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Abstract: Due to increasing penetration of wind energy in the recent times, wind farm owners tend to 

generate increasing amount of energy out of wind farms. In order to meet targets, many wind farms are 

operated with a layout of numerous turbines placed close to each other in a limited area leading to greater 

energy losses due to ‘wake effects’ instead of generating more power. To solve the problem in the most 

optimal way, these turbines need to satisfy many other constraints such as topological constraints, 

minimum allowable capacity factors, inter-turbine distances etc. Existing methods to solve this complex 

turbine placement problem typically assume knowledge about the total number of turbines to be placed in 

the farm, which might be unrealistic. This study proposes a novel hybrid optimization methodology, a 

combination of evolutionary and classical optimization approaches, to simultaneously determine the 

optimum number of turbines to be placed in a wind farm along with their optimal locations. Application 

of the proposed method on a representative case study yields 43% higher Annual Energy Production 

(AEP) than the results found by one of the existing methods. 

Keywords: Wind energy systems engineering; micro-siting optimization; genetic algorithms; gradient 

based optimization. 



1. INTRODUCTION 

Wind energy has turned out to be a promising alternative 

energy source in order to compete with the depleting 

conventional sources. Due to its wide-scale availability, low 

cost and environment friendly operation, the idea of utilizing 

wind power at a massive scale has become a primary focus in 

the power industry, government policies and academic 

research (Chowdhary et al. 2012, Khan and Rehman 2013, 

Duan et al. 2014). According to the Global Wind Energy 

Council (GWEC, 2014), the global cumulative installed wind 

capacity is expected to nearly double from today’s capacity 

(~300GW) by the end of 2018. Wind farm micro-siting is the 

process of determining optimal layout of turbines in a wind 

farm to extract maximum energy out of it. However, the 

predictions of the commercial software’s for designing the 

layout of turbines in a wind farm are still not up to the mark 

and need human intervention to reduce the installation and 

operational costs for yielding the maximum energy and 

efficiency of wind farm after tackling the wake effects (Khan 

and Rehman, 2013). These facts set the importance of solving 

the complex micro-siting problem considering various 

practical aspects of it. 

Many research articles are available, where binary–coded 

Genetic Algorithms (GAs) have been used to maximize the 

net Annual Energy Production (AEP) while minimizing the 

installation cost over fixed number of turbines in a wind farm 

(Gonzalez, 2014). Apart from GAs, evolutionary strategy 

based multi-objective algorithm (maximization of expected 

energy and minimization of constraint violation) has been 

proposed and the effect of wake loss with increasing number 

of turbines in a wind farm has been studied (Gonzalez, 2014). 

Ant Colony Optimization and Particle Filtering Approach 

have also been tested to deal with the optimal placement of 

turbines in a wind farm layout (Gonzalez, 2014). Recently, 

Chowdhary et al. (2012) attempted to maximize the power 

and efficiency of a wind farm with identical and non-identical 

turbines using Particle Swarm Optimization (PSO). Zhang et 

al. (2014) presented Constrained Programming and Mixed 

Integer Programming models to maximize the total farm-

level energy produced for simple to complex wind scenarios. 

Most of these existing models deal with the micro-siting 

problem with a fixed number of turbines. However, wind 

farm developers are not sure of the maximum number of 

turbines that can actually be fitted in a farm to attain the 

maximum net AEP. Recently, Kulkarni and Mittal (2014) 

developed a novel heuristic approach where the optimal 

number of turbines and their optimal locations can be found 

out simultaneously in order to maximize the net AEP and 

minimize the wake losses in a wind farm. It suffers from the 

drawback of grid-based methods i.e. since all candidate 

turbine-locations lie on the grid, possibly better locations 

lying between grid-points can never be chosen. Moreover, 

refining the grid resolution to better represent the wind farm 

area may make the problem computationally very 
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demanding. Another limitation of this approach is that the 

performance of the algorithm is driven by the selection of the 

starting solution. To overcome these limitations, a novel 

hybrid methodology has been proposed in this work which 

makes use of a bi-level optimization formulation. GA has 

been used in the first level to determine the number of 

turbines out of certain number of possible candidate locations 

(a discrete formulation) whereas a classical optimization 

technique improves those locations in the second level 

assuming the number of turbines in the layout as obtained 

from the first level are fixed (a continuous formulation). The 

paper is organized as follows. Section II describes the 

problem formulation, AEP and wake calculations in the 

model. The proposed methodology is explained in section III, 

whereas section IV presents the results of a representative 

case study. Conclusions along with the scope of future work 

is given in section V. 

