect is stabilizing for this set of parameter
values.

Next, in Figs. 7�a� and 7�b�, we investigate the effect of
varying the Bingham number Bn on the three-dimensional

TABLE II. Energy budgets for the points labeled A, B, C, D, and E in Fig. 4�b�.

Point REY1 REY2 DIS1 DIS2 TANx TANy TEN HYD

A 0 0.0001 �0.007 �0.1005 1.1075 0 0 0

B 0 0.0066 �0.0077 �0.1 1.1035 �0.0024 0 0

C 0 0.015 �0.0123 �0.0955 1.1015 �0.0087 0 0

D 0 0.0147 �0.032 �0.0761 1.1006 �0.0072 0 0

E 0 0.0148 �0.041 �0.0672 1.0934 0 0 0
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FIG. 4. The dispersion curves ��i /�0 vs �� for different values of ; �a� h0=0.5 and �b� h0=0.2. The rest of the parameter values are Re=100, �=0, G
=0, m=10, r=1, Bn=0, and n=1. This corresponds to a case where both the layers are Newtonian fluids. The labels A–E in �b� are used to designate the
maxima in the dispersion curves; the energy budgets associated with these points are provided in Table II.
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linear stability characteristics by showing numerically gener-
ated dispersion curves ��i /�0 versus �� for h0=0.5 and
h0=0.2, respectively. Here =2 and the rest of the parameter
values are the same as those used to generate Fig. 4. It can be
seen in Fig. 7�a� that for h0=0.5 the normalized growth rate,
�i /�0, increases with increasing Bn, but for h0=0.2, Bn has
a nonmonotonic effect on the disturbance growth rate as can
be seen in Fig. 7�b�. Inspection of Fig. 7�b� reveals that in-
creasing the value of Bn increases �i /�0 in the range
0�Bn�6; a further increase in Bn, however, leads to a
decrease in the maximal growth rate. Close inspection of Fig.
7�a� also reveals that increasing Bn shifts the most dangerous
and cut-off modes toward higher wavenumbers. It can be
seen in Figs. 7�a� and 7�b� that for a range of � values con-
sidered, �i /�0�1, thus, linear instabilities accompanying
the flow for this set of parameters are three-dimensional.

The energy budgets associated with the points labeled A,
B, C, and D, and E, F, G, and H in Figs. 7�a� and 7�b�, are
listed in Tables V and VI, respectively. For h0=0.5, inspec-
tion of Table V reveals that although REY2 decreases with
increasing Bn, the negative contribution provided due to the
total viscous dissipation �DIS1+DIS2� increases at a faster
rate; TANy also increases with increasing Bn. This may ex-
plain the destabilizing effect of increasing Bn for h0=0.5.
The energy budgets for points E, F, G, and H that are asso-

ciated with h0=0.2 reveals that increasing Bn increases the
positive contribution of REY2 up to Bn�6 and decreases
thereafter; this trend is consistent with the stability behavior
of the dispersion curves in Fig. 7�b�. For all h0 values con-
sidered, TANx provides the largest positive contribution to
KIN, hence the unstable modes examined are all of the in-
terfacial type.

In Fig. 8, we investigate the effect of varying n on the
stability characteristics for Bn=4, the rest of the parameters
remain unaltered from Fig. 7. For the larger h0 values exam-
ined, decreasing the value of n, which reflects an increase in
the shear-thinning tendency of the non-Newtonian layer, has
a nonmonotonic effect on the disturbance growth rate. The
maximal growth rate decreases with decreasing the value of
n; a further decrease in n, however, leads to an increase in
the maximal growth rate. In contrast, in Fig. 8�b�, which is
associated with h0=0.2, we can see that decreasing n in-
creases the maximum growth rate and shifts both the most
dangerous and cut-off modes toward larger � values. It can
also be seen that �i /�0�1 for a range of � values for all the
values of n �for h0=0.2� and smaller n value �for h0=0.5�;
thus, three-dimensional instabilities dominate for this set of
parameters. The energy budget for Fig. 8 shows the same
trends as those associated with Fig. 7.

