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of this polytope which is an optimal solution. Exploiting this, we have developed
a simplex-like vertex-marching algorithm which runs in strongly polynomial time
for many special cases.

We feel that the strongly polynomial algorithm by Orlin [11] is neither poly-
topal nor very intuitive. The algorithms, which are polytopal and simplex-like
are generally easier to understand, simpler to implement using standard math li-
braries, and run faster in practice. Therefore, an obvious open problem is to give
a strongly polynomial, simplex-like algorithm; even a polynomial bound will be
interesting. Another open problem is to give a linear programming formulation
that captures the equilibrium prices for the Fisher market. Therefore, it will be
interesting to construct a linear cost function on our polytope so that optimum
vertex gives the equilibrium prices.
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Abstract. Much work has been done on the computation of market
equilibria. However due to strategic play by buyers, it is not clear whether
these are actually observed in the market. Motivated by the observation
that a buyer may derive a better payoff by feigning a different utility
function and thereby manipulating the Fisher market equilibrium, we
formulate the Fisher market game in which buyers strategize by posing
different utility functions. We show that existence of a conflict-free al-
location is a necessary condition for the Nash equilibria (NE) and also
sufficient for the symmetric NE in this game. There are many NE with
very different payoffs, and the Fisher equilibrium payoff is captured at a
symmetric NE. We provide a complete polyhedral characterization of all
the NE for the two-buyer market game. Surprisingly, all the NE of this
game turn out to be symmetric and the corresponding payoffs constitute
a piecewise linear concave curve. We also study the correlated equilib-
ria of this game and show that third-party mediation does not help to
achieve a better payoff than NE payoffs.

1 Introduction

A fundamental market model was proposed by Walras in 1874 [21]. Indepen-
dently, Fisher proposed a special case of this model in 1891 [3], where a market
comprises of a set of buyers and divisible goods. The money possessed by buyers
and the amount of each good is specified. The utility function of every buyer
is also given. The market equilibrium problem is to compute prices and alloca-
tion such that every buyer gets the highest utility bundle subject to her budget
constraint and that the market clears. Recently, much work has been done on
the computation of market equilibrium prices and allocation for various utility
functions, for example [6,7,11,15].

The payoff (i.e., happiness) of a buyer depends on the equilibrium allocation
and in turn on the utility functions and initial endowments of the buyers. A
natural question to ask is, can a buyer achieve a better payoff by feigning a
different utility function? It turns out that a buyer may indeed gain by feigning!
This observation motivates us to analyze the strategic behavior of buyers in the
Fisher market. We analyze here the linear utility case described below.

S. Kontogiannis, E. Koutsoupias, P.G. Spirakis (Eds.): SAGT 2010, LNCS 6386, pp. 30-41, 2010.
(© Springer-Verlag Berlin Heidelberg 2010
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Let B be the set of buyers, and G be the set of goods, and |B| = m, |G| = n.
Let m; be the money possessed by buyer i, and g; be the total quantity of
good j in the market. The utility function of buyer i is represented by the non-
negative utility tuple (u;i,...,usm), where u;; is the payoff, she derives from
a unit amount of good j. Thus, if x;; is the amount of good j allocated to
buyer ¢, then the payoff she derives from her allocation is > jeg WijTij- Market
equilibrium or market clearing prices (p1,...,pn), where p; is the price of good
Jj, and equilibrium allocation [x;;];c8,jc¢ satisfy the following constraints:

— Market Clearing: The demand equals the supply of each good, i.e., Vj €
g, EiEB Tij = qj, and Vi € B, Ejeg PjTij = My.
— Optimal Goods: Every buyer buys only those goods, which give her the

. oy . . . Uj 5 .
maximum utility per unit of money, i.e., if x;; > 0 then % = maXgeg 7;;: .
J g

In this market model, by scaling u;;’s appropriately, we may assume that the
quantity of every good is one unit, i.e., g; = 1, Vj € G. Equilibrium prices are
unique and the set of equilibrium allocations is a convex set [14]. The following
example illustrates a small market.

