PSEUDO-DIFFERENTIAL OPERATORS

Prashant

A thesis presented for the degree of
Masters in Sciences

AR MNP Hee eexET

Indian Institute of Technology Hyderabad

Guide: Dr. D. Venku Naidu
Department of Mathematics



Acknowledgement

This thesis has been kept on track and has been seen through to completion with the support
and encouragement of numerous people including my well-wishers, my friends, colleagues and
guide. I would like to thank all those people who made this thesis possible and an unforgettable
experience for me. At the end of my thesis, it is a pleasant task to express my thanks to all
those who contributed in many ways to the success of this study and made it an unforgettable
experience for me.

At this moment of accomplishment, first of all I pay homage to my guide , Dr. Venku Naidu
Dogga. This work would not have been possible without his guidance, support and encour-
agement. Under his guidance, I successfully overcame many difficulties and learned a lot. He
used to review my thesis progress, give his valuable suggestions and made corrections. His
unflinching courage and conviction will always inspire me, and I hope to continue to work with
his noble thoughts. I am deeply greatful to him for his invaluable help.

My special feeling of gratitude to my loving parents and my friend Ronit Sircar, who helped
me a lot in writing this thesis and also my classmate specially Pradeep for his support. At
the end, I would like to thank my special one for her inspiration, infinite support and cheerful
encouragement as without her help it might not be possible for me to write this thesis in such
a small period of time.

PRASHANT



APPROVAL SHEET

This thesis entitled “PSEUDO DIFFERENTIAL OPERATORS * by PRASHANTIS
approved for the degree of MASTER OF SCIENCE.

Vga

{Signature of the supervisor)

Dy Veasker Mou e

{(Name of the supervisor)

Date: ~B£D--§:- /m)’,
?iacg@‘fﬁjm o d




sreeft e s davmare

Indian Institute of Technolagy Hyderabad

Declaration

I hereby declare that the matter embodied in this report is the result of investigation
carried out by me in the Department of Mathematics, Indian Institute of Technology Hyderabad
under the supervision of Dr. Venku Naidu Dogga.

In keeping with general practice of reporting  scientific observations, due

acknowledgement has been made wherever the work described is based on the findings of other

investigators.
\ s
\A/U” 1; m’qu%
Signature of the Supervisor Name of the student: Prashant
(Dr. Venku Naidu Dogga) Roll No.: MA13M1007



Contents

1 Discrete Fourier Transform

1.1 Basic Concepts . . . . . . . . .
1.1.1  Signal . . . . . ..
1.1.2  Fourier and Inverse Fourier Transform . . . . . ... ... ... ... ..
1.1.3 Translation . . . . . . . . . ...

1.2 Operators and Fourier Multiplier . . . . . . . ... ... ... ... .. ...,
1.2.1 Translation-Invariant Operator . . . . . . . . .. .. ... . ... ....
1.2.3  Circulant Matrices . . . . . . . . . . . ...
1.2.4  Convolution operator . . . . . . . . . . . ...
1.2.5 Fourier Multiplier . . . . . . . . . ...
1.2.6  The Fast Fourier Transform . . . . ... ... . ... ... ........

1.3 Time - Frequency Analysis and Wavelets . . . . . . ... ... ... ... ....
1.3.1 Time-Frequency Localization . . . . . .. .. .. ... ... ... ...,
1.3.2 Time-Frequency Localized Basis . . . . . . . . .. ... ... ... ...,
1.3.3  Wavelet Transform and Filter Banks . . . . . . . ... ... ... ....
1.3.4 Haar Wavelet . . . . . . . . . . ... ...
1.3.5 Multiresolution Analysis . . . . . . . . .. ...
1.3.6  Daubechies Wavelet . . . . . . . .. .. ... L
1.3.7 The Trace . . . . . . . . . . e

2 Pseudo-Differential Operator on S!

2.1 Hilbert Space . . . . . . . . e
2.1.1 Definition and basic results . . . . . . ... ... L
2.1.2 Bounded Linear Operator . . . . . . .. .. .. ... ... ... .....
2.1.3  Self-Adjoint Operators . . . . . . . . . . . ...
2.1.4 Compact Operator . . . . . . . . . . . . . . .
2.1.5 The Spectral Theorem . . . . . . . . . ... ... ... ... .. .....

2.2 Pseudo-Differential Operator on St . . . . . . . . . ... ... ... ...
2.2.1 Fourier Series . . . . . . . . ..
2.2.3  Fourier Multiplier on S* . . . . . .. ... ...
2.2.5 Pseudo-Differential Operator . . . . . . . . . . ... ... ... ......
2.2.6  Pseudo-Differential Operatoron Z . . . . . . . . . .. . . ... ... ...

3 Pseudo-Differential operator on R"

3.1 Fourier Transform on R™ . . . . . . . . . . ..
3.1.1 Notations and Preliminaries . . . . . . . . . . . . .. ... ... ....
3.1.2 Remarks and Formulas . . . . . . . . .. . ... ... ...
3.1.3 The Convolution . . . . . . . . . . . . . . .
3.1.4 Fourier Transformation . . . . . . . . . . . . . ... ... ... ... ..
3.1.5 Distribution . . . . . . ...

34
34
34
37
39
40
40
41
41
45
49
53



3.2 Pseudo-Differential Operator . . . . . . . . . .. ... L 65

3.2.1
3.2.2
3.2.3
3.2.4

Definition And Asymptotic Expansion . . . . . ... ... .. ... ... 65
Partition of Unity . . . . . . . . . .. .. 68
Product of Pseudo-Differential Operators . . . . . . . . . . .. ... ... 70
LP-Boundedness Of Pseudo-Differential Operators . . . . . . ... .. .. 73



Chapter 1

Discrete Fourier Transform

1.1 Basic Concepts

In this section we are going to study about the notations and the basic definition of Finite
Fourier transform. We will start with the notation of a signal, then we will define Fourier
transform, Fourier matrix, inverse Fourier transform and at the end translation of a signal in
this section.

1.1.1 Signal

Let C be the set of complex numbers. For N > 2, CN represents a N—dimensional inner
product space.

Now define a set Zy = {1,2,....N — 1} and a function z : Zy — CV Hence the function z can
be viewed as a vector in CV. In other words, we can think of function z : Zy — C" as a finite
sequence. If we let L?(Zy) be the set of all finite sequences then we can get L*(Zy) = CV.
These finite sequences, i.e. functions on Zy are called as digital signals in electrical engineering.
The set {e1,ea,...,en_1} is defines as :

0
0

0
where e,, in m ition and zeros where.
here has 1 in the m!* position and zeros elsewhere

Proposition 1.1.1. {eg, ey, ...,exy_1} is an orthonormal basis for L*(Zy).

Now let {fo, f1,--- fv-1} € L*(Zy) defined as

fm(0)
Frn = fm:(l) m=0,1,...,N -1
fm(N = 1)
where . |
fm(n) = —=€™"~ n=0,1,..N — 1.

VN



Proposition 1.1.2. {fy, fi,..., fx_1} is an orthonormal basis for L*(Zy).
Note 1.1.3. {fo, fi... fxn_1} is known as orthonormal Fourier basis for L*(Zy).
Based on the above orthonormal basis ,we have the following :

Proposition 1.1.4. For z,w € L*(Zy) we have

—1

N
1.z =Y (2, fu)fn

n=0

—1

( ), fa)

MZ

2. (z,w) =

3

%1l =5 I folP

Definition 1.1.5. Let z € L*(Zy) then form =0,1,..., N — 1 we have

2, f) = — 7162”7""/Nzn.
(2, fm) \/—z% (n)

1.1.2 Fourier and Inverse Fourier Transform

Definition 1.1.6. Let z € L*(Zy) then we define 2 € L*(Zy) as

£(0)
) (1)
z = ]
Z(N —=1)
where
N-1
zZ(m) = e Ny(n)  ,m=0,1,...,N—1
n=0
Theorem 1.1.7. For z,w € L*(Zy) we have
1. The Fourter Inversion Formula
| Nl
z(m) _ N ZA/( )62777,77171/1\7
n=0
2. Parseval’s Identity
o) = = 3 () = (2.
Z, W) = — Zn)w(n) = —={(z, w
) N nZO N )

3. Plancherel’s Formula Nl
L M-
2 S0 (2
] ; |2(n)
To understand more about the Fourier inversion formula we have following :
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Definition 1.1.8. Let {Fy, F,... Fx_1} € L*(Zy) defined as

F(0)
Fr(1)
F, = . m=20,1,...,.N—1
Fm(N - 1)
where ]
F,, = Nez’”"“"/N n=0,1,.N—1.

The set {Fy, F, ... Fx_1} € L*(Zy) is orthogonal with N signals in L?*(Zy) and also known
as Fourier basis for L?(Zy) Hence, the Fourier inversion formula will become
N-1
z= zZ(n)F,
0

3
I

Proposition 1.1.9. The matriz representation of the Fourier transform Fyz, : L*(Zy) —
L*(Zy) is given by

=

Fozlm) = 3 2(n)uy”

n

Il
o

where

—omi
wN =¢€ /N

So if we let (2 is the Fourier matrix then it is defined as 0y = wi™ where 0 <m,n < N—-1
i.e.

11 1 1 1
1 WN w3 w3 . wh !
Ov=|1 wk wh W WD
I wyN -1 wjz\,(N_l) w%N_l) . wa_l)(N_l)
and
zZ= QNZ.

Proposition 1.1.10. Finite Fourier transform of a given signal z € L*(Zy) is calculated by

zZ= QNZ.

11
%= (1)

Definition 1.1.12. Let z € L*(Zy) given by

Examples 1.1.11. Let N =2 Then

S = O

Then



Definition 1.1.13. Let w € L*(Zy) then we define inverse Fourier transform w € L*(Zy) as

w(0)

y w(1)

w = .

w(N —1)
where
| Nl _
w(m) = N w(n)e™™"™  m=0,1,...,N—1.
n=0

Proposition 1.1.14. Let z € L2(Zy) the z = =.

Proposition 1.1.15. The matrixz representation of the inverse Fourier transform .FZ_; L LA (Zyn) —
L*(Zy) is given by

Then

— 0L, _
2=, w=

S = O

Remark 1.1.18. {Fy, F1,... Fx_1} € L*(Zy) defined as

F(0)
Fn(1)
F, = . m=0,1,...,N—1
Fm(N - 1)
where 1
F, = Ne””’"”/N n=0,1,..N —1

is the Fourier basis for L*(Zy).



.We assume that N is very large and even. For simplification, neglect the % part in F},, and
we assume only the real part of €™~ i.e. cos((2mmn)/n) If m =0 we will get the value 1 for
V n € (Zy). For m=1 we will look at the graph of

f(x) = cos(Gr)/n)

on [0, N] .So the resulting graph of the f(x) has N evenly spaced sample point on one cycle.
Similar,argument will hold for all values of m =0, 1,...,N/2 with m cycles. For the remaining
values of m we will get the reverse implication. Hence wave F,, increases from 0 to N/2 and
decrease from N/2 to N .So the frequency of the wave F}, is high when it is near to mid point
and low when it is near to end points.

Remark 1.1.19. From the above Remark we conclude that Z(m) measures the amount of wave
F,, that is needed in composing the signal z. If |2(m)| is big at m near N/2 then the signal z has
strong high frequency components and if |Z(m)| is big at 0 or N — 1 then the signal z has strong
low frequency components .

1.1.3 Translation
Definition 1.1.20. The signal z is said to be periodic if

z(n+ N)=2z2(n), necZ.

Definition 1.1.21. Let z be a periodic function on Z with the period N then for every integer

k
k+N—-1 N-1
> 2n) =) z(n)
n=~k n=0

Remark 1.1.22. Let z € L*(Zy) then the Fourier transform % and the inverse Fourier trans-
form Z are periodic with period N.

Definition 1.1.23. Let z € L*(Zy) and k € Z then we define function Rz on Z by
(Riz)(n) =2(n—k) ne€Z.

Definition 1.1.24. Let z € L*(Zy) and k € Z then ¥ m € Z we have
(Ri2)"(m) = e "™V 3(m).

Definition 1.1.25. Let z € L*(Zy) then we define z € L*(Zy) as

2(0)
z(1

z(N —1)

~—

I
I

Proposition 1.1.26. Let 2 € L*(Zy) then

Z(m) = 2(=m).
Definition 1.1.27. Let z € L*(Zy) then z is said to be real if Z = 2.
Theorem 1.1.28. Let z € L*(Zy) then z is real iff

zZ(m) = 2(—m), me€Z.

10



1.2 Operators and Fourier Multiplier

As we know that linear transformation plays an important role in Mathematics, In this chapter
we are going to study about some operators on L?(Zy) and will try to find out the diago-
nalizablity of these operators. Mainly we are going to study about translation-invariant op-
erator,circulant operator, convolution operator and Fourier multiplier and try to find out the
diagonalizablity of these operators.

1.2.1 Translation-Invariant Operator
Definition 1.2.1. A map A : L*(Zyx) — L*(Zy) is linear if
A(az + bw) = aA(2) + bA(w) V z,w € L*(Zy) and a ,b € C.
A is said to be translation-invariant if
AR, = RyA YEkeZ.

Remark 1.2.2. A translation-invariant linear operator A is the mathematical analog of a filters
that transmit the signal in electrical engineering . Its function is to transmit the input signal z
into the output signal Az in L*(Zy). As, A is a linear operator, so if we delay or advance an
mput signal by a certain amount, then the output signal should be delayed or advanced by the
same amount.

The chief result which in this section is as follows :

Theorem 1.2.3. Let A : L*(Zy) — L*(Zy) be a translation-invariant linear operator then for
m=0,1,2,...,N — 1, F,, is an eigenfunction of A.

Corollary 1.2.2. Let A : L*(Zy) — L*(Zy) be a translation invariant operator F = {Fy, Fy, ..., Fx_1}
be the Fourier basis for L*(Zy) Then the matriz Ap for A with respect to F is diagonal.

To understand the above theorem let’s take 3 = {29, 21,...,2ny_1 is a a basis for L*(Zy) .
Then for z € L*(Zy) ,we have
N-1
VARS Q2
k=0
where ¢, e CVi=0,1,2,... N — 1.
Definition 1.2.4. We define (2)s by
ap
ax
()s=1 .
aN-1

and call zg are the coordinate of z with respect to [3.

Let A be the matrix corresponding the basis § and let (A)g = (), m,n =0,1,...,N —1
and «a,,, € C, then

N-1
E A0k
k=0

(A)p(2)p = kgo O.Lkalk

N-—1
> AkO(N-1)k
k=0

11



And when we will calculate, (Az)z we will get

Remark 1.2.5. (Az)s = Apzs.

Theorem 1.2.6. A : L*(Zy) — L*(Zy) be a translation-invariant operator iff A commutes

1.2.3 Circulant Matrices

Let {@mn }ocm nen—1 Pe an N x N matrix. Then we define a,,, V' m,n € Z by periodic extension
to all of Z in each of the variable in m and n we expect that

Am+Nn = Amn
and
Amn+N = Amn-
From now onwards we assume the N x N matrix is periodic.

Definition 1.2.7. Let C' = {amn} o<,y nen_1 be an N x N periodic matriz, then we say C to be
circulant if
m+1,n+1 = Gmn W m,n € 7.