We turn our attention now to a brief examination of

(a)

0 3 6 9 12 15
β

0.5

1

1.5

2

2.5

3

Ω
i/Ω

0

0.3
0.5
1
2

α

(b)

0 3 6 9 12 15

β
0

1

2

3

4

5

6

7

Ω
i/Ω

0

0.3
0.5
1
2

α

FIG. 5. The dispersion curves ��i /�0 vs �� for different values of ; �a� h0=0.5 and �b� h0=0.2. The rest of the parameter values are the same as in Fig. 4
but with G=−10.
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FIG. 6. The dispersion curves ��i /�0 vs �� for different values of ; �a� h0=0.5 and �b� h0=0.2. Here, Bn=5 and the rest of the parameter values are the same
as in Fig. 4. The labels A–D and E–H are used to designate maxima in the dispersion curves in �a� and �b�, respectively; the energy budgets associated with
these points are provided in Tables III and IV, respectively.
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shear modes, which arise at sufficiently large Re. In Figs.
9�a� and 9�b�, we show the parametric dependence of the
neutral stability curves on the spanwise wavenumber � for
the case of Newtonian fluids. Here, Re has been chosen to be
sufficiently large so that an additional unstable mode exists,
the so-called shear mode; examples of the z-dependence of
the stream function associated with the interfacial and shear
modes are shown in Figs. 9�c� and 9�d�. As can be seen in
Figs. 9�a� and 9�b�, the most unstable shear modes corre-
spond to two-dimensional perturbations for both values of
values of h0 investigated: increasing � above �=0 leads to
an increase in the value of the critical Re. In Figs. 9�e� and
9�f�, it is seen that the growth rates of the interfacial modes
far exceed those of the shear ones; the former are also largely
insensitive to � variations.

We have also examined the effect of � on the stability of
the flow to shear modes with Bn�0 and n�1. In Figs.
10�a�, 10�c�, and 10�e�, we show that increasing the value of
� increases the critical Re for shear mode instabilities for all
Bn values investigated. A similar result is obtained for n
variations, as shown in Figs. 10�b�, 10�d�, and 10�f�. Collec-
tively, the results presented in Fig. 10 demonstrate that two-
dimensional shear modes are more linearly unstable than
their three-dimensional counterparts for situations wherein
the lower layer is non-Newtonian. We have also found simi-
lar results for other parameters for which Squire’s theorem
does not exist �e.g., for G�0 and h0=0.2�; these have been
omitted for brevity.

IV. CONCLUSIONS

We have investigated the three-dimensional linear char-
acteristics of pressure-driven two-layer channel flow wherein
a Newtonian layer flows past a Herschel–Bulkley fluid. We
have restricted attention to the range of parameters over
which Squire’s theorem for the Newtonian two-layer
problem does not exist. In order to examine the stability
characteristics of the flow, we have derived modified

Orr–Sommerfeld and Squire equations in each layer, which
constitute an eigenvalue problem. These equations are pa-
rameterized by a Bingham number, Bn, and a flow index, n,
in addition to viscosity, density and thickness ratios, and
gravitational and interfacial tension parameters. The eigen-
value problem is then solved using an efficient spectral col-
location method.

Our results indicate the presence of three-dimensional
instabilities for situations where the square root of the vis-
cosity ratio is larger than the thickness ratio of the two lay-
ers; these instabilities are also present when density stratifi-
cation is destabilizing. In all cases studied, an energy
“budget” analysis shows that the most dangerous modes are
interfacial ones. These results may be of particular interest to
researchers studying the transient growth of the disturbances
and their nonlinear evolution in two-fluid flows. Our brief
examination of shear mode instabilities, which are present at
sufficiently large Reynolds numbers, has also demonstrated
that the two-dimensional modes are more unstable than the
three-dimensional ones for all the cases studied.
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APPENDIX A: DERIVATION OF THE LINEAR
STABILITY EQUATIONS

In this appendix, we include details of the derivation of
the linear stability equations. First, we derive the stability
equations for the non-Newtonian layer; we then use the ap-
propriate limits to derive the equations for the Newtonian
layer. We follow the procedure given in Ref. 23 in deriving
the following stability equations.

TABLE III. Energy budgets for the points labeled A, B, C, and D in Fig. 6�a�.

Point REY1 REY2 DIS1 DIS2 TANx TANy TEN HYD

A �0.0001 0.0188 �0.0619 �0.0458 1.089 0 0 0

B �0.0002 0.0219 �0.0335 �0.0479 1.0534 0.0063 0 0

C �0.0003 0.0238 �0.032 �0.0457 1.0475 0.0067 0 0

D �0.0003 0.0147 �0.0369 �0.0431 1.0598 0.0058 0 0

TABLE IV. Energy budgets for the points labeled E, F, G, and H in Fig. 6�b�.