2. PROBLEM FORMULATION 

The development of mathematical model for wind farm 

micro-siting is limited to certain assumptions (A1 – A5). A1: 

N number of wind turbine locations are described as ( , )i ix y  

where i = 1,…, N; A2: In order to maintain consistency in a 

problem, homogenous wind turbines are considered; A3: For 

simplicity, a widely used and well-known Jensen (1983) 

wake model is used to calculate the velocity deficit due to 

wake effects; A4: For a specific direction, height and 

location, wind speed follows a two parameter Weibull 

distribution  ( , , ) 1 exp( / )
k

vC u A k u A   , where A  is the 

scale parameter and k  is the shape parameter and Cv (.) is 

the cumulative distribution function, which is a well-accepted 

concept worldwide (Kulkarni and Mittal, 2014); A5: Power 

and thrust coefficient curve is used to evaluate the power and 

coefficient of thrust (CT) for the corresponding wind speed. 

(Fig. 1). 

                            

Fig. 1. Power and CT curve for Vestas-V52 850 kW               

(Kulkarni and Mittal, 2014) 

Mathematically, the problem can be represented as: 

,
1

: ( , )

N t

i i
N x yt i i

O bjective Function M ax M ax AEP x y                    (1) 

Subject to two inequality Constraints: 

   
2 2

1 ( , ) * 0,

, , 1, ...,

i i space i j i j

t

g x y n D x x y y

j i i j N

     

 

              (2) 

lim

2

1

( , ) ( , ) / (8766) * * Pr 0

N t

i i i i tg x y OCF AEP x y N        (3) 

     Here 1 ( , )i ig x y  is the inter turbine distance (ITD), which is 

considered to keep enough spacing between turbines (3 times 

the rotor diameter of the turbines) in order to minimize the 

wake loss and fatigue loads. Another constraint 2 ( , )i ig x y  is 

overall capacity factor (OCF), which is a measure of wind 

farm performance and defined as a ratio of overall power 

generated in wind farm to the power generated if all turbines 

were at their rated capacity. Here, the limit for OCF is 

decided by a wind farm owner (Eq. 3). In this case study, 

spacen  is 3, D is the diameter of turbine in consideration,  
lim

OCF is assumed to be 20% and P r  is rated power of 

turbine’s (850 kW). Also the overall number of turbines ( tN ) 

is taken as upper level decision variables and the location co-

ordinates of these turbines ( , )i ix y are considered as lower 

level decision variables whereas the geographical boundary 

limits are described by lb and ub . For a regular shaped 

rectangular 500×500m
2
 grid farm considered 

here, lb and ub for ( , )i ix y can be 0 and 500, respectively. 

    This problem is mixed integer nonlinear programming 

problem (MINLP) in nature which are generally very hard 

(NP-hard) to solve due to the combinatorial complexity 

involved. Due to discontinuous nature of the energy 

calculation step in the above formulation, it is difficult to 

solve this problem using efficient MINLP solvers such as 

DICOPT and others available in the GAMS environment.  