Let C' = {amn}yermnen_1 N X N be a circulant matrix, then (n+ 1) column of the matrix
is given as

ag,n+1 Qon
a1 n+1 a1n
= Rl
am+1,n+1 am+1,n
AN—-1n+1 AN-1,n
Examples 1.2.8.
a b c d
d a b ¢
c d a b
b ¢ d a

Theorem 1.2.9. Let A : L*(Zy) — L*(Zy) be a translation-invariant linear operator Then
Ag the matriz of A with respect to the standard basis is S circulant.

Theorem 1.2.10. Let A and B are two ciculant matrices then we have the following :

1. Product of A and B is again a circulant matriz.
2. Adjoint of A is again circulant.
3. A s translation-invariant.

4. A is normal.

12



1.2.4 Convolution operator

Definition 1.2.11. Let z,w € L*(Zy) Then we define the signal z x w € L*(Zy) as

=2

(zxw)(m) = z(m —n)w(n), m e Z.

3
Il
=)

We call z % w is the convolution of the signals z and w.

Definition 1.2.12. Let b € L*(Zy) Then we define the convolution operator Cy : L*(Zy) —
L*(Zy) with the kernel b as
Coz=bxz, z¢€L*Zy).

Remark 1.2.13. C, : L*(Zy) — L*(Zy) is a linear operator.

Definition 1.2.14. Let C = {amn}ogm,ngz\f—l be anN x N circulant matriz, then ¥ z € L*(Zy)
Cyz =Cz,
where b is the first column of C i.e.

Q0,0
1,0

b=
aN—-1,0

Proposition 1.2.15. C, : L*(Zy) — L*(Zy) be a convolution operator with kernel b where
b€ L*(Zy).Then Cy is translation invariant operator.

Remark 1.2.16. A: L?*(Zy) — L*(Zy) be a linear operator then following are equivalent:
1. A is translation-invariant.
2. The matrix Ag with respect to standard basis is circulant.
3. A is convolution operator.

Definition 1.2.17. A signal § € L*(Zy) is of the form

O =

0
is called as unit impulse. & has the property that for any z € L*(Zy),
Z2%x0 = 2.
Proposition 1.2.18. Let z,w € L*(Zy). Then

—

zxw(m) = z(m)w(m) m € Z.

13



1.2.5 Fourier Multiplier
Definition 1.2.19. Let z,w € L*(Zy) Then we define zw € L*(Zy) as
2(0)w(0)
2(0)w(0)
2w = :
(N = D)w(N — 1)
Definition 1.2.20. Let 0 € L*(Zy) and let T, : L*(Zy) — L*(Zy) be a mapping defined as
T,z = (02)Y, z€ L*(Zy).
T, is known as Fourier multiplier or pseudo-differential operator.

Remark 1.2.21.
(T,2)"(m) = o(m)z(m), m € Z.

Proposition 1.2.22. Let Cy : L*(Zy) — L*(Zy) be a convolution operator where b € L*(Zy)
Then

where o = b and vice versa

Theorem 1.2.23. Let A : L*(Zy) — L*(Zy) be a linear operator, then A is Fourier multiplier
iff Ap, the matriz of A with respect to the Fourier basis F is a diagonal matriz. Moreover,its
diagonal entries are the values of o.

Conclusion

From the above four section we have the following remarks :

Remark 1.2.24. Let A : L*(Zy) — L*(Zy) be a linear operator, then following are equivalent

1. A is convolution operator.
2. A is a Fourier multiplier.

3. The matriz of A with respect to Fourier basis F, Ap is diagonal.

Remark 1.2.25. Let A : L*(Zy) — L*(Zy) be a linear operator, then following are equivalent

1. A is translation-invariant linear operator.

2. The matrix Ag with respect to standard basis is circulant.
3. A is convolution operator.

4. A is a Fourier multiplier.

5. The matrixz of A with respect to Fourier basis F, Ap is diagonal.

The results obtained above can be used to obtained the eigenvalues of the filters given by
translation-invariant linear operator.

Theorem 1.2.26. Let A : L*(Zy) — L*(Zy) be a translation-invariant operator. Then the
eigenvalues of A can be given by

0(0),0(1),...,0(N —1),

where o can be calculated by using the above remark.

14



1.2.6 The Fast Fourier Transform

The Fourier inversion formula given in chapter 1 gives the evaluation of signal z € L*(Zy) as
(Z)F =Zz= QNZ = QN<Z)S~

But this evaluation require N? complex multiplication as all entries of Q5 are nonzero. But
when N is too large then it is very difficult to compute the signal z even by any computer. To
overcome this problem, Cooley and Tukey gave a technic by dividing the Fourier matrix 2y
given as follow:

Assume that N is powers of 2 i.e. N = 2! for some positive integer 1.

o ]N/2 DN/2 QN/Q O
Qy = ([Nh Duy, 0 Qup P,
where In/, is the identity matrix of order /2, Qn/, is the Fourier matrix with order /2, Dn/,is

the diagonal matrix with order N/2 and entries given by 1,wy,w%, ... ,w;\v,ﬁ/ * and Py is the
permutation matrix obtained by permuting even before odd. We know that

1 1 1 1
1 — =1 1
=1y 1 1
1 ¢+ -1 —
Then
10 1 0 1 1 0 0 1000
g, |01 0 —i|[1l-10 0 0010
7110 =1 0 0 0 1 1 0100
01 0 0 0 1 -1/ \0 000

Theorem 1.2.27. The number of complex multiplication using fast Fourier transform is at
most

1 1

1.3 Time - Frequency Analysis and Wavelets

In this chapter our main focus will be on time-frequency localized basis.We will show that we
can not always find one signal in L?(Zy) with which we can get an orthonormal time-frequency
localized basis. Although, by using two signals we can do that. As we know wavelet is an very
important part of analysis. By using the the concept of time-frequency localized basis we will
define the wavelets which includes mainly Haar wavelet and Daubechies wavelet. At the end,

we will define the trace of a Fourier multiplier. For the complete Chapter assume that N
= 2M.

1.3.1 Time-Frequency Localization

Definition 1.3.1. Let z be a signal in L*(Zy). Then z is said to be time-localized near ng if all
component z(n) are 0 or relatively small except for a few values of n near ny.

Definition 1.3.2. An othonormal basis 8 of L*(Zy) is said to be time-localized basis if every
signal z in the basis [ is time-localized.

15



Benefits 1.3.3. Let 8 = {zy,21,...,2nv_1} be a time localized basis for L*(Zy).Then for any
z € L*(Zy), we have {ag,a1,...,an_1} € C>

N-1
z = E ApZn-
n=0

1. Now let’s assume, we want to study the signal z near the point ng .So to do this we just
need to concentrate on the basis elements which are time-localized near ng and will ignore
the rest and hence our sum reduces to a lower sum.This process is known as Signal
CcOmpression.

2. Let us consider n to be a space variable instead a time variable.Suppose that a coefficient
i the given sum is very big. Then by using a space-localized orthonormal basis,we can
locate and concentrate on this big coefficient. This is the idea underlying medical imaging.

Definition 1.3.4. Let z be a signal in L*(Zy).Then z is said to be frequency-localized near nyg
if all component Z2(m) are 0 or relatively small except for a few values of n near ny.

Definition 1.3.5. An orthonormal basis 8 of L*(Zy) is said to be frequency-localized basis if
every signal z in the basis (B is frequency-localized.

Benefits 1.3.6. The main benefits of a frequency-localized basis are as follow:
1. Fast Fourier transform can be performed by using frequency-localized basis.

2. Suppose we want to remove a high frequency component of a given signal without affecting
adversely and quality of the resulting signal. Then we need to know which frequency to
remove and this information is provided by frequency-localized basis mainly Fourier basis.

Definition 1.3.7. Let z € L*(Zy), then the involution z*of the signal z is defined as :

2*(n) = z(—n).

Proposition 1.3.8. Let z € L*(Zy), then

Lemma 1.3.9. Let z,w € L*(Zy), then
ZRW =W 2.

Proposition 1.3.10. Let z,w € L*(Zy), then

(w*)* = w. (1.1)
(zxw")(m) = (2, Rpw).
(zxw)(m) = (z, R,w").

Remark 1.3.11. Let = {Row, Riw, ..., Ry_jw} be an orthonormal basis obtained by suc-
cessive translation of the signal z. A simple calculation show that the change in the basis from
standard to [ the coefficients of z with respect to [ i.e. (z)s is given by



Lemma 1.3.12. Let z,w € L*(Zy), then
(Rjz, Rkw) = (2, R;_x) Vi ke€Zy,j<k.

Theorem 1.3.13. Let w € L*(Zy), then { Ryw, Ryw, ..., Ry_jw} is an orthonormal basis for
L*(Zy) iff

A

lw(m)| =1, m € Z.

Proof. We know that R
d(m)=1 meZ.

Also {Row, Ryw, ..., Ry_jw} is an orthonormal basis for L*(Zy). So, we will get

1, k=0

(w, Ryw) = {o k40

which implies
(w, Ryw) = (wxw*)(k) k€Z,

and hence
2

1 =06(m) = w(m)w*(m) = w(m)w(m) = [b(m)[*.
In the same way, we can get the converse part. O]

Remark 1.3.14. Let w € L*(Zy) be such that w is time localize near some point ng Then the
ortonormal basis f = { Row, Ryw, ..., Ry_jw} is a time localized basis and also we can perform
fast Fourier transform on this basis. But above theorem tells us that this basis need not be a
frequency-localized basis.

1.3.2 Time-Frequency Localized Basis

Definition 1.3.15. Let N=2M Suppose that 3 ¢, p € L*(Zy) > 8 = {Ro¢, Rod, .. ., Rops 29} U
{Rop, Rop, . .., Ropr_20} is an orthonormal basis of L*(Zy). Then we call B is a time-frequency
localized basis. The signals ¢ and ¢ are called mother wavelet and father wavelet for the
time-frequency localized basis 3 of L*(Zy) respectively. We also write this basis as {R2j¢}jj\gl U

{Ryje} 5
Definition 1.3.16. Let N=2M and z € L*(Zy), then we define z+ € L*(Zy) by
zt(n)=(=1)"2(n) ne€Z.
Proposition 1.3.17. Let z € L*(Zy), then
(+*)"m) = 2m + M),
Remark 1.3.18. Let z € L*(Zy), then ¥ n € Z we have
(z+27)(n) = 22(n).

Lemma 1.3.19. Let ¢ € L*(Zy), then {Rop, Ro®, . .., Ropr 20} is an orthonormal set with M
distinct signals iff

B(m)2 + |d(m+ MPE=2, m=01,...,M—1.

17



Definition 1.3.20. Let ¢, ¢ € L*(Zy), then ¥ m € Z, we define the 2 x 2 matriz Ay (m) as
1 $(m) ¢(m) >
Ayom) = — | - ) .
o) vﬁ<wm+M)wm+M>
We call this Ay ,(m) matriz is the system matriz of ¢ and ¢ at the integer m.

Theorem 1.3.21. Let ¢, o € L*(Zy), then the set {jogb}jj\ial U{R2j90}j]\i61 is a time frequency
localized basis for L*(Zn) iff Agp(m) is a unitary matriz for m= 0,1,2,... ,M-1. Equivalently,
B is a time-frequency localized basis of L*(Zy) iff

d(m)|* + |(m + M) = 2. (1.4)
[p(m)[* + |@(m + M) = 2. (1.5)
d(m)@(m) + ¢(m + M)G(m + M) = 0. (1.6)

Proof. Suppose (3 is the orthonormal basis for L*(Zy) and hence {jogb}j]\igl and {jow}j]‘igl
are orthonormaal sets with M distinct signals in L?*(Zy) and hence from last lemma equation
first and second follows. Now to prove equation third, orthonormality of 5 gives,

(g, Rop) =0 k=0,1,....M—1,
and hence from proposition,
(p*¢*) = (&, Ropp) =0 k=0,1,....M—1,
and hence by using remark, we will get

0

0
(P )+ (dxe")T =] .|,

and by taking the Fourier transform, we will get

$(m)@(m) + d(m + M)(m + M) = 0.
Conversely, let us assume all three equations holds, then by lemma {joqb}jj\igl and {jogp}j]‘igl
are orthonormaal sets with M distinct signals in L?(Zy). Now by using periodicity argument,
we will get that

~ ~

o(m)p(m) + o(m+ M)p(m+ M) =0 m e Z,

and hence
{(p*¢") +(ox¢")"} =0 melZ
Then
0
* *\+ O
(@x@")+(dxe)" =1 .|,
0
and hence

(¢, Rorp) = (¢ * ") (2Kk),
so we will get 5,k € {0,1,... . M —1}, j <k
(Rajb, Rapep) = (&, Rap—ajp) = 0.
Thus g = {Rquﬁ}j]\igl U {jogo}j]vigl is an orthonormal set in L?(Zy) with N distinct signals and

hence is an orthonormal basis for L?(Zy). ]
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Remark 1.3.22. So the relation between mother and father wavelet can be obtained as follow :

|Qg(m0)|2 = 27
and )
|¢(mo + M)|* = 0.

For some integer my € Z ,we will have
‘@(mo + M)|2 = 27

and hence
|95(m0)’2 =0.

This means that for an integer mg the amount of the wave F,,, in the father wavelet ¢ is 0,
while the amount of the same wave F,,, in the mother wavelet ¢ s full that is 2. So, we can
construct the mother wavelet and the father wavelet in such a way that ¢ contains only low
frequency wave and @ contains only high frequency wave.

1.3.3 Wavelet Transform and Filter Banks

Let g = {joqb}j]\igl U {jogo}jj\igl is a time frequency localized basis for L*(Zy), with ¢ as
mother wavelet and ¢ as father wavelet. Let z € L*(Zy) and $ is an orthonormal basis for
L2(ZN), then

Z 2, Ror) Rop + Z 2, Rop) Rorep,
k=0 =
(z, Rog) (=% ¢")(0)
(z, R29)) (=% 6")(2)
| Rawad) | _ | (zroar—2) "
’ (z, Row) (2% ")(0) '
(2, Rap) (2% ©")(2)
<Z, RQ.M_2(70> (Z * ¢*)(2M — 2)

Let Vy, be the N x N matrix given by

Voo = {Rod|Rod| - .. [Rani—26|, [Row|| Rawp| - - . [Rans—20]}-

Thus, we get
2= (2)s = Vouel2)s;

or

(2)5 = V¢_7<;z z € L*(Zy).
Definition 1.3.23. Let Wy, : L*(Zy) — L*(Zy) be defined as
Woe = Voo

Then we call Wy, is the wavelet transform associate to the mother wavelet ¢ and the father
wavelet .
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Remark 1.3.24. The wavelet Transform Wy, is the change of the basis from standard basis
to a time-frequency localized basis of L*(Zy) generated by ¢ and .

Remark 1.3.25. As = {Rqub}jNigl U {jogo}j]\igl is an orthonormal time-frequency localized
basis of L*(Zy), which implies the matriz V., is a unitary matriz. It follows that

_ -1 _ *
Weo=V,o = Vi
Hence, an explicit formula for the wavelet transform Wy, is available.
(2)s = Wopz.

As we know from our earlier discussion the computation of z5 requires N? complex multiplica-
tion which is very difficult to do as N is very large. So we always try to use the formula given
in (x) for the computation of (z5) as we can perform Fast Fourier Transform on (x). Now we
are going to study more about (x).