Point REY1 REY2 DIS1 DIS2 TANx TANy TEN HYD

E 0 0.0004 �0.025 �0.0395 1.0642 �0.0001 0 0

F 0 0.0052 �0.0333 �0.0369 1.0703 �0.0052 0 0

G 0 0.0063 �0.0376 �0.0335 1.07 �0.0052 0 0

H 0 0.0059 �0.0428 �0.0304 1.0708 �0.0034 0 0
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Step 1: The mass and momentum conservation equa-
tions.

r� �u

�t
+ u

�u

�x
+ v

�u

�y
+ w

�u

�z
	

= −
1

Re

�p

�x
+

1

Re
� �

�x
2�

�u

�x
� +

�

�y

� �u

�y
+

�v
�x
��

+
�

�z

� �w

�x
+

�u

�z
��	 , �A1�

r� �v
�t

+ u
�v
�x

+ v
�v
�y

+ w
�v
�z
	

= −
1

Re

�p

�y
+

1

Re
� �

�x

� �v

�x
+

�u

�y
�� +

�

�y
2�

�v
�y
�

+
�

�z

� �v

�z
+

�w

�y
��	 , �A2�

r� �w

�t
+ u

�w

�x
+ v

�w

�y
+ w

�w

�z
	

= −
1

Re

�p

�z
+

1

Re
� �

�x

� �w

�x
+

�u

�z
��

+
�

�y

� �v

�z
+

�w

�y
�� +

�

�z
2�

�w

�z
�	 , �A3�

�u

�x
+

�v
�y

+
�w

�z
= 0. �A4�

Here the viscosity, �1, is modeled as a Herschel–Bulkley
fluid

�1 = m�n−1 + Bn�−1, �A5�

where � is the second invariant of strain-rate tensor given by

� = �2�Exx
2 + Eyy

2 + Ezz
2 + 2�Exy

2 + Eyz
2 + Exz

2 ���1/2, �A6�

and Eij is defined as

Eij =
1

2
 �ui

�xj
+

�uj

�xi
�, �i, j = x,y,z� .

Step 2: Each variable is expressed as the sum of a base
state and a 3D perturbation.

u = U + û, v = V + v̂, w = W + ŵ, p = P + p̂ , �A7�

�1��� = �1
0 + � ��1

��
�0

�� − �� � �1
0 + S�̂ � �1

0 + �̂ ,

�A8�

h�x,y,t� = h0 + ĥ , �A9�

TABLE V. Energy budgets for the points labeled A, B, C, and D in Fig. 7�a�.

Point REY1 REY2 DIS1 DIS2 TANx TANy TEN HYD

A �0.0004 0.0193 �0.0139 �0.0995 1.0938 0.0006 0 0

B �0.0003 0.0136 �0.0201 �0.0575 1.0595 0.0047 0 0

C �0.0002 0.0073 �0.0413 �0.0268 1.0483 0.0126 0 0

D �0.0001 0.0042 �0.0523 �0.0146 1.1636 0.0193 0 0
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FIG. 7. The dispersion curves ��i /�0 vs �� for different values of Bn; �a� h0=0.5 and �b� h0=0.2. Here, =2 and the rest of the parameter values are the same
as in Fig. 4. The labels A–D and E–H are used to designate maxima in the dispersion curves in �a� and �b�, respectively; the energy budgets associated with
these points are provided in Tables V and VI, respectively.
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where S���1 /�� �0= �n−1�m�n−2−Bn�−2. The base state
viscosity, �1

0 is given by

�1
0 = m�n−1 + Bn�−1, �A10�

where ���U /�z �fully developed state�. The linearized
form of �̂ is given by

�̂ =  � û

�z
+

�ŵ

�x
� . �A11�

Now performing the following steps.

�i� Substituting Eqs. �A7�–�A10� into Eqs. �A1�–�A4�.
�ii� Subtracting the base state equations.
�iii� Linearizing the resultant equations, we get

r� � û

�t
+ U

� û

�x
+ ŵU�	

= −
1

Re

� p̂

�x
+

1

Re
��0 �2û

�x2 +
�2û

�y2 +
�2û

�z2�
+ �0�

�ŵ

�x
+ �0�

� û

�z
+ U�

��̂

�z
+ U��̂	 , �A12�

r� � v̂
�t

+ U
� v̂
�x
	 = −

1

Re

� p̂

�y
+

1

Re
��0 �2v̂

�x2 +
�2v̂
�y2

+
�2v̂
�z2� + �0�

� v̂
�z

+ �0�
�ŵ

�y
	 , �A13�

r� �ŵ

�t
+ U

�ŵ

�x
	 = −

1

Re

� p̂

�z
+

1

Re
��0 �2ŵ

�x2 +
�2ŵ

�y2

+
�2ŵ

�z2 � + U�
��̂

�x
+ 2�0�

�ŵ

�z
	 , �A14�

� û

�x
+

� v̂
�y

+
�ŵ

�z
= 0. �A15�

Step 3:

�

�x
�Eq.A12� +

�

�y
�Eq.A13� +

�

�z
�Eq.A14� ⇒

1

Re
�2p̂

= − 2U�r
�ŵ

�x
+

1

Re
�2�0��

2ŵ + 2U�
�2�̂

�x � z

+ 2U�
��̂

�x
+ 2�0�

�ŵ

�z
	 . �A16�

Step 4:

TABLE VI. Energy budgets for the points labeled E, F, G, and H in Fig. 7�b�.

