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     Abstract 12 

Due to increasing penetration of wind energy in the recent times, wind farmers tend to generate 13 

increasing amount of energy out of wind farms. In order to achieve the target, many wind farms 14 

are operated with a layout design of numerous turbines placed close to each other in a limited land 15 

area leading to greater energy losses due to ‘wake effects’. Moreover, these turbines need to satisfy 16 

many other constraints such as topological constraints, minimum allowable capacity factors, inter-17 

turbine distances, noise constraints etc. Thus, the problem of placing wind turbines in a farm to 18 

maximize the overall produced energy while satisfying all constraints is highly constrained and 19 

complex. Existing methods to solve the turbine placement problem typically assume knowledge 20 

about the total number of turbines to be placed in the farm. However, in reality, wind farm 21 

developers often have little or no information about the best number of turbines to be placed in a 22 

farm. This study proposes a novel hybrid optimization methodology to simultaneously determine 23 

the optimum total number of turbines to be placed in a wind farm along with their optimal 24 

locations. The proposed hybrid methodology is a combination of probabilistic genetic algorithms 25 

and deterministic gradient based optimization methods. Application of the proposed method on 26 

representative case studies yields higher Annual Energy Production (AEP) than the results found 27 

by using two of the existing methods. 28 

Keywords: Wind energy; systems engineering; micro-siting optimization; genetic algorithms; 29 

gradient based optimization; hybrid techniques 30 

  31 
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 32 

1. INTRODUCTION 33 

     Wind energy has turned out to be a promising alternative energy source in order to compete with 34 

the depleting conventional sources. Due to its wide-scale availability, low cost and environment 35 

friendly operation, the idea of utilizing wind power at a massive scale has become a primary focus 36 

in the power industry, government policies and academic research [1-3]. According to the Global 37 

Wind Energy Council (GWEC) [4], the global cumulative installed wind capacity has increased 38 

from 6100 MW to 318,105MW in the last two decades and is expected to reach 1100GW over the 39 

next five years (~12% of electricity supply of the world). The standard systems engineering 40 

approach of capturing the potential wind energy in a farm is to place wind turbines at optimal 41 

locations, known as micro-siting, and thereby tapping the maximum energy out of it. The problem 42 

of micro-siting optimization is not trivial due to various challenges involved in problem formulation 43 

and development of solution methodology. The challenges related to problem formulation appear 44 

while handling different kind of constraints such as inter-turbine distance, topology, overall 45 

capacity factor, longevity of turbine life, turbine noise, consideration of turbine wakes etc. While 46 

dealing with above constraints, micro-siting problems often lead to mixed integer nonlinear 47 

programming (MINLP) formulations for which the methodologies which can guarantee the global 48 

solution are yet to be developed. Moreover, the fact that the predictions of the commercial softwares 49 

[5-7] for designing the layout of turbines in a wind farm till date are still not up to the mark [2] and 50 

human intervention is required to reduce the installation and operational costs, shows the scope of 51 

improvement in this field both in terms of development of methodologies for efficient problem 52 

formulation and solution technique.  53 

https://www.researchgate.net/publication/229213858_Unrestricted_wind_farm_layout_optimization_UWFLO_Investigating_key_factors_influencing_the_maximum_power_generation?el=1_x_8&enrichId=rgreq-507a5ced-c289-49a2-ae47-7c8bfa1a2717&enrichSource=Y292ZXJQYWdlOzI4Mjc4MTI4MjtBUzozMjIzODI2NTk1NTUzMjhAMTQ1Mzg3MzQyMzM0Ng==
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A huge amount of work has been done in the area of micro-siting over the past two decades [8-54 

10], where binary-coded Genetic Algorithms (GAs) have been used to maximize the net Annual 55 

Energy Production (AEP) with less installation cost over fixed number of turbines in a wind farm. 56 

Mossetti’s [8] work showed the effectiveness of GA for solving such problems. The results for 57 

different wind conditions shown in this work were improved later by Grady [9] by considering a 58 

higher population size and number of generations thus allowing candidate solutions to have 59 

sufficient time to converge. In the study of Emami and Noghreh [10], the conflict of AEP and the 60 

cost involved in the project was expressed in the form of weighted sum of these two objectives and 61 

better results were found for certain set of weight values in the objective function. These studies 62 

consider a farm of regular shape (rectangle) that can be sub-divided into several cells of the size of 63 

five times the rotor diameter of the turbines. Assuming only one turbine can be accommodated in 64 

each of these cells, these formulations ensure the turbines are placed sufficiently away from one 65 

another to avoid wake effects. Mittal [11] reduced these cell sizes by 40 times and shown the 66 

effectiveness of the approach by improving the earlier results [8-9] substantially. Wan et al. [12] 67 

used real coded GA to solve the positioning problem of fixed number of turbines and obtained better 68 

results as compared to the work of Grady [9]. Mora et al. [13] proposed variable length 69 

chromosomes in GA to handle different types of turbines in micro-siting and developed novel 70 

crossover and mutation operators to handle these chromosomes of different lengths. Gonzalez et al. 71 

[14] proposed another variable length codification in an efficient GA setup to optimize the layout 72 

of turbines by calculating net yearly income obtained by selling net energy produced by each turbine 73 

considering various kinds of energy losses. The step of codification represents each of the 74 

chromosomes as different layouts, where the length of chromosome is driven by the total number 75 

of turbines in a farm and information related to turbine attributes is also coded. Apart from GA, 76 

https://www.researchgate.net/publication/245101008_Optimization_of_wind_turbine_positioning_in_large_wind_farms_by_means_of_a_Genetic_algorithm_J_Wind_Eng_Ind_Aerody?el=1_x_8&enrichId=rgreq-507a5ced-c289-49a2-ae47-7c8bfa1a2717&enrichSource=Y292ZXJQYWdlOzI4Mjc4MTI4MjtBUzozMjIzODI2NTk1NTUzMjhAMTQ1Mzg3MzQyMzM0Ng==
https://www.researchgate.net/publication/245101008_Optimization_of_wind_turbine_positioning_in_large_wind_farms_by_means_of_a_Genetic_algorithm_J_Wind_Eng_Ind_Aerody?el=1_x_8&enrichId=rgreq-507a5ced-c289-49a2-ae47-7c8bfa1a2717&enrichSource=Y292ZXJQYWdlOzI4Mjc4MTI4MjtBUzozMjIzODI2NTk1NTUzMjhAMTQ1Mzg3MzQyMzM0Ng==
https://www.researchgate.net/publication/229357529_New_approach_on_optimization_in_placement_of_wind_turbines_within_wind_farm_by_genetic_algorithms?el=1_x_8&enrichId=rgreq-507a5ced-c289-49a2-ae47-7c8bfa1a2717&enrichSource=Y292ZXJQYWdlOzI4Mjc4MTI4MjtBUzozMjIzODI2NTk1NTUzMjhAMTQ1Mzg3MzQyMzM0Ng==
https://www.researchgate.net/publication/223594459_Placement_of_wind_turbines_using_genetic_algorithms_Renew_Energy?el=1_x_8&enrichId=rgreq-507a5ced-c289-49a2-ae47-7c8bfa1a2717&enrichSource=Y292ZXJQYWdlOzI4Mjc4MTI4MjtBUzozMjIzODI2NTk1NTUzMjhAMTQ1Mzg3MzQyMzM0Ng==
https://www.researchgate.net/publication/223594459_Placement_of_wind_turbines_using_genetic_algorithms_Renew_Energy?el=1_x_8&enrichId=rgreq-507a5ced-c289-49a2-ae47-7c8bfa1a2717&enrichSource=Y292ZXJQYWdlOzI4Mjc4MTI4MjtBUzozMjIzODI2NTk1NTUzMjhAMTQ1Mzg3MzQyMzM0Ng==
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other evolutionary techniques such as Imperialist Competitive Algorithm [15], Strength Pareto 77 