Definition 1.3.26. Downsampling Operator : A linear operator D : L*(Zy) — L*(Zyy) is
defined as _
(Dz)(n) =2(2n) n=0,1,,M —1 Vz & L*(Zy).

Examples 1.3.27. Let z € L*(Zy is given by

~J 00 UL OO = W~ N

Then Dz is a signal in L*(Zy) given by

Dz

co O W N

Thus the linear operator D discard the values at evaluated as the odd integers. In Engineer-
ing Language D is written as |2. By using the the downsampling operator the computation of
(2)g ,2 € L*(Zy) is given schematically by the following process.

s zx Q" — D(z % ¢¥) D(z x ¢*) _ 0,
~ {z*gp* — D(z % ¢*) ~ {D(z*gp*) (2)s-

The above process is known as filter bank in multi-rated signal analysis or subband coding.
This filter bank is use to compute W, ,z in L*(Zy;) by electrical engineer people.

Theorem 1.3.28. Let ¢ and ¢ are the mother and father wavelet of a time-frequency localized
basis of L*(Zyr) then

W,z — {D<z ) ),



Definition 1.3.29. Upsampling Operator : A linear operator U : L*(Zy;) — L*(Zy) is
defined as

) 2(5)  if nis even
(U=)(n) = {O if nis odd

The operator U double the size of z by inserting 0 after every entry of z. In engineering
language denoted by 12 . This is a filter bank to compute the inverse wavelet transform Wy ;z
for 2 € L*(Zy).

Examples 1.3.30. Lets look at the signal

o O W N

which 1s obtained after the downsampling the signal

~ 00 UL OO = W~ N

Now upsampling of w is given by

UDz =

O 00O OO WO

As we can see UDz # z. In fact
1 +
UDz = 5(2 +2z7).

So now we can give a two phase filter bank in which, the first phase is consist of analysis of a
signal z € L*(Zy) using the wavelet transform Wy ,z and the second phase is the reconstruction
of the signal by using the inverse wavelet transform W ;z.

Theorem 1.3.31. Let z € L*(Zy) then

mﬁ{w@ﬂ%D@*W%%UD@*W%%¢*D@*W) i

2" = D(zx ") = UD(z % ¢*) — @ * D(z % p*)
where the final step in the filter bank is given by

z={¢* D(zx¢")} +{p*D(z*¢")}.
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Proof. Let

w(0)
w(1)
w= )
w(N —1)
Then by using the definition of downsampling operator
w(0)
w(2
Dw = ( )
w(2M —2)
Now by using the definition of upsampling operator we will get
w(0)
0
we |
UDw = 0 :§(w+w+),
w(2M — 2)
0

thus )
UD(z%67) = S{(z% ") + (2%6")7} meZ,

if we take finite Fourier transform on both side we will get

{UD(z % ¢7)}"

Similarly,

wm;amam+am+MmW+Mn mez (1%)

~

{UD(z % 0"} = cﬁ(m)%{é(m)g@(m) +ziZm+ M)p(m+ M)} meZ (2%).

If we add the equations (1) and (2x) , and by using the fact that ¢ and ¢ are the mother and
father wavelet of the the frequency localized basis i.e.
[o(m)[* + [g(m)]* =2,

and

~

S(m)d(m + M) + ¢(m)@(m + M) =0,
we will get
{{UD(z % ¢")} +{UD(z * p}}" = 2(m),

and hence by using the inverse Fourier formula we will get

{p+UD(z*¢")} + {p*UD(z % p} = z(m) Vm € Z.

Hence from the Theorem above, we can compute inverse wavelet transform W, ; by

{UD(z*gb*) — ¢ D(z % ¢")

+ = z.
UD(z % ¢*) — @ * D(z x ¢*)

Remark 1.3.32. The upsampling operator and the downsampling operators are conjugate to
each other i.e.
(Dz,w) = (z,Uw) Vz,w e L*(Zy).
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1.3.4 Haar Wavelet
Let N = 2! where [ is a positive integer and let z € L?(Zy), defined as

2(0)
z(1)
z = .
z(N —1)
Then we have the following definitions :
Definition 1.3.33. Let a be defined as
Qo
ay
a= ,
apr—1

where
_ 2(2n) +2(2n+1)

On = ,
V2

This type of signal is known as trend of the signal z.

n=0,1,, M —1.

Definition 1.3.34. Let a be defined as

where
~z(2n) —z(2n +1)

an_ )
V2

This type of signal is known as fluctuation of the signal z.

n=0,1,,M—1.

Definition 1.3.35. Let W : L*(Zy) — L*(Zy) be a linear operator, defined as

Wz = (2) 2 € LA(Zy).

Where a is the trend of the signal and d is the fluctuation of the signal z € L?(Zy). This
linear operator is known as Haar transform. More precisely, it is known as first level Haar
transform.

o (a0 + do)/v/2 o
(a0 — do)/ V2
(CLl -+ dl)/ﬁ ’
w! 6”50‘1 = (@ —d)/V2 |, a“go‘l € L*(Zy).
dy (as + dQ)/\/EE dy
. (apr—1 + dM—1)/\/§ .
dyy1 (GMA - dMA)/\/§ dysr

In order to understand the Haar transform we will study following proposition.
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Proposition 1.3.36. Small fluctuation Property: The fluctuation is very small in the
seance that

Proposition 1.3.37. Similar trend Property : The trend behaves like the original signal.

Remark 1.3.38. As we had seen Haar transform splits the given signal into 2 parts, out of
which 1 is trend and another one is fluctuation, but as we had seen the behavior of the fluctuation
signal is very small and trend behave like the original signal. So we just need to transmit only
the trend signal and it will not affect the signal much. The benefit of this process is that we
just need to transmit only the half of the bits, this process of transmitting the signal is known
as Compression of the signal.

Let z € L*(Zy) then we have

s
[SHESWES)

)

oV “() (2)
A BN R d(1) = ol e

d )

ISH

2

To compute the second level trend a'® and the second level fluctuation d?0, we have the

following
NOMNEY
Oﬂl 2(0)+2(1)+2(2)+2(3)
2
a$) +al! 2(4)+2(5)F2(6)+2(7)
oD —;—a(l) z(M—4)+z(M—3)-;-z(M—2)+z(M—1)
M—2T%—1 D)
V2
and
R 0)+2(1)—=2(2)—=(3
Vo 2(0)+2( );Z( )—2(3)
af) —al! 2(4)+2(5)=2(6)—2(7)
d? — V2 — 2
TR S(M—4)+2(M=3)—2(M—-2)—(M~1)
M—2"% 1 2
V2

To study more about trend and fluctuation at higher level let
1 1 1 1 1 1
{‘/0()7%()’7 J\(J)—17W(§)’W1()7"'7 ]54)—1 ?
is the set of N signals at first level and

2 2 2 2 2 2
v v %)_I,Wé),Wl(),...,W%)_l},

be the set of % signals at second level.
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Definition 1.3.39. Let

L 0 0
Ve 0 0
V2 1 0
0 \{ﬁ 0
1 0 1 NG 1
VO(): 0 vvl(): \65 >V161)—1:
0 0 0
. . 1
: : \{i
0 0 72

We call {Vo(l), %(1), co V]\(})_l} is the first-level Haar scaling signal and we denote it as
M-1
{‘/0(1)7 ‘/6(1)7 - VJ\(/II)—I} — {R2k‘/0(1)}k_0 )

Definition 1.3.40. Let

1
% 0 0
R 0 0
0 v
(1) 0 (1) ~7 (1) 0
WO — 0 5 Wl = 0 ey WM—l =

0 0 0

. . 1
: . \/51
0 0 2

We call {Wo(l), Wo(l), cee Wﬁll}, 1s the first-level Haar wavelet and we denote it as
M-1
gt wii = { RV}

Remark 1.3.41.

[} O { )

)

1S a time frequency localized basis with father wavelet Wél and the mother wavelet VO(I).

Similarly, we can find the second level Haar wavelet and Haar scaling signals given as :

Definition 1.3.42. Let

/2 0 0
1/2 0 0
1/2 0 0
1/2 0 0
‘0 1/2 0
0 L/o :
V0(2) =1 7‘/1(2) _ 1?2 ’Vgll _ 0
0 1/2 0
0 ‘0 1o
: /2

0 1/2
0 1/2

We call {VO(Z), VO(Q), ce VI(L})_l}, is the second-level Haar scaling signal.
2
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Definition 1.3.43. Let

1/2 0 0
/2 0 0
—1/2 0 0
1/ 0 0
0 1o 0
0 1/9 :
(2 _ (2 _ 2 _ :
Wy = 8 W = _17 Wy, = 0
—1/2
0
0 0 1/2
: : 1/2
0 0 1/
0 0 —1/2

We call {Wo(z), WéQ), e Wﬁll}, is the second-level Haar wavelets.
2

Remark 1.3.44. The first and second level Haar scaling numbers and the wavelet signals can
be written as the linear combination of standard ordered basis as

Vi = a1€am + QgComyr m=0,1,2,... M -1,

m

and hence
VD = V) + oV, m=0,1,2,..., %> 1,

m

where o = qg = \/Li

Wr(nl) :/8162m+ﬁ2€2m+1 m:()71727-"7M_ 17

and hence M
Wg):ﬁ1%%)+62‘/2%)+1 m:0,1,2,...,7—1,
where 1 = \%752 = —%. Then we call a1,y as scaling numbers and By, Bs as wavelets
numbers.
Proposition 1.3.45. Let 2 € L*(Zy). Then
1 1
(g )
a(l) _ <Z7 ‘/1 > d(l) - <ZJ Wl >
1 (1
(2 Vi) (W)

And similarly, we can get the second level trend and fluctuation as follow :

Proposition 1.3.46. Let 2 € L*(Zy). Then

(z, V&) (z, W)
(2) (2)
a(g) . <Z7 ‘/1 > ’ d(2) . <Z7 Wl >
(2, Vi ) (Wi )
2 2
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1.3.5 Multiresolution Analysis

We know that the inverse wavelet transform is given as, if z € L*(Zy), then

(ap + do)/V/2
(ao - do)/\/_
(a1 +d1)/\/_
(Gl dl)/\/_
(a2

—0—(12)/\/§

Then it can be written as

M-1 M-1
2= (ZVHVE + D (2 WhHW,,
n=0 n=0

M-1
A(l) - <Z’Vn1>vn17
n=0
and
M-1
DY =N "z whw!,
n=0
Then
z=AM 4+ DO,

AW is called as the first-level average signal and D is called as first-level detail signal.
With the similar iteration we can find the higher order average and detail signals.

Remark 1.3.47. Iteration of the average and detail signal will give us
‘ J
z=A + ZDZ z € L*(Zy).
=1

Proposition 1.3.48.

I— - l l
e W AW W T ) ()

forms an orthonormal basis for L*(Zy).

Remark 1.3.49. Thee average signal and the detail signal at level j is given by

N
21'1

A =" (2, VIV,

n=0

and

D= (2, W)W,



Remark 1.3.50. The first level average signal is a linear combination of Haar scaling signal
{Wo(l), Wl(l), cee W(ﬂlll} where each Haar scaling signal is a short lived signal which moves only
2

2 units on the time axis and hence live only for two time units. So the Haar scaling signals
measure short-lived trend in the given signal. So similar argument can be given for the detail
signal. A similar, analogy can be given for higher order average signals and detail signal.

Remark 1.3.51. The energy of a signal z € L*(Zy), E(2) is given by
E(z) = ||2]*
Lemma 1.3.52. Let z,w € L*(Zy) be the two orthogonal signal, then
12+ wl* = [l2]* + [lw]*.
Proposition 1.3.53. Let z € L*(Zy) and let N = 2! for some positive integer I. Then
E(z)=EA) j=12,...,L

Examples 1.3.54. Let z € L*(Zy) is given by

—
o O

ot ot O 00

The first level trend and fluctuation is given by

5v2 —V2
Q0 [V e | V2

V2 V2

5v2 0

The second level average and detail signals are given as
16 —6
2) — @ —
= (1) = (7))

E(AW) = 440.

And hence

Since,
E(z) = 446.

It follows that 98.7% of the energy of the signal z is in the first level average.Also
E(A®) = 400,

which is 89.7% of the energy of z
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1.3.6 Daubechies Wavelet
Let z € L*(Zy) defined as

(1)

z(N:— 1)

Suppose that z is obtained by sampling a analog signal g and we assume that g has a second
order continuous derivative. So,

z(n) =g(t,), 0,1,2,...,N—1,
where h is the step length at time ¢, is given by
h - tn+1 - tn

Now let us compute the fluctuation (z, Wo(l)> where Wo(l) is the first Haar wavelet at the first
level i.e.
A

B2
0

0

1
wV = | ¢
0

After using Taylor series we will get
(2, W5") = O(h),

and also we know that (5, = \/LTBQ = —LQ. Now, we will go one step further, we are looking
for a new wavelet and hence we need to find the numbers (1, 82, 83, 84. So for finding these
numbers, we know that at first level

5
Ba
Bs
Ba
0

0

Wit =

So again by using Taylor’s theorem we will get

Br+ B2+ B3+ Bs =0,

and
Pa +2B3 4+ 384 = 0.
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Definition 1.3.55.

B 0 B3
B2 0 P
Bs B 0
Ba B2 0
0 B3 0
0 Ba 0
1 _ 1 _ 1 _
Wor=1o Wi =10 |"Wa,=]o0
0 0 :
0 0 0
: : 0
0 0 B
0 0 B2
From the above definition of {Wél),Wél), . ,WJS)_I}, we want to constrict a time fre-
quency localized basis with wavelet signals as {Wo(l), Wo(l), cee Wﬁll} and scaling signals as
, e Z1f. D0 assume that this 1s an orthonormal basis so we will get following
v v v s hat this i h I basi ill get followi
equations :
Bit+ Pt B3+ Bi=0  (A).
Bo+2B3+38,=0 (B).
Bi+p+ 65+ 6i=1  (O)
p1P3 + B28s =0 (D).

So after solving these 4 equations, we will get

1-vV3 V3 -3 3+3 —1-3

Bl— 4\/— 6 4\/5 753:W754: 4\/§ )
. b 1—\[5 V33— V3-8 o _ 3+f5 —1-V3
1 — 4\/—,2 4\/—73 4\/—74 4\/§ .

Lemma 1.3.56. Let ¢ € L*(Zy) be such that {jogo}jzg is an othonormal set with M distinct
signals, if we define ¢ € L*(Zy) by

¢(n) = (=1)"""o(1 —n),
then {R2j¢}jj\gl U {jogo}j]\igl is a time frequency localized basis for L*(Zy).
Hence by using the above lemma we will get
—fa
Bs
—P2

A
0

o O OO
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and hence the scaling numbers are given by

ap = —fy,00 = 3,03 = =, a4 = P1.

Remark 1.3.57. Whatever analysis we had done for Haar wavelet also holds for Daubechies
Wavelet.

Benefits 1.3.58. The main benefit to study Daubechies wavelet is the concentration of energy
of average signal is more as compare to Haar wavelet and we can see this by an example which
we had done for Haar wavelet also. Let z € L*(Zy) is given by

S N

—_ =
N O

v ot Oy 0o

The first level trend and fluctuation is given by

H
7
w

&

H
—fgv
MM v}
5

Q/\

=

I
o
B

@S
(S )

S

And hence,
E(AW) =443 5.