3. AEP CALCULATION AND WAKE MODELLING  

3.1 AEP Calculation 

To calculate the energy produced accurately, the spatial and 

the temporal distribution of wind resource must be known 

which is generally expressed in terms of Wind Resource Grid 

(WRG) that stores information about Weibull parameters at a 

given location. The net AEP (kWh) at a given location of 

wind farm can be expressed as (Kulkarni and Mittal, 2014): 

     
360 max

1 1

(8766) ( , ) ( ) ( )

u

i j i o i j

i j

AEP Pwr u p p u u  

 

             (4) 

Where,  ( )ip   and ( )op u  determine the probability that the 

wind blows in direction i  at free-stream wind speed ou and 

are obtained from Wind Resource Grid (WRG) data 

(Kulkarni and Mittal, 2014). Depending on whether a turbine 

is affected by wake and the number of upstream turbines 

generating the wake, the reduced velocity ju at the turbine 

affected by wake is calculated. The corresponding 

power ( , )i jPwr u  for that particular speed can be calculated 

using the turbine power curve (Fig. 1). Here the WRG data is 

adapted from WindRose and contains the spatial distribution 

of speed and direction at regularly spaced points in the form 

of A , k  and f parameters. The two-parameter Weibull 

distribution is used to calculate the probability of wind speed 

at given locations ( )op u by using (5) and (6) 
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 ( , , ) 1 exp ( / )
k

cumW u A k u A                                               (5) 

   ( ) / 2 , , / 2, ,o cum o step cum o stepp u W u u A k W u u A k        (6) 

Where, cumW  is the cumulative probability distribution and 

( )ip   is extracted from parameter f given in WRG which 

represents the percentage of total time when wind blows in a 

particular direction at a given location.  

3.2 Wake model and calculation  

In a wind farm, different turbines interact with each other due 

to wake effect that upstream turbines create on downstream 

turbines. Among various wake models reported in the 

literature, a widely accepted Jensen (1983) wake model has 

been adopted here .An expression for the reduced wind-speed 

of downwind turbines due to wake-effects can be expressed 

as follows: 

         
2

1 1 / /ij o T o o w ij ij ju u C R R k d A A                   (7) 

The following nomenclature is followed in the above 

equation assuming ‘ i ’ and ‘ j ’ as an upwind and downwind 

turbine respectively. iju : Reduction in the wind speed on 

‘ j ’; C T : Coefficient of thrust (Fig 1); oR  : Rotor radius;    

wk  :Wake decay constant for Jensen model; ijd : Distance 

between upstream and downstream turbines (Fig. 2),;          

ijA : Overlapped area (Chowdhary et al., 2012)  varies 

depending on type of wake effect on downwind turbine and  

jA : Downwind turbine area. In reality, a downwind turbine 

may be under the influence of multiple upwind turbines. In 

that case, (7) can be modified as follows: 

        
2

1,
1

N upw ind

j o ijk k j
U u u

 

 
   

 
                                        (8) 

where, jU is the effective wind-speed at turbine ‘ j ’ while 

account for all wake effects and N upwind is the number of 

upwind turbines. Velocity deficit, iju in (8) (Kulkarni and 

Mittal, 2014), is a function of location coordinates ( , )i ix y as      

well as wind direction.  

              

 

Fig. 2 : Schematic view of affected area of turbine in wake 

effects of turbine in 3 situations (a) full wake or complete 

wake, (b) partially wake, (c) no wake (Feng and Shen, 2014) 

4. HYBRID METHODOLOGY 

The proposed hybrid approach is a combination of 

probabilistic GAs and deterministic gradient search based 

methods. The problem of simultaneous determination of 

optimal number and layout of turbines is decomposed into 

two sub-problems that can be solved in sequence. In the first 

step, the regular rectangular wind farm is converted into a 

finite number of grid-points and the optimal turbine number 

and locations are simultaneously determined from a selected 

finite number of possible locations (grid cross points) through 

GAs. In the second step, the turbine number is fixed at the 

value obtained in the first step and the turbine co-ordinates 

are improved through classical gradient-based optimization 

techniques. The first sub-problem solves an integer 

programming problem over the possible turbine locations as 

signified by the grid cross-points through binary variables 0 

and 1 that  signify absence and presence of turbine at 

different locations, respectively. Based on number of possible 

locations, the number of binary variables are determined. The 

second sub-problem is a continuous nonlinear programming 

problem where the total number of turbines is fixed, as 

determined in the first step, and the focus is on determining 

optimal turbine coordinates given the turbine number. The 

proposed hybrid methodology can start the search procedure 

using one of the feasible heuristic outcomes (Kulkarni and 

Mittal, 2014) as initial guess and the cycle between 

evolutionary and gradient approach (Fig. 3) is continued until 

a predefined termination criteria is met. The proposed hybrid 

methodology comprises five important components                    

       