Evolutionary Algorithm (SPEA) [16], Ant Colony Optimization [17], Particle Filtering Approach 78 

[18], Particle Swarm Optimization [3] etc. were used to deal with the optimal placement of turbines 79 

in a wind farm layout and solve different single or multi-objective optimization formulations. In 80 

another multi-objective formulation, Kwong et al. [19] considered the maximization of AEP and 81 

minimization of the noise level for a fixed number of turbines in a wind farm. Zhang et al. [20] 82 

presented Constrained Programming and Mixed Integer Programming models to maximize the total 83 

farm-level energy produced for simple to complex wind scenarios. Currently, several commercial 84 

software programs are available addressing the problem of wind farm layout and design. The most 85 

widely used is WAsP [5], which offers modules that allow assessing wind behavior in complex 86 

terrain using computational fluid dynamics (CFD). It helps to develop wind farm design by 87 

considering previously obtained wind climate observations and wake effect is calculated using 88 

Katic model [21]. Windfarmer [6] optimizes the layout using Reynolds Average Navier-Stokes 89 

(RANS) based CFD model. It considers uncertainty, noise, and electrical infrastructure as additional 90 

aspects. WindPro [7] designs the layout by sequentially adding the wind turbines at positions with 91 

maximum available energy while optimizing the net AEP of a farm. 92 

Most of the existing models and software packages solve the micro-siting problem assuming the 93 

total number of turbines in a wind farm is fixed i.e. the rated power capacity of a wind farm is 94 

known and the goal here is to find out the turbine locations. In this case, the problem is a nonlinear 95 

programming problem, where turbine locations are the only decision variables. Under different 96 

circumstances, either the rated power capacity has been driven by certain business decisions or it 97 

has been arrived at based on past experiences of the experts. There are issues with either of these 98 

approaches. If the rated capacity is higher than the optimal rated capacity (which is unknown and 99 

https://www.researchgate.net/publication/245066130_Article_A_simple_model_for_cluster_efficiency?el=1_x_8&enrichId=rgreq-507a5ced-c289-49a2-ae47-7c8bfa1a2717&enrichSource=Y292ZXJQYWdlOzI4Mjc4MTI4MjtBUzozMjIzODI2NTk1NTUzMjhAMTQ1Mzg3MzQyMzM0Ng==
https://www.researchgate.net/publication/271950988_Solving_wind_farm_layout_optimization_with_mixed_integer_programs_and_constraint_programs?el=1_x_8&enrichId=rgreq-507a5ced-c289-49a2-ae47-7c8bfa1a2717&enrichSource=Y292ZXJQYWdlOzI4Mjc4MTI4MjtBUzozMjIzODI2NTk1NTUzMjhAMTQ1Mzg3MzQyMzM0Ng==
https://www.researchgate.net/publication/229213858_Unrestricted_wind_farm_layout_optimization_UWFLO_Investigating_key_factors_influencing_the_maximum_power_generation?el=1_x_8&enrichId=rgreq-507a5ced-c289-49a2-ae47-7c8bfa1a2717&enrichSource=Y292ZXJQYWdlOzI4Mjc4MTI4MjtBUzozMjIzODI2NTk1NTUzMjhAMTQ1Mzg3MzQyMzM0Ng==
https://www.researchgate.net/publication/259176565_Multi-Objective_Wind_Farm_Layout_Optimization_Considering_Energy_Generation_and_Noise_Propagation_With_NSGA-II?el=1_x_8&enrichId=rgreq-507a5ced-c289-49a2-ae47-7c8bfa1a2717&enrichSource=Y292ZXJQYWdlOzI4Mjc4MTI4MjtBUzozMjIzODI2NTk1NTUzMjhAMTQ1Mzg3MzQyMzM0Ng==
https://www.researchgate.net/publication/228847095_Design_of_wind_farm_layout_for_maximum_wind_energy_capture_Renewable_Energy?el=1_x_8&enrichId=rgreq-507a5ced-c289-49a2-ae47-7c8bfa1a2717&enrichSource=Y292ZXJQYWdlOzI4Mjc4MTI4MjtBUzozMjIzODI2NTk1NTUzMjhAMTQ1Mzg3MzQyMzM0Ng==
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needs to be found out), the rated capacity will be misleading and will never be realizable. On the 100 

other hand, if the rated capacity is lower than the optimal value, the purpose of tapping the full 101 

potential of wind energy can be jeopardized. However, the optimal rated capacity can be found by 102 

formulating an optimization problem which can calculate the total number of turbines that can be 103 

placed in a farm layout as well as their locations. A common practice observed in many practical 104 

installations is to erect as many turbines as possible in a wind farm ignoring the wake effect and 105 

thereby generating an inefficient as well as sub-optimal micro-siting plan. It is, therefore, more 106 

realistic to find out the optimal total number of turbines as well as their locations simultaneously 107 

while performing micro-siting in presence of several other constraints.  108 

Though some of earlier studies address this issue of simultaneous determination of optimal total 109 

number and locations of turbines in a wind farm, a severe compromise has been made in terms of 110 

assuming the locations of the turbines only at fixed locations. For example, a wind farm is divided 111 

into certain number of cells and the center of the cell is assumed to be the only location of a turbine 112 

in that cell. No additional constraint for tackling the inter turbine distance has been considered; 113 

instead the size of each of these cells is assumed to be some integer times (e.g. five times) the rotor 114 

diameter of the turbine. Simultaneous determination of optimal total number and locations of 115 

turbines in a wind farm for an objective, say maximization of AEP, involves both binary (“yes / no” 116 

decisions for turbines at several locations) and continuous variables (turbine coordinates) and leads 117 

to mixed integer (non)linear programming (MINLP) formulations. Assuming the total number of 118 

turbines to be installed is tN  and the whole farm area under study is divided into cellN  units, the 119 

possible number of distinct solutions that has to be considered during optimization can be given by 120 

equation (1) [22]. 121 



7 
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!( )!

cell cell
sol

t t cell t

N N
N

N N N N

 
  

 
                                                                                  (1)                                                                                    122 

The size of the problem and thereby the complexity increase with the increase in number of cells in 123 

the search space (the case of division of the wind farm into finer grids) and the problem size could 124 

be unmanageable after a certain extent of granularity in the grid / cell size. Recently, Chen et al. 125 