Since,
E(z) = 446,

it follows that the energy level in the average signal is 99.4% while in Haar wavelet it was 98.7%.
Thus w had improved the energy level of average signal while using Daubechies wavelet in spite
of Haar wavelet.

1.3.7 The Trace
Definition 1.3.59. Let 0, € L*(Zy) , then we define T, : L*(Zn) — L*(Zy) as

=

Tcr,goz = U<k) <Za 7Tk90>7Tk907
0

iy

where

e = VN(Rp)” k=0,1,...N —1.

Proposition 1.3.60. Let o € L*(Zy) be any signal. Then

Ths =15
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Remark 1.3.61. Let p € L*(Zy) >
om) =1, mez

Then the set {Rop, Rip, ..., Ry_10} is an orthonormal basis for L*(Zy) and hence by using
Parseval’s equality and Fourier inversion formula, we will get {mop, ¢, ..., TN_10} is an
orthonormal basis for L*(Zy).

Proposition 1.3.62. Let o € L*(Zy) be any signal and ¢ € L*(Zy) be such that
[p(m)| =1, meL,
then the eigenvalues of the operator T, , are given by
d(0),0(1),0(2),...,0(N —1).

Definition 1.3.63. The trace of a N x N matrix A with complex entries is the sum of eigen-
values.

Proposition 1.3.64. Let A be a N x N matriz with complex entries, then

=

t’f’(A) = Cij,

n

Il
o

where a;j,7 =0,1,...,N — 1 are the diagonal entries of the matriz.

Proposition 1.3.65. Let A be a N x N matrixz with complex entries, then

=2

-1

tr(A) = ) (Apj, ¢5),

3
Il
=)

where {po, 01, .., on_1} is an orthonormal basis for L*(Zy).

Theorem 1.3.66. Let o, p € L*(Zy), then tr(T, ) of the linear operator T, , associated to the
signals o and ¢ is given by

=

tr(Top) = llol* ) o(k).

B
Il
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Chapter 2

Pseudo-Differential Operator on S1

2.1 Hilbert Space

Functional analysis is a very important branch of mathematics. It is also broadly used in many
applications of science and technology. In signal analysis Hilbert space plays an important
part. Before moving to continuous case of Fourier transform, we will study briefly about
Hilbert spaces and the operators defined on it which we are going to use in the later part.In
this chapter, we will mainly concentrate on brief study of inner product space, Hilbert spaces,
self-adjoint operator,compact operator and spectral theorem.

2.1.1 Definition and basic results

Definition 2.1.1. Let X be a complex vector space. An inner product {,) is a mapping from
X x X into C such that

1. (ax +by,z) = alx,z) + bly,z) YV a,y,2€ X and a,b € C.
2. (z,x) >0 and (z,2) =02 =0 VzeX.
3. (x,y) = (y,x) Va,yeX

Remark 2.1.2. Inner product is conjugate linear in second component i.e. {x,ay) = a{z,y)Vz €
X and a € C.

Proposition 2.1.3. Let X be a complex inner product space and x,y € X. Then

[{z, y)| < llzlllyll

This inequality is known as Cauchy-Schwartz inequality. In this inequality, equality holds
iff x and y are linearly dependent.

Proposition 2.1.4. Let X be a complex inner product space and x,y € X. Then
[z +yll < [lzll + [yl

This inequality is known as triangular inequality. In this inequality, equality holds iff x and
y are linearly dependent.

Note 2.1.5. (,) is a continuous function.
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Definition 2.1.6. Let {:vj}]o.il be a sequence in X, then we say that {xj};ozl converges to x if
|z; — x| = 0 as j — oc.
Clearly, if {x;}.2, converges to z in X and we know that (,) is a continuous map and hence

(zj,y) = (z,y) VyeX.

Definition 2.1.7. Let {z;}>2, be a sequence in X, then we say that {z;}>~, is a Cauchy
sequence if
[l = @]l =0,

as j, k — oo.
Definition 2.1.8. The induced norm by an inner product for x € X is given by

l[|* = ().

Definition 2.1.9. A complex vector space with ||.|| is said to be normed linear space, where
Il : X — [0,00) satisfying following properties.

1. ||z|]| > 0.

2. |z =0< x=0.

3. [lax|l = laf|[z]].

4. |l +yl| <zl +llyll Vz,yeX anda e C.

Definition 2.1.10. A normed linear space Y is said to be a Banach space if every Cauchy
sequence in Y converges in Y.

Definition 2.1.11. A infinite dimensional complex inner product space is said to be a Hilbert
space if every Cauchy sequence in X converges in X .

Remark 2.1.12. Hilbert space is a particular case of Banach space as ||.| is induced in a
Hilbert space by (,).

Examples 2.1.13. Some trivial examples of Hilbert spaces are:

1. R™ under ||.||2 norm.

2. 0? and 1L.2.

Definition 2.1.14. A sequence {a:j};”:l i a Hilbert space X is said to be orthogonal sequence
of
(j,25) =0
Y positive integer j and k with j # k.
Definition 2.1.15. An orthogonal sequence {xj};.';l in a Hilbert space is said to be orthonormal

sequence if
;]I = 1

Vv j=1,2,3, ...

Definition 2.1.16. An orthonormal sequence {x; };.11 i a Hilbert space X is said to be complete
if every element x in X with the property that

(r,z;) =0, Vj=1,2,3..

1s the zero element in X.

34



Definition 2.1.17. {:)5]-};.”;1 is said to be an orthonormal basis for the Hilbert space X if it is
a complete orthonormal sequence.

We assume that every Hilbert space X has an orthonormal basis {w; }j’;l

Definition 2.1.18. Let {xj};il be a sequence in a Hilbert space X. For every positive integer
n, define s, as
n
S
m=1

If {sj}]o.il converges to s in X, then we say that Y x,, converges to s in X and we write
m=1

)
E Im = S
m=1

Definition 2.1.19. The series Y x,, is said to be absolutely convergent if

m=1
o0
D aml < oo
m=1

Proposition 2.1.20. Let {z;}~, be a sequence in Hilbert space X such that the series 3 T,

m=1

[e.9]
is absolutely convergent. Then > x,, converges in X.
m=1

Proposition 2.1.21. Bessel inequality : Let {zj};il be an orthonormal sequence in a Hilbert
space X. Then ¥V x € X we have

> ez < .

m=1

Proposition 2.1.22. Let {zj};il be an orthonormal sequence in a Hilbert space X and {aj};il

be a sequence in C. Then Y zpy.am, converges in X iff
m=1

oo
Z || < oo0.
m=1

Proposition 2.1.23. Pythagoras’ Theorem : Let {z;}", be an orthonormal sequence in a

Hilbert space X and let {a]} be a sequence in C such that Z Zm-Qy, converges i X . Then

m=1

[ee] oo
| Z Zm-am||* = Z |aml?.
m=1 m=1

Proposition 2.1.24. Let {x;}7°, and {y;};°, be a sequence in a Hilbert space X such that
S xp and > ym both converges in X. Then
m=1 m=1

Z%Zym =2 D lzw)
m=1 m=1m=1
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Theorem 2.1.25. Let {wj};il be an orthonormal basis for a Hilbert space X. ThenV z,y € X,
we have the following conclusions:

1. The Fourter Inversion Formula

2. Parseval’s Identity

3. Plancherel’s Theorem

[eS)
lzl1* = [, wy)|*.
m=1

Proposition 2.1.26. Parallelogram Law : Let X be a complex vector space in which the
||| is induced by (,). Then ¥V x,y € X we have

lz +ylI* + llz — yl* = 2]lz]” + 2llyl*

2.1.2 Bounded Linear Operator

Definition 2.1.27. A linear functional is a linear transformation from a complex normed linear
space X into C.

Definition 2.1.28. A linear functional T on X is said to be a bounded linear functional on X
if 3 a positive constant K such that

IT(x) < Kllzl| =€ X.

Theorem 2.1.29. Let M be a closed subspace of X . Let x € MC and let d be the distance
between x and M defined by
d = inf ||z — z||.
zeM

Then 3z € M such that
|z — z]| = d.

Definition 2.1.30. Let M be a closed subspace of a Hilbert space X. Then the orthogonal
complement M+ of M is define as

MY ={zeX:(r,y) =0, ye M}
Remark 2.1.31. Null space of a bounded linear functional T on X is a closed subspace of X.

Theorem 2.1.32. Let M be a closed subspace of a Hilbert space X. Then ¥ x € X, we can find
unique elements v and w such that v € M,w € M+ and

T =v+w.

Theorem 2.1.33. The Riesz Representation Theorem :
Let T be a bounded linear functional on a Hilbert space X. Then 3 a unique y in X such that

T(x)=(z,y) ,zeX.
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Definition 2.1.34. A linear operator A on X is said to be a bounded linear operator on X if 3
a positive constant K such that

[A@)] < Kll«]| ¥z e X.

Definition 2.1.35. ||.| on a bounded linear operator is defined as :
Az
Jl. = sup IO — qup e
w0 ||zl ]| =1

and from here it follows that
[Az]| < [|All[lzll, = € X.

Definition 2.1.36. A linear operator A on a Hilbert space X is said to be continuous at a point
x € X if for every sequence {xj};il converging to x in X, we have

Az; — Az
m X as j — 0.

Theorem 2.1.37. A linear operator A is bounded on a Hilbert space X iff A is continuous at
a point in X.

Note 2.1.38. B(X) represents the set of all bounded linear operators on a Hilbert space X.

Theorem 2.1.39. B(X) is a Banach space with respect to the ||.|..

Definition 2.1.40. B(xo,r), the open ball with center xo and radius r in X is given by
B(zg,r) ={z € X : ||z — x| <7}.

Definition 2.1.41. A subset W of X is said to be nowhere dense in X if the closure W of W

contains no open balls.

Theorem 2.1.42. Baire’s category theorem :
A complete metric space can not be expressed as countable union of nowhere dense sets.

Theorem 2.1.43. Uniform Boundedness Theorem :
Let X be a Banach space and Y be norm linear space. Let B(X,Y) is the set of all bounded
linear operators from X to Y. Let W C X be such thatV z € X,

sup ||Az|| < oco.
AW

Then
sup [|A|| < oo.
AeW

This theorem implies the point wise boundedness of bounded linear operators on X to uniform
boundedness on X.
Definition 2.1.44. For a bounded linear operator T, the set

S(T)=4{N e C:T — X is not invertible in X}
18 known as spectrum of T.
Definition 2.1.45. For a bounded linear operator T the set

p(T)={Ne€C:T — A is invertible in X}

where [ is the identity operator, is known as resolvent set of T.

Definition 2.1.46. Let T be bounded linear operator on a Hilbert space X. Let A € C is said
to be the eigenvalue of T if 3 x # 0 such that

Ty = M\x.

Remark 2.1.47. The set of all eigenvalues is a proper subset of X(T) for a bounded linear
operator T.
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2.1.3 Self-Adjoint Operators

Definition 2.1.48. Let T be a bounded linear operator on a Hilbert space X. A linear operator
T* is said to be adjoint of T if

(Tz,y) = (z, T"y), zy € X.
Remark 2.1.49. A linear operator on a Hilbert space has at most one adjoint.

Theorem 2.1.50. Every bounded linear operator on a Hilbert space X has an adjoint, which
18 also an bounded linear operator on X.

Remark 2.1.51. B(X) is closed under **’ operation.

Theorem 2.1.52. Let B(X) be the set of bounded linear operators on the Hilbert space X and
let us define a map T — T* on B(X). Then we have the following:

1. It 1s conjugate linear.

2. It is isometric i.e. |T|. = ||T*||« V T.
3. It is surjective.

T =T VTe B(X).

(TS)*=S*T* VT,S € B(X).

I*=1.

NS e

If T is invertible then so is T* and (T*)~! = (T~1)*.
8. The given map is continuous in the usual topology.

Definition 2.1.53. A bounded linear operator on a Hilbert space X is said to be self-adjoint if
it 18 equal to its adjoint i.e.
T=T".

Theorem 2.1.54. Let T be a self-adjoint operator on a Hilbert space X. Then

1Tl = sup [(Tz,z)].

llzll=1

Theorem 2.1.55. Let T be self-adjoint operator on a Hilbert space X. Then all eigenvalues of
T are real. Moreover, if z,y are two eigenvectors of T corresponding to distinct eigenvalues,
then

(x,y) =0.

Theorem 2.1.56. A bounded linear operator T is self-adjoint on a Hilbert space X iff

(Tx,xz) e R Ve X.
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2.1.4 Compact Operator
Definition 2.1.57. A sequence {:L’j};il in a Hilbert space X is said to be bounded if 3C > 0>
lz;|| <C, j=1,2,...

Definition 2.1.58. A bounded linear operator T on a Hilbert space X is said to be compact if
for every bounded sequence {x;}~, in X, the sequence {T'z;}>", has a convergent subsequence
m X.

Definition 2.1.59. A bounded linear operator T on a Hilbert space X is said to be an operator
of finite rank if the range space of T given by

R(T)={Tz:z e X}
18 finite dimensional.
Proposition 2.1.60. A finite rank operator on a Hilbert space is compact.

Theorem 2.1.61. Let {T]};il be a sequence of compact operators on a Hilbert space X such
that
175 =T =0

as j — oo, where T is a bounded linear operator on X. Then T is a compact operator on X.
Definition 2.1.62. A sequence {z; }?;1 in a Hilbert space X is said to converge weakly to  in
X if
(xj,y) = (z,y) Yy € X asj — oo.

Proposition 2.1.63. Let {xj};.il be a weakly convergent sequence. Then we have the following:

1. Limit of {x;}72, is unique.

2. 1If {:L‘j}(;il converge in X, then it also converges weakly in X.

3. {x;},2, is bounded.

4. If x; — x in X weakly and ||z;|| — ||| as j — oo, then x; — x in X as j — oo.

Theorem 2.1.64. Let T be a compact operator on a Hilbert space X. Then T maps weakly
convergent sequences into convergent sequences.

Theorem 2.1.65. Let T be a self-adjoint and compact operator on a Hilbert space X. Then
| T||or — ||T||« is an eigenvalue of T.

2.1.5 The Spectral Theorem
Definition 2.1.66. An operator T is said to be positive if
(Tx,x) >0 ,xeX.

Definition 2.1.67. Let T be a positive compact operator on a Hilbert space and can be written
as

Tx = Zx\j<x,wj)wj ,reX
j=1

where {wj}]o.il is an orthonormal basis for X consisting of eigenvectors of T and \; is eigenvalue
of T corresponding to w;. Then the square root of T2 is defined as

TV = Z)\}/Q(a:,wj>wj ,x € X.
j=1
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Theorem 2.1.68. The Spectral Theorem : Let T be a self-adjoint and compact operator
on a Hilbert space X. Then 3 an orthonormal basis {wj};il for X consisting of eigenvectors of
T. Moreover, V x € X

Tx = Z)\j<x,wj>wj,

Jj=1

where A; is the eigenvalue of T corresponding to eigenvector wj.

2.2 Pseudo-Differential Operator on S!

2.2.1 Fourier Series

In this section, we are going to give some basic concepts of Fourier series which we are going
to use in the later sections. We will need basic measure theory and corresponding theory of
integration, which we are going to assume as prerequisites. We are also assuming the basic
concepts of Hilbert space specially L spaces.

