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Abstract

In this work, we show that single input single output (SISO) fuzzy inference systems based on Fuzzy
Relational Inference (FRI) with implicative interpretation of the rule base are universal approximators
under suitable choice of operations for the other components of the fuzzy system. The presented proofs
make no assumption on the form or representations of the considered fuzzy implications and hence show
that a much larger class of fuzzy implications other than what is typically considered in the literature can
be employed meaningfully in FRIs based on implicative models. A concept of Weak Coherence is proposed,
which plays an important role in enlarging the class of fuzzy implications that can be considered.

Keywords: Fuzzy Relational Inference, Fuzzy Implications, Universal Approximation

1. Introduction

The term approximate reasoning refers to methods and methodologies that enable reasoning with im-
precise inputs to obtain meaningful outputs [15]. Fuzzy Inference Systems (FIS) form one particular type
of approximate reasoning scheme involving fuzzy sets and are one of the best known applications of fuzzy
logic in the wider sense. FIS have many degrees of freedom, namely, the underlying fuzzy partition of the
input and output spaces, the fuzzy logic operations employed, the fuzzification and defuzzification proce-
dures used, etc. This freedom gives rise to a variety of FIS with differing capabilities. The best known
types of FIS are the Fuzzy Relational Inference (FRI) systems [28, 45], Similarity Based Reasoning (SBR)
systems [24, 34, 13, 20] and the Takagi-Sugeno fuzzy systems [31, 32]. In this work, we focus only on the
FRI systems.

1.1. Motivation for this work
One of the important factors considered while employing an FIS is its approximation capability. While

many studies have appeared on this topic, most of them deal with FRIs where the rules are interpreted in a
non-conditional way or as just aggregation of possibile configurations of the data (see Section 3 for details).
When an implicative or a conditional interpretation of the rules is considered, there are only a few works
that deal with their approximation properties.

While one of the earliest studies on this topic was that of Castro [10], [11], it was later on shown by
Li et al. [23], [22] that some of the operations considered by Castro led to vacuous outputs. Li et al.
further went on to present their own results on it. However, the scope of their work is restricted to the
following three families of fuzzy implications, namely, R-implications from left-continuous t-norms, (S,N)-
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and QL-implications. Recently, Štěpnička et al. [39] have discussed the same in a slightly more general
setting. Once again, the assumptions they make on some components of the FRIs are not desirable - for
instance, the requirements on the input partition make it non-Ruspini. Thus there is a need for constructing
an implicative FRI based FIS that is both a universal approximator and whose components have some
desirable properties.

Further, so far, all the studies have largely considered fuzzy implications obtained as the residuals of left-
continuous t-norms, while Li et al. [23] had considered also the families of (S,N)- and QL-implications.Thus
a study of approximation capabilities of FRIs based on fuzzy implications that come from a more general
class of fuzzy implications is important.

1.2. Main contributions of the work
In this work, we provide a constructive proof of the universal approximation property of FRIs when

an implicative model of the rule base is employed, i.e., where the operation between the antecedents and
consequents is taken as a fuzzy implication. The proof makes no assumption on the form or representation
of the considered fuzzy implications and hence is applicable for a much larger class of fuzzy implications
other than what is typically considered in the literature. Especially, the presented proofs are applicable also
to contexts where implications that come from a non-residuated lattice setting are employed. Further we
have shown that the approximator function is continuous which is an important issue as discussed in [37].

1.3. Outline of the work
After presenting some important definitions from both fuzzy set theory and fuzzy logic connectives in

Section 2, we describe the two main types of fuzzy rule bases used in fuzzy systems in Section 3. Following
this, Section 4 is devoted to a full description of fuzzy relational inference (FRI) mechanisms. In Section 5
we present a short survey on the works and results related to universal approximation of fuzzy relational
inference systems. Further we clearly specify the main contributions and scope of our work.

Relaxing the often insisted coherence of an implicative model suitably to the context of function approx-
imation, Section 6 investigates the class of fuzzy implications that can be used in FRIs to ensure this form
of weak coherence. This section also presents some well-known families of fuzzy implications that belong to
the above admissible class of fuzzy implications.

Finally, Sections 7 and 8 contain the major contributions of this work, which show that FRIs employing
a rather large class of fuzzy implications - which include the R-implications - are universal approximators.
Section 9 presents some examples that illustrate the investigations and analysis of the previous sections. In
Section 10 some concluding remarks are given.

2. Preliminaries

We assume that the reader is familiar with the classical results concerning fuzzy set theory and basic
fuzzy logic connectives, but to make this work more self-contained, we introduce some notations, concepts
and results employed in the rest of the work.

In this work we only consider X ⊆ R to be a closed and bounded interval and hence X is totally ordered,
linear and compact w.r.to the usual topology on R. However, many of the concepts below are applicable to
more general sets and hence the definition is given accordingly.

2.1. Fuzzy Sets
Definition 2.1. If X is a non-empty set then F(X) is the fuzzy power set of X, i.e., F(X) = {A|A : X →
[0, 1]}.

Definition 2.2. A fuzzy set A is said to be

• normal if there exists an x ∈ X such that A(x) = 1,
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• convex if X is a compact subset of a linear space and for any λ ∈ [0, 1], x, y ∈ X, A(λx+ (1− λ)y) ≥
min{A(x), A(y)}.

Definition 2.3. For an A ∈ F(X), the Support, Height, Kernel and Ceiling of A are denoted, respectively,
as Supp A, Hgt A, Ker A and Ceil A and are defined as:

Supp A = {x ∈ X|A(x) > 0} ,
Hgt A = sup{A(x)|x ∈ X} ,
Ker A = {x ∈ X|A(x) = 1} ,
Ceil A = {x ∈ X|A(x) = Hgt A} .

A is said to be bounded if Supp A is a bounded set. Note that for a normal fuzzy set Ker A = Ceil A and
Hgt A = 1.

Definition 2.4. Let P be a finite collection of fuzzy sets of X, i.e, P = {Ak}nk=1 ⊆ F(X). P is said to
form a fuzzy partition on X if

X ⊆
n⋃
k=1

Supp Ak .

In the literature, a partition P of X as defined above is also called a complete partition. Note that
there are several other approaches to and definitions of a fuzzy partition, see for instance, [9, 14, 18, 26, 27]

Definition 2.5. A fuzzy partition P = {Ak}nk=1 ⊆ F(X) is said to be

• consistent if whenever for some k, Ak(x) = 1 then Aj(x) = 0 for j 6= k,

• a Ruspini Partition if

n∑
k=1

Ak(x) = 1 for every x ∈ X. (1)

2.2. Defuzzification
Often there is a need to convert a fuzzy set to a crisp value, a process which is called Defuzzification. This

process of defuzzification can be seen as a mapping d : F(X) −→ X. There are many types of defuzzification
techniques available in the literature, see [30] for a good overview. The defuzzifier given in Example 2.6 will
be used extensively in the sequel.

Example 2.6. For a fuzzy set A ∈ F(X), with bounded Ceil A, the Mean of Maxima ( MOM) defuzzi-
fier gives as output the mean of all those values in X with the highest membership value, which can be
mathematically expressed as

MOM(A) =

∫
Ceil A

xdx∫
Ceil A

1dx
, if

∫
Ceil A

1dx 6= 0. (2)

2.3. Fuzzy Logic Connectives
Note that in this work, we use the term decreasing and increasing in a non-strict sense. In other words,

we call a function t1 : R → R decreasing or non-increasing if t1(x) ≥ t1(y) whenever x ≤ y. Similarly, we
call a function t2 : R→ R increasing or non-decreasing if t2(x) ≤ t2(y) whenever x ≤ y.