Ezample 1. Consider a 2 buyers, 2 goods market with m; = my = 10, ¢1 =
g2 = 1, {u11,u12) = (10,3) and (ug1,u2) = (3,10). The equilibrium prices
of this market are {(p1,p2) = (10,10) and the unique equilibrium allocation is
{x11, T12, T21,T22) = {1,0,0,1). The payofl of both the buyers is 10.

In the above market, does a buyer have a strategy to achieve a better payoft?
Yes indeed, buyer 1 can force price change by posing a different utility tuple,
and in turn gain. Suppose buyer 1 feigns her utility tuple as (5,15) instead of
(10, 3), then coincidentally, the equilibrium prices (p1,p2} are also (5,15). The
unique equilibrium allocation (z11, 212,21, %22) is (1, 3,0, 2). Now, the payoff
of buyer 1 is uy1 * 1 4 u1g * % = 11, and that of buyer 2 is uos * % = %. Note
that the payoffs are still calculated w.r.t. the true utility tuples.

This clearly shows that a buyer could gain by feigning a different utility tuple,
hence the Fisher market is susceptible to gaming by strategic buyers. Therefore,
the equilibrium prices w.r.t. the true utility tuples may not be the actual oper-
ating point of the market. The natural questions to investigate are: What are
the possible operating points of this market model under strategic behavior?
Can they be computed? Is there a preferred one? This motivates us to study
the Nash equilibria of the Fisher market game, where buyers are the players and
strategies are the utility tuples that they may pose.

Related work. Shapley and Shubik [18] consider a market game for the ex-
change economy, where every good has a trading post, and the strategy of a
buyer is to bid (money) at each trading post. For each strategy profile, the
prices are determined naturally so that market clears and goods are allocated
accordingly, however agents may not get the optimal bundles. Many variants [2,8]
of this game have been extensively studied. Essentially, the goal is to design a
mechanism to implement Walrasian equilibrium (WE), i.e., to capture WE at a
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NE of the game. The strategy space of this game is tied to the implementation
of the market (in this case, trading posts). Our strategy space is the utility tuple
itself, and is independent of the market implementation. It is not clear that bids
of a buyer in the Shapley-Shubik game correspond to the feigned utility tuples.

In word auction markets as well, a similar study on strategic behavior of buy-
ers (advertisers) has been done [4,9,19].

Our contributions. We formulate the Fisher market game, the strategy sets
and the corresponding payolff function in Section 2. Every (pure) strategy pro-
file defines a Fisher market, and therefore market equilibrium prices and a set
of equilibrium allocations. The payoff of a buyer may not be same across all
equilibrium allocations w.r.t. a strategy profile, as illustrated by Example 2 in
Section 2. Furthermore, there may not exist an equilibrium allocation, which
gives the maximum possible payoffs to all the buyers. This behavior causes a
conflict of interest among buyers. A strategy profile is said to be conflict-free, if
there is an equilibrium allocation which gives the maximum possible payoffs to
all the buyers.

A strategy profile is called a Nash equilibrium strategy profile (NESP), if no
buyer can unilaterally deviate and get a better payoff. In Section 3, we show
that all NESPs are conflict-free. Using the equilibrium prices, we associate a
bipartite graph to a strategy profile and show that this graph must satisfy certain
conditions when the corresponding strategy profile is a NESP.

Next, we define symmetric strategy profiles, where all buyers play the same
strategy. We show that a symmetric strategy profile is a NESP iff it is conflict-
free. It is interesting to note that a symmetric NESP can be constructed for a
given market game, whose payoff is the same as the Fisher payoff, i.e., payoff
when all buyers play truthfully. Example 11 shows that all NESPs need not
be symmetric and the payoff w.r.t. a NESP need not be Pareto optimal (i.e.,
efficient). However, the Fisher payoff is always Pareto optimal (see First Theorem
of Welfare Economics [20]).