Let f € L'[—7,7]. Then we define the Fourier transform f on the set Z of all integers as

fn) = = / e (0)dh, € T

—T

—unb

We call f(n) the Fourier coefficient of function f at frequency n. The formal series > f(n)e

is the Fourier series of f at [—m,7].

So the common problem that arise here is whether the Fourier series Y. f(n)e " con-

verges pointwise to f(0) V6 € [—m, w] or not. To answer this problem let us assume {sy}x_,
denotes the sequence of partial sums of the Fourier series defined by :

sn(@) = > fn)e™, 6¢el-m7.

=N
Then .
> fm)em = f(9)

means that the sequence of partial sums of the Fourier series converges to f(0) V 0 € [—m, 7].
So, we need to find a sufficient condition for pointwise convergence of the Fourier series.

We know that the interval [—m, 7] can be identified with the unit circle S'. For n € Z, we
define the function e, on [—m, 7| by

1
V2T

We have the following lemma which is a very small result but very useful. We are omitting the
proof as we can prove it just by using the inner product definition of L?(S').

en(f) = e g ¢ [-m .

Lemma 2.2.1. {e,},2 _ is an orthonormal set in L*(S*).

We are assuming the proof of the next lemma from measure theory.

Lemma 2.2.2. C5°(S') is dense in LP(S'), 1 < p < oco.
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Lemma 2.2.3. (Riemann-Lebesgue Lemvma) : Let f € L'(S"). Then lim, o f(n)=0

oo
n=—oo

Proof. First of all, let f € L*(S'). Then by using the orthonormality of the sequence {e, }
and the Bessel inequality, we will get

S 1P < o lIF IR

n=—oo

So, )
f—0 as |n| = oc.

Now, let f € L'(S') and let € be a given positive number, then by the previous lemma 3 ¢ €
C5°(S1) such that
1f = olly < e

Then by triangular inequality we will be having

A A 1 n
Fo)l <16m)|+ =I1f = 6l < 5 + 16,
Since ¢ € L%(S"), it follows that A
b(n) =0,

as |n| — 0. So, there exists a positive integer N such that
- €
nl 2 N = |o(n)| < 5.

Therefore,
€

2
and the proof is complete. n

n| = N = |f)] <5 +5=¢

Lemma 2.2.4. Let f € L'(SY). Then for all N =0,1,2, ...,

sw(0) =5 [ Da6-0)f(0)ds, o€ l-mw

where n(N 1)9
Sin + 3
sing

The proof of the above lemma can be manupulated easily. Dy is known as Dirichlet kernel.

Corollary 2.2.2. For N =0,1,2,... Dy s an even function such that

/W Dx(0)df = 2

—T

Theorem 2.2.5. (Dini’s Condition): Let f € L*(S'). If 0 € [—n, 7] is such that

[ =10,
- ¢ ’
then

sn(0) — f(0)
as N — oo.
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Proof. By using the previous lemma and corollary, we get
sxb0=6) = 5- [ Du()(F6 - 0) - FO)do.

Now by using the expression for Dy(6), we will get

"0+ ) — f(0)

27r szn—

sin(N + %qzﬁ)dgf)

Without loss of generality, we can assume that f is a real valued function. Since,
fO0+¢)—f(0)
sin%gb

as a function of ¢, and hence result follows from the Riemann-Lebesgue lemma. [

c L'(sh)

Definition 2.2.6. A funtion f € L'(S') is Lipschitz continuous function at a point 0 € [—m, 7,
if there exist positive constants M and « such that

1£(0) = f(o)l < M0 —¢|%, ¢ € [-m,].
The number « is said to be the order of Lipshitz continuity of the function f at 6.

Definition 2.2.7. A function f € L*(S') is Lipschitz continuous function of order «, if it is
Lipshitz continuous of order « at all points in [m, 7).

Lemma 2.2.8. Let f be a continuous function on [—m, 7|, such that
f(=m) = f(m).

Let ' exists at all but possibly a finite number of points in [—m, 7| and
/ £ (0)?df < .

Then f is Lipshitz continuous of order % on [—m, 7.
Detail of the proof is left as it can be easily done by using Schwarz inequality.

Theorem 2.2.9. Let f satisfies all conditions given in the above lemma, then the Fourier series
of f converges to f absolutely and uniformly on [—m,n].

Proof. Let g = f', then for all n € Z we have

§(n) = mf(n).

Now for all M and N with M < N, by Schwarz inequality and Bessel inequality, we get

sn (@) —su@) =] > fm)|< > [f()

M<|n|<N M<|n|<N
1 1
1 ’ 2
<Y S| X e
M<|n|<N M<|n|<N
1 1
1 ’ 2
< X = N g
M<|n|<N M<|n|<N
X >
<| 2 ) e sl
M<n|<N
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Hence for every e, there exists a positive integer K such that
N>M2>K = |sy0) —su(d)| <e.
So, there exists a continuous function h on [—m, 7] such that
sy — h,

absolutely and uniformly as N — oo. From the previous lemma, f is Lipschitz continuous of
order 3 on [—m, . So by the last theorem we have

sn(0) — f(0)
for all € [—m, 7]. Thus,
f(e) - h<0)7 NS [_7]-777-]
and so
sy — f

absolutely and uniformly on [—m, 7] as N — oc. O]

Theorem 2.2.10. {e,} - is an orthonormal basis for L*(S").

n=—oo

Proof. Let f € L*(S"). Then for every positive € there exits a ¢ € C5°(S?) such that

1f = ¢ll2 <e
Then by last theorem
N N
D (b enaen(0) = D g(n)e™” — ¢(0)
n=—N n=—N

uniformly with respect to 6 in [—m, 7] as N — 0o. So,

N

Z <¢7 €n>2€n - (b

n=—N

— 0,

2
as N — oo. Then by Pythagoras theorem and Bessel inequality, we have

N N

Z <f7 6n>26n - Z <¢7 6n>26n

n:—N TL:—N

N 1/
= ( Z |<f7 6n>2 - <¢> 6n>2|2>

~ e
< ( Z |<f7 en>2 - <¢a €n>2|2>
<If -9l <=

Therefore, after using triangular inequality, we will get
If —snll <€
in L?(S') as N — co. Then, it is easy to see that if f € L*(S') is such that
f(n)=0, nez,

then f = 0. Therefore, {e,} - _ is an orthonormal basis for L*(S"). O
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The L? theory of Fourier series can now be easily obtained as the corollaries of last theorem.

Theorem 2.2.11. Let f,g € L*(S'). Then,

S fn)in) = 5 (1.0

n=—oo
We can prove this theorem by using Parseval’s identity.

Theorem 2.2.12. Let f € L*(S'). Then
sN = [,
in L?(S') as N — ooc.
Remark 2.2.13. From last theorem we conclude that

f(e) = Z f(n)emev S [_ﬂ-’ﬂ-]’

n=—oo

where the convergence of the Fourier series is in L? convergence. This is known as Fourier
inversion formula for the Fourier series.

2.2.3 Fourier Multiplier on S'

In this section, we are going to define Fourier multiplier (also known as filters) on the unit
circle. The Plancherel theorem and Fourier inversion formula are the basic ingredient for study
of filters on the unit circle S'. As we know,

[e.9]

f: Z <f76n>en7

n=—oo

where the convergence is in L?. The above equation can also be written as:

o0

I = Z (.,en)en,

n=—oo

where I is the identity operator. So, we can write identity operator as an infinite sum of one
dimensional projections. Hence, we can find more interesting and more applicable operators by
substituting a suitable function ¢ on Z in the Fourier inversion formula.

Theorem 2.2.14. (Plancherel’s Theorem) The linear operator Fsi : L*(S') — L*(Z), defined
by
(Fsrf)(n) = f(n), nelZ

18 a bijection such that

(Fouf, Forg) = 5-f,9),

for all f,g € L*(S). The linear operator defined here is known as Fourier transform on S*.
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Proof. We are just going to give the outlines of the proof. Clearly, from the above equality the
linear operator is injective. So, we are left to prove that the map is surjective. Let (a,) € L*(Z).
Then for N =0,1,2,...define sy by

sn(0) = Z anV2me, (0).

Now we can easily show that sy is a cauchy sequence. Since L?*(S') is complete. Hence
sN = f
for some f € L*(S') as N — oco. Now for a fixed m € Z, we have
Sn(m) = am,
for sufficiently large N. Moreover by using Schwartz inequality we can show that
|sh(m) — f(m)] = 0 as N — coVm € Z.

And hence, .
fm)=a, = Faf =a.

Corollary 2.2.4. Va € L*(Z), Fg'f is a function defined on L*(S') by

Fi O = 3 ane™, ¢

n=—oo

Definition 2.2.15. Let 0 € L>(SY). Then for all f € L*(S'), we define the function T,f on
St by

(T,1)0) = Y fmo(n)e™, 0 € [-mn).

n=—oo

The above defined operator is known as Fourier multiplier or filter.

Theorem 2.2.16. Let o be a measurable function on 7, then T, is the bounded linear operator
from L*(SY) to L*(S') & o € L™(Z). Moreover, if o € L°(Z), then

1751 = lloll-
Proof. Let 0 € L>(Z). Then for all f € L*(S'),
of € L¥(Z).

and from last corollary,
T.f € L*(SY),

and hence we will get

7oA < el £

which implies T}, is the bounded linear operator such that

151 < llo]|-
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Now we are going to prove the converse part of this theorem. Let o ¢ L>(S!). Let T, is the
bounded linear operator. Then there exits a positive constant C' such that

ITofIF < ClA-
Now as o ¢ L>®(S1), for N =1,2,3, ..., there exits a positive ny such that
lo(ny)| > N.

Without loss of generality, assume that the sequence |nq| < |ng| < .... Now for N=1,2,3, ...,
let f,, be the function on S* defined by

Joy =€"N0, 0 € [—7, 7.
Then for N =0,1,2,..., we have

— 1 n=ny,

fox(n) = {0 n #ny.

and hence by applying the definition of Fourier multiplier, we will get

(Ts fur)(0) = ™o (ny),

which gives

HToanH > V2N,

and hence we will get

V2rN < V2r,C

which will give us a contradiction on boundedness of T,. Hence o € L*>. Now we need to show
the equality of norms. Let
1T < lo]l.

Hence there exists an integer m such that
lo(m)| > | T5]].
So for all non zero functions f € L?(S'), we have
IT6f17 < lo(m)PILFI*.

Also we have

Z|a PIf()]* < Jo(m |22|f

n=—oo n=—oo

Now let f € L*(S') such that

Thus, we have

which is obviously a contradiction. O

Theorem 2.2.17. Let 0 € L>®. Then for alln € Z, o(n) is an eigenvalue of the operator T,
and e, is the corresponding eigenfunction. Moreover, the spectrum of T, is precisely given by

X(T,) ={o(n) :n € Z}.
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Proof. Let m € Z. Then
Tyem =V21 Y o(n)em(n)en,

where the convergence is in L2. But

1
—_— =m
an<n>={ =
0, n # m.

Therefore,
Toem = o(m)en,

i.e. o(m) is an eigenvalue of T, and e,, is the corresponding eigenvector. Now, we are left with
the second proof of the theorem. Let A ¢ {o(n) : n € Z}. Then there exits a positive constant
C' such that

lo(n) = A >C, V neZ.
Now, we can easily show that the operator T, — AI is a bijection and hence we are done. [

Now we are going to give a characterization of the compact Fourier multiplier. Although,
we are not giving the proof of this theorem as we can prove it very easily just by using the
definition of compact operator and the previous theorem i.e. for the Fourier multiplier 7, €/ s
are the eigenfunctions corresponding to eigenvalues o(m).

Theorem 2.2.18. Let 0 € L. Then T, is compact if and only if

lim o(n) =0.
[n|—o0

Lemma 2.2.19. Let 0 € L™(Z). If we let
To| = (T:Ta)l/za

then
To| = Tio|
Proof. As we know
TTo = Toy = Tjop = Tig).

]

Now by using the above lemma, we are going to prove the L? boundedness of the Fourier
multiplier.

Theorem 2.2.20. Let 1 < p < 0o, the Fourier multiplier T, is in Schatten-von Newmann class
Sy if and only if o € LP(Z). Moreover, if o € LP(Z), then

175 = llell
Proof. Since, o € LP(Z), hence

lim o(n) =0.
[n]—o0

Hence T, is a compact operator. So the singular values of T, are given by |o(n)|,n € Z.
Therefore,

T,€ S, Y |on) <ocoeoe X(Z).
Clearly, we can see that
1751 = llell
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2.2.5 Pseudo-Differential Operator

In this section we will be concentrating on time-varying FM-filters. In mathematical language,
a time-frequency FM-filter is known as pseudo-differential operator on the unit circle with
center at origin. Mainly, we will be concentrating on the boundedness and compactness of the
pseudo-differential operator defined on S*

For 1 < p < oo,the set of measurable functions is denoted by LP(S! x Z) such that

3 /|a(e,n)\pde < .

n=—oo

In the similar fashion, we will define norms in L” and Hilbert space L?.

Definition 2.2.21. Let 0 € S' x Z be a measurable function. Then for all f € L*(S'), we
define the function T, f on S' formally by,

(T,1)(0) = > eo(8,n)f(n), 0¢€[-mm].

We call T, the pseudo-differential operator corresponding to symbol o.

Here the natural question to ask is why we are calling T, to be differential operator? To
answer this question, consider the linear differential operator P(#, D) on S defined by

P(0,D) = Zm:aj(e)Dj,

J=0

where D = —Ld%, and ag, ai, ..., a,, are measurable function on S'. Let f € C*(S"), then

(Fsi D' f)(n) =n? f(n), n€Z

Then by using the unitary of Fourier transform, we will get,

(P(9,D)f)(0) = Zaj(e)(Djf)(Q)
S e (zajw)nf) fo,

n=-—00 7=0

for all § € [—m, 7]. The message of the integral representation for (P(6, D)) f is that a pseudo-
differential operator T, corresponding to a polynomial

o(0.m) = a;(O)n’

is a linear differential operator. These kind of filters are very important in signal analysis as
here o depends on both time and frequency. In next theorem, we are going to give an upper
bound for T, when o € L*(S' x Z). We can prove this theorem easily by using Minkowski’s
inequality. So we are omitting this proof.

Theorem 2.2.22. Let o € L*(S' x Z), then T, is a bounded linear operator. Moreover,

Tl < (2m) = o]].
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Now we are going to give the L” boundedness of T, with respect to e,.

Theorem 2.2.23. Let o € L*(S' x Z),1 < p < oo. Then

3 ITsenll” = (20) o]

Proof. Let j € Z. Then
(T,e)(0) = Y o(6,n)&(n)e™, 6 € [—m, .
L j =n
&j(m)=qver 7
0 Jj#n

So we will get
(Toe;)(0) = o(0, 5)e;(6).
Hence,

S ITvenll” = (20) o]

n=—oo

]

Theorem 2.2.24. The pseudo-differential operator T, : L*(S') — L*(S') is a Hilbert Schmidt
operator if and only if o € L*(S' x Z). Moreover, if T, is a Hilbert Schmidt operator then

|51l = (2m) = ]o]l.

The proof of the previous theorem gives rises a necessary condition on a measurable function
o on S' x Z for T, to be bounded. Therefor, a necessary condition for 7, to be bounded is

sup/ lo(8,n)|2d0 < oo.

nezZ J —x
To show that this condition is not sufficient, we can use the following example.