[23] adopted a mix of real and binary coded GA to solve this problem where each layout is 126 

represented by a triplet of a fictitious number (Nf number for each of them) of x, y coordinates and 127 

binary variables. Depending on the number of ‘1’s present in the Nf binaries, the total number of 128 

turbines in a layout is calculated whereas their corresponding x and y coordinates are their 129 

respective locations in the layout. Since the total number of turbines is not known here, several 130 

optimization runs with different values of Nf are recommended. The amount of complexity involved 131 

in this formulation can be guessed from the estimates of number of solutions to be considered from 132 

(1) since the real values of the coordinates can assume any value within the given bounds. In another 133 

study, Kulkarni and Mittal [24] developed a novel heuristic approach, where the optimal number of 134 

turbines and their optimal locations can be found out simultaneously in order to maximize the net 135 

AEP and minimize the wake losses in a wind farm. It suffers from the drawback of other grid-based 136 

methods: since all candidate turbine-locations lie on the grid, possibly better locations lying 137 

between grid-points can never be chosen. Moreover, refining the grid resolution to better represent 138 

the wind farm area may make the problem computationally very demanding. Another limitation of 139 

this approach is that the performance of the algorithm is driven by the selection of the starting 140 

solution. To overcome these limitations, a novel hybrid methodology has been proposed in this 141 

work which makes use of a bi-level optimization formulation. GA has been used in the first level 142 

to determine the number of turbines out of certain number of possible candidate locations (a discrete 143 
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formulation) whereas a classical optimization technique improves those locations in the second 144 

level assuming the number of turbines in the layout as obtained from the first level are fixed (a 145 

continuous formulation). This study additionally considers the presence of other constraints such 146 

as inter turbine distance, overall capacity factor, presence of wake in energy calculations etc. The 147 

rest of the paper has been organized as follows. Section 2 describes the optimization problem 148 

formulation while AEP calculation and functioning of the wake model are discussed in section 3. 149 

Section 4 explains the heuristic methodology followed by the brief description of the proposed 150 

hybrid optimization methodology in section 5. Finally, the results of different representative case 151 

studies and the conclusions are presented in the sections 6 and 7 respectively.   152 

2. PROBLEM FORMULATION 153 

    The development of mathematical model for wind farm micro-siting is limited to certain 154 

assumptions. These assumptions can be modified or even removed as and when needed. The 155 

assumptions are described as follows: 156 

Assumption 1: Wind turbine locations are described by a Cartesian coordinate system ( , )i ix y , 157 

1,....,i N , where N is the number of turbines. 158 

Assumption 2: Wind turbines are assumed to have uniform specifications in terms of rated power, 159 

rotor diameter, hub-height etc. 160 

Assumption 3: A widely used Jensen wake model [25] is used to calculate the velocity deficit due 161 

to wake effects. 162 
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Assumption 4: As widely used in literature, the wind speed is assumed to follow a two parameter 163 

Weibull distribution [26] ( , , ) 1

k
u

A
vC u A k e

 
 
   , where A  is the scale parameter,  k  is the shape 164 

parameter and vC (.) is the cumulative Weibull distribution function. 165 

Assumption 5: Power and thrust coefficient curves [30] for a Vestas-V52 850 kW turbine are used 166 

to evaluate the power and coefficient of thrust for corresponding wind-speeds (as shown in Fig. 1). 167 

Mathematically, the problem can be represented as: 168 

Objective Function: 
, 1

( , )

Nt

i i
N x yt i i

Max Max AEP x y  169 

            Constraints: 
( , ) 0, 1,..., ; 1,...,

( , )

j i i t

i i

g x y j Nc i N

lb x y ub

  

 
                                       (2) 170 

Here, in equation (2) [24], tN  is the total number of turbines, is taken as a upper level decision 171 

variable and ( , )i ix y , the location co-ordinates of these turbines, are considered as a lower level 172 

decision variables. Nc denotes the number of constraints, whereas the geographical boundary limits 173 

are depicted by lb  and ub . For a regular square farm of 500×500 m2 considered here, the lb and 174 

ub for ix  and iy  can be 0 and 500, respectively. 175 

The inequalities ( , ) 0j i ig x y  , represent the following constraints: 176 

i) Inter turbine distance (ITD), which is kept greater than or equal to 3 times the rotor 177 

diameter of the turbines. 178 

   
2 2

1( , ) * 0,

, ; 1,.........,

i i space i j i j

t

g x y n D x x y y

j i j j N

     

 

                                      (3) 179 



10 
 

ii) Overall capacity factor (OCF), which is kept to be higher than the specified limit for it 180 

lim 1
2

( , )

( , )
(8766)* *Pr

Nt

i i

i i
t

AEP x y

g x y OCF
N

 


                                  (4)  181 

In the above equations (3 and 4), D is the rotor diameter of turbine, spacen  is the minimum 182 

allowable distance between two turbines which is assumed to equal to 3, 
limOCF is the selected 183 

limit of allowable capacity factor which is assumed to be 20% and Pr is the rated power (850kW) 184 

of a wind turbine. These inequality constraints are explained briefly in section 5. The above problem 185 

belongs to the class of mixed integer nonlinear programming problems (MINLP) that are generally 186 

very hard (NP-hard) to solve due to the combinatorial complexity involved. 187 

3. AEP CALCULATION AND WAKE MODELING  188 

3.1. AEP Calculation 189 

     To calculate the net energy produced accurately, the spatial and temporal distribution of wind 190 

resource must be known which is generally expressed in terms of wind resource grid (WRG) that 191 

stores information about Weibull parameters at a given location. The net AEP (kWh) at a given 192 

location of wind farm can be expressed as [26]: 193 

     

1 1 1

(8766)

speeddirections turbines

ijk ijk
i j k

AEP Frequency Power

  

                                       (5) 194 

where, ijkFrequency is the frequency or probability of wind coming from direction i , with wind 195 

speed j on to the turbine k , and similar terminology holds for ijkPower in kilowatts (KW). 196 

Practically, the above formula can be approximated as [16]: 197 
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360 max

1 1

(8766) ( , ) ( ) ( )

u

i j i j i j
i j

AEP Pwr u p p u u  

 

                                                  (6) 198 

where ( )ip   and ( )jp u  determine the probability that the wind blows in direction i  at speed ju199 

and  are obtained from WRG data. Depending on whether a turbine is affected by wake and the 200 

number of upstream turbines generating the wake, the reduced speed at the turbine affected by 201 

wake is calculated. The corresponding power ( , )i jPwr u  for that particular speed can be 202 

calculated using the turbine power curve (see Fig.1). The two-parameter Weibull distribution is 203 

used to calculate the ( )jp u  by using equations (7) and (8) [30]. 204 

        ( , , ) 1

k
u

A
cumW u A k e

 
 
                                                                                                      (7) 205 

       
( ) , , , ,

2 2

step step
j j j

u u
p u Wcum u A k Wcum u A k

   
      

                                                 (8) 206 

Where cumW is the cumulative probability distribution and ( )ip  is extracted from parameter f given in 207 

WRG for a particular location. 208 

3.2.  Wake model and calculation 209 

      In a wind farm, different turbines interact with each other due to wake effects that upstream 210 

turbines create on downstream turbines. Among various wake models reported in the literature, a 211 

widely accepted Jensen wake model [25] has been adopted here. An expression for the reduced 212 

wind-speed of downwind turbines due to wake-effects can be expressed as follows: 213 
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          
2

1 1
*

ijo
ij o T

o w ij j

AR
u u C

R k d A

   
       