Definition 2.7 ([21]). A binary operation T : [0, 1]2 → [0, 1] is called a t-norm, if it is increasing in both
variables, commutative, associative and has 1 as the neutral element.
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Definition 2.8 ([21]). A t-norm T is called positive if T (x, y) = 0 then either x = 0 or y = 0.

Definition 2.9 ( [2], Definition 1.1.1). A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it
satisfies, for all x, x1, x2, y, y1, y2 ∈ [0, 1], the following conditions:

if x1 ≤ x2, then I(x1, y) ≥ I(x2, y) , i.e., I( · , y) is decreasing ,
if y1 ≤ y2, then I(x, y1) ≤ I(x, y2) , i.e., I(x, · ) is increasing ,
I(0, 0) = 1 , I(1, 1) = 1 , I(1, 0) = 0 .

The set of all fuzzy implications will be denoted by I.

Definition 2.10 ([2]). A fuzzy implication I : [0, 1]2 → [0, 1] is said to

• satisfy the left neutrality property, if

I(1, y) = y , y ∈ [0, 1] , (NP)

• satisfy the ordering property, if

I(x, y) = 1⇐⇒ x ≤ y , x, y ∈ [0, 1] . (OP)

• be a positive fuzzy implication if I(x, y) > 0, for all x, y ∈ (0, 1].

For examples of such fuzzy implications, please refer to Table 1.

Definition 2.11 ([2]). A function N : [0, 1] −→ [0, 1] is called a fuzzy negation if N(0) = 1, N(1) = 0 and
N is decreasing.

Example 2.12. One such fuzzy negation is the Gödel negation

ND1(x) =

{
1, if x = 0 ,
0, if x > 0 ,

x ∈ [0, 1] . (3)

Definition 2.13 ([2]). Let I ∈ I be any fuzzy implication. The function NI : [0, 1] −→ [0, 1] defined by
NI(x) = I(x, 0) is a fuzzy negation and is called the natural negation of I.

We denote the class of fuzzy implications that satisfy (OP) by IOP ( I and the class of fuzzy implications
that are positive and whose natural negation NI = ND1 by I+

ND1
( I.

3. Fuzzy IF-THEN Rule Base

Given two non-empty crisp sets X,Y ⊆ R, a Single-Input Single-Output (SISO) fuzzy IF-THEN rulebase
consists of rules of the form:

IF x̃ is Ai THEN ỹ is Bi , (4)

where x̃,ỹ are the linguistic variables and Ai, Bi, i = 1, 2, . . . n are the linguistic values taken by the linguistic
variables. These linguistic values are represented by fuzzy sets in their corresponding domains, i.e., Ai ∈
F(X), Bi ∈ F(Y ).

As an example,

IF Temperature is High THEN Fanspeed is Medium.

Here Temperature and Fanspeed are the linguistic variables and High, Medium are the linguistic values
taken by the linguistic variables in a suitable domain.
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A fuzzy rule base (4) can be viewed in two different ways, as explained in [16],[17]. When each of the
rules is viewed as a constraint, i.e., when the rules in (4) are combined together as

IF x̃ is A1 THEN ỹ is B1,

. . .

AND

. . .

IF x̃ is An THEN ỹ is Bn, (5)

we have the conditional form (IF-THEN) of the rules. On the other hand, each of the rules can also be
viewed as just pieces of data giving possible configurations or positive information, in which case they are
combined as follows:

x̃ is A1 AND ỹ is B1,

. . .

OR

. . .

x̃ is An AND ỹ is Bn. (6)

3.1. Fuzzy Relations that model the Rule Base (5) and (6)
In fuzzy relational inference mechanisms (see Section 4 below), fuzzy relations R : X × Y → [0, 1] are

employed to represent the rule base (5) and (6). Two of the commonly employed fuzzy relations are the
following: For any x ∈ X, y ∈ Y ,

R̂→(x, y) =
n∧
i=1

(Ai(x) −→ Bi(y)) , (7)

Ř?(x, y) =
n∨
i=1

(Ai(x) ? Bi(y)) , (8)

where −→ is taken as a fuzzy implication and ? as a t-norm.
Note that the fuzzy relation R̂→ captures the conditional form (5) of the given rules, while the relation

Ř? captures the Cartesian product form (6) of the rules. For more on the semantics of Ř? and R̂→ we refer
the readers to [17].

4. Fuzzy Relational Inference mechanism

Given a rule base of the form (5) or (6) and an input ” x̃ is A′ ”, the main objective of a fuzzy inference
mechanism is to find a meaningful B′ such that ” ỹ is B′ ”. While many types of fuzzy inference mechanisms
have been proposed in the literature we restrict this study only to fuzzy relation based inference mechanisms.

The inference mechanism in a fuzzy relational inference (FRI) can be expressed as follows:

B′ = f@
R (A′) = A′@R, (FRI-R)

where A′ ∈ F(X) is the input, the relationR ∈ F(X×Y ) represents or models the rule base, B′ ∈ F(Y ) is the
obtained output and @ is called the composition operator, which is a mapping @: F(X)×F(X×Y )→ F(Y ).
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4.1. Two main types of FRIs
One of the two main FRIs is the Compositional Rule of Inference (CRI) proposed by Zadeh [44] and

given as:

B′(y) = f◦R(A′)(y) =
∨
x∈X

[A′(x) ? R(x, y)], y ∈ Y, (CRI-R)

where ? is a t-norm. The operator ◦ is also known as the sup−T composition where T is a t-norm. Later
Pedrycz [28] proposed another FRI mechanism based on the Bandler-Kohout Subproduct composition given
as:

B′(y) = f/R(A′)(y) =
∧
x∈X

[A′(x) −→ R(x, y)], y ∈ Y, (BKS-R)

with −→ interpreted as a fuzzy implication. The operator / is also known as the inf −I composition where
I is a fuzzy implication. Note that f◦R(A′) is also known as the direct image of A′ over R, while f/R(A′) is
called the sub-direct image of A′ over R [39].

4.2. FRI with Singleton input
Since we deal with universal approximation capability, the inputs are crisp and hence we need to suitably

fuzzify the crisp input to a fuzzy input.
If x0 ∈ X is a crisp input, then it is suitably fuzzified, i.e., a fuzzy set A′ ∈ F(X) is suitably constructed

from x0. Commonly, the following singleton fuzzifier is employed:

A′(x) =

{
1, x = x0 ,

0, x 6= x0 .

With the above input A′, the FRI mechanism (FRI-R) reduces to

B′(y) = R(x0, y), y ∈ Y, (FRI-R-Singleton)

for any t-norm ? in case of (CRI-R) and any implication I satisfying (NP) in case of (BKS-R). Thus in the
case of a singleton input both the (CRI-R) and (BKS-R) are essentially the same (provided −→ in (BKS-R)
satisfies (NP) ) and the output is fully dependent on the model of the rule base R. In other words, f◦R ≡ f/R
and hence the composition ◦ or / - when the I in / = inf −I composition satisfies (NP) - does not play any
role.