Characterization of all the NESPs seems difficult; even for markets with only
three buyers. We study two-buyer markets in Section 4 and the main results are:

— All NESPs are symmetric and they are a union of at most 2n convex sets.

— The set of NESP payoffs constitute a piecewise linear concave curve and
all these payoffs are Pareto optimal. The strategizing on utilities has the
same effect as differing initial endowments (see Second Theorem of Welfare
Economics [20]).

— The third-party mediation does not help in this game.

Some interesting observations about two-buyer markets are:

— The buyer i gets the maximum payoff among all Nash equilibrium payoffs
when she imitates the other, i.e., when they play (u—;, u—_;), where u_; is
the true utility tuple of the other buyer.

— There may exist NESPs, whose social welfare (i.e., sum of the payoffs of
both the buyers) is larger than that of the Fisher payoff (Example 17).
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— For a particular payoff tuple, there is a convex set of NESPs and hence
convex set of equilibrium prices. This motivates a seller to offer incentives to
the buyers to choose a particular NESP from this convex set, which fetches
the maximum price for her good. Example 18 illustrates this behavior.

Most qualitative features of these markets may carry over to oligopolies, which
arise in numerous scenarios. For example, relationship between a few manufac-
turers of aircrafts or automobiles and many suppliers. Finally, we conclude in
Section 5 that it is highly unlikely that buyers will act according to their true
utility tuples in Fisher markets and discuss some directions for further research.

2 The Fisher Market Game

As defined in the previous section, a linear Fisher market is defined by the tuple
(B, G, (us)icn, m), where B is a set of buyers, G is a set of goods, u; = (ui;)eq
is the true utility tuple of buyer i, and m = (m;);cg is the endowment vector.
We assume that |B| = m, |G| =n and the quantity of every good is one unit.

The Fisher market game is a one-shot non-cooperative game, where the buyers
are the players, and the strategy set is all possible utility tuples that they may
pose, i.e., S; = {(51'1,51'2,...,81'n> | Sij >0, Ejeg Sij 75 0}, Vi e B. Clearly,
the set of all strategy profiles is S = S; X -+ x S,,,. When a strategy profile
S = (s1,...,8m) is played, where s; € S;, we treat s1,...,Sm as utility tuples
of buyers 1, ..., m respectively, and compute the equilibrium prices and a set of
equilibrium allocations w.r.t. S and m.

Further, using the equilibrium prices (p1, . . ., pn), we generate the correspond-
ing solution graph G as follows: Let V(G) = B U G. Let b; be the node corre-
sponding to the buyer 7, Vi € B and g; be the node corresponding to the good
J, Vi € G in G. We place an edge between b; and g; iff ;—j = maxgeg ;:, and
call the edges of the solution graph as tight edges. Note that when the solution
graph is a forest, there is exactly one equilibrium allocation, however this is not
so, when it contains cycles. In the standard Fisher market (i.e., strategy of every
buyer is her true utility tuple), all equilibrium allocations give the same payoff
to a buyer. However, this is not so when buyers strategize on their utility tuples:
Different equilibrium allocations may not give the same payoff to a buyer. The
following example illustrates this scenario.

Ezample 2. Consider the Fisher market of Example 1. Consider the strategy
profile S = ({1, 19}, (1, 19)). Then, the equilibrium prices {p1, p2) are {1,19) and
the solution graph is a cycle. There are many equilibrium allocations and the
allocations [z11, 12, %13, 714] achieving the highest payoff for buyers 1 and 2
are [1, %, 0, %] and [0, %, 1, %] respectively. The payofts corresponding to these
allocations are (11.42,5.26) and (1.58,7.74) respectively. Note that there is no
allocation, which gives the maximum possible payoff to both the buyers.