   
   

                                                               (9) 214 

The following nomenclature is followed in the above equation assuming i and j as upwind and 215 

downwind turbines, respectively. 216 

iju : Reduction in the wind speed on turbine j due to the turbine i,  217 

ou : Free stream wind speed, 218 

TC : Coefficient of thrust (Fig. 1),   219 

oR : Rotor radius,  220 

wk : wake decay constant for Jensen model,  221 

ijd :  Distance between upstream and downstream turbines (see Fig. 2),  222 

 ijA : Overlapped area [3] varies depending on type of wake effect on downwind turbine and  223 

 jA : Downwind turbine area. 224 

Fig. 2 depicts the variation in distance calculation due to three types of wake effects. Here, rR  is 225 

the rotor radius of downwind turbine and ijR is the wake radius created by an upwind turbine on 226 

the downwind. Depending on the area overlapped, the distance between two turbines ijd is 227 

calculated. 228 

        In reality, a downwind turbine may be under the influence of multiple upwind turbines. In that 229 

case, equation (9) can be modified as follows: 230 
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where, jU is the effective wind-speed at turbine j while accounting for all wake effects and upwindN  232 

is the number of upwind turbines. Speed deficit, 
iju  in equation (10), is a function of location 233 

coordinates as well as wind directions [15 and 24]. 234 

4. HEURISTIC APPROACH 235 

     In the heuristics methodology of Kulkarni and Mittal [24], the given square layout is divided 236 

into a fine grid and the points where the grid lines cross each other can be considered as possible 237 

turbine locations. Subsequently, turbines are placed in these possible locations one by one starting 238 

with the point where the gross AEP is maximum. The subsequent turbines are placed at locations 239 

where AEP will be the best and none of the constraints such as ITD, OCF will most likely be 240 

violated.  The algorithm is implemented as follows. In the first step, a point is selected based on 241 

the gross AEP and added to the accepted turbine location matrix (M). In the next step, other 242 

locations surrounding the accepted location and violating other constraints are discarded and are 243 

added up to the rejected turbine location matrix (V). The left over locations are next updated as 244 

available locations. Now, the next turbine can again be added at the location that shows highest 245 

gross AEP value in the map and no constraint violation among all available locations. This way of 246 

adding turbines is continued till the search on all possible candidate locations is exhausted. Fig. 3 247 

shows the schematic view of this methodology. It can be seen that the matrices M and V are 248 

updated at each iteration. In this fashion, the total number of turbines and their respective locations 249 

can be found out in one shot. As explained earlier, the above mentioned heuristic approach [24] of 250 

determining the optimal number as well as location of turbines in a farm layout has a drawback of 251 

https://www.researchgate.net/publication/286381564_A_fast_and_effective_algorithm_to_optimize_the_total_number_and_placement_of_wind_turbines?el=1_x_8&enrichId=rgreq-507a5ced-c289-49a2-ae47-7c8bfa1a2717&enrichSource=Y292ZXJQYWdlOzI4Mjc4MTI4MjtBUzozMjIzODI2NTk1NTUzMjhAMTQ1Mzg3MzQyMzM0Ng==
https://www.researchgate.net/publication/286381564_A_fast_and_effective_algorithm_to_optimize_the_total_number_and_placement_of_wind_turbines?el=1_x_8&enrichId=rgreq-507a5ced-c289-49a2-ae47-7c8bfa1a2717&enrichSource=Y292ZXJQYWdlOzI4Mjc4MTI4MjtBUzozMjIzODI2NTk1NTUzMjhAMTQ1Mzg3MzQyMzM0Ng==
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lack of continuity i.e. the turbines can only have certain available locations for the optimal 252 

placement. This is because the heuristic algorithm discretizes the given geographical boundary 253 

into finite number of grid-points, and the grid-cross sites act as the only possible locations for 254 

candidate turbines. Therefore, the turbines can be placed only in those available locations leaving 255 

the scope of any other nearby points to be one of the optimal points. Also, the heuristic 256 

methodology lacks the stability, since outcomes can be different depending on the selection of the 257 

starting point. Due to lack of stability, it might be difficult for wind farm developers to decide on 258 

which starting point to start the search process of locating the turbines using the heuristic approach 259 

and this shows that the practical application of this approach could be limited. However, the results 260 

generated by the heuristic approach can be used as an intelligent initial guess to other 261 

methodologies.    262 

5. HYBRID METHODOLOGY   263 

       To overcome the drawbacks in the heuristic approach, a novel hybrid methodology is 264 

developed to determine the optimal number and location of turbines, simultaneously. The proposed 265 

hybrid approach is a combination of probabilistic GAs and deterministic gradient search based 266 

methods. The problem of simultaneous determination of optimal number and layout of turbines is 267 

decomposed into two sub-problems that can be solved in sequence. In the first step, the regular 268 

square wind farm is converted into a finite number of grid points and the optimal turbine number 269 

and locations are simultaneously determined from a selected finite number of possible locations 270 

(grid cross points) through GAs. In the second step, the turbine number is fixed at the value obtained 271 

in the first step and the turbine co-ordinates are improved through classical gradient-based 272 

optimization techniques. The first sub-problem solves an integer programming problem over the 273 

possible turbine locations (the grid cross-points) through binary variables 0 and 1 signifying 274 
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absence and presence of turbine at different locations, respectively. Based on number of possible 275 

locations, the total number of binary variables are determined. The second sub-problem is a 276 

continuous nonlinear programming problem where the total number of turbines is fixed, as 277 

determined in the first step, and the focus is on determining optimal turbine coordinates given the 278 

total number of turbines. The proposed hybrid methodology can start the search procedure using 279 

one of the feasible heuristic outcomes [24] as initial guess and the cycle between evolutionary and 280 

gradient approach (Fig. 4) is continued until a predefined termination criteria is met. The proposed 281 

hybrid methodology comprises five important components.          282 

5.1.Feasible initial guesses through heuristics 283 

     GA needs an initial population which can be generated randomly as well as using the afore-284 

mentioned heuristics (section 4). It can help the algorithm to converge faster if feasible initial 285 

guesses can be provided as compared to starting with different random infeasible guesses 286 

especially when the search space is huge. Hence, different feasible layouts with different starting 287 

points in the heuristic algorithm can be used as initial population of GA.   288 

5.2. Grid Formation 289 

      The square (500 × 500 m2) wind farm is converted into a finite number of grid-points (7×7) 290 

leading to 49 possible locations for turbines. Though grids are formed for both approaches, grid 291 

resolution of heuristic approach and hybrid methodology are not necessarily the same. So, the final 292 

solutions of the heuristic approach may not belong to the set of grid points of the GA. After 293 

obtaining a heuristic outcome (say 8 turbines can be feasibly located), the starting matrix of 294 

candidate turbine location in GA is formed by adding these 8 locations to 49 grid cross points 295 

when there is no points common between them. Using these 57 locations, a location index array 296 
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with unique index for each location is formed (Fig. 5). Each location can be represented by 0 or 1 297 

depending on the absence or presence of turbines in that location, respectively (binary array). 298 