4.3. Scope of this work

We denote an FRI with singleton input as a quadruple F =
(
PX ,PY , R, d

)
, where PX = {Ai} and

PY = {Bi} correspond to the input and output fuzzy partitions on X and Y , respectively, R is the fuzzy
relation modeling the rule base and d is the defuzzifier used to obtain a crisp output from the obtained B′

in (FRI-R-Singleton). Thus given an F the overall inference can be seen as a function g : X → Y as follows:

g(x′) = d(B′(·)) = d(R(x′, ·)) , x′ ∈ X. (9)

In the literature, g is also known as the system function of a given F, see for instance, [22, 23].
In this paper we deal only with the implicative form of the rule base, i.e., the antecedents of the rules

are related to their consequents using a fuzzy implication and hence fix R = R̂→ in the sequel.
Further, we consider the following generalised form of R̂→, where T is any t-norm, not necessarily the

minimum t-norm:

RT→(x, y) = Tni=1(Ai(x) −→ Bi(y)), (Imp-RT→)

Thus this work deals with FRIs of the form FT→ =
(
PX ,PY , RT→, d

)
⊆ F.
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5. FRIs as Universal Approximators

5.1. Universal Approximation results with FRI
In this subsection, we only briefly recall some of the important works dealing with the approximation

properties of FRIs and refer the readers to the excellent review of Tikk et al. [33] for more details and the
other recent works, for instance [29], [43] and the references therein.

The earliest works to appear on this topic dealt with FRIs where R = Ř? and hence can be considered
to have assumed a Cartesian product interpretation of the fuzzy rules, see Wang [41] and Zeng & Singh [46].

It was Castro [10] who was the first to deal with the approximation properties of FRIs that employed
R̂→. However, as was already pointed out by Li et al. Remark 2.4, [23], Castro has considered an FRI as
given below:

B′(y) =
∨
j

(B′j(y)) =
∨
j

(Aj(x0) −→ Bj(y)) ,

which is clearly not an appropriate model to work with, since under most practical settings for any given
x0 ∈ X there will always exist a rule with an antecedent Ai0 such that Ai0(x0) = 0 and since 0 −→ b = 1 for
any b ∈ [0, 1], when the maximum t-conorm is used to aggregate the individual outputs one always obtains
that B′(y) = 1 for all y ∈ Y . Note that this is the case when the input partitions are of the Ruspini type -
a property that is normally both practical and desirable.

In the same work, after pointing out the above, Li et al. (see Theorem 3.4, [23]) have given a constructive
proof of the approximation capability of an FRI with R = R̂→. However, the scope of their work is restricted
to the following three families of fuzzy implications, namely, R-implications from left-continuous t-norms,
(S,N)- and QL-implications. Further, many of the results are without complete and correct proofs, thus
making a deeper understanding of the approach difficult.

Perfilieva and Kreinovich [29] have discussed approximation capability of fuzzy systems that reflect
the CNF-DNF duality. However, the considered / constructed partitions are not ’fuzzy’ and hence the
constructed rule base contains antecedents and consequents that are crisp sets. Further, they make an
implicit assumption that the considered implications can be written as a generalization of the classical
material implication, which in the context of fuzzy logic connectives is equivalent to assuming that the
considered implication is an (S,N)-implication. While this assumption is valid in their context, since the
relations RCNF are crisp and hence only need to deal with {0, 1} values, in general, this is not true when we
consider truth-values over the entire [0, 1] interval.

Recently, Štěpnička et al. in [39] considered an FRI with R = R⊗→∗
where ⊗ is the  Lukasiewicz t-norm

TLK(x, y) = max(0, x+ y− 1) and →∗ is any residuated implication obtained from a left-continuous t-norm
∗, which can be different from TLK. They have shown that the FRIs F⊗→∗

= FTLK
→∗

=
(
PX ,PY , RTLK

→∗
,MOM

)
are universal approximators. Their result is true for any continuous function f but the Ai’s do not form a
Ruspini partition which is normal and desirable in practical settings.

5.2. Main contribution of this work

In this work, we show that FRIs of the form FT→ =
(
PX ,PY , RT→, d

)
are universal approximators.

Moreover it has also been shown that the system function g of the given FT→ is continuous. A concept of
weak coherence is proposed, which plays an important role in enlarging the class of fuzzy implications that
can be considered. The proof is general enough for a large class of fuzzy implications and is valid for any
continuous function, not necessarily monotonic and the partitions used are of the Ruspini type. Thus, we
believe that these results are very much applicable in most of the practical and desirable contexts [17, 39, 40].

6. Weak Coherence and Implicative Models

6.1. A Weaker form of Coherence
Dubois et al. [17] defined the concept of coherence for an implicative model R̂→ ( see (7)) of a rule base

as follows, which is suitably modified to fit into our notation.
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Definition 6.1 ([12], [17]). Given a rule base (5), a fuzzy relation RT→(x, y), as in (Imp-RT→) modelling
this rule base, is coherent if for any x ∈ X there exist y ∈ Y such that RT→(x, y) = 1.

The coherence property states that for any x the final fuzzy output B′ should be normal, i.e., Ker
B′ 6= ∅. Coherence of an implicative model of a rule base is very much dictated by the semantics involved
[17]. Further, it is essential when using defuzzification techniques that are dependent on the kernel to be
non-empty.

However, there exist other reasonable defuzzification methods that do not depend on the kernel of the
output fuzzy set and, further, in the setting of function approximation, as is the case here, perhaps there
is an arguable justification to not to insist on this otherwise extremely important property. Relaxing this
property we define the following weaker form of coherence.

Definition 6.2. For a given rule base (5), a fuzzy relation RT→(x, y) is said to be weakly coherent if for
any x ∈ X there exist y ∈ Y such that RT→(x, y) > 0.

From (FRI-R-Singleton) and (Imp-RT→), we have the following:

B′(y) = RT→(x0, y) = Tni=1(Ai(x0) −→ Bi(y))

= T
(
A1(x0) −→ B1(y), A2(x0) −→ B2(y), . . . , An(x0) −→ Bn(y)

)
.

Now if the antecedent fuzzy sets are normal and form a Ruspini partition, then x0 intersects atmost two
fuzzy sets say, Am, Am+1. Then the above reduces to

B′(y) = T (Am(x0) −→ Bm(y), Am+1(x0) −→ Bm+1(y)) = T (B′m(y), B′m+1(y)) , (10)

where B′m and B′m+1 are the fuzzy sets Bm and Bm+1 modified by the fuzzy implication −→ with Am(x0)
and Am+1(x0), respectively.

It is clear that for B′ to be non-empty the supports of B′m and B′m+1 should intersect, i.e., a necessary
condition is

Supp B′m
⋂

Supp B′m+1 6= ∅ . (11)

Further, the choice of the t-norm T in (10) should also be made accordingly. For instance, a sufficient
condition on T is that it should be positive (see Definition 2.8). Then from (11) we see that B′ is non-
empty.

While coherence insists that the kernels of B′m and B′m+1 should intersect, the weak coherence defined
above relaxes this to a mere intersection of their supports. It should be noted that while relaxing coherence
to weak coherence does expand the set of fuzzy implications that can be considered in R̂→, it still does not
encompass the whole set of fuzzy implications I.

In the following, we discuss the class of fuzzy implications that can be considered for an FRI with RT→
to be at least weakly coherent. This leads us to study the effect of using fuzzy implications to modify fuzzy
sets.