Fig. 3: Schematic Representation of Hybrid Methodology 

4.1 Heuristic Approach 

The proposed hybrid methodology starts with a heuristic 

approach (Kulkarni and Mittal, 2014) where the given 

rectangular layout is divided into a fine grid and the points 

where the grid lines cross each other can be considered as 

possible turbine locations. Subsequently, turbines are placed 

in these possible locations one by one starting with the point 

where the gross AEP is maximum. The subsequent turbines 

are placed at locations where AEP will be the best and none 

of the constraints such as ITD, OCF will most likely be 

violated. The algorithm is implemented as follows. In the 

first step, a point is selected based on the gross AEP and 

added to the accepted turbine location matrix (M). In the next 

step, other locations surrounding the accepted location and 
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violating other constraints are discarded and are added up to 

the rejected turbine location matrix (V). The left over 

locations are next updated as available locations. Now, the 

next turbine can again be added at the location that shows 

highest gross AEP value in the map and no constraint 

violation among all available locations. This way of adding 

turbines is continued till the search on all possible candidate 

locations is exhausted. Fig. 4 shows the schematic view of 

this methodology. It can be seen that the matrices M and V 

are updated at each iteration. 

4.2 Grid Formation 

The rectangular (500×500 m
2
) wind farm is converted into a 

finite number of grid-points (7×7) leading to 49 possible 

locations for turbines. Though grids are formed for both 

approaches, grid resolution of heuristic approach and hybrid 

methodology are not necessarily same. So, the final solutions 

of the heuristic approach may not belong to the set of grid 

points of the hybrid approach. After obtaining a heuristic 

outcome (say 8 turbines can be feasibly located), the starting 

matrix of candidate turbine location in GA is formed by 

adding these 8 locations to 49 grid cross points. Using these 

57 locations, a location index array with unique index for 

each location is formed (Fig. 5). Each location can be 

represented by 0 or 1 depending on the absence or presence 

of turbines in that location (binary array). 

         

Fig.  4:  Flowchart of Heuristic Approach (Kulkarni and 

Mittal, 2014) 

    

Fig.  5: Binary array and location index array at grid 

formation step. 

4.3 Evolutionary Algorithm 

An elitist version of binary coded genetic algorithm has been 

used here.  

Step I (Initialization):  

First, an initialization matrix is formed which has number of 

rows based on the number of populations N pop  in a 

generation (Table 1) and each of its rows is denoted by the 

binary array. Each of the rows in the initialization matrix, 

therefore, represents a particular layout and N pop such 

layouts are considered to start with. The initialization matrix 

can be populated in a random way or a feasible layout found 

from the heuristic algorithm can be represented in the similar 

0 - 1 manner and can be added in the matrix as a row. Each of 

these rows in the initialization matrix can be termed as a 

chromosome in GA. Fig. 6 shows the formation of N pop  × 

57 size of population matrix.   

 

Fig.  6: Population matrix formed at initialization step. 

Step II (Modified Function Evaluation):  

The constrained optimization problem has been converted 

into an unconstrained optimization problem in order to 

reduce the complexity of constraint handling in GA. The 

constraints are first normalized and added to the objective 

function to form a modified unconstrained objective function 

that can be represented as 

,
1

. : ( , ) int

N t

i i
N x yt i i

M odified O bj M ax M ax AEP x y Norm Constra s  (10) 

Here, NormConstraints is a summation of all inequality 

constraints that are normalized to represent them in scales of 

similar order of magnitude. As our main objective is to 

maximize both the number of turbines as well as the net AEP, 

NormConstraints are subtracted from the objective function 

to obtain the modified objective function. Objective function 

is not modified when a particular solution is feasible. After 

modifying the objective function for each chromosome, the 

corresponding modified function value is calculated and 

stored in the initialization matrix as an additional column. 