5.3.Evolutionary Algorithm 299 

     An elitist version of binary coded genetic algorithm has been used here. Evolutionary algorithm 300 

is a combination of several steps which is described in Fig. 6. 301 

Step I (Initialization):  302 

First, an initialization matrix of 
popn x 57 size has been formed (as shown in Fig 7) where one of 303 

the chromosomes would be a feasible heuristic outcome and others are generated randomly. 304 

Different GA parameters can be found in Table 1. 305 

Step II (Modified Function Evaluation):  306 

      The constrained optimization problem has been converted into an unconstrained optimization 307 

problem in order to reduce the complexity of constraint handling in GA. The constraints are first 308 

normalized and added to the objective function to form a modified unconstrained objective 309 

function that can be represented as: 310 

       Modified obj. :
, 1

( , )
t

t i i

N

i i
N x y

Max Max AEP x y  NormConstraints                                            (11)  311 

Here, NormConstraints is a summation of all inequality constraints that are normalized to represent 312 

them into a scale of similar order of magnitude.  As our main objective is to maximize both the 313 

number of turbines as well as the net AEP, NormConstraints are subtracted from the objective 314 

function to obtain the modified objective function. In this way, when a particular constraint is 315 

violated, the amount of normalized constraint violation is subtracted from the objective function 316 
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to lower the value of the modified objective function. Objective function is not modified when a 317 

particular solution is feasible. These constraints are explicitly defined as: 318 

Inter turbine Distance (ITD): In order to lessen the wake loss and alleviate the fatigue loads, 319 

enough spacing can be provided between two turbines and the constraint in a normalized form can 320 

be represented as: 321 
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                                                         (12) 322 

where, ( , )i ix y and ( , )j jx y denotes the location coordinates of  upwind and downwind turbines, 323 

spacen is the minimum distance between two turbines (taken here as 3) and D is the rotor diameter 324 

of a turbine (considered here as 52m) (Table 1). 325 

Overall Capacity Factor (OCF): Due to various factors such as wind speed reduction, varying 326 

wind direction etc., the overall farm capacity is generally lower than the defined theoretical 327 

capacity. This constraint is defined in order to measure the wind farm performance. In normalized 328 

form it is expressed as: 329 

        lim 1
2

( , )

( , ) max 0, / 1
(8766)* *Pr
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i i

i i
t

AEP x y

g x y OCF
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
                                                  (13) 330 

The calculated farm capacity is kept greater than a selected limit value of OCF, called limOCF , 331 

which is taken as 20% in this study. 332 
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Topological Constraints: This constraint is added only to ascertain that the turbines locations lie 333 

inside the given geographical boundary and expressed as: 334 

         
3 max max

max max1 1

1 1
( , ) max( , ,0) max( , ,0) 0

N N
t t

i i i i i ig x y x x x y y y
x y

                            (14)                                                                                     335 

Here xmax and ymax are the maximum value on x-axis and y-axis, respectively. In this study, both 336 

of these bounds equal to 500 that are given as the geographical limits of square wind farm.  337 

After modifying the objective function for each chromosome, the corresponding modified function 338 

value is calculated and stored in the initialization matrix as an additional column. 339 

Step III (Crossover and mutation):  340 

      The current population (called as ‘parents’) undergoes the cross-over and mutation [28] with 341 

defined parameters (Table 1) to generate a new set of solutions (called the ‘children’). Following 342 

the elitist strategy, both these populations are merged together (2
popn ) and tournament selection 343 

is used to obtain the better chromosomes (
popn ) among them. Next the initialization matrix is 344 

updated and the process continues till the convergence is attained. 345 

5.4. Gradient Based Approach 346 

      Though GA can solve the problem of optimal number and location of turbines simultaneously, 347 

it performs a search for certain number of fixed locations (grid cross points). If GA is employed 348 

to solve the problem with finer grids, the size of the problem (number of binaries) increases with 349 

increase in number of grid cross sites, thereby making the GA runs computationally more 350 

expensive. The first sub-problem involving GA should, therefore, be solved for a relatively coarser 351 

grid which can later be fine-tuned by solving the second sub-problem over the continuous x-y 352 
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coordinate space. Finally, GA declares the chromosome with the maximum modified function 353 

value among all generations as the final solution. The final GA outcome of a feasible layout is next 354 

passed as an initial guess to a gradient based solver. A well-known constrained nonlinear 355 

optimization routine of MATLAB®, ‘fmincon’, (Table 1), has been utilized for this purpose. In 356 

this step, the only decision variables are location coordinates of the turbines keeping the total 357 

number of turbines as constant and the search is performed between the upper and lower bounds 358 

of regular square boundary. Since a continuous optimization problem is solved in this step, it 359 

searches for coordinates in addition to the points present on the grid for which further improved 360 

AEP can be obtained. 361 

5.5. Grid Increment  362 

     As mentioned in the section above, the outcomes of the gradient based search method can bring 363 

in coordinates that may not be present in the set of grid cross sites that GA uses. As the last step 364 

in the hybrid approach, these additional coordinates are added into the candidate location matrix 365 

and the index matrix is updated accordingly. This is done to provide more coordinate locations to 366 

be searched for GA in the next turn. For example, if the number of old locations were 57 and 367 

gradient search provided (say 10) new locations as outcome, the new index array will have total 368 

67 locations which are uniquely indexed (Fig 8). After an updated index matrix is obtained, GA 369 

run is performed again using the new index array. Further, the outcome of GA is passed as a 370 

starting point to gradient based approach and the cycle is continued until a stabilized AEP is 371 

obtained as well as the location coordinates for three consecutive iterations are not changed.  372 

              As mentioned in the beginning of the section, the previous five steps are part of the elitist 373 

genetic algorithm (EGA). Few steps are modified in the above approach, called modified EGA 374 

(MEGA) as described below, to improve the execution time as well as efficiency of the algorithm.  375 
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5.6. Modified Approach  376 

     As computation of AEP is found to be the most time expensive step in the algorithm, avenues 377 

were sought that can save significant computation in terms of computing AEP selectively. In EGA, 378 

AEP was calculated for all the chromosomes in a population. As opposed to that, AEP was 379 

calculated for only a part of the population in MEGA. The whole population is partitioned into 380 

several sections based on the criteria of constraint satisfaction. If carefully watched, the constraint 381 

ITD does not involve AEP computation. ITD computation for the entire population, is, therefore, 382 

allowed. Chromosomes in the population for which this constraint (ITD) is unsatisfied, are 383 

assigned a flag (say flag 1). Rest of the chromosomes, which satisfies ITD, are further checked 384 

their satisfaction of the other constraint, say OCF. Since computation of OCF also involves 385 

evaluation of AEP, no more AEP function calls can be saved. However, for implementing another 386 

tournament selection based better constraint handling scheme, the population is further classified 387 

into different categories. Chromosomes that satisfy the constraint OCF are flagged as 3 and rest of 388 

the chromosomes which does not satisfy OCF are flagged as 2. From the above classification, it is 389 

clear that the feasible chromosomes are flagged as 3 and chromosomes with other flags violate 390 

either of the constraint. This classifies the entire population into feasible and infeasible solutions. 391 

While conducting the tournament selection next, chromosome with flag 3 is always allowed to win 392 

over chromosomes with any other flag, when two of such chromosomes are picked up randomly. 393 