6.2. Fuzzy Sets modified by Fuzzy Implications
From the above section it is clear that to ensure weak coherence, we need to deal with fuzzy sets that

are modified by a fuzzy implication. Thus studying the properties of such modified fuzzy sets is important
and we proceed to do this in the section.

Definition 6.3. Let C ∈ F(X) and I ∈ I be any fuzzy implication. We say that a CIα ∈ F(X) is the
modification or modified fuzzy set of C by I at a given α ∈ [0, 1] if

CIα(x) = I(α,C(x)), x ∈ X. (12)
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Since in this work we consider modification only by a fuzzy implication, we often use the simpler term
modified fuzzy set without any explicit mention of either I or the α ∈ [0, 1].

The following results show that modification by an I ∈ I preserves convexity and also gives some relations
between the supports of the original and modified fuzzy sets when an I ∈ I is used.

Proposition 6.4. For a convex fuzzy set C, a fuzzy implication I and any α ∈ [0, 1], CIα = I(α,C) is also
convex.

Proof. C being a convex fuzzy set, for all λ ∈ [0, 1] and x, y ∈ X, we have C(λx+(1−λ)y) ≥ C(x)∧C(y).
Now for any α ∈ [0, 1] we have the following:

C(λx+ (1− λ)y) ≥ C(x) ∧ C(y)
=⇒I(α,C(λx+ (1− λ)y)) ≥ I(α,C(x) ∧ C(y))
=⇒I(α,C(λx+ (1− λ)y)) ≥ I(α,C(x)) ∧ I(α,C(y))

=⇒CIα(λx+ (1− λ)y) ≥ CIα(x) ∧ CIα(y).

This proves that the modified fuzzy set CIα = I(α,C) is convex.

Remark 6.5. In fact, the above result is true for any increasing function t. In Proposition 6.4, t(C) =
CIα = I(α,C), where α ∈ [0, 1] is a constant.

Proposition 6.6. Let C be a bounded, normal, continuous convex fuzzy set, I ∈ I and α ∈ (0, 1). Consider
the following inclusion relating the supports of C and its modified set CIα:

Supp CIα ⊇ Supp C . (13)

(i) If I is a non-positive fuzzy implication, then there exists an α ∈ [0, 1] such that (13) is not valid.
(ii) For a given I ∈ I, let AI = {x ∈ [0, 1]|I(x, 0) = 0} and let δ = inf AI .

(a) If α < δ, then (13) is valid always.
(b) If α > δ, then (13) is valid only if I is positive.
(c) Let α = δ. If δ ∈ AI , then (13) is valid only if I is positive, while (13) holds for any I ∈ I if

δ /∈ AI .

Proof. (i) Since I is non-positive, there exists some x0, y0 ∈ (0, 1) such that I(x0, y0) = 0. By the
monotonicity of I we have that for α ∈ [x0, 1] and y ∈ [0, y0], I(α, y) = 0. Since C is continuous,
normal and convex, there will exist a U ⊆ X such that C(x) ≤ y0 on U . If we take α ∈ [x0, 1] then
CIα(x) = 0 for all x ∈ U , i.e., Supp CIα ( Supp C. For a graphical illustration where I = IRS, the
Rescher implication, see Fig. 1(a).

(ii) Let δ = inf AI = inf{x ∈ [0, 1]|I(x, 0) = 0}. Note that for any I ∈ I we have I(1, 0) = 0 and hence
{x ∈ [0, 1]|I(x, 0) = 0} 6= ∅. Let us consider an α ∈ [0, 1].
(a) Let α < δ. Then I(α, 0) > 0 and by the monotonicity of I, we have I(α, β) > 0 for any β ∈ [0, 1].

On the one hand, if x ∈ X \ Supp C, then C(x) = 0 and CIα(x) > 0. On the other hand, when
x ∈ Supp C, then C(x) > 0 and CIα(x) > 0. Thus it is clear that Supp C ⊆ Supp CIα and (13)
holds. For a graphical illustration where I = IRC, the Reichenbach implication, see Fig. 1(b).

(b) Let α > δ. Once again, by the monotonicity of I, we have I(α, 0) = 0. If x ∈ X \ Supp C, then
C(x) = 0 and hence CIα(x) = 0. If x ∈ Supp C then C(x) ∈ (0, 1]. In fact, by the continuity and
normality of C, for any β ∈ (0, 1) there exists an x ∈ Supp C such that C(x) = β. Now, if I is
not positive, i.e., if there exists a β ∈ (0, 1) such that I(α, β) = 0 then for all x ∈ Supp C such
that C(x) ≤ β we have that CIα(x) = 0. Thus to ensure that (13) holds we need an I which is
positive.

(c) Let α = δ. If δ ∈ AI , then I(δ, 0) = I(α, 0) = 0 and hence it reduces to the case (b) above. If
δ /∈ AI , then I(δ, 0) = I(α, 0) > 0 and hence it reduces to the case (a) above.

9



(a) Supp CIα ( Supp C (b) Supp C ⊆ Supp CIα

Figure 1: Inclusions between the supports of the original and modified fuzzy sets, when (a) I is non-positive, (b) I is positive
and NI 6= ND1.

Remark 6.7. Note that, from Proposition 6.6 we see that whenever δ < 1, to ensure that (13) holds we
need an I ∈ I that is positive. If an I ∈ I which is positive and whose NI = ND1 is used to modify C above,
then the supports of CIα, C are equal, i.e., Supp CIα = Supp C, for all α ∈ (0, 1]. For a graphical illustration
where I = IGD, the Gödel implication, see Fig. 2.

Also, note that when I ∈ I is positive but NI 6= ND1 then the modified fuzzy set may have infinite support,
in which case (13) holds trivially (Fig. 1(b)).

Figure 2: Supp C ⊆ Supp CIα - When I is positive and NI = ND1 - see Remark 6.7

6.3. Types of Fuzzy Implications Considered
From Section 6.1 above we know that for an RT→ to ensure weak coherence, we need the support of the

output fuzzy sets B′m and B′m+1 - which are the modified fuzzy sets of Bm, Bm+1 using a fuzzy implication
I ∈ I - to intersect. Also, it can be seen from Section 6.2 that when we use a non-positive fuzzy implication
the supports of these modified fuzzy sets can shrink and hence there is a possibility that the intersection of
their supports is empty, which is not desirable. Hence to ensure weak coherence at the least, we see that
the class of implications I that can be considered should be restricted.

Since in most practical settings we deal only with fuzzy sets that are bounded, continuous, convex and
that which often form a Ruspini partition, it is sufficient to consider fuzzy implications I ∈ I that either

• satisfy the ordering property (OP), i.e., I ∈ IOP, in which case often we can ensure even coherence
[39], or

• are positive with NI = ND1, i.e., I ∈ I+

ND1
, in which case we can ensure at least a weak coherence.

Thus, in the following sections we will deal with rules modeled by fuzzy relations RT→ where the fuzzy
implication → either satisfies (OP) or is positive with or without (OP) but whose natural negation NI =
ND1, the Gödel negation (3).
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Remark 6.8. Note that the properties (OP), positivity and NI = ND1 are not mutually exclusive. Table 1
lists some fuzzy implications illustrating the same.