 

Step III (Cross-over and mutation):  

The current population (called as ‘parents’) undergoes cross-

over and mutation to generate a new set of solutions (called 

the ‘children’). Cross-over and mutation (Deb, 2001) are 

applied over the population according to the user defined 

cross-over and mutation probability (Table 1). A uniform 

type of cross-over is used and the cross-sites for crossover 

operation are selected between two chromosomes randomly. 

Modified objective functions are obtained for the children 

population in the similar manner as the parent population. 

Next, both these populations are merged together to form a 

population matrix of double size (2Npop) and finally a 

tournament selection method is applied to find the best Npop 

candidates out of them. Here a pair of two random 

chromosomes are picked and the one with higher modified 
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objective value is selected. In this way, feasible points are 

preferred to infeasible points and infeasible points with lesser 

degree of infeasibility are preferred to that of a point with 

higher degree of infeasibility. Finally, an updated 

initialization matrix with rows and columns is obtained and 

this process is repeated till the convergence is reached. 

 

4.4 Gradient Based Approach 

Though GA can solve the problem of optimal number and 

location of turbines simultaneously, it performs a search for 

certain number of fixed locations (grid cross points). If GA is 

employed to solve the problem with finer grids, the size of 

the problem (number of binaries) increases with increase in 

number of grid cross sites, thereby making the GA runs 

computationally expensive. The first sub-problem involving 

GA should, therefore, be solved for a relatively coarser grid 

which can later be fine-tuned by solving the second sub-

problem over the continuous x-y coordinate space. Finally, 

GA declares the chromosome with the maximum modified 

function value among all generations as the final solution. 

The final GA outcome of a feasible layout is next passed as 

an initial guess to a gradient based solver. 

Table 1: Evolutionary GA and Gradient based approach 

specification 

Genetic Algorithm   (GA) specifications  

Algorithm Type 
Elitist-Tournament 

selection 

Number of Population (Npop) 100 

Number of Generations (Ngen) 150 

Crossover Probability  (pc) 0.80 

Crossover Type Uniform 

Mutation Probability (pm) 0.01 

Gradient Based solver  

Solver fmincon MATLAB® 

Algorithm Interior Point 

 

A well-known constrained nonlinear optimization routine of 

MATLAB®, fmincon, (Table 1) has been utilized for this 

purpose. In this step, the only decision variables are location 

coordinates of the turbines keeping the total number of 

turbines as constant and the search is performed between the 

upper and lower bounds of regular rectangular boundary. 

Since a continuous optimization problem is solved in this 

step, it searches for coordinates in addition to the points 

present on the grid for which further improved AEP can be 

obtained. 

4.5 Grid Increment 

As mentioned in the section above, the outcomes of the 

gradient based search method can bring in coordinates that 

may not be present in the set of grid cross points. As the last 

step in the hybrid approach, these additional coordinates are 

added into the candidate location matrix and the binary array 

is updated accordingly. This is done to provide more 

coordinate locations to be searched by GA in the next turn. 

For example, if the number of old locations were 57 and 

gradient search provided 10 new locations as outcome, the 

new index array will have total 67 locations which are 

uniquely indexed. After an updated index matrix is obtained, 

GA run is performed again using the new index array. 

Further, the outcome of GA is passed as a starting point to 

gradient based approach and the cycle is continued until a 

stabilized AEP is obtained as well as the location coordinates 

for three consecutive iterations are not changed. 

Table 2: Wind farm, wind turbine and wake model 

specifications (Kulkarni and Mittal, 2014). 

Wind farm Information  

Farm area (m2) 500 x 500 

Wind turbine specifications  

Turbine Type Vestas V52-850 KW 

Turbine  Rated Capacity (KW) 850 

Turbine Diameter (m) 52m 

Wake model Information  

Jensen Constant (
w

k ) 0.075 

         5. RESULTS AND DISCUSSIONS 

The wind farm considered here has a uniform distribution of 

Gross AEP over the given geographical boundary. All 

information regarding case studies are provided in (Table 2). 

Two different case studies have been discussed below on 

which the proposed methodology has been applied. 