Examples 2.2.25. Let o is a measurable function on S* x Z, defined as
o@,n)=e" 0¢c|[-m x|, neZ

We can easily verify that the above example will give a contradiction on the sufficient
condition for the boundedness of L2. Before giving a sufficient condition for the boundedness
of T, as a corollary to that theorem, we are going to prove Young’s inequality.

Lemma 2.2.26. Let a, € L*(Z), b, € LP(Z), where 1 < p < co. Then the function axb defined
by

(a%b)u= ) anibs, n€Z
k=—o00
is in LP(Z) and
lla bl < [lall[[b]]-

We can prove this lemma just by using the definition of convolution and integral Minkowski’s
inequality. Hence we are leaving this proof. Now, we are ready to give a sufficient condition
for the pseudo-differential operator to be bounded.
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Theorem 2.2.27. Let o is a measurable function on S* x Z. Suppose that, we can find a
positive constant C and a function w on L*(Z) such that

|6(m, n)| < Clw(n)],

where

1 s
g(m,n) = / e ™5 (0,n)db.

o
Then, T, is a bounded linear operator and

[Tl < Cllwll.

—T

Proof. Let f € C*(S'). Then, we have

oo o0 2
IT.f1 = / > et ( > ok~ nm)f(ﬂ)) df.
T k=—o0 n=—oo

Using the orthogonality of {e,}>° __ in L?(S'), we will get

o0 [ee] 2

st < 3 (3 ot malo)
k=—00 \n=—o0
Now using the condition given to us, we will get
T, fIP < 27C2 Y |(fw] * | F)(R)[.
k=—o00

Now, by using the Young’s inequality we will get the result. O]

Now, we are going to give a sufficient condition to get the boundedness of T, for a general
measurable function o and the compactness of the pseudo-differential operator. Like in Fourier
multiplier

/ (6, m)?d8 — 0,
—T
is not sufficient for a pseudo-differential operator to be bounded. To see this consider, the
following example.

Examples 2.2.28. Consider

n<l1
and
=1
FO) =t
n=1

Clearly, T, f ¢ L*(S'). Hence this condition will not be enough for the boundedness of T,.

Theorem 2.2.29. Let o is a measurable function on S' x Z. Suppose that, we can find a
function C' on Z and a function w on L*(Z) such that

lim C(n) =0,

[n]—o0

and
[o(m,n)| < C(n)lw(m)|, m,n € Z.

Then T, is compact.
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Proof. For all positive IV, we define the function o on S! x Z such that
0 <N
oxlomy = {70 =
0 In| > N
for all @ € [—m, 7] and n € Z. So for N =1,2,..., we have

Z/|UN9n|d9—Z/ a(6,n)2do.

n=—oo

And hence T, is a Hilbert Schmidt operator. Now let 7y = ¢ — o). Then by definition of oy,
we will get

(0. n) 0 In] <N
T™~(0,n) =
N o(6,n)  |n|>N

Let € be a positive number. Then there exits a positive integer Ny such that
[C(n)] <e

whenever |n| > Ny. So for N > Ny, we have

T -T2 = [

Now, we are going to use the same proof as we had done it previous proof and the condition
given in the theorem statement, we will get

(Lo = To) fIP < 27€® Y (Z Iw(k—n)llf(n)l) ,

k=—oc0 \n=—00

2

de.

Ze Oon(0,n)f(n)

n=—0oo

and hence using the same argument used in the proof of last theorem, we will get
Ty — To| < VBe.
In other words, T, is the limit of 7},,, which are compact and hence 7, is a compact operator. [l

Now we are going to give the condition for LP boundedness of the pseudo-differential op-
erator. We are leaving the proof as this can be prove by using the same technique used in
the earlier proof and a non trivial result which we will assume. First of all, we will give
a sufficient condition for ¢ on Z for which the Fourier multiplier T, to be bounded where
T, : LP(S") — LP(S'),1 < p < .

Lemma 2.2.30. Let o is a measurable function 7 and let k be the smallest integer greater then
%. Suppose there exists a positive number C' such that

(@o)(n)] < Cn)~, neL,
for 0 < j <k, where &’ is the differential operator given by

(@ o)(n) = i(q)ﬂ @a(n +1), nez

1=0
and
(n) = (L+[nf*)".
Then T, s a bounded linear operator on LP and there exists a positive constant B, depending

upon p such that
15 f1l < BC|f]]-
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So now we are ready to give a sufficient condition for the L? boundedness of the pseudo-
differential operator T,.

Theorem 2.2.31. Let o is a measurable function on S* x Z and let k be the smallest integer
greater than % Suppose, we can find a positive number C' and a function w on L'(S') such
that

(@76)(m,n)| < Clu(n)|(n)~, n,m € Z,

for 0 < j <k, where 6(m,n) is defined as earlier and & is the differential operator given by

(0)(n) = zj:(—w‘—l G)a(n +1), nel

=0

and
(n) = (L+[nf*)".
Then T, s a bounded linear operator on LP and there exists a positive constant B, depending

upon p such that
IT5]] < BC||wl].

To prove this theorem we will use Fubini’s theorem, previous lemma and the techniques of
the previous theorem which is easy to prove.

2.2.6 Pseudo-Differential Operator on 7Z

This section is the "dual” of the previous section i.e. in the similar way, we can define the
pseudo-differential operator on Z also and a similar kind of results can also be obtained.

Let a € Z. Then the Fourier transform Fza on a is the function on the unit circle S!
centered at origin which is defined as

o0

(Fza)(n) = Z ane™, O|—m, 7.

n=—oo

So, we can see that
Fr=Fg

So, the Plancherel formula for Fourier series gives

T

> laf = o [ [(Faa)@)las

n=—o00 -

The Fourier inversion formula is given by

a(n) = — / "m0 Fua)(0)d, n € 7.

T or

—T

Definition 2.2.32. Let 0 : Z x S* — C be a measurable function. Then for every sequence
a € L*(Z), we define the sequence T,a formally by

(Tya)(n) ! /7T a(n,0)e " (Fza)(0)dd, n € Z.

T o

—T

T, is called as pseudo-differential operator on Z corresponding to symbol o whenever the integral
exists for all n € 7.
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As same in last section, we are going to see the conditions on pseudo-differential operators
to be Hilbert Schmidt, bounded on LP and all.

Theorem 2.2.33. The pseudo-differential operator T, : L*(Z) — L*(Z) is Hilbert Schmidt if
and only if o € L*(Z x S'). Moreover, if T, is a Hilbert Schmidt operator then

I = (2m) = ||o]l.

Proof. We will start the proof by considering ey,

(n) 1 =n
ex(n) =
g 0 k+#n
For k € Z, we get
(Fzen)(0) = e*? 0 € [-n, 7],

and hence
(Trer)(n) = (Fsro)(n,n — k),

for all n € Z, where (Fgi10)(n,") is the Fourier transform used in the last section. Hence, by
using the Fubini’s theorem and Plancherel formula for Fourier transform, we will get

1
IT. I = -l

and hence the result follows. O

Before going to L” boundedness and compactness of the pseudo-differential operator, we
will give the simplest result about L? boundedness of the pseudo-differential operator.

Theorem 2.2.34. Let o be a measurable function on Z x S*, such that we can find a positive
constant C' and a function w on L*(Z) for which

|o(n,8)] < Clw(n)],

for alln € Z and almost all 0 € [—7, 7). ThenT, : L*(Z) — L*(Z) is a bounded linear operator.
Moreover,

[T < Cllwll.

We are leaving the proof of this particular result as we can easily prove this result by using
Schwarz inequality and Plancherel’s theorem.

Now we are ready to give a condition on ¢ for the L” boundedness of the pseudo-differential
operator on LP,1 < p < o0.

Theorem 2.2.35. Let o be a measurable function on Z x S, such that we can find a positive
constant C' and a function w on L*(Z) for which

|[(Fsro)(n,m)| < Clw(m)],
for alln,m € Z. Then T, : L*(Z) — LP(Z) is a bounded linear operator. Moreover,

175 < Cljwl].

23



Proof. Let a € L*(Z). Then for all n € Z, we get

(T,a)(n) = — / " e (n, 0)(Faa) (6)d6.

:% o

Now, by using the definition of Fourier transform on Z and the definition of convolution, we
will get

(Tra)(n) = (Fsi0)(n,") * a)(n).
So .

I Toall? < CP > [(fw] * [a])(n)]?.
The above result, we will get by using the hypothesis given in the statement of the theorem.
Now by using the Young’s inequality, we will get

175 < Cllwll
Since L' is dense in L? hence the result is true for 1 < p < oo. O]

Theorem 2.2.36. Let o be a measurable function on Z x S*, such that we can find a function
C on Z and a function w on L'(Z) for which

[(Fsro)(n, m)| < C(n)|w(m)],

for allmn,m € Z and
lim C(n)=0.

|n]—o0
Then T, : LP(Z) — LP(Z) is a compact linear operator for 1 < p < co.
The proof of the theorem is very easy. Using the same technique, used to prove the com-
pactness of the Fourier multiplier and then proceed in the similar fashion as in the proof of L?
boundedness.

At the end of the chapter, we are going to give a application of pseudo-differential operator
in numerical analysis.

Remark 2.2.37. Since w € LY(Z), roughly it follows that
w(n) = O(jm|~),
as |m| — oo where « is a positive number.

Theorem 2.2.38. Let o be a symbol satisfying the hypothesis of the LP boundedness of the
pseudo-differential operator. Then for 1 < p < oo, the matriz A, of the pseudo-differential
operator defined on LP is given by

Ay = (Onk)n,kez,

where
Onk — (Fsla)(n,n — k)

Proof of the theorem is left as it is trivial. Just use the definition of pseudo-differential
operator and the proof of LP boundedness.
Now from the remark, we will have

o = O|n — k[ ~+),

as |n — k| — oco. In other words, the off diagonal entries in A,, are small and the matrix A,
can be seen as almost diagonal.
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Examples 2.2.39.

1 o LkO 1 - 1
o(n,G):(n+§) Ze <k+§> , neZ, &S

k=—oc0

12 12
O'nk:(n—i—§> <TL—]€+§) , n,ke.

Then
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Chapter 3

Pseudo-Differential operator on R"

3.1 Fourier Transform on R"

Fourier transform will be used in defining the pseudo-differential operator in the coming chapter.
In Fourier theory mainly for L?(R™), we are having two very important results namely Fourier
inversion formula for & and the Plancherel’s theorem.

3.1.1 Notations and Preliminaries

In this subsection, we are going to talk about the basic notations which we are going to use in
the later sections. We are also going to introduce multi-index notations which is essential in
defining the Fourier transform on R".

Here R™ is the usual euclidean space. We denote points in R™ by x,y,&,n etc. We also
define the usual inner product which is defined on R™ and the norm also.

On R", the simplest differential operators are %, j=1,2,...n. We sometimes denote %
by 0;. But we always take the differential operator D; given by D; = —.9;,:* = —1, which is
better in explaining some formulas. The most general partial differential operator of order m
on R" is defined by

> oy cg.non () DS DS2 . DY

a1+az+...+an<m

where a1, ag, ..., o, are the non negative constant and aq, a,....a, i @ complex valued function
which is infinite times differentiable function on R". To simplify the expression, we let

a=(ag,a,...,0p),

n
jal =) " a;
j=1

and
D* = D{"Dy?*...Do".

Z ao () D,

In|<m

Hence, the expression will become

For each fixed x in R", we can see the above expression as the polynomial in the derivatives
D;. If we replace { in the above expression in place of D, we will get

Z aq ()€

[n|<m
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Hence, we got a polynomial in £ over R"™ which is denoted by P(x,£). We call P(z,£) the
symbol corresponding to the operator D.

In this chapter, we are going to study about the partial differential operator and its gener-
alized form known as pseudo-differential operator.

3.1.2 Remarks and Formulas

Before beginning of the main content let us give some remarks and formulas which we are going
to use through out the next sections.

1. We denote set of all complex numbers by C and set of all real numbers by R.

2. All vector spaces are assumed over the field of complex numbers. All functions are
assumed to be complex valued unless specified.

3. Although the differential operator D* = D{*D5? ..., D" is more useful but at many
places, we will use the differential operator 0% = 07052 ...,0%". In case, we are differ-
entiating with respect to x variable we write 0S.

4. The set of all infinite time differentiable functions is denoted by C*°(R™).

5. The LP norm on R" is given is the usual p norm only and is denoted by || f]|,.

Let a and [ are two multi-indices.
6. 8 < a means that 3; < «; for j =1,2,...,n.
7. a — (3 is the multi-index given by (a; — f1,a0 — B2 ..., — Bn)-
8. al = ajlan! ... oy
9. (5) = GDE) - G-

10. D*(fg) = S (D?(f))(D*#(g)). This formula is known as Leibnitz formula.

BLa

3.1.3 The Convolution

In this subsection, we mainly introduce two main subsets of C*°(R"™) mainly denoted by C§°(R")
and S i.e. the set of all infinitely times differential functions with compact support and the
Schwartz class. The main aim of this subsection is to show that these subsets are dense in
LP(R™),1 < p < 0.

We are starting this subsection with the Young’s inequality, which we are not going to prove
as this can be easily proved by using the Fubini’s theorem.

Theorem 3.1.1. (Young’s inequality) Let f € L'(R™) and g € LP(R"),1 < p < co. Then
the integral

. flz —y)g(y)dy,

exists for almost all x € R", then fx g € LP(R") and

I1f =gl < [1f1Hlgll-

We call f* g to be the convolution.
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As we know that Cy(R™) denotes the set of all continuous functions with compact support.
Now from the fact of measure theory, we assume the following result.

Proposition 3.1.2. Cy(R") is dense in LP(R™),1 < p < oo.
Now based on the above result we are going to prove the following result.

Proposition 3.1.3. (LP-Continuity of Translation) Let f € LP(R"),1 < p < co. Then
lim || f; — f”p =0,
|s| =00

where the function f, is defined as

foy) = f(z+y), yeR"
Proof. Let 6 > 0 and f € LP(R™) then there is a function g € Cy(R™) such that

o
I =gl < 5.

Now using the triangular inequality, we get

If |x| is very small. O

Theorem 3.1.4. ¢ € L'(R") be such that

o(z)dz = a.
R"
For € > 0, define the function ¢. by
() =€"0 <£> , x€R"
€
Then for any function f € LP(R™),1 < p < oo, we have f * ¢ — af in LP(R™) as e — 0.
Proof.
dc(x)dr = a
Rn

for all € > 0, by using Minkowski’s inequality in integral form, we get

I x0.=afly= ([ 1f 6.0 - aspas)

(L

_ ( / n / (flae = ey) = J()@(y)dy

Now by using Fubini’s theorem and solving we will get

I 50— afly < [ 1ol = iy

Now by the previous proposition, we will get || f_, — fll, — 0 as € — 0. Also by using the
triangular inequality, we will get || f_e, — f1|, < 2]/ f||. Hence by using the dominant Convergence
theorem of Lebsegue integration, we will get

If * ¢ — afll, =0,

as € — 0. O

b\
dx)
b\
dx)

[ =) = sy
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Definition 3.1.5. C§° represents the set of all infinitely differentiable functions with compact
support.