Implications (OP) Positive NI = ND1

IGG(x, y) = min(1, yx ) X X X
ILK(x, y) = min(1, 1− x+ y) X X ×

IYG(x, y) = min (1, yx) × X X
IRC(x, y) = 1− x+ xy × X ×

IRS(x, y) =

{
1, if x ≤ y
0, if x > y

X × X

I(x, y) =


0, if (x, y) ∈ [0.7, 1]× [0, 0.6]
0.5, if (x, y) ∈ [0.4, 0.7]× [0, 0.6]
1, otherwise

× × ×

I(x, y) =


1, if x ≤ y
0.5, if x > y and x ∈ [0, 0.5)
0, if (x, y) ∈ [0.5, 1)× [0, 0.5)
0.5, if x > y and y ∈ [0.5, 1)

X × ×

I(x, y) =

{
1, if x = 0 or y = 1
0, if x > 0 or y < 1

× × X

Table 1: Fuzzy Implications that satisfy some or all of the properties of (OP), positivity and NI = ND1.

6.4. Families of Fuzzy Implications that belong to IOP ∪ I+

ND1

In fact, many established families of fuzzy implications fall in either of the above two classes. For the
definitions and the properties these families satisfy, please refer to the monograph [2].

• Let ITBC denote the set of all R-implications obtained from border continuous t-norms. Then every
I ∈ ITBC satisfies (OP) ([3], Proposition 5.8). Further, the set of all R-implications obtained from
left-continuous t-norms ITLC ( ITBC and hence we have that

ITLC ( ITBC ( IOP .

• Let IF denote the set of all f -implications proposed by Yager [42]. Further, let us denote by IF,∞ ( IF
the set of f -implications that are generated from generators such that f(0) = ∞. Every I ∈ IF,∞ is
positive and their natural negation is the Gödel negation (see [19], [1], Proposition 2), i.e., NI = ND1.
Thus

IF,∞ ( I
+

ND1
.

• If IG denotes the set of all g-implications, proposed by Yager [42], then every I ∈ IG is positive and
NI = ND1 (see [1], Proposition 4). Thus

IG ( I
+

ND1
.

• If I∗S denote the set of all (S,N)− implications such that N = NS , the natural negation of S, is a strong
negation and the pair (S,NS) is such that S(NS(x), x) = 1, x ∈ [0, 1] then every I ∈ I∗S satisfies (OP)
([3], Theorem 4.7). Hence

I
∗

S ( IOP .
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• Let I∗QL denote the set of QL-implications obtained from the triplet (TM, S,NS) where TM(x, y) =
min(x, y), S is any t-conorm and NS , the natural negation of S, is a strong negation and the pair
(S,NS) is such that S(NS(x), x) = 1, x ∈ [0, 1]. Then every I ∈ I∗QL satisfies (OP) ([5], Section 4.4).
Hence

I
∗

QL ( IOP .

• Let I∗∗QL denote the set of QL-implications obtained from the triplet (TM, S,NS) where NS is a strong
negation and S is a right continuous t-conorm. Then every I ∈ I∗∗QL satisfies (OP) ([5], Section 4.4).
Hence

I
∗∗

QL ( IOP .

For examples of fuzzy implications from other well-known families, viz., (U,N)-, RU -implications
and the relationships among the properties they satisfy, please see, for instance, [4, 6] or the works of
Bustince et al. [7, 8].

7. FT
→OP

are Universal Approximators

Let us denote by RT→OP
the fuzzy relation where the fuzzy implication −→ is from IOP, and the corre-

sponding FRI by FT→OP
=
(
PX ,PY , RT→OP

, d
)

where, PX = {Ai}ni=1 ⊆ F(X) and PY = {Bi}ni=1 ⊆ F(Y ).
Recall from (FRI-R-Singleton), for any y ∈ Y ,

B′(y) = RT→(x0, y) = Tni=1(Ai(x0) −→OP Bi(y))

= T
(
A1(x0) −→OP B1(y), A2(x0) −→OP B2(y), . . . , An(x0) −→OP Bn(y)

)
. (14)

Note that to get a final crisp output y′ ∈ Y , we need to defuzzify the above B′ ∈ F(Y ) using d.
In this section, we show that, FRIs FT→OP

=
(
PX ,PY , RT→OP

,MOM
)

are universal approximators, i.e.,

the system function g of FT→OP
, as defined in (9), can approximate any continuous function over a compact

set to arbitrary accuracy. Moreover, we show that the system function g is continuous as discussed in [37].
Since the range of a continuous function over a closed and bounded interval is also a closed and bounded

interval, in the following results, letting X = [a, b] and if h : X → R is any continuous function, we have
Y = h(X) = [c, d].

Theorem 7.1. For any continuous function h : [a, b] → [c, d] over a closed and bounded interval and an
arbitrary given ε > 0, there is an FRI FT→OP

=
(
P[a,b],P[c,d], R

T
→OP

,MOM
)

with P[a,b] and P[c,d] being
Ruspini partitions such that

(i) the system function g as defined in (9) is continuous on [a, b], and
(ii) max

x∈[a,b]
|h(x)− g(x)| < ε.

Proof. Let h : [a, b]→ [c, d] be any continuous function and let an ε > 0 be given. We present a procedural
and stepwise proof of how to realise the FRI FT→OP

with the specified properties.

Step I : Choosing the points of normality
Since h is continuous over a closed interval [a, b], h is uniformly continuous on [a, b].

Thus for a given ε > 0 there exists δ > 0 (depending on ε) such that, for all w,w′ ∈ [a, b],

|w − w′| < δ =⇒ |h(w)− h(w′)| < ε

2
.

Step I (a): A Coarse Initial Partition

12



With the δ defined above and taking l = 1 +
⌈
b−a
δ

⌉
we now choose wi ∈ [a, b], i = 1, 2, . . . l, such that

|wi − wi+1| < δ, where dre is the integral value of the number r.
Let zi = h(wi), the value h takes at the above chosen wi, for i = 1, 2, . . . l. We call these points wi and

zi the points of normality on the input space and the output space, respectively.
Step I (b): Redundancy Removal and Reordering
Let us choose the distinct zi’s from the above and sort them in ascending order. Let σ : Nl −→ Nk denote

the above permuation map such that zi = uσ(i), for i = 1, 2, . . . l and uj , j = 1, 2, . . . , k are in ascending
order.

Step I (c): Refinement of the input space partition:
Thus for each i = 1, 2, . . . , l we have h(wi) = zi = uσ(i). However, note that consecutive points of

normality wi, wi+1 in the input space need not be mapped to consecutive points of normality uσ(i), uσ(i)+1

or uσ(i), uσ(i)−1.
To ensure the above, we further refine the input space partition. To this end, we refine every sub-interval

[wi, wi+1], for i = 1, 2, . . . l − 1 as follows. Note that h(wi+1) = uσ(i+1).
Refinement Procedure:

For every i = 1, 2, . . . l − 1 do the following:

(i) If uσ(i+1) = uσ(i)+1 or uσ(i)−1 then we do nothing.
(ii) Let uσ(i+1) = uσ(i)+p, where p ≥ 2. For every u ∈ {uσ(i)+1, uσ(i)+2, . . . , uσ(i)+p−1} we find a point

v ∈ [wi, wi+1] such that h(v) = u. Note that the existence of such a v ∈ [wi, wi+1] is guaranteed by
the continuity - essentially the ontoness - of the function h. If u = uσ(i)+q, for some 1 ≤ q ≤ p − 1,
then we denote the point v as w(q)

i,i+1.
(iii) Similarly, let uσ(i+1) = uσ(i)−p, where p ≥ 2. For every u ∈ {uσ(i)−1, uσ(i)−2, . . . , uσ(i)−p+1} we find a

v ∈ [wi, wi+1] such that h(v) = u. Once again, if u = uσ(i)−q, for some 1 ≤ q ≤ p− 1, then we denote
v as w(q)

i,i+1.