Case 1: GA initialization with one feasible chromosome from 

heuristics  

Here, the outcome from the heuristic algorithm (H0) is added 

as one of the chromosome in the initial population. Since this 

outcome has 8 turbines in place, rest of chromosomes are 

created randomly but restricting them to have a total of 8 

turbines in each one of them. The outcome of GA (A1) is 

passed as starting point to gradient based approach which 

improves locations further with better net AEP. This cycle is 

continued until the stabilization of AEP and no further 

change in location coordinates for three consecutive runs are 

attained. (Table 3) shows the outcome obtained by the hybrid 

approach for each cycle. 

Table 3 : Outcome of hybrid methodology case 1 

Cycle Algorithm Outcome 

Number of 

turbines / 

feasible 

locations 

AEP 

(Kwh) 

 Heuristic H0 8 1360.00 

1 GA A1 10 1732.58 

 Gradient B1 10 1764.86 

2 GA A2 10 1769.86 

 Gradient B2 10 1786.26 

3 GA A3 11 1909.89 

 Gradient B3 11 1941.42 

4 GA A4 11 1942.01 

 Gradient B4 11 1943.47 

5 GA A5 11 1943.50 

 Gradient B5 11 1943.49 

 

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 401



 

 

     

 

It has been found due to the combinatorial complexity and 

non-linearity involved in the problem, GA takes more time to 

execute, and further increment is reported on increase in 

binary array size. While the solution is moving towards a 

stabilized value, the execution time of gradient approach 

decreases. All calculations are performed on Intel® Xeon® 

CPU E5-2690 0 @ 2.90GHz (2 processors) 128 GB RAM 

machine. Fig. 7(a) shows the final superimposed accepted 

and rejected location coordinates or number of turbines on 

gross AEP contour plot obtained for the given boundary. The 

proposed methodology is able to place more number of 

turbines with much improvement in AEP (1943 Kwh) as 

compared to the results obtained from the heuristic approach 

(1360 Kwh). 

Case 2: GA initialization with one feasible chromosome and 

rest randomly placed without restriction on total number of 

turbines 

This case is similar to the previous case, where GA 

initialization is performed with one of the chromosomes 

coming from heuristics (H0). Rest of the chromosomes are 

generated randomly, but there is no limit of total number of 

turbines on them (as 8 in case 1). It can be seen (Table 4) that 

                  

Fig.  7 Comparison of accepted turbines superimposed on 

gross AEP contour for (a) analysis 1 and (b) analysis 2. 

 

Table 4: Outcome of hybrid methodology case 2 

Cycle Algorithm Outcome 

Number of 

turbines / 

feasible 

locations 

AEP 

(Kwh) 

 Heuristic H0 8 1360.00 

1 GA A1 11 1917.98 

 Gradient B1 11 1931.79 

2 GA A2 11 1931.85 

 Gradient B2 11 1933.56 

3 GA A3 11 1932.24 

 Gradient B3 11 1933.38 

4 GA A4 11 1933.46 

 Gradient B4 11 1933.40 

 

due to increase in diversity during initialization, GA is able to 

place 11 turbines in first cycle itself whereas AEP takes more 

cycles to get stabilized. In this case, the produced AEP is 

quite close to case 1 though the coordinate locations are 

different in both cases (Fig. 7). However, AEP generated for 

both case 1 (1943 Kwh) and 2 (1933 Kwh) are individually 

better than that of heuristic case (1360 Kwh). It has been 

found that both the constraints play an important role in 

solving the micro-siting problem. Considering only the ITD 

constraint, at most 14 turbines can be placed inside a wind 

farm, but due to the involvement of the OCF constraint, the 

number has been reduced to 11 in both the cases.  

         6. CONCLUSIONS 

Simultaneous maximization of overall number of turbines 

and AEP is carried out in order to obtain the optimal number 

and location coordinates of wind turbines in a wind farm. A 

hybrid methodology, based on the concept of decomposition 

of the decision variable set, is proposed for solving the NP-

hard MINLP, which utilizes the merits of GA and interior 

point based classical gradient based approach. Proposed 

methodology is applied on a case study and it has been 

shown that the proposed methodology works better (~43% 

improvement in AEP) than the existing heuristics based 

method.  
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