Let p(S) = (p1,-.-.,pn) be the equilibrium prices, G(S) be the solution graph,
and X(S) be the set of equilibrium allocations w.r.t. a strategy profile S.
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The payoff wr.t. X € X(9) is defined as (u1(X), ..., un (X)), where u;(X) =
Ejeg WUij Tigj- Let wl(S) = maxxex(s) ul(X),V’L e B.

Definition 3. A strategy profile S is said to be conflict-free if X € X(95),
s.t. ui(X) = w;(S), Vie B. Such an X is called a conflict-free allocation.

When a strategy profile S = (s1,...,8m) is not conflict-free, there is a conflict
of interest in selecting a particular allocation for the play. If a buyer, say k,
does not get the same payoff from all the equilibrium allocations, i.e., X €
X(S), ur(X) < w(S), then we show that for every é > 0, there exists a strategy
profile S" = (s},...,s),), where s} = s;, Vi # k, such that ug(X’) > wi(S) —

’ m

8, VX’ € X(S”") (Section 3.1). The following example illustrates the same.

Ezample 4. In Example 2, for § = 0.1, consider S = ({1.1,18.9), (1,19}), i.e.,
buyer 1 deviates slightly from S. Then, p(S’) = {1.1,18.9), and G(S") is a tree;
the cycle of Example 2 is broken. Hence there is a unique equilibrium allocation,
and w1 (S7) = 11.41, wa(S") = 5.29.

Therefore, if a strategy profile S is not conflict-free, then for every choice of
allocation X € X(S) to decide the payofl, there is a buyer who may deviate
and assure herself a better payoff. In other words, when S is not conflict-free,
there is no way to choose an allocation X from X(S) acceptable to all the buyers.
This suggests that only conflict-free strategies are interesting. Therefore, we may
define the payoff function P; : S — R for each player i € B as follows:

vS eSS, Pi(S) =u;i(X), where X = argmaxHui(X/). (1)
X7EX(S) i

Note that the payoff functions are well-defined and when S is conflict-free,
Pi(S) =w;i(S), VieB.

3 Nash Equilibria: A Characterization

In this section, we prove some necessary conditions for a strategy profile to
be a NESP of the Fisher market game defined in the previous section. Nash
equilibrium [13] is a solution concept for games with two or more rational players.
When a strategy profile is a NESP, no player benefits by changing her strategy
unilaterally.

For technical convenience, we assume that u;; > 0 and s;; > 0, Vi € B,Vj €
G. The boundary cases may be easily handled separately. Note that if S =
(81,...,8m) is a NESP then S’ = (a181,...,mSm), where a1,...,ay, > 0,
is also a NESP. Therefore, w.l.o.g. we consider only the normalized strategies
8i = {(8i1,-- -, Sin), Where Zjeg 8y = 1!, Vi € B. As mentioned in the previous
section, the true utility tuple of buyer 4 is {(u;1,...,us,). For convenience, we
may assume that > . cu;; =1and 37, sm; =1 (wlo.g.).

! For simplicity, we do use non-normalized strategy profiles in the examples.
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We show that all NESPs are conflict-free. However, not all conflict-free strate-
gies are NESPs. A symmetric strategy profile, where all players play the same
strategy (i.e., Vi,j € B, s; = s;), is a NESP iff it is conflict-free. If a strategy
profile S is not conflict-free, then there is a buyer a such that P,(S) < wa(S).
The ConflictRemoval procedure in the next section describes how she may de-

viate and assure herself payoff almost equal to wg(.9).

3.1 Conflict Removal Procedure

Definition 5. Let S be a strategy profile, X € X(S) be an allocation, and P =
v1, V2,03, ... be apath in G(S). P is called an alternating path w.r.t. X, if the
allocation on the edges at odd positions is Non-zero, i.e., Tyy, vy > 0,Vi > 1.

The edges with non-zero allocation are called non-zero edges.