Point REY1 REY2 DIS1 DIS2 TANx TANy TEN HYD

E 0 0.012 �0.0324 �0.0585 1.0854 �0.0064 0 0

F 0 0.0081 �0.0326 �0.04 1.069 �0.0046 0 0

G 0 0.0093 �0.0284 �0.0231 1.0541 �0.0019 0 0

H 0 0.0012 �0.057 �0.0073 1.0601 0.0031 0 0
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FIG. 8. The dispersion curves ��i /�0 vs �� for different values of n; �a� h0=0.5 and �b� h0=0.2. Here, Bn=4 and the rest of the parameter values are the same
as in Fig. 7.
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�2

�x2 �Eq.A14� +
�2

�y2 �Eq.A14� +
�2

�z2 �Eq.A14�

⇒ r� �

�t
��2ŵ� + U

�

�x
��2ŵ� + U�

�ŵ

�x
+ 2U�

�2ŵ

�x � z
	

= −
1

Re

�

�z
��2p̂� +

1

Re
��0

�2

�x2 ��2ŵ� + �0
�2

�y2 ��2ŵ� + �0
�2

�z2 ��2ŵ� + 4�0�
�

�z
��2ŵ� + �0���

2ŵ�

+ U�
�3�̂

�x3 + U�
�3�̂

�x � y2 + U�
�3�̂

�x � z2 + 2U�
�2�̂

�x � z
+ U�

��̂

�x
+ 4�0�

�2ŵ
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	 . �A17�
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FIG. 9. The effect of varying � on the neutral stability curves of the shear mode, �a� and �b�, the cross-stream structure of the real and imaginary parts of �
associated with the most dangerous interfacial and shear modes in panel �e� are shown in panels �c� and �d�; the dispersion curves ��i vs � are shown in
panels �e� and �f�. Panels �a�, �c�, and �e�, and �b�, �d�, and �f� are associated with h0=0.5 and h0=0.2, respectively. The rest of the parameter values are
Re=40 000, Bn=0, n=1, m=10, r=1, G=0, and �=1.
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Step 5: Differentiating Eq. �A16� with respect to z and
substituting the resultant equations into Eq. �A17�, we
obtain

r� �

�t
��2ŵ� + U

�

�x
��2ŵ� − U�

�ŵ

�x
	

=
1

Re
��0

�2

�x2 ��2ŵ� + �0
�2

�y2 ��2ŵ� + �0
�2

�z2 ��2ŵ�

+ 2�0�
�

�z
��2ŵ� − �0���

2ŵ� − U�
�3�̂

�x � z2

− 2U�
�2�̂

�x � z
− U�

��̂

�x
+ U�

�3�̂

�x3

+ U�
�3�̂

�x � y2 + 2�0�
�2ŵ

�z2 	 �A18�

Step 6:

�

�y
�Eq.A12� −

�

�x
�Eq.A13�

⇒ r� ��̂

�t
+ U

��̂

�x
+ U�

�ŵ

�y
	

=
1

Re
��0��2�̂� + �0�

��̂

�z
+ U�

�2�̂

�y � z
+ U�

��̂

�y
	 ,

�A19�

where

�̂ =
� û

�y
−

� v̂
�x

.

Equations �A18� and �A19� are then decomposed into an
amplitude and a wave part by using a normal modes analysis

�ŵ,�̂, p̂,�̂��x,y,z,t� = �w,�,p,���z�xei�x+�y−�t�,

�A20�
ĥ�x,y,t� = hei�x+�y−�t�.