Step I (d): Final Points of Normality:

Once the above process is done, we again rename the points of normality in the input space, viz., w(q)
i,i+1

as x1, x2, . . . , xn(n ≥ l) and the uσ(i)’s of the the output space as y1, y2, . . . yk.
For a graphical illustration of Step I given above, please see Section 7.1.

Step II : Construction of the Fuzzy Partitions - P[a,b],P[c,d]

In the next step, we construct fuzzy sets on both the input and output spaces with the above obtained
xi’s and yj ’s as the points of normality, as given below.

Step II (a): Fuzzy Partition on the input space P[a,b] = {Ai}ni=1.
We construct n fuzzy sets such that

• Supp Ai = (xi−1, xi+1) for i = 2, . . . , n− 1, while Supp A1 = [x1, x2) and Supp An = (xn−1, xn],

• each Ai is normal at xi, i.e., Ai(xi) = 1,

• each Ai is a continuous convex fuzzy set, strictly increasing on [xi−1, xi] and strictly decreasing on
[xi, xi+1].

• {Ai}ni=1 form a Ruspini partition (see. for instance (1)).

Step II (b): Fuzzy Partition on the output space P[c,d] = {Cj}kj=1.
We construct k fuzzy sets in a similar way as above, such that

• Supp(Cj) = (yj−1, yj+1) for j = 2, . . . , k − 1, while Supp(C1) = [y1, y2) and Supp(Ck) = (yk−1, yk],

• each Cj is normal at yj , i.e., Cj(yj) = 1,

• each Cj is a continuous convex fuzzy set, strictly increasing on [yj−1, yj ] and strictly decreasing on
[yj , yj+1].
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• {Cj}kj=1 form a Ruspini partition.

Here obviously, |yj − yj−1| < ε
2 , j = 1, 2, . . . k.

Step III: Construction of the rule base
We construct the rule base with n rules of the form:

IF x̃ is Ai THEN ỹ is Cj , i = 1, 2, . . . n, (15)

where the consequent Cj in the i-th rule is chosen such that yj = h(xi), where xi is the point at which Ai
attains normality.

We can rewrite the rule base (15) as follows to confirm to the notations as in (4):

IF x̃ is Ai THEN ỹ is Bi , i = 1, 2, . . . n . (16)

Firstly, note that not all Bi’s may be distinct. Further, since h is continuous, by the above assignment of
the rules, we have that rules whose antecedents are adjacent also have adjacent consequents, i.e., for any
i = 1, 2, . . . n− 1 we have Supp Bi ∩ Supp Bi+1 6= ∅.

In fact, the constructed rule base is also smooth [35], [36], [38].

Step IV : Approximation capability of the output
Let x′ ∈ [a, b] be the arbitrary given input. Clearly, x′ ∈ [xm, xm+1] for some m ≤ n − 1. Once again,

by our construction, x′ belongs to atmost two adjacent Ai’s, and they are Am, Am+1. Thus, from (14),

B′(y) = T [Am(x′) −→OP Bm(y), Am+1(x′) −→OP Bm+1(y)]
= T [sm −→OP Bm(y), sm+1 −→OP Bm+1(y)]

where we introduce the notations sm = Am(x′) and sm+1 = Am+1(x′) for better readability in the proofs.
Note that since Ai’s form a Ruspini partition, we have that sm + sm+1 = 1. Further, note that by the
construction of {Ai, Bi}, Bm, Bm+1 are adjacent fuzzy sets.

Consider the kernel of B′. We choose the defuzzified output y′ such that it belongs to Ker B′. In fact,
as we show below, by the construction of {Ai, Bi} we see that Ker B′ is a singleton and this becomes the
defuzzified output.

Since T is a t-norm, we know that T (p, q) = 1 if and only if p = 1 and q = 1. Further, note that
p −→OP q = 1 if and only if p ≤ q and sm + sm+1 = 1 and hence we have

Ker B′ = {y|B′(y) = 1}

= {y|sm −→OP Bm(y) = 1}
⋂

{y|sm+1 −→OP Bm+1(y) = 1}

= {y|sm ≤ Bm(y)}
⋂
{y|sm+1 ≤ Bm+1(y)} .

Let αm = inf{α|sm −→OP α = 1} and βm+1 = inf{β|sm+1 −→OP β = 1}. Since −→OP has (OP), clearly
αm = sm and βm+1 = sm+1.

By the continuity and convexity of Bm, Bm+1 there exist am, bm, am+1, bm+1 such that Bm(am) =
Bm(bm) = sm and Bm+1(am+1) = Bm+1(bm+1) = sm+1. By the monotonicity of the implication in the
second variable, for every y ∈ [am, bm] we have that sm → Bm(y) = 1 and for every y ∈ [am+1, bm+1] we
have that sm+1 → Bm+1(y) = 1. Thus,

{y|sm ≤ Bm(y)} = [am, bm] ,
{y|sm+1 ≤ Bm+1(y)} = [am+1, bm+1] , and

Ker B′ = {y|B′(y) = 1} = [am, bm]
⋂

[am+1, bm+1].
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Claim: Ker B′ = {am+1} = {bm} 6= ∅.
Firstly, note that for any sm ∈ [0, 1] by the normality of Bm we have that Bm(ym) = 1 and hence

ym ∈ {y | sm ≤ Bm(y)} =⇒ ym ∈ [am, bm] 6= ∅. Similarly, ym+1 ∈ [am+1, bm+1] 6= ∅. It suffices to show that
am+1 ≤ bm from whence Ker B′ = [am+1, bm].

Note that since m < m + 1 and Bm, Bm+1 are adjacent fuzzy sets, either ym < ym+1 or ym > ym+1.
Without loss of generality, let us assume ym < ym+1. Now, from am+1 ∈ Supp Bm+1 we have that
ym ≤ am+1 ≤ ym+1. Similarly, ym ≤ bm ≤ ym+1. Hence, ym ≤ am+1, bm ≤ ym+1. Since,

sm + sm+1 = 1 =⇒ Bm+1(am+1) +Bm(bm) = 1,
=⇒ Bm+1(am+1) = 1−Bm(bm),
=⇒ Bm+1(am+1) = Bm+1(bm),
=⇒ bm ∈ [am+1, bm+1],
i.e., am+1 ≤ bm .

Now, to see that bm = am+1, note that since {Bi} form a Ruspini partition and Bm, Bm+1 are adjacent
fuzzy sets, we have Bm+1(am+1) = 1−Bm(am+1) and hence

Bm(am+1) = sm = Bm(bm). (17)

Since bm, am+1 ∈ Supp Bm ∩ Supp Bm+1 on which both Bm, Bm+1 are strictly monotonic ( but of opposite
types) we have that bm = am+1.

Since d is the MOM defuzzification, we get that g(x′) = d(B′) = am+1 = bm ∈ [ym, ym+1].