Table 1. Conflict Removal Procedure

ConflictRemoval(S, b,, )

Perturbation(S, X, ba, gs, v)

while b, belongs to a cycle in G(S) do

(p1,-- - pn) < P(S);
J «— {j € G | the edge (ba, g;) belongs to a cycle in G(S5)};
gy +— arg max —2i.
jeg P
X « an allocation in X(.S) such that ue(X) = wa(S) and x4 is maximum;
S «— Perturbation(S, X, ba, gs, %);
endwhile

return S;

S — S;
if (ba, g») does not belong to a cycle in G(S) then
return S’;
endif
J1 « {v | there is an alternating path from b, to v in G(S) \ (ba, gp) w.r.t. X};
J2 « {v | there is an alternating path from g, to v in G(S) \ (ba, g») w.r.t. X};
(Prsopn) = P(S); L=32, o Pis T g s, P
W.r.t. «, define prices of goods to be
Vg € Ji: (L—a)ps; Vgs €Ja: (L+2)ps; Vg € G\ (J1UJ2) : py
Raise « infinitesimally starting from 0 such that none of the three events occur:
Event 1: a new edge becomes tight;
Event 2: a non-zero edge becomes zero;

Event 3: payoff of buyer a becomes uq(X) — ;

Lol o
Sab Sab 1) 7 Sa T ieq oh;

return S’;

The ConflictRemoval procedure in Table 1 takes a strategy profile .S, a buyer

a and a positive number &, and outputs another strategy profile S’, where s} =
si, Vi # a such that VX' € X(5'), uq(X') > wa(S) — J. The idea is that if a
buyer, say a, does not belong to any cycle in the solution graph of a strategy
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profile S, then u,(X) = wy(S), YX € X(S). The procedure essentially breaks
all the cycles containing b, in G(S) using the Perturbation procedure iteratively
such that the payoff of buyer a does not decrease by more than §.

The Perturbation procedure takes a strategy profile S, a buyer a, a good b,
an allocation X € X(S5), where .} is maximum among all allocations in X(S)
and a positive number ~, and outputs another strategy profile S’ such that
8. = 85, Vi # a and w,(S") > uq(X) — 7. It essentially breaks all the cycles
containing the edge (ba, g») in G(S).

A detailed explanation of both the procedures is given in [1]. In the next
theorem, we use the ConflictRemoval procedure to show that all the NESPs in
the Fisher market game are conflict-free.

Theorem 6. If S is a NESP, then

(i) 3X € X(S) such that u;(X) = w;(S),¥i € B, i.e., S is conflict-free.
(i) the degree of every good in G(S) is at least 2.
(i1) for every buyer i € B, 3k; € K; s.t. xi, > 0, where K; ={j € G | 7;)—]] =
ik Y, (p1,- -, pn) = P(S) and [x45] is a conflict-free allocation.

maXxgecg

Proof. Suppose there does not exist an allocation X € X(5) such that u;(X) =
w;(S), Vi € B, then there is a buyer k € B, such that P (S) < wi(S5). Clearly,
buyer k has a deviating strategy (apply ConflictRemoval on the input tuple
(S, k,9), where 0 < § < (wg(S) — P(S))), which is a contradiction.

For part (ii), if a good b is connected to exactly one buyer, say a, in G(S5),
then buyer a may gain by reducing sq, so that price of good b decreases and
prices of all other goods increase by the same factor.

For part (iii), if there exists a buyer ¢ such that z;;, = 0, Vk; € K;, then she
may gain by increasing the utility for a good in K. Il

The following example shows that the above conditions are not sufficient.

Ezample 7. Consider a market with 3 buyers and 2 goods, where m = (50, 100,
50), w1 = (2,0.1),u2 = (4,9), and ug = (0.1,2). Consider the strategy profile
S = (u1,u2,us) given by the true utility tuples. The payoff tuple w.r.t. S is
(1.63,6.5,0.72). It satisfies all the necessary conditions in the above theorem,
however S is not a NESP because buyer 2 has a deviating strategy sy, = (2,3)
and the payoff w.r.t. strategy profile (s1, s}, s3) is (1.25,6.75,0.83).