Upon comparison between chromosomes with flag 1 (violating ITD) and flag 2 (violating OCF), 394 

one of the chromosomes is picked up randomly. If both the chromosomes with flag 3 are picked, 395 

the chromosome with better AEP wins, whereas in case of both the flag to be 1 or 2, the 396 

chromosomes with lesser constraint violation is chosen.  397 
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6. RESULTS AND DISCUSSIONS  398 

     The optimal total number of turbines and their locations have been determined while 399 

maximizing the net AEP in a wind farm under several constraints such as inter turbine distance, 400 

overall capacity factor and the effect of wakes on the turbines. A hybrid methodology is proposed 401 

to overcome the drawbacks of recently developed heuristic approach [24] to solve this problem. 402 

The proposed methodology utilizes the merits of probabilistic GA and deterministic gradient based 403 

approach to solve this problem. Due to the presence of wake effects, the energy terrain of the 404 

problem becomes extremely nonlinear with the gradual addition of turbines into the wind farm. 405 

Fig. 9 depicts evolution of the complex and non-linear energy terrain as turbines are successively 406 

added to the search space. This set of figures has been generated in this fashion: first, the given 407 

layout is discretized into fine grids (say, 101×101 as discussed in section 4). To see the energy 408 

terrain in presence of say n+1 turbines, n turbines are placed at certain known locations and the 409 

location of the last turbine is varied one by one in leftover available discretized locations and the 410 

value of net AEP is captured and depicted through surface-contour plots. For example, Fig. 9a 411 

shows the net AEP terrain for two turbines – here the energy surface is generated by keeping the 412 

location of one turbine fixed and varying the location of the other turbine across all other locations 413 

except the location of the first turbine. As the number of turbines is increased, the complex 414 

distribution of net AEP (appearance of several local optima) and increase in non-linear behavior 415 

of the problem can be observed from Figs 9b and 9c. In the hybrid methodology suggested here, 416 

the classical optimization technique provides the ability to find the optimum more precisely once 417 

the near global basin is identified by GA.  418 

        As discussed in the following paragraphs, three different case studies with different wind 419 

conditions were considered for micro-siting optimization using the proposed hybrid optimization 420 
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method. These case studies differ from one another in terms of the gross AEP distributions over 421 

the given geographical boundary. Information regarding these case studies is provided in Table 2. 422 

In every case study, the outcome from the heuristic algorithm [24] (H0) is added as one of the 423 

chromosomes in the initial population for MEGA and rest of the chromosomes are created 424 

randomly. The outcome of MEGA (A1) is passed as an initial guess to the gradient based approach 425 

(B1) which improves locations of the turbines further with better net AEP. This cycle between 426 

MEGA and gradient-based approach is continued until the change in AEP between two 427 

consecutive runs is less than a predefined tolerance. All reported simulations are performed on 428 

Intel® Xeon® CPU E5-2690 0 @ 2.90GHz (2 processors) 128 GB RAM machine. 429 

6.1. Case 1: Type – I Gross AEP distribution  430 

       The first case study is about a wind farm with complex and non-uniform distribution of wind 431 

speed and Gross AEP. It has been assumed in this case that the wind is flowing in uncertain 432 

direction at uncertain speed at every location (as shown in Fig. 10). It has been found that heuristic 433 

approach [24] on this energy distribution map is able to place 3 turbines while proposed hybrid 434 

methodology is able to place 4 turbines with ~44% improvement in AEP as presented in Table 3. 435 

The justification of hybrid approach for micro-siting is clearly seen from the results as both the 436 

algorithms i.e. MEGA and ‘fmincon’ are observed to contribute in the net AEP improvement. 437 

Improvement in AEP for cases when total number of turbines is fixed (e.g. see the improvement 438 

in AEP values from cycle 1 Gradient to cycle 2 MEGA) can be attributed to the detection of better 439 

turbine locations. Fig. 11 shows the final superimposed accepted coordinates and number of 440 

turbines (black cross markers) on the gross AEP contour plot obtained for the given boundary. As 441 

can be observed, the algorithm manages to place only a few turbines in the given layout. The 442 

optimal placement of turbines towards one of the boundaries can be attributed to the higher AEP 443 
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values available along that boundary. This particular case has been generated in such a way that 444 

the parameter A of Weibull distribution (see assumption 4 in section 2) has zero values in all 445 

locations in the given layout except having some nonzero values along the mentioned boundary. 446 

More than four turbines are not possible to be placed along that boundary due to violation of ITD 447 

constraints. 448 

6.2. Case II: Type – II Gross AEP distribution  449 

      In this case study, a uniform distribution of gross AEP is considered across all locations except 450 

one location where the wind speed is considered to be higher (Fig. 12). In Fig 12, the location with 451 

a higher wind speed is represented by a bump whereas other locations with a negligible amount of 452 

gross AEP variation are represented by a flat surface. It has been found that heuristic algorithm is 453 

able to place 8 turbines under these wind conditions whereas the proposed hybrid methodology is 454 

able to place 12 turbines with ~51% improved in net AEP (Table 4). As can be observed, both 455 

MEGA and ‘fmincon’ efficiently increase the total turbine number and / or the AEP. Fig. 13a, 456 

shows the final accepted 12 turbine locations (black cross markers) superimposed on Type –II 457 

gross AEP contour plot for the given area. One of the challenging parts of the problem to handle 458 

increasing number of binary variables as more number of cycles are completed is also visible from 459 

this example (last column of Table 4), which has been successfully handled by GA.  460 

6.3. Case III: Type – III Gross AEP distribution  461 

     In this case study, Gross AEP distribution is generated as combination of previous two case 462 

studies. Here, the complex Gross AEP distribution is considered in such a way that a particular 463 

location in the wind farm gets a higher wind speed and rest of the locations have a disturbed, non-464 

uniform wind flow (see Fig. 14). It has been found that heuristic algorithm alone can place 9 465 
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turbines in the wind farm whereas the proposed hybrid methodology can place 12 turbines with 466 

~30.25% improvement in the net AEP (Table 5). Though the final number of turbines is the same 467 

as the previous case study (Case II), the locations for the turbines are different (Fig. 13). Fig. 13b 468 

depicts the final turbine locations superimposed on gross AEP contour plot of Type –III.  469 

           For all three case studies, the net AEP generated (case 1: 865.95 kWh, case 2: 2054.43 kWh 470 

and case 3: 2058.81 kWh) are individually better than the net AEP values obtained by the heuristic 471 

algorithm working alone for them. At the same time, it can be observed that AEP improvement by 472 

MEGA is further improved by ‘fmincon’ until convergence, thus establishing the importance of a 473 

hybrid algorithm. In other words, using MEGA or ‘fmincon’ alone will not yield the best possible 474 

AEP. Moreover, the MEGA approach is observed to work to the extent of twice as fast as the EGA 475 

algorithm for the test cases discussed. Table 6 shows the examples of savings in function 476 

evaluation during the calculation of expensive AEP function for each of the cases discussed earlier 477 