This yields the following stability equations for the
Herschel–Bulkley layer:

ir Re��w1� − �2 + �2�w1��U − c� − U�w1�

= �1
0�w1

� − 2�2 + �2�w1� + �2 + �2�2w1� + 2�1
0��w1� − �2 + �2�w1�� + �1

0��w1� + �2 + �2�w1�

− iU��S�� + 2S��� + S��� − 2iU��S�� + S��� − iU�S� − i�2 + �2�U�S� , �A21�

ir Re��1�U − c� + �U�w1�

= �1
0��1� − �2 + �2��1� + �1

0��1�

+ i�U��S�� + S��� + i�U�S� . �A22�

By setting n=1, we recover the stability equations of Nouar
et al.15,21 for a Bingham fluid. In the limit �n ,Bn�→ �1,0�,
we recover the Orr–Sommerfeld and Squire equations for a
Newtonian fluid as given in Schmid et al.23

APPENDIX B: ENERGY METHOD

Here we have carried out an “energy” budget analysis as
given in Refs. 13 and 26. Decomposition of the energy equa-
tion into energy production and dissipation terms allows one
to isolate the mechanisms by which energy is transferred
from the base flow to the disturbances. This decomposition
also allows one to determine the type of instability mode,
whether interfacial or shear. A similar analysis was also per-
formed recently by Sahu et al.14,27 and Selvam et al.28 for
immiscible non-Newtonian, miscible channel flows and mis-
cible core annular flows, respectively. The energy equation is
derived by taking the inner product of the horizontal and
vertical components of the Navier–Stokes equations with
their respective velocity components. The resultant equation

is then averaged over the wavelengths, 2� / and 2� /�, in
the x and y directions, respectively, and integrated over the
height of channel:

�
j=1

2

KINj = �
j=1

2

DISj + �
j=1

2

REYj + INT, �B1�

where subscript j=1 and j=2 represent the lower �non-
Newtonian� and upper �Newtonian� fluids, respectively. In
Eq. �B1�, KINj, DISj, and REYj are expressed by

KINj =
rj

�1�2

d

dt
�

aj

bj

dz�
0

�2

dy�
0

�1

dx�1

2
�ûj

2 + v̂ j
2 + ŵj

2�	 ,

�B2�

DISj = −
1

�1�2 Re
�

aj

bj

dz�
0

�2

dy�
0

�1

� jdx

��2 � ûj

�x
�2

+ 2 � v̂ j

�y
�2

+ 2 �ŵj

�z
�2

+  � ûj

�z
+

�ŵj

�x
�2

+  � ûj

�y
+

� v̂ j

�x
�2

+  � v̂ j

�z
+

�ŵj

�y
�2	 ,

�B3�
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REYj =
rj

�1�2
�

aj

bj

dz�
0

�2

dy�
0

�1

dx�− ûjŵj
�Uj

�z
	 , �B4�

for the lower fluid, �1=m�n−1+Bn�−1, r1=r, a1=0, b1=h,
and for the upper fluid, �2=1, r2=1, a2=h, and b2=1. KINj

represents the spatially averaged rate of change of distur-
bance kinetic energy and is proportional to the growth rate.
DISj represents the viscous dissipation of energy and is al-
ways negative; note the presence of �1 inside the integrand
for the non-Newtonian fluid. INT=NOR+TAN is associated
with the existence of an interface and is decomposed into
NOR and TAN, the work done by the velocity and stress

disturbances in the directions normal and tangential to the
interface, respectively. NOR is given by

NOR =
1

�1�2 Re
�

0

�2

dy�
0

�1

dx�ŵ1�1
zz − ŵ2�2

zz�h
0, �B5�

which is further decomposed into TEN and HYD, work done
against the deformation of the interface due to interfacial
tension and gravity, respectively

NOR � TEN + HYD, �B6�

where
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FIG. 10. The effect of varying � on the neutral stability curves of the shear mode Bn=0 �a�, Bn=4 �c�, Bn=8 �e�, n=0.95 �b�, n=1 �d�, and n=1.1 �f�. The
rest of the parameter values in the panels are Re=30 000, Bn=5, n=1, m=10, h0=0.5, r=1, G=0, and �=1.
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TEN =
1

�1�2 Re
�

0

�2

dy�
0

�1

dx�ŵ��ĥxx + ĥyy��z=h, �B7�

and

HYD =
1

�1�2 Re
�

0

�2

dy�
0

�1

dx�ŵGĥ�z=h. �B8�

TAN is also further decomposed into TANx and TANy, work
done by the velocity and stress disturbances in the stream-
wise and spanwise directions, respectively

TANx =
1

�1�2 Re
�

0

�2

dy�
0

�1

dx�û1�1
xz − û2�2

xz�h, �B9�

TANy =
1

�1�2 Re
�

0

�2

dy�
0

�1

dx�v̂1�1
yz − v̂2�2

yz�h. �B10�

In Eqs. �B5�, �B9�, and �B10� the components of stress tensor
are defined as

� j
xz = � j � ûj

�z
+

�ŵj

�x
�, � j

yz = � j � v̂ j

�z
+

�ŵj

�y
�,

�B11�

and � j
zz = − p̂j + 2� j

�ŵj

�z
,

where pj denote the pressure disturbances.
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