3.2 Symmetric and Asymmetric NESPs

Recall that a strategy profile S = (81, ..., Sn,) is said to be a symmetric strategy
profile if s1 = -+ = 8y, i.€., all buyers play the same strategy.

Proposition 8. A symmetric strategy profile S is a NESP iff it is conflict-free.

Proof. (=) is easy (Theorem 6). For («=), suppose a buyer i may deviate and
gain, then the prices have to be changed. In that case, all buyers except buyer @
will be connected to only those goods, whose prices are decreased. This leads to
a contradiction (refer to [1] for details). I
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Let ST = [s;;] be a strategy profile, where s;; = u;;,Vi € B,Vj € G, i.e., true
utility functions. All allocations in X(S¥) give the same payoff to the buyers (i.e.,
Vi € B,ui(X) = wi(S7), VX € X(S1)), and we define Fisher payoff (uf, ... ul)
to be the payoff derived when all buyers play truthfully.

Corollary 9. A symmetric NESP can be constructed, whose payoff is the same
as the Fisher payoff.

Proof. Let S = (s,...,s) be a strategy profile, where s = p(Sf). Clearly S is a
symmetric NESP, whose payofl is the same as the Fisher payofl (refer to [1] for
details). I

Remark 10. The payoff w.r.t. a symmetric NESP is always Pareto optimal. For
a Fisher market game, there is exactly one symmetric NESP iff the degree of
every good in G(S7) is at least two [10].

The characterization of all the NESPs for the general market game seems hard;
even for markets with only three buyers. The following example illustrates an
asymmetric NESP, whose payoff is not Pareto optimal.

Ezample 11. Consider a market with 3 buyers and 2 goods, where m = (50, 100,
50), w1 = (2,3),us = (4,9), and ug = (2,3). Consider the two strategy pro-
files given by S; = (s1,82,83) and S = (s,s,8), where s;7 = (2,0.1),82 =
(2,3),83 = (0.1,3), and s = (2,3). The payoff tuples w.r.t. S; and Sy are
(1.25,6.75,1.25) and (1.25,7.5,1.25) respectively. Note that both Sy and S, are
NESPs for the above market (refer to [1] for details).

4 The Two-Buyer Markets

A two-buyer market consists of two buyers and a number of goods. These markets
arise in numerous scenarios. The two firms in a duopoly may be considered as
the two buyers with a similar requirements to fulfill from a large number of
suppliers, for example, relationship between two big automotive companies with
their suppliers.

In this section, we study two-buyer market game and provide a complete
polyhedral characterization of NESPs, all of which turn out to be symmetric.
Next, we study how the payoffs of the two buyers change with varying NESPs
and show that these payoffs constitute a piecewise linear concave curve. For a
particular payoff tuple on this curve, there is a convex set of NESPs, hence a
convex set of equilibrium prices, which leads to a different class of non-market
behavior such as incentives. Finally, we study the correlated equilibria of this
game and show that third-party mediation does not help to achieve better payoffs
than any of the NESPs.

Lemma 12. All NESPs for a two-buyer market game are symmetric.

Proof. If a NESP S = (s1, 82) is not symmetric, then G(S) is not a complete
bipartite graph. Therefore there is a good, which is exclusively bought by a
buyer, which is a contradiction (Theorem 6, part (i7)). I
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4.1 Polyhedral Characterization of NESPs

In this section, we compute all the NESPs of a Fisher market game with two
buyers. Henceforth we assume that the goods are so ordered that % > Z;Ej%ﬂ;,
for j = 1,...,n — 1. Chakrabarty et al. [5] also use such an ordering to design
an algorithm for the linear Fisher market with two agents. Let S = (s, s) be
a NESP, where s = (s1,...,8,) and (p1,...,pn) = p(S). The graph G(S5) is
a complete bipartite graph. Since m; + m2 = 1 and 2?21 s; = 1, we have
pj = s;,Vj € G. In a conflict-free allocation X € X(S5), if z1; > 0 and z2; > 0,
then clearly “t > " gnd Y2i < %20
pi Pj pi Pj

Definition 13. An allocation X = [z;5] is said to be a mice allocation, if it
satisfies the property: x1; >0 and x2; >0 = i < j.