(23, 52 and 39 % for case1, case 2 and case 3, respectively) which makes MEGA approach more 478 

efficient than EGA. As evident, the fastness in obtaining the solution is due to the time saving in 479 

the expensive AEP calculation.  480 

6.4. Case IV: A benchmark case study   481 

In order to validate the proposed hybrid optimization approach, a popular case study [9] of uniform 482 

wind direction at a speed of 12m/s (see Fig. 16) has been considered next. In this case, similar 483 

characteristics of wind farm, wind turbines, power curve and wake model as given in [8] are used 484 

(see Table 7) and micro-siting has been performed on this layout using the hybrid optimization 485 

approach. The main objective is to minimize the ratio (COST/Ptot) i.e. attain the maximum energy 486 

throughput (Ptot) at minimum COST, while satisfying the ITD constraint of 5D or 200m to 487 
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minimize the wake effects [9]. Here, COST and Ptot is given by equations 15 and 16 and the 488 

constraint of ITD (equations 3 and 12) is modified with a new value of spacen of 5D [8, 9 and 12].  489 
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Here, N is the total number of turbines, states are the wind conditions in terms of direction and 492 

speed for a particular case study as given in [8], Power is defined by power curve [23] and 493 

Frequency is the occurrence of wind at a particular state [9 and 23]. After evolving the MEGA for 494 

2100 generations over 150 population size, the outcome of the hybrid algorithm is compared with 495 

other existing methods [8, 9, 12, and 23] and the results are presented in Table 8. It has been found 496 

that the hybrid approach is able to place more number of turbines inside the layout as compared to 497 

the previous approaches [8, 9 and 12] with better ratio of (COST/Ptot) (Table 8) and the results are 498 

quite close to the same obtained by Chen et al. [23]. Figure 17 shows the different layouts of 499 

turbines obtained by various optimization methodologies for this case study. Table 9 shows the 500 

improvement in AEP and convergence of the hybrid algorithm as it marches through the different 501 

cycles.  502 

        Motivated by the approach adopted by Chen et al. [23],  which shows improvement in the 503 

above case study, where a mix of real and binary coded GA has been used to tackle binary and real 504 

variables simultaneously, micro-siting for wind layout with conditions as presented in case 2 has 505 

been carried out next. Here a generic GA code has been developed (named as RBGA) where the 506 

https://www.researchgate.net/publication/245101008_Optimization_of_wind_turbine_positioning_in_large_wind_farms_by_means_of_a_Genetic_algorithm_J_Wind_Eng_Ind_Aerody?el=1_x_8&enrichId=rgreq-507a5ced-c289-49a2-ae47-7c8bfa1a2717&enrichSource=Y292ZXJQYWdlOzI4Mjc4MTI4MjtBUzozMjIzODI2NTk1NTUzMjhAMTQ1Mzg3MzQyMzM0Ng==
https://www.researchgate.net/publication/223594459_Placement_of_wind_turbines_using_genetic_algorithms_Renew_Energy?el=1_x_8&enrichId=rgreq-507a5ced-c289-49a2-ae47-7c8bfa1a2717&enrichSource=Y292ZXJQYWdlOzI4Mjc4MTI4MjtBUzozMjIzODI2NTk1NTUzMjhAMTQ1Mzg3MzQyMzM0Ng==


26 
 

total number of turbines are fixed to any assumed value (e.g. Nf = 20) and the turbine coordinates 507 

of these Nf turbines are represented as real variables and existence of turbines in those Nf locations 508 

are represented as binary variables (zero for absence and one for presence). This leads to a total of 509 

60 decision variables where 40 such variables are x-y coordinates of turbines and 20 variables are 510 

binary numbers. Using SBX and polynomial mutation operators for real coded GA [28] and similar 511 

operators as MEGA for binary variables, RBGA has been developed. This approach uses binary 512 

tournament selection and elitist strategy as adopted in NSGA II [28]. As the MEGA component of 513 

the hybrid approach ran for 6 cycles each with 50 population and 150 generations (see Table 4) to 514 

generate the final results for case 2, RBGA has been allowed to run for a similar number of 515 

generations (150×6 = 900) with population 50. RBGA could place 9 turbines altogether in the 516 

given layout and Fig. 15 shows the final superimposed accepted coordinates and number of 517 

turbines (black cross markers) on the gross AEP contour plot. This is slightly better than the results 518 

of the heuristic approach (~ 23.16 % improvement in AEP over heuristic approach) which could 519 

place 8 turbines in the same layout; however, this is inferior to the results of the hybrid approach 520 

which could place 12 turbines in the same layout (~ 22.61 % improvement in AEP over RBGA 521 

approach). This shows the superiority of this hybrid approach over two of the existing approaches 522 

[23, 24] in the literature.  523 

7. CONCLUSIONS 524 

      Simultaneous maximization of total number of turbines and the net AEP has been carried out 525 

for a given wind farm using a novel hybrid optimization strategy. The presence of various types 526 

of constraints such as inter turbine distance, overall capacity factor and wake effects have also 527 

been considered while conducting the above mentioned micro-siting study. Binary decisions 528 

depicting the presence or the absence of turbines across several grid cells in the given regular wind 529 
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farm and the continuous nature of coordinate variables make the formulation a complicated mixed 530 

integer nonlinear programing problem. The proposed hybrid methodology is based on the 531 

decomposition of the decision variable set into real and binary parts and utilizes the merits of both 532 

GA and gradient based approaches to solve this NP-hard MINLP problem. The first sub-problem 533 

solves the optimal number and location problem together for selected number of possible locations 534 

using GA whereas the second sub-problem improves the coordinates over the continuous 535 

coordinate space by keeping the total number of turbines fixed as obtained by the first sub-problem. 536 

The proposed methodology is applied to three different wind farm conditions and it has been 537 

shown that the proposed methodology works better (~44%, ~51% and ~30% improvement in the 538 

net AEP over the heuristics approach) than two of the existing approaches in the literature. This 539 

solution methodology can not only help the wind farm developers to find out turbine locations 540 

optimally in a given wind farm but also find out the maximum number of turbines that can be 541 

optimally fitted in the wind farm simultaneously.   542 

  543 
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Figures 547 

 548 

 549 

Figure 1: Power and CT curve for Vestas-V52 850 kW [29] 550 

Note : To be reproduced in color on the Web and in black-and-white in print. 551 
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 553 

 554 

Figure 2 : Schematic view of affected area of turbines while considering wake effects under 3 555 

situations (a) full wake or complete wake, (b) partially wake, (c) out of wake [27]. 556 

Note : To be reproduced in color on the Web and in black-and-white in print. 557 
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 559 

 560 

Figure 3: Flowchart of Heuristic approach [24]561 
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 562 

Figure 4: Schematic Representation of Hybrid Methodology 563 
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 565 

 566 

Figure 5: Binary array and location index array at grid formation step. 567 
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 569 

 570 

Figure 6: Flowchart of Evolutionary Algorithm 571 
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 573 

 574 

Figure 7: Population matrix formed at initialization step. 575 
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 577 

 578 

Figure 8: Formation of new index matrix after adding gradient outcomes in grid increment step. 579 
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 581 

 582 

Figure 9: Surface contour plot showing the distribution of net AEP over the given layout for 3 583 

situations (a) two turbines (b) Five turbines (c) Eight turbines. 584 

Note : To be reproduced in color on the Web and in black-and-white in print. 585 
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 587 