Definition 3.1.6. S represents the set of all differentiable functions ¢ € R™ such that for all
multi-index o, 5, we have

sup |2*(D?)(x)| < oo.
TER™

Remark 3.1.7. Clearly, from above two definitions, we can see that C§° is contained in S.
But the converse of this is not true as we can see from the following example.

Examples 3.1.8. Consider
2
p(x) = e 2.
Clearly we can see that ¢ € S but ¢ ¢ C§°, as it does not have any compact support.

Now, we are going to give some small results which we are not going to prove. And at the end
of this section, we will show that, the two subsets we have taken are dense in LP(R"),1 < p < o0.

Proposition 3.1.9. Let ¢ € S and f € LP(R"),1 < p < oo. Then f* ¢ € C°(R") and
O*(f* o) = [ =0%.

We can prove the above proposition by using the Holder’s inequality.

Proposition 3.1.10. Let f and g are two functions on R™ with the compact support, then the
convolution f x g also have the compact support. In fact,

supp(f * g) E supp(f) + supp(g).
To prove this just use the definition of f and ¢ and definition of set addition.

Theorem 3.1.11. C§°(R") is dense in LP(R"),1 < p < 0.

Proof. Let ¢ € S be a non negative function such that
o(z)dx = 1.
]Rn
For € > 0, define the function ¢. by
b(e) =6 (2), weRr
€
Then for all functions g € Cy(R™), we have g * ¢ € C5°(R"™) and

g* e = 9,
as € — 0. Let § > 0 and f € LP(R"™). Then we will get a function g € Cyp(R™) such that

)
— < —.
If —all <2
We can find a function ¢ € C§°(R"), such that
o — ol < 5
g—¢ 9

Hence by using the triangular inequality, we will get

If =l <é.
]
Remark 3.1.12. Clearly, from the above theorem we get S, is dense in LP(R™),1 < p < oo.
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3.1.4 Fourier Transformation

We are starting this subsection with the definition of Fourier transform.

Definition 3.1.13. Let f € L*(R"), we define f as

A

£(6) = (2m) " / T f(@)dr, € ER"

The function f is called as the Fourier transform denoted by F f.

Now we are going to give a basic result which is the Fourier transform of convolution. Fourier
transform of the convolution of two function is the pointwise multiplication of indivisible Fourier
transform of the functions.

Theorem 3.1.14. Let f,g € L'(R"). Then
(f xg9) = (2m)"" f3.
We are not giving proof of the above theorem as it is a very simple application of Fubini’s
theorem. Next, we are going to give some basic results about the Fourier transform and the

differential operator which we are not going to prove as we can prove them very easily by the
means of change of variable.

Proposition 3.1.15. Let p € S. Then
1. (@) (&) = €29(€) for every multi-index o.

2. (D/gé) (&) = ((—x)°p)\(€) for every multi-index B.

3. p€S.
Proposition 3.1.16. (Riemann-Lebesgue Lemma) : Let f € L'R, then

1. f is continuous on R™.

2. limje| o0 f(€) = 0.
3. f; — f in L'(R™) implies that f; — f uniformly.
Proof. Let f; — f in L*(R™), then

i = fI < @m0 = 1.

Hence fj — f uniformly on R”™. This proves the part (3). Then for f € S we will get the result
for part (1), (2) and hence by using the fact that S is dense in L” and by using part (3) we will
get the complete result. O]

Now, we are defining some new operators for a measurable function on R".

Definition 3.1.17. Let f be a measurable function on R". For a fivzed y € R", we define T, f
and M, f by

(Tyf)(x) = flz+y) zeR",
and
(Myf)(x) ="V f(x), =eR"
Let o is a nonzero number then we define the function D, f by

(Do f)(z) = flax), =R

We call these operators as Translation, Modulation and Dilation respectively.
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Now, we are going to give the Fourier transform of the operators defined above.

Proposition 3.1.18. Let us assume f € R™. Then the Fourier transform of the operators
defined above is given by:
1. D) = (M, f)(@) =R

o — ~

2 (M) = (T, f)(@) =R
3. (D)) = |o| (D2 f)(@) =R

We can prove above result by means of change of variables.

x| €2

Proposition 3.1.19. Let ¢(z) = e~ 2 . Then ¢(£) = e = .

Proof. First of all, we will compute

(27r)n/2/ el gy

Note that

n 00

(271_) —n/ / 6—Lx.§—|x|2dx — H(27r) —1/2 / e_w]"gj_m?dgj,

j=1 —o0

Hence it is sufficient to compute

(27r)_1/2/ e dt, n € (—o00, 00).

o

00 2
(2m) =12 / et = e [ e da.

00 L

Where L is the contour Imgz = % in the z plane. Using the Cauchy’s integral formula and the
fact that the integral goes to zero very fast, we get

/e‘gCde :/ e dt = Nz
L —0o0

—n —lg?

(2m) ~ " / e~ @t gy = 2% e Th

Hence, we will get

So by using the result of Fourier transform of Dilation, we will get the required Fourier trans-
form. O]

Proposition 3.1.20. (Adjoint Formula): Let f and g be functions in L*(R™). Then

fla)g(x)de = [ T@)ita)da

R”

Again proof of the above proposition is a application of Fubini’s theorem.

Theorem 3.1.21. (Fourier Inversion Formula): (f)v = f for all functons f € S. Here
the operation is defined as

0@ = [ etge)dds

The defined function is known as Inverse Fourier transform.
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Proof. We have

Let € > 0. Define

Let

where
—1¢12

¢ =e 2.

Then by the formula for Fourier transform of Modulation and Dilation, we get

R o =ln—a)?

Gln) = e 3

Now use adjoint formula to get

where

And hence, we will get

I, — (2m) "'~ (/ e;Qdm) f=1r.

Hence after using Dominant convergence theorem we will get

n

I - (2m) " / € F(€)de.

for every x € R™ as ¢ — 0. Hence,

O I (GL )
O

Remark 3.1.22. The main consequence of the Fourier inversion formula is that the Fourier
transform is one to one on S. If we define f by

f(x) - f(—l’), x € R"

Then the Fourier inversion formula will be equivalent to

~

(V=17
Proposition 3.1.23. Let f,g € S then fxg€ S.
Proof can be done easily.

Theorem 3.1.24. (Plancherel’s Theorem): The mapping f — f defined on' S can be
extended uniquely to a unitary operator on L*(R").

Proof of this theorem is also left. There is some other form of Fourier inversion formula.
Theorem 3.1.25. Let f € R™ and f € R, then (f)¥ = f.
Proposition 3.1.26. We have |2%| = |z|lo.
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3.1.5 Distribution

In this subsection, we are just going to see about the distribution and tempered distribution
which we are going to use in the later chapters. If we will need some other concepts, we will
define at that point only.

Definition 3.1.27. A sequence of functions ¢, in the Schwartz class is said to converge to zero
in Schwartz class if for all multi-indecies o« and B, we have

sup [z%(DP¢,)(z)| — 0, n — oo.
z€R”

Definition 3.1.28. A linear functional T on S is said to be tempered distribution if for any
sequence (1;)32, of functions converging to zero in S, we have

T(¢j) = 0,5 — oo.

Definition 3.1.29. Let f be a measurable function defined on R™ such that

[ Ao o

1+ |z[Y)
for some positive integer then we call f to be tempered function.

Proposition 3.1.30. Let f be a tempered function defined on R™. Then the linear functional
Ty on S defined by

Ty(¢) = | [flx)¢(x)de, €S,

Rn
18 a tempered distribution.

To prove the above proposition just use the definition of convergence of sequence in Schwartz
class and tempered function.

Proposition 3.1.31. Any function f € LP(R™),1 < p < oo, is a tempered function.

Proposition 3.1.32. Let f € LP(R"),1 < p < oco. Then the linear functional Ty on S defined
by
Ti(¢) = | f(z)p(x)dr, ¢ €S,
Rn
18 a tempered distribution.

Definition 3.1.33. Let T be a tempered distribution. Then the Fourier transform of T is
defined to be linear functional on S given by

T(¢)=T(), ¢€S.
Proposition 3.1.34. T is also a tempered distribution.

We can easily prove this statement just by using the definition of Schwartz class, dilation
and its Fourier transform.

Theorem 3.1.35. (Fourier Inversion Formula): Let T be a tempered distribution. Then

~
~

where T is defined by



3.2 Pseudo-Differential Operator

In this section, we are going to define the pseudo-differential operator on R" by using some
particular kind of functions known as symbol. We are also going to define asymptotic expansion
and at the end, we will see some basic properties and L boundedness of pseudo-differential
operators.

3.2.1 Definition And Asymptotic Expansion

We will start this chapter by recalling the basic linear partial differential operator P(z, D) on
R™ is given by
P(z,D) = Z aq(x) D,
laj<m

where the a/ s are functions defined on R™. If we replace D* by the monomial £¢ on R", then
we obtain the so-called symbol

P(z,&) = Y aa(x)§.

laj<m

In order to get another representation of the differential operator P(z, D), let us take any
function ¢ € §. Then by the above two representation and Fourier inversion formula for
Schwartz function we will get

(P(x, D)) () = (2m) " / e P, €)9(€)de.

n

So we represented partial differential operator P(z, D) in terms of symbol by means of Fourier
transformation. This representation suggest that we can obtained the more general operators by
using a suitable symbol. The new operator obtained are know as pseudo-differential operator.
We can impose different conditions on the symbol to obtain different kind of pseudo differential
operator.

Definition 3.2.1. Let m € (—o00,00). Then we define S™ to be the set of all functions o(x,£) €
C>®(R" x R™) such that for any two multi-indices o and [3, there is a positive constant C, g
depending on o and 3 only, such that

|(D2D0(@.9))| < Cap+16)" T, 2.6 € Cu.

We call any function o € UperS™ is a symbol.

Definition 3.2.2. Let o is a symbol. Then the pseudo-differential operator T, associated to o
1s defined by

(Toé)(x) = (2m) / o (a, E)H(E)dE, b e S.

n

We will give some examples of pseudo-differential operator which can be prove easily.

Examples 3.2.3. Let

P(z,D) = Z aq () D,

la|<m

1s the linear partial differential operator on R™. If the coefficients a, € C* and have bounded
derivative then the polynomial

P(z,6) = ) aa(2)é",

la|<m

is in S™ and hence P(x, D) is the pseudo-differential operator.
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Examples 3.2.4. Let 0(&) = (1 + |¢[?)™?, —0c0 < m < c0. Then o € S™ and T, is a pseudo-
differential operator. We can prove it just by using the definition of pseudo-differential operator.

Now we will give a relation between the equality of symbols and the pseudo-differential
operator but before that we need a result.

Lemma 3.2.5. Let f be a continuous tempered function such that

Ti(p) =0, ¢p€S8.
Then f is identically zero on R™.
Proposition 3.2.6. Let o and 7 be two symbol such that
T, ="1T,.
Then o = T.

To prove the proposition just use the definition of pseudo-differential operator and the above
lemma.

Proposition 3.2.7. Let o be a symbol. Then T, maps Schwartz class to Schwartz class ele-
ments.

Definition 3.2.8. Let o € S™. Suppose we can find o; € S™ where
m=mgy>mg>mg>...>mj > —00,] — 00,

such that

N-1
g — E 0j S SmN,
=0

o0
or every positive integer N. Then we call »  o; is asympototic expansion of o and we write
Y 9 j Y
§=0

00
g ~ E O'j.
Jj=0

Based on the above definition we have an important theorem but before that we will give a
lemma.

Lemma 3.2.9. There exists a function ¢ € C*°(R™) such that
1. 0<p@) <1, £eR,
2. ¢(6) =0, [gl<1.
3op@) =1 g =2

Theorem 3.2.10. Let m = mg > m; > mg > ... > m; >— —00,J — 00. Suppose o; € S™.
Then there exists a symbol o € S™ such that

[eS)
g r~ E O'j
Jj=0

. Moreover, if T be another symbol with the same property then 0 — 7 € NperS™.
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Proof. Let ¥ € C*°(R*) be a function satisfying above properties in the lemma. Let (¢;) be a
sequence of positive numbers such that 1 > € > € > e > ... > ¢ — 0 as j — 00. Define a
function o € R™ x R™ by

o(x,8) =Y P(€)oj(x,€), x,& €R™
7=0

Note that for each (zg, &) € R™ x R", there exists a neighbouhood U of (x¢, &) and a positive
integer IV such that ¢(¢;€)o;(x,&) = 0 for all (z,£) € U and j > N. Hence, 0 € C*(R" x R").
Furthermore, for any multi-index a and by using the properties of ¢, we will get O¢ {(e§)} =0

if €] < 2orl¢] > 2 and |98 {v(e€)}| < Coel V € € R™, where C, = sup [{0*¢} (§)]. If
£eRn

€

1 2 2 4
c <] <% thene < e < 13- Hence,

08 {w(e)} | < CLA+[E) T ¢ eRr,
where C;, = C,4%. Now, by using Leibnitz’ formula and the fact that oj € 8™, we can find the

constants C, , and C} g, such that

DD £ X () CanCranli + D™

<«

Let Cjap= D, (f‘/) Ca~Cj - Hence, we will get
v<a

|Dg Dp(€;€) (2, €)] < Crap(l+ )7L 4 [€)m 1ot

Now, we choose ¢; such that
Clape; <27,

for all the multi-indices o and § such that |a + | < j. By definition of ¢, we have
¥(e§) =0,
whenever 1+ [£] <e;'. Hence,
| DgDb(ei€)os(w, )] < 277 (1 + gy,

whenever z, £ € R" and |a + 3] < j. Now, for any multi-indices ag and [y, we take jg so large
that jo > |ag + fo| and m;, + 1 < mgy. Write

(0.6 = Y wles8)oy(w,€) + S Ule )y (r.€).

Clearly, first part of the sum is a finite quantity and hence, it belongs to S™°. Now,

IDEDLY " wp(ei&)oj(x,€)| < Y IDEDE{ib(e;€)o;(x, )} .
J=jo J=jo
< 27 H(1 4 |g]ymolol,

Hence, second part of the sum is also belongs to S™°, so ¢ € ™. Remaining part of the proof
can be done easily. O
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3.2.2 Partition of Unity

In this subsection, we are going to give three important theorems which we are going to use
in next two subsections. First of all, we will construct the partition of unity. Then we use
this partition of unity to decompose a signal o(z, ) into family {ox(x,&)} of symbols with
the compact support in the £ variable. At the end, we will give multi-dimentional version of
Taylor’s formula with the integral remainder. Out of these three results, we will give proof only
for the second result. So, let us start the subsection by the construction of partition of unity.

Theorem 3.2.11. There is a sequence {¢g}ry of functions in C§°(R™) such that
1. 0<pp(6) <1, €€R, k=0,1,2,3...,
2. Z gpk(&) = 17 5 S Rn)
k=0
3. for each & € R™, at least one or at most three of the ¢).s are nonzero,
4. supp(po) E{€ € R" - [§] <2},
5. supp(pr) C{Ee R : 282 < ¢ < 2"} £=0,1,2,3,..,
6. for each multi-index «, there is a multi-index A, > 0 such that

sup |(0%pi)(§)] < Aa27M7.

gER™
Remark 3.2.12. Let 0 € S™. Fork=0,1,2,..., we write

or(2, &) = o(z,8)er(§)
for all x,& € R" and
Ka(e,9) = (207 [ oo, )

R

for all x,z € R", where {¢pi}—, is the partition of unity.