The main property of a nice allocation is that if we consider the goods in order,
then from left to right, goods get allocated first to buyer 1 and then to buyer 2
exclusively, however they may share at most one good in between. Note that a
symmetric strategy profile has a unique nice allocation.

Lemma 14. Every NESP has a unique conflict-free nice allocation.

Proof. The idea is to convert a conflict-free allocation into a nice allocation
through an exchange s.t. payofl remains same (refer to [1] for details). I

The non-zero edges in a nice allocation either form a tree or a forest containing
two trees. We use the properties of nice allocations and NESPs to give the
polyhedral characterization of all the NESPs. The convex sets By, for all 1 < k <
n, as given in Table 2, correspond to all possible conflict-free nice allocations,
where non-zero edges form a tree, and the convex sets B for alll <k <n—1,as
given in Table 3, correspond to all possible conflict-free nice allocations, where
non-zero edges form a forest?. Let B = U}_; ByU?—! B} and SV* = {(a, @) | ¢ =

(a1,...,0p) € B}. Note that SNF is a connected set.
Table 2. B Table 3. B,
S e <ma 13 —
Z?:k-%—l a; < Mma ;i:l o : mi
0 =my 4 my Dicksr @i = M2 . .

uljai—u_uaj <O Vi<k},Vj>k Uleti—UliOZjSO Vlfk,VjZk—Fl
sty — Uy < 0 Vi< kVj>k| |U209 Tues S0 ViskVYjizktl

T s0 vieG @20 Vieg

Lemma 15. A strategy profile S is a NESP iff S € SNE,

Proof. (<) is easy by the construction and Proposition 8. For the other direction,
we know that every NESP has a conflict-free nice allocation (Lemma 14), and
B corresponds to all possible conflict-free nice allocations. I

2 In both the tables a;’s may be treated as price variables.
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4.2 The Payoff Curve

In this section, we consider the payoffs obtained by both the players at various
NESPs. Recall that whenever a strategy profile S is a NESP, P;(S) = w;(95), Vi €
B. Henceforth, we use w;(S) as the payoff of buyer ¢ for the NESP S. Let
F = {(w1(S),w2(S)) | S € SNF} be the set of all possible NESP payoff tuples.

Let X be the set of all nice allocations, and H = {(u1(X),u2(X)) | X € X'}.
For a: € [0,1], let t(ct) = ({S1,-- -, Sn), {S1,---,Sn)), Where 8; = uy;+ce(ug; —uy;),
and G = {(w1(S),w2(S5)) | S =t(e),x € [0, 1]}

Proposition 16. F is a piecewise linear concave (PLC) curve.

Proof. The proof is based on the following steps (refer to [1] for details).

1. His a PLC curve with (0,1) and (1,0) as the end points.

2. Va € [0,1], t(a) € SVE, then clearly G C H. Since the nice allocation w.r.t.
t(a) changes continuously as o moves from 0 to 1, so we may conclude that G
is a PLC curve with the end points (w1(S'),w2(S')) and (w1 (S?), w2(S?)),
where S* = t(0) and S% = #(1).

3. F=G. I

The next example demonstrates the payoff curve for a small market game.

FEzxample 17. Consider a market with 3 i
goods and 2 buyers, where m = (7,3},
Uy = <6, 2, 2>, and us = <0.5,2.5,7>. The
payoff curve for this game is shown in the
figure. The first and the second line seg-
ment of the curve correspond to the shar-
ing of good 2 and 3 respectively. The pay- Ly
offs corresponding to the boundary NESPs (9.14,3)
St = t(0) and S? = t(1) are (7,8.25) and
(9.14, 3) respectively. Payoff of buyer 1
Furthermore, the Fisher payoff (8,7) may be achieved by a NESP #(0.2). Note
that in this example the social welfare (i.e., sum of the payoffs of both the buyers)
from the Fisher payoff (15) is lower than that of the NESP S! (15.25).