Claim: g is continuous on [a, b].
Let us consider an x′ ∈ [a, b]. Clearly, x′ ∈ [xm, xm+1] for some 1 ≤ m < n and g(x′) = bm ∈ [ym, ym+1].
To show that g is continuous at x′, we need to show that for any given ε > 0, we can find a δ > 0 such

that, for any x∗ ∈ [a, b], whenever

|x∗ − x′| < δ then |g(x∗)− g(x′)| < ε. (18)

Since Bm is strictly decreasing and continuous on [ym, ym+1], we have that B−1
m : [0, 1] −→ [ym, ym+1]

exists. Thus from (17) we have bm = B−1
m (sm).

Further, B−1
m is strictly decreasing and continuous on [0, 1]. Hence, for any ε1 > 0 there exists some

δ1 > 0 such that for any s∗m ∈ [0, 1],

|s∗m − sm| < δ1 =⇒ |B−1
m (s∗m)−B−1

m (sm)| < ε1. (19)

Since Am : [xm, xm+1] −→ [0, 1] is continuous, for any ε2 > 0 there exists some δ2 > 0 such that

|x∗ − x′| < δ2 =⇒ |Am(x∗)−Am(x′)| < ε2. (20)

Let s∗m = Am(x∗). Then g(x∗) = b∗m ∈ [ym, ym+1] and

|s∗m − sm| = |Am(x∗)−Am(x′)| , and (21)

|g(x∗)− g(x′)| = |b∗m − bm| = |B−1
m (s∗m)−B−1

m (sm)| . (22)

Now, let us set ε1 = ε and ε2 = δ1. Then, for δ = δ2, we have

|x∗ − x′| < δ =⇒|Am(x∗)−Am(x′)| < ε2 , dusing (20)
=⇒|s∗m − sm| < ε2 = δ1 , dusing (21)

=⇒|B−1
m (s∗m)−B−1

m (sm)| < ε1 = ε , dusing (19)
=⇒|b∗m − bm| < ε ,

=⇒|g(x∗)− g(x′)| < ε . dusing (22)
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Figure 3: An Illustrative Example for Step I in the proof of Theorem 7.1. The intersection of the thin-dotted and thick-dotted

lines with the x-axis give the points wi and w
(q)
i,i+1, respectively.

Thus for any ε > 0, there exists a δ > 0 such that, whenever |x∗ − x′| < δ then |g(x∗)− g(x′)| < ε, i.e.,
g is continuous on [a, b] .

Clearly, now,
|ym − g(x′)| < ε

2
or |ym+1 − g(x′)| < ε

2
.

Without loss of generality, let |ym − g(x′)| < ε

2
.

Further, since x′ ∈ [xm, xm+1] we have |h(x′)− ym| <
ε

2
. Putting them all together, we have

|g(x′)− h(x′)| ≤ |g(x′)− ym|+ |ym − h(x′)|

<
ε

2
+
ε

2
< ε.

Since x′ is arbitrary we have, max
x∈[a,b]

|h(x)− g(x)| < ε .

7.1. Some Illustrative Remarks on the proof of Theorem 7.1
In this section we illustrate some steps of the proof of the Theorem 7.1 through figures and examples for

better understanding.
Step I : Choosing the points of normality
Step I (a): A Coarse Initial Partition
In Fig. 3, the points w1, w2, . . . , w11 and the points z1, z2, . . . z8 (in paranthesis) are the points of normality

in the input and the output spaces, respectively.
Step I (b): Redundancy Removal and Reordering By rearranging the zi’s in ascending order and re-

naming them we obtain: u1 = z1 < u2 = z8 < u3 = z6 < u4 = z5 < u5 = z7 < u6 = z2 < u7 = z4 < u8 = z3.
Step I (c): Refinement of the input space partition: In Fig. 3, h(w1) = u1 and h(w2) = u6. Thus for

the consecutive points w1 and w2 the function values are u1 and u6, which are not consecutive.
Refinement Procedure:
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From Fig. 3, it can be seen that we have inserted points w
(1)
1,2, w

(2)
1,2, w

(3)
1,2, w

(4)
1,2 ∈ [w1, w2]. Proceeding

similarly, the following sub-intervals, shown in Fig. 3, have been refined: [w2, w3], [w4, w5], [w8, w9] and
[w9, w10].

Step II (a): Fuzzy Partition on the input space P[a,b] = {Ai}ni=1.
For instance, let each of the Ai’s (i = 2, . . . , n − 1) be a triangular fuzzy set, (i.e, each Ai is linear

and strictly increasing on [xi−1, xi], each Ai is linear and strictly decreasing on [xi, xi+1]), let A1 be right-
half-triangular, (i.e., A1 is linear and strictly decreasing on [x1, x2)) and let An be left-half-triangular, (i.e.,
An is linear and strictly increasing on (xn−1, xn]). Further, let all the Ai’s attain normality at xi. Then,
clearly, the fuzzy partition {Ai}ni=1 of the input space [a, b] is a Ruspini partition and each of the Ai’s is
continuous, convex, of finite support and Ai(xi) = 1.

8. FT
→D1

are Universal Approximators

While in the previous section, we dealt with fuzzy implications satisfying (OP), this class of fuzzy
implications is rather limited. In this section, we consider those positive implications whose natural negations
are Gödel negation.

Let us denote by RT→D1
the fuzzy relation where the fuzzy implication −→ is from I+

ND1
and the corre-

sponding FRI by FT→D1
=
(
PX ,PY , RT→D1

, d
)

where, PX = {Ai} and PY = {Bi}.
Once again, recall that from (FRI-R-Singleton), with R = RT→D1

for any y ∈ Y , we have

B′(y) = RT→D1
(x0, y) = Tni=1(Ai(x0) −→D1 Bi(y))

= T
(
A1(x0) −→D1 B1(y), A2(x0) −→D1 B2(y), . . . , An(x0) −→D1 Bn(y)

)
. (23)

We now show that the FRIs FT→D1
=
(
PX ,PY , RT→D1

,MOM
)

are universal approximators, i.e., they can
approximate any continuous function over a compact set to arbitrary accuracy.

Theorem 8.1. For any continuous function h : [a, b] → [c, d] over a closed interval and an arbitrary given
ε > 0, there is an FRI FT→D1

=
(
P[a,b],P[c,d], R

T
→D1

,MOM
)

with P[a,b] and P[c,d] being Ruspini partitions
such that the system function g approximates h uniformly, i.e., max

x∈[a,b]
|h(x)− g(x)| < ε.

Proof. Once again the proof is given in four steps. Steps I–III dealing with the construction of the input
and output partitions and the rule base are done in exactly the same way as in Steps I–III of the proof of
Theorem 7.1.

Step IV: Approximation capability of the output
Once again, let x′ ∈ [a, b] be the arbitrary given input. Clearly, x′ ∈ [xm, xm+1] for some m ≤ l − 1.