 588 

Figure 10: Type –I Gross AEP distribution over a given boundary.  589 

Note : To be reproduced in color on the Web and in black-and-white in print. 590 
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 592 

 593 

Figure 11: Accepted turbines locations (black cross markers) superimposed on Type – I Gross 594 

AEP contour plot of wind farm  595 

Note : To be reproduced in color on the Web and in black-and-white in print. 596 
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 598 

 599 

Figure 12: Type –II Gross AEP distribution over a given boundary  600 

Note : To be reproduced in color on the Web and in black-and-white in print. 601 
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 603 

 604 
Figure 13: Comparison of accepted turbines (black cross markers) superimposed on (a) Case II 605 

(Type II Gross AEP plot) and (b) Case III (Type – III Gross AEP plot) of a wind farm.  606 

Note : To be reproduced in color on the Web and in black-and-white in print. 607 
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 609 

 610 

Figure 14: Type –III Gross AEP distribution over a given boundary  611 

Note : To be reproduced in color on the Web and in black-and-white in print. 612 
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 614 

 615 

Figure 15: Accepted turbine locations (black cross markers) from binary- real coded GA 616 

superimposed on Type – II Gross AEP contour plot.  617 

Note : To be reproduced in color on the Web and in black-and-white in print. 618 
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 620 

Figure 16 : Uniform wind distribution for case IV. 621 
 622 

Note : To be reproduced in color on the Web and in black-and-white in print. 623 
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 625 

Figure 17 : Accepted turbine layouts for various methodologies (shown by different markers) 626 

applied on Case study IV.  627 
 628 

Note : To be reproduced in color on the Web and in black-and-white in print. 629 

 630 
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Tables 632 

Table 1: Parameters used in GA and Gradient based approach 633 

Genetic Algorithm   (MEGA) specifications  

Algorithm Type Elitist-Tournament selection 

Number of Population (
popn ) 50 

Number of Generations (
genn ) 150 

Crossover Probability 0.80 

Crossover Type Uniform 

Mutation Probability 0.01 

Gradient Based solver  

Solver fmincon MATLAB® 

Algorithm Interior Point 

 634 

  635 
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Table 2:  Wind farm, wind turbine and wake model specifications [24] 636 

  637 Wind farm Information 

Farm area (m2) 500 × 500 

Wind turbine specifications 

Turbine Type  Vestas V52-850 KW [29] 

Turbine  Rated Capacity (Pr)  (kW) 850 

Turbine Diameter (m)   52 

Wake model Information 

Model  Jensen [25] 

Jensen Constant (
wk ) 0.075 



49 
 

Table 3: Outcome of hybrid methodology case 1 638 

Cycle Algorithm Outcome 

Number of 

turbines / 

feasible 

locations 

AEP (Kwh) 
Number of 

binaries 

1 

Heuristic [24] H0 3 599.70 

52 MEGA A1 4 626.67 

Gradient B1 4 651.96 

2 
MEGA A2 4 859.96 

55 
Gradient B2 4 865.95 

3 
MEGA A3 4 865.95 

59 
Gradient B3 4 865.95 

 639 

  640 
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Table 4: Outcome of hybrid methodology case II. 641 
 642 

Cycle Algorithm Outcome 

Number of 

turbines / 

feasible 

locations 

AEP (Kwh) 
Number of 

binaries 

1 

Heuristic [24] H0 8 1360.00 

57 MEGA A1 10 1712.28 

Gradient B1 10 1765.33 

2 
MEGA A2 10 1789.96 

67 
Gradient B2 10 1803.83 

3 
MEGA A3 11 1921.74 

77 
Gradient B3 11 1941.28 

4 
MEGA A4 11 1941.54 

88 
Gradient B4 11 1943.26 

5 
MEGA A5 12 2046.92 

99 
Gradient B5 12 2054.29 

6 
MEGA A6 12 2054.35 

111 
Gradient B6 12 2054.43 

 643 

  644 
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Table 5: Outcome of hybrid methodology case III. 645 

Cycle Algorithm Outcome 

Number of 

turbines / 

feasible 

locations 

AEP (Kwh) 
Number of 

binaries 

1 

Heuristic [24] H0 9 1580.58 

58 MEGA A1 9 1605.24 

Gradient B1 9 1607.71 

2 
MEGA A2 11 1978.64 

62 
Gradient B2 11 1978.64 

3 
MEGA A3 11 1996.68 

66 

Gradient B3 11 1996.68 

4 
MEGA A4 11 2058.81 

67 
Gradient B4 11 2058.81 
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Table 6: Savings in expensive function evaluation by MEGA approach over EGA approach 647 
 648 

Cycle 
Function calls by 

EGA 

Function calls 

saved by MEGA 
% saved 

Overall saved per 

case study 

Case 1: Type – I Gross AEP distribution 

1 7550 1896 25.11 

22.75 2 7550 1580 20.92 

3 7550 1679 22.23 

Case 2: Type – II Gross AEP distribution 

1 7550 3811 50.47 

51.85 

2 7550 3356 44.45 

3 7550 3549 47.00 

4 7550 3940 52.18 

5 7550 4307 57.04 

6 7550 4526 59.94 

Case 3: Type – III Gross AEP distribution 

1 7550 2899 38.39 

38.85 

2 7550 2783 36.86 

3 7550 3033 40.17 

4 7550 3018 39.97 

  649 
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 650 
Table 7: Wind farm, wind turbine and wake model characteristics [8] for case IV. 651 

 652 

 653 

  654 

Wind farm Information 

Farm area (m2) 2000 × 2000 

Wind turbine specifications 

Turbine Diameter (m) 40 

Turbine  Rated Power (Pr) (kW) 630 

Hub Height (Z) (m)   60 

Coefficient of Thrust ( TC ) 0.88 

Surface Roughness (Z0) (m) 0.3 

Wake model Information 

Model  Jensen [25] 

Jensen Constant (
wk ) 0.0944 



54 
 

Table 8: Comparison of various methodologies with present study for Case study IV. 655 
 656 

 
Mosetti et al. 

[8] 

Grady et al.  

[9] 

Wan et al. 

[12] 

Present 

study 
Chen et al. [23]  

COST/ Ptot 0.0016197 0.0015436 0.0014475 0.0014386 0.0013456 

Total Power 

(Ptot) (kW) 
12352 14310 15262 20742.54 22624.3 

Number of 

turbines 
26 30 30 44 45 
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Table 9: Outcome of hybrid methodology on case IV. 658 
 659 

 660 

Cycle Algorithm Outcome 

Number of 

turbines / 

feasible locations 

Fitness 

ratio(COST/Ptot) 

1 
MEGA A1 41 0.0014579 

Gradient B1 41 0.0014505 

2 
MEGA A2 43 0.0014496 

Gradient B2 43 0.0014491 

3 
MEGA A3 43 0.0014491 

Gradient B3 43 0.0014470 

4 
MEGA A4 43 0.0014470 

Gradient B4 43 0.0014450 

5 

MEGA A5 42 0.0014435 

Gradient B5 42 0.0014428 

6 
MEGA A6 42 0.0014428 

Gradient B6 42 0.0014423 

7 
MEGA A7 44 0.0014403 

Gradient B7 44 0.0014386 

8 
MEGA A8 44 0.0014386 

Gradient B8 44 0.0014386 
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