(7,8.25)

Ly (8,7) Fisher Payoff

Payoff of buyer 2

4.3 Incentives

For a fixed payoff tuple on the curve IF, there is a convex set of NESPs and hence
a convex set of prices, giving the same payoffs to the buyers, and these may be
computed using the similar inequalities as defined in Tables 2 and 3. This leads
to a different class of behavior, i.e., motivation for a seller to offer incentives to
the buyers to choose a particular NESP from this convex set, which fetches the
maximum price for her good. The following example illustrates this possibility.

Ezample 18. Consider a market with 2 buyers and 4 goods, where m = (10, 10),

uy = {4,3,2,1), and uz = (1,2,3,4). Consider the two NESPs given by S; =
(s1,51) and Sy = (s2, 82), where s1 = (3,2, 2 1) and sz = (2,2, 5, ).
Both S; and Sy gives the payoff (5.5,8), however the prices are different, i.e.,
p(S) = (.3 %, F) and p(S2) = (3,3, 3, ). Clearly in Sy, good 3 is
penalized and good 4 is rewarded (compared to Sy).
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4.4 Correlated Equilibria

We have seen in Section 4.2 that the two-buyer market game has a continuum
of Nash Equilibria, with very different and conflicting payoffs. This makes it
difficult to predict how a particular game will actually play out in practice, and
if there is a different solution concept which may yield an outcome liked by both
the players.

We examine the correlated equilibria framework as a possibility. Recall that
according to the correlated equilibria, the mediator decides and declares a proba-
bility distribution 7 on all possible pure strategy profiles (s1, s2) € S; xS before-
hand. During the play, she suggests what strategy to play to each player privately,
and no player benefits by deviating from the advised strategy. The question we
ask: Is there a correlated equilibrium 7 such that the payoff w.r.t. = lies above

. . . 5 u i .
the curve H? We continue with our assumption that % > ﬁ,w <n.
J J

Lemma 19. For any strategy profile S = (s1,82), for every allocation X €
X(S), there exists a point (x1,x2) on H such that 1 > u1(X) and z2 > uz(X).

Proof. Any allocation X may be converted to a nice allocation through an ex-
change such that no buyer worse off (refer to [1] for details). I

Corollary 20. The correlated equilibrium does not give better payoff than any
NE payoff to all the buyers.

Remark 21. [10] extends this result for the general Fisher market game.

5 Conclusion

The main conclusion of the paper is that Fisher markets in practice will rarely
be played with true utility functions. In fact, the utilities employed will usually
be a mixture of a player’s own utilities and her conjecture on the other player’s
true utilities. Moreover, there seems to be no third-party mediation which will
induce players to play according to their true utilities so that the true Fisher
market equilibrium may be observed. Further, any notion of market equilibrium
should examine this aspect of players strategizing on their utilities. This poses
two questions: (i) is there a mechanism which will induce players into revealing
their true utilities? and (ii) how does this mechanism reconcile with the ”invisible
hand” of the market? The strategic behavior of agents and the question whether
true preferences may ever be revealed, has been of intense study in economics
[12,17,20]. The main point of departure for this paper is that buyers strategize
directly on utilities rather than market implementation specifics, like trading
posts and bundles. Hopefully, some of these analysis will lead us to a more
effective computational model for markets.

On the technical side, the obvious next question is to completely characterize
the NESPs for the general Fisher market game. We assumed the utility functions
of the buyers to be linear, however Fisher market is gameable for the other class
of utility functions as well. It will be interesting to do a similar analysis for more
general utility functions.
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