Lemma 3.2.13.
2PV <N 3 2P, z e R
lv[=N

Theorem 3.2.14. For all non-negative integers N, and multi-indices a0 and 3, there exists a
constant A, depending on m,n, N,« and 5 only, such that

/|Z’N|(353§‘Kk)(x, 2)|dz < A2(mHlel=Nk

forallk=0,1,2,3,....

Proof. Let v be any multi-index, then by using above remark,Plancherel’s theorem, Leibnitz’
formula and theorem 1, we will get

2

1@ pa: = |5 (7)o e o) (o o) @ de

R Wi |V <y
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where

Wo={{eR": [§] <2}

and
Wi={eR": 2" 2 < |¢|<2"} ) £ =0,1,2,3,....

Hence, by theorem 1 and the fact that £%(9%0) is a symbol in S™*°l we will get positive
constants C, 5+ and C s such that

2

/|z7 (B20° Ky (2, 2)|Pdz < 2kt2m2lal=2hl) ¢ on Z (;)Ca7677,07’7,22(m+|a—7 )

¥ <y

where C), is the constant with the property that the volume of the ball in R™ with radius r is
equal to C,r™. Let

= n v 2(m~+|a|— !
Aa,/g’,'y,m,n - Cn2 Z (,-)/)OOC,BKY, 0777/2 ( o —[v 1)

7 <y
Thus
/’zv 5’360‘Kk (z, z)\ dz < Aangﬁ’myan(n+2m+2|a\72\7\).

Let N be a nonnegative integer, then by lemma, we will get

/|Z|2N|(8583Kk)($,z)|2dz S A12k(n+2m+2|a\—2N)

forall k =0,1,2,3,..., where

N §
=n Aaﬁ,%m,n‘

[vI=N

By taking square root on both sides, we will get

D=

/|z|2N|(858§‘Kk)(x,z)|2dz < Qk(§+mtlal-N) 4

1
for k=0,1,2,3,..., where Ay = Af. Now, write
/|Z|N|(8£8?Kk)($72)|dz: / +
e |z]<2=F  |z|>27Fk

By cauchy Schwarz inequality, there exists a constant A3 > 0 depending on m,n, N,a and (3
only such that

/ < A32(m+\a|—N)k

|z|<2-Fk

for k = 0,1,2,3.... Again, by cauchy Schwarz inequality, there is another constant A4 > 0
depending on m,n, N, « and (8 only such that

1
00 2
/ < 2k(%+m+|a\fon)A4 {5/ /rQnrnldrda

‘Z|>27k n—19—k
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where do is the surface measure on the unit sphere S"~!. Hence

/ < Qk(gtmtlal=N=n) 4 1 gn-1139%"

|z|>2—F

Now, let As = A4]S"1|2. Hence for k =0,1,2,3,..., we have

/ S A52(m+\a|—N)k.

|z|>2—F
Hence, we are done with the proof. O

Theorem 3.2.15. Let f € C*°(R"). Then for all positive integers N,

1

fern = 3 T ey xS o= e+ noyao

laf<N ' =N ""7

for all £,n € R™.

3.2.3 Product of Pseudo-Differential Operators

In this subsection, we are going to define the product of two pseudo-differential operators and
will show that the product is again a pseudo-differential operator. We also give the asymptotic
expansion for the symbol for the product.

Before defining the product of two pseudo-differential operators, let us look at some moti-
vation for it.

Let ¢ € §. Then, we have

(T )(a) = (27) / oy, €)D(E) e

Rn
for all z € R", where ox(z,§) = o(z,§)or(€) and {¢x} is the partition of the unity. Hence,

o0

> (T,0)(x) = (2n / M{Zak z,§) } )de.

k=0 R
— (2m) / ez, €)H(E)d.
RTL

Then by the definition of pseudo-differential operator, Fourier transform, Fubini’s theorem and
the definition of Ky (x,¢), we will get

(T, T, ) (x) = (2m) 7 / Kz, 2 — y)(To)(y)dy

for all z € R™. Hence, by the definition of pseudo-differential operator and Fubini’s theorem,
we will get

(T, To6)(x) = (27) % / e (2, 1) ()l

]Rn
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for all x € R™, where

Me(am) = (2m) / DN (7 — )y, m)dy.

Rn

Hence,by a simple change of variable, we will get

(T,T.6)(x) = (2m) F / =Nz, m)(n)dn

for all x € R™, where

for all n,z € R™.

Lemma 3.2.16. For all positive integers M, there exists a positive constant Cy g arn, such that

|(D2DITE)) (2.€)] < Caprrin, (14 JE2)7 (1 + [g]ymelm 2=k
forall 7,6 €R" and k=10,1,2,3, . ...

Theorem 3.2.17. Let o € S™ and 7 € S™. Then the product T, T, of the pseudo-differential

operators T, and T is again a pseudo-differential operator Ty, where X € S™ ™2 and has the
following asymptotic expansion :

This means

is a symbol in S™TM2=N for every positive integer N .
Proof.
we8) = @nF [ SR, 2o - 2.

Rn
for all £, € R™. Now, by Taylor’s formula, we get

re-59= % Sl @@+ 20,

|l <N1

where

By (1, ,€) = - / 01 (907 (@ — 02, )0

|M| Ny 0

for all z,&, x € R™. Now, by using above three equations, we get

—)ul L
N = 3 S0 @) (5,(00) 0, + T (0.,

|| <Ny
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where
18)(2,6) = (207 [ ¢S Kalo, )R (0.2 €)d:
Rn
for all z,&, x € R™. For any positive integer /N, the function A satisfies

— )\l —) ) ul
-3 B @@ -a- X E @ en s Y B o) @)
lul<N |l <Ny N<|p|<N:

where N; is any positive integer larger then N. Obviously,

—)
Z (=) (8?0) (OkT) € Smatma=h,

|
NNy H

Hence, if we can prove that for all multi-indices v and 3, there exists a constant C, g such that

pen? |n— Y C o) i) | V(w69 < gt 4 e

st

for all z, £ € R™, then we can conclude that A € S™*™2 But as we know

) 0
= 3 S (o) o) = ST

PR

and hence by lemma, we are done with the proof. O

Lemma 3.2.18. Let

RNl(xaz>§) = / Nl ! aﬂ )(l’ — 92’,5)(19
0

|M| N

Then, for all multi-indices o, B and vy, there exists a constant Co g~ > 0 such that

‘(63(9?3?5’1\71) (x, z,f)’ < Cupr [Z ‘Z|le\’7/| (1+ |¢|)m=18

v <y

for all z,x,& € R".

Adjoint Of A Pseudo-Differential Operator

Definition 3.2.19. Let o be a symbol in S™ and T, its associated pseudo-differential operator.
Suppose there exists a linear operator Ty : S — S such that

(Too,4) = (¢, 15¢) , o, €S,
Then, we call T} is a formal adjoint of the pseudo-differential operator Ty, .

We can clearly see that a pseudo-differential operator has at most one formal adjoint. Here,
following three problems arises:

1. Does a formal adjoint exist?
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2. If it exists, is it a pseudo-differential operator?
3. If it is a pseudo-differential operator, can we find an asymptotic expansion for its symbol?
o answer the above questions, we have the following result. We are omitting the proof.

Theorem 3.2.20. Let o be a symbol in S™. Then the formal adjoint of the pseudo-differential
operator T, is a again a pseudo-differential operator T, where T is a symbol in S™ and

— )l
r(w &)~ 3 9 (@ros) (2, 6).

|
PR

Which means

)l
w6 - 3 T raro) (n,6),

|
v

is a symbol in S™ N for every positive integer N.

The Parametrix Of An Elliptic Pseudo-Differential Operator

Among all pseudo-differential operator there exists a class of operators which come up frequently
in application and are particularly easy to work with. They are called elliptic operator. They
are nice because they have approximate inverse (or parametrices) which are again pseudo-
differential operator. In this part, we will categories all these pseudo-differential operator.

Definition 3.2.21. A symbol 0 € S™ is said to be elliptic if there exits positive constants C
and R such that
o(z,8)] = C(L+[¢))™, ¢l = R.

Definition 3.2.22. A pseudo-differential operator T, is said to be elliptic if its symbol is elliptic.

Theorem 3.2.23. Let o be an elliptic symbol in S™. Then there exists a symbol T in S™™
such that
T.T,=1+R

and
T,T. =1+,

where R and S are pseudo-differential operator in NyerS*, and I is identity operator.

Remark 3.2.24. In other words, above theorem says that if T, is an elliptic pseudo-differential
operator, then it can be inverted modulo some error terms R and S with symbols in NkerS*.

3.2.4 [P-Boundedness Of Pseudo-Differential Operators

At the end of this thesis, we are going to discus about the LP boundedness of the pseudo-
differential operators. We start this subsection with a lemma.

Lemma 3.2.25. If o), — 0 in S as k — oo, then ¢ — 0 in LP(R™ as k — oo, for 1 < p < oo.
This is an easy application of dominant convergence theorem.

Lemma 3.2.26. The Fourier transform F maps S continuously into S. More precisely If
or =01 S as k — oo, then ¢, — 0 in S as k — oo.

Based on above two lemmas, we have the following result.
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Proposition 3.2.27. T, maps S continuously into S. More precisely, if pr — 0, then T i —
0inS as k — oo.

Remark 3.2.28. The pseudo-differential operator T,, initially defined on the Schwartz space
S, can be extended to a linear mapping defined on the space S of tempered distributions. To
wit, take a distribution u € S and define T,yu by

(L)) = u(T39), ¢ €8.
Proposition 3.2.29. T, is a linear mapping from S into S .

Definition 3.2.30. A sequence of distributions {uy} in S’ is said to converge to zero in S’ if
ur(p) = 0 as k — oo forall p € S.

Proposition 3.2.31. T, maps S  continuously into S . More precisely, if uy — 0 in S as
k — oo, then Tour — 0 in S as k — oo,

Definition 3.2.32. Let u be a tempered distribution. Then for any multi-index o, we define
0%u by
(0*u)(p) = (=1)*u(0%p), p€S.

Clearly, 0%u is also a tempered distribution.

Proposition 3.2.33. Let u be a tempered distribution. Then for any multi-index «,
(D%u)" = ™,

where xu is the tempered distribution given by

(z%a)(p) = a(2zp), ¢€S.

Theorem 3.2.34. Let k € C*(R" —{0}),k > %, be such that there is a positive constant B for
which

(D*m)(€)] < Bl¢| ™I, ¢ #0,

for all multi-indices o || < k. Then, for 1 < p < oo, there is a positive constant C, depending
on p and n only, such that
[Tell, < CBllell, ¢€S,

where

(T)((x) = (2m)F / eTEm(E)p(€)dE, T € R™.

Rn

Lemma 3.2.35. For all multi-indices o and positive integer N, there is a positive constant
Co N, depending on o and N only, such that

[(DgGn) (O] < Can(@+ [ENT L+ AN, A€ eR™

Lemma 3.2.36. Let K(z,2) = (2r)% [ e®So(x,&)d¢ in the distribution sense. Then
R

1. for each fized x € R", K(x,.) is a function defined on R™ — {0},

2. for each sufficiently large positive integer N, there is a positive constant C'y such that

K(a,2)] < Onl™M], 240,
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3. for each fired x € R™ and ¢ € S vanishing in a neighbourhood of x,

(T,p)(x) = (2m) 2 /K ,x — 2)p(z)dz.

Now based on the above results, we will prove the important result of this chapter.

Theorem 3.2.37. Let o be a symbol in S°. Then 1 < p < oo, T, : LP(R") — LP(R") is a
bounded linear operator.

Proof. Let Z™ be the set of n-tuples in R™ with integer coefficients. We write R" as a union
of cubes with disjoint interiors, i.e., R" = U,,ezn @y, Where @, is the cube with center at m,
edges of length one and parallel to the coordinate axes. Let (g be the cube with center at the
origin. Let n be any function in C§°(R") such that n(z) =1V x € Qo. For m € Z", define o,,
by

om(z,&) =nlx —m)o(z,§), xR

Obviously, T,,, = n(x —m)T,, and

/| To0)( |pd;1:</| z)[Pdx, ¢ €S.

Since o, (x, €) has compact support in z, it follows from Fourier inversion formula and Fubini’s
theorem that

(Tyo0) (2) = (27) / e (2, ©)B(E)E.

= (2n)7"? / e {‘R/ e Aem (N, E)dN 3 P(€)dE.
— (2m) 7 [ {J (N, )PENE b dN

Where 6,,(), €) is the Fourier transform with respect to the variable z. Now, by using lemma
and theorem above, we will get the map ¢ — Thp defined on § by

(Tag)() = (2m) " / €60\, €)B(E)de

can be extended to a bounded linear operator on LPR"™. Moreover, for any positive integer IV,
there is a positive constant Cy such that

ITell, < Cn(L+ AN ely, ¢ €S.

Now, by using Minkowski’s inequality in the integral form, choosing sufficiently large N and
putting the value of (Typ), we will get

|T5,,0ll < Cnlloll, , w€S.

Hence,
[ 1@ pds < el
Qm
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Now, we will use last lemma. Let Q) be double of (),,,. Now, let Q)7 be another cube concentric
with @, and @ such that @,, C QF, C Q. Let v € C°(R") be such that 0 < ¢(z) < 1
for all z € R, supp(v)) C QF and psi(x) = 1 in a neighbourhood of Q. Write ¢ = @1 + ©9,
where p1 = 1 and ps = (1 — ¥)p. Then T, = T,p1 + T,p2. Write

I, = / (Tog) (@) Pde
Qm

and
T = / (Tya) ()P d.
Qm

Then for sufficiently large positive integer N, from last inequality, thee exists a positive constant
Cy such that
I, < 2p||901|]17;0§, + 22 .

By lemma,there is a positive constant Csy such that for all x € Q,,,

(To) ()] = / K.z — 2)pa(2)dz

_ / K(2,7 — 2)pa(2)d2

R Qs

< Con / & — 22|y (2)d=.

B"SQs,

Let A > y/n+ 1. Then there exists a positive constant C y, depending on A and N only, such

that
|z — 2|72V B A+ |x — 2|)2N <C
Atz —2)2N e -2y S

for all x € @), and z € R" — )},. Hence,

|(Thpy) ()] < ConCin / A+ |z — 2|7 |pa(2)|dz, = € Q.

R"=Qf,

Next, we note that, for all z € @),,, and z € R" — Q*

m?

Az —zl=A+|r—2z+m—m|.
gegh + |m — z| — |m — z|.

>(A—%?)+Vn—d

Where,u:\/Tﬁ—i—l.

(1 + Jo — 2) "o (2))|
(b |z = 2[)¥

(Trp)(2)] < ConCox /

R"SQs

dz, x € Q.
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Now, by using Minkowski’s inequality in integral form and after a simple calculation, we will
get
P
EACT
(p+|m—2) %

Jm < O)\,N,p
R*—Q7,

And hence summing over all m € Z", we get a positive constant C', depending only on n,p, A
and N such that

/| Top)( |pdx<{c+2p0>\zvpzz . | l| }/|90 )[Pdz.
_|_ —

mezZn l;ém

Since S is dense in LP(R™). It follows that 7, can be extended to a bounded linear operator on

LP(R™). 0
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