Once again, by our construction, x′ belongs to Am, Am+1. Thus, from (23),

B′(y) = T [Am(x′) −→D1 Bm(y), Am+1(x′) −→D1 Bm+1(y)]

= T [sm −→D1 Bm(y), sm+1 −→D1 Bm+1(y)] = T
[
B′m(y), B′m+1(y)

]
where sm = Am(x′) and sm+1 = Am+1(x′). Note that since Ai’s form a Ruspini partition, we have that
sm + sm+1 = 1.
Now since −→D1 is positive and such that x −→D1 0 = 0 for any x ∈ (0, 1], we have from Remark 6.7
that the supports of both the modified fuzzy sets B′m, B

′
m+1 are the same as those of Bm, Bm+1, i.e., Supp

B′m=Supp Bm and Supp B′m+1 = Supp Bm+1. Hence,

Supp B′ = Supp B′m ∩ Supp B′m+1

= Supp Bm ∩ Supp Bm+1

= Supp (Bm ∩Bm+1) = [ym, ym+1] . (24)
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Now, since (24) holds, we have

g(x′) = MOM(B′) ∈ Supp (Bm ∩Bm+1) = [ym, ym+1] .

Thus, |ym−g(x′)| < ε

2
and |ym+1−g(x′)| < ε

2
.Once again, since x′ ∈ [xm, xm+1] we have |h(x′)−ym| <

ε

2
.

Putting them all together, we have

|g(x′)− h(x′)| ≤ |g(x′)− ym|+ |ym − h(x′)| < ε

2
+
ε

2
< ε.

Since x′ ∈ [a, b] is arbitrary, we have that max
x∈[a,b]

|h(x)− g(x)| < ε .

9. Illustrative Examples

In this section we illustrate our results through some examples. We consider 3 functions one each from the
following three types or classes of functions, viz., those that are (i) purely monotonic, (ii) mixed monotonic
and symmetric, and (iii) mixed monotonic and asymmetric. We then approximate these functions by the
FRIs FT→OP

or FT→D1
as proposed and constructed in Sections 7 and 8.

We consider the Mean of Maxima defuzzification and the input and output space partitions are con-
structed as detailed in Section 7. However, we consider different fuzzy implication operators I coming from
both the classes, viz., IOP and I+

ND1
, in the examples.

In the given figures, the original functions h(x) are shown in thick lines, the approximating system
functions g(x) in thin lines and the bounds h(x)− ε and h(x) + ε are plotted using dotted −− lines.

Example 9.1. Let us consider the function

h(x) = ln(x), x ∈ [2, 7] ,

which is strictly increasing on the interval [2, 7] and let ε = 0.1. According to the proposed construction we
obtain 50 rules, since δ = ε = 0.1. We approximate h using the FRI FT→OP

, where the implication operator
employed in the relation RT→OP

is the Rescher implication IRS ∈ IOP \ I+

ND1
(see Table 1), which satisfies

(OP) and its natural negation NIRS
= ND1, but IRS is not positive. The function h and its approximation

g are shown in Fig. 4.

Example 9.2. Let us consider the function

h(x) = sin(x), x ∈ [−2π, 2π] ,

which is mixed monotonic and symmetric on the interval [−2π, 2π]. However, note that it is piecewise
strictly increasing or decreasing. Let ε = 0.1. According to the proposed construction we obtain 130 rules.
We approximate h using the FRI FT→OP

, where the implication operator employed in the relation RT→OP

is the  Lukasiewicz implication ILK ∈ IOP \ I+

ND1
(see Table 1) which satisfies (OP) and is positive, but

NILK
6= ND1. The function h and its approximation g are shown in Fig. 5.

Example 9.3. Let us consider the function

h(x) = −x4 + 2x2 − x, x ∈ [−2, 2] ,

which is both mixed monotonic and asymetric on the interval [−2, 2]. Let ε = 2.
It is clear from the proof of Theorem 7.1 that the δ obtained for a given ε is extremely conservative.

Thus, in this case we would get a δ = 0.0025. However, we have assumed δ = 0.25 and proceeded to verify
the approximation capability. According to the proposed construction, with δ = 0.25, we obtain 20 rules by
Step I(a) of Theorem 7.1, which are then refined to 38 rules by Step I(b) and Step I(c) of Theorem 7.1.
We approximate h using the FRI FT→D1

, where the implication operator employed in the relation RT→D1
is
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Figure 4: The natural logarithm function h(x) = lnx approximated within ε = 0.1 bound over [2, 7]

Figure 5: The function h(x) = sin(x) approximated within ε = 0.1 bound over [−2π, 2π].

the Yager implication IYG ∈ I+

ND1
\ IOP (see Table 1) which does not satisfy (OP), but is both positive and

NIYG
= ND1.

The approximated function is shown in Fig. 6. Fig. 6(a) gives the plot of the approximator g that was
obtained from the original rule base with 20 rules that were obtained before the refinement of the input space,
while Fig. 6(b) gives the plot of the system function g that was obtained by employing the refined rule base
with 38 rules.
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(a) Using 20 rules obtained from the unrefined partition

(b) Using 38 rules obtained from the refined partition

Figure 6: A 4th degree polynomial h(x) = −x4 + 2x2 − x approximated over [−2, 2] within ε = 2 bound.

10. Concluding Remarks

In this work, we provide a constructive proof of the universal approximation properties of FRIs when
implicative rules are employed, i.e., where the operation between the antecedents and consequents is taken
as a fuzzy implication.

We show that FRIs of the form FT→ =
(
PX ,PY , RT→, d

)
are universal approximators. The proof is

general enough for a large class of fuzzy implications I - without making any assumptions about the form or
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representation of the considered fuzzy implications - and is valid for any continuous function, not necessarily
monotonic and the partitions used are of the Ruspini type.

From Step I(a) of the proof of Theorem 7.1, note that the number of rules generated from the proposed
construction in Section 7 is dependent both on the function and the ε value given but not on the fuzzy
implication employed in FT→. It is also clear from the illustrated examples that even a coarser partition of
the input space than what is proposed can still approximate the given function within the bounds, i.e., even
with a bigger δ we can still get the same ε approximation. Of course, the δ itself can be adapted depending
on the prior knowledge of the slope of the given function to be approximated.

In the literature, it is typical to consider an R-implication obtained from a left-continuous t-norm in
the fuzzy relation R̂→ (see (7)) to model a rule base. However, in this work, the R that is considered
is much more general, i.e., the fuzzy implications considered come from a much larger set than just the
R-implications obtained from a left-continuous t-norm, which satisfy (OP) and hence ensure the coherence
of the implicative model of the rule base. Further, the concept of weak coherence proposed in this work
played an important role in enlarging the class of fuzzy implications that can be considered for implicative
models. Section 6.4 lists some families of fuzzy implications that are admissible under this context.

Recently, in [25], it was shown that the Bandler-Kohout Subproduct inference (BKS-R) employing the
Yager’s families of fuzzy implications [42], namely, f - and g-implications, and the rule base modeled by the
following relation,

RT→(x, y) = R̂Y (x, y) =
n∧
i=1

(Ai(x) −→Y Bi(y)), (25)

where −→Y is once again either an f - or a g-implication, i.e., −→Y belongs to IF ∪ IG (see Section 6.4),
have many desirable properties namely, interpolativity, continuity and robustness. Note that all f - and
g-implications are positive and those that belong to IF,∞ ∪ IG are such that their natural negations are the
Gödel negation. This work clearly demonstrates that such FRIs are also universal approximators.

Thus, we believe that these results are very much applicable in most of the practical and desirable
contexts as discussed in these works [17, 40, 39] and show that a much larger class of fuzzy implications
other than what is typically considered in the literature can be employed meaningfully in FRIs based on
implicative models.
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