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Abstract 

G-protein coupled receptors are the target receptors for designing almost 45% of the 

drug in current drug market. For drug screening using cell-based assays, fluorescent imaging 

of GPCR mediated calcium dynamics in single cells can be used to obtain the dose-response 

profile. However, construction of a dose-response function based on single cell responses is 

rather challenging as the cells in a population respond heterogeneously to the drug. Here we 

developed a live cell imaging-based approach to quantify the heterogeneity of the HeLa cell 

population in response to GPCR mediated drugs. First, we found that activation of CXCR4 

by SDF-1α induces calcium responses in Hela cells. We measured the temporal dynamics of 

cytosolic calcium through time-lapse imaging using confocal microscopy for various drug 

doses. We then reduced the high dimension data using principal component analysis and 

performed classification of temporal calcium dynamics using K-means algorithm. Time 

course of calcium concentration were found to be heterogeneous and such cell-to-cell 

variability was modeled as a mixture of three subpopulations. Using this sub-population 

model, we characterized the dose-response characteristics corresponding to CXCR4-mediated 

calcium responses at different dose ranges. Our technique was also validated using other 

GPCR receptors and drugs such as endothelin and norepinephrine mediated calcium 

responses. We also investigated the effect of cell crowding on calcium oscillations using the 

proposed tool and found that cell-to-cell contact plays a major role in calcium oscillation. 

Our approach provides a data analytic framework for automated quantification of cell-to-cell 

variability in time-course of cytosolic calcium responses. Most importantly, it offers a mode 

of classification of the cells with respect to its dynamic properties. More generally, the 

strategy presented here can be used to quantify the redistribution of subpopulations for time-

course of intracellular concentrations from a large pool of cells obtained through microscopy. 

Key words: GPCR, CXCR-4/SDF-1α, Calcium, live cell imaging, cell-to-cell variability 
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Chapter 1: Introduction 

1.1-Calcium Signaling: 

Calcium Signaling (also 

called as Ca2+ encoding/calcium 

information processing) is an 

intracellular signaling pathway used 

by a number of cells to transfer, 

process and convert external 

information sensed by the cell. In 

sense of physiological fate of cell, the 

external information is often 

converted into intracellular calcium dynamics. The theory of calcium signaling describes 

how Ca2+ ions act as intracellular/secondary messengers, conveying information within cells 

to control their action. Given the role of Ca2+ ions in cell physiologies like cell migration, 

differentiation, contraction as well as metabolism, Ca2+ signaling has also been proposed as a 

forthcoming tool to depict cell functioning in diseased condition. 

1.2-Why the heterogeneity in cell responses is important? 

 
Figure 1.2: Heterogeneity in cell population and modeling as mixture of subpopulations 

Observed heterogeneity in multicellular organisms can be categorized into four 

groups- (1) size and shape, (2) genome, (3) RNA expression levels, and (4) individual counts 

of metabolites.  Behavior of multicellular organisms are determined by cell-type-specific 

combinations. A particular cell type may have identical genetic blueprint though they may 

have distinct tolerance and may respond in a diverse way to same environmental challenges. 

Figure 1.1: Calcium encoding 

 

 



Classically, the biological models 

(e.g., signaling networks and processing) 

have been conjectured based on experimental 

measurements of population-average 

behavior (e.g., mean, median or mode). 

However, given that the phenotypic cell-to-cell variability exists even between genetically 

homogeneous individuals and under identical stimulus, analysis and conclusions on cell 

responses is rather challenging. 

The upcoming cell-response analysis focuses towards single-cell analysis and 

therefore inherent nature of cell-to-cell variability in a cell population has been identified. 

Single-cell gene expression analysis 

reveals an overlapping molecular 

signature (Figure 1.3) and its effect on 

cell-fate decisions by single cells. Such 

variability may carry valuable 

information that can facilitate the 

understanding of regulatory networks or 

the various cell states. The major 

challenge lies in determining the 

connection between such variability and 

the underlying biological significance. 

Figure 1.4 shows that epileptic condition 

shows high diversity pattern in neuron activity.  

To address this issue, development of new computational tools is needed, in synchronization 

with proper experimental platforms. This will lead to precise analysis of cell-cell variability 

and correlation with physiological responses. 

1.3-Major reasons for origins of cell-to-cell variability 

In a particular type of cell line, the number of receptor present on cell surface can be 

different that may lead to variability. Also, the kinetic parameters of cell physiology may be 

different for individual cells. Additionally, cell crowding effect/cell-cell contact could be 

different for each cells. 

Figure 1.3: Mixture of cell population 

 

 

Figure 1.4: Cells classified on average frequency 
of calcium activation in neurons 
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Chapter 2: Review Literature 

2.1-Calcium: 

Calcium is a chemical element with symbol  

Ca and atomic number 20. Calcium is a soft gray alkaline earth metal, fifth-most-

abundant element by mass in the Earth's crust. Ca is essential for living organisms, 

particularly in cell physiology, where transportation of the Ca ion in and out of 

the cytoplasm functions as a signal for many cellular processes. 

The resting concentration of Ca2+ in the cytoplasm is normally maintained in the 

range of 10–100 nM. To maintain this low concentration, Ca2+ is actively pumped from the 

cytosol to the extracellular space and into the ER, and sometimes in the mitochondria. 

Certain proteins of the cytoplasm and other organelles act as buffers by binding Ca2+. 

Signaling occurs when the cell is stimulated to release Ca2+ from intracellular stores, and/or 

when calcium enters the cell through plasma membrane ion channels (Clapham 2007). 

 

2.2-Calcium signaling:  

Calcium is a universal secondary messenger  and plays a central role in controlling 

cell differentiation, proliferation and migration (Berridge, Bootman et al. 1998) (See Table 

2.1, 2.2 and 2.3). Calcium encoding is a well-known mechanism to transfer the external 

information converted into intracellular calcium dynamics that eventually regulates the 

specific fate of the physiological process (Berridge, Lipp et al. 2000, Clapham 2007, Guo, 

Wang et al. 2015). Specifically many of the diseased condition is lined to the dysregulation of 

the calcium oscillation (Iino 2010, Vachel, Norez et al. 2015). 

Table 2.1: Calcium signaling in cell cycle/cell division 

Cell type/cell 

line 

Techniques 

used 

Main conclusion References  

Endosperm 

cells of 

Haemanthus 

Fura-2 based 

fluorescent 

imaging 

Ca2+ signals play an important role in controlling 

different phases of the cell cycle and interference 

in Ca2+ signaling may disrupt progression of the 

cell cycle 

(Poenie, 

Alderton et 

al. 1986) 

Yeast cells as 

model 

(somatic Cell) 

Mathematical 

modeling 

Calcium signaling triggers a cascade of 

events/reactions leading to the completion of 

mitosis. 

(Baran 

1996) 
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Table 2.2: Calcium signaling in cell migration and differentiation 

Cell 

type/cell 

line 

Techniques used Main conclusion References  

GnRH 

neuron 

(neuron cell 

in brain) 

Differential 

interference contrast 

microscopy, Migration 

assay, Immunostaining 

The regulation of movement through 

Ca2+ signals that act on cytoskeletal 

dynamics. 

(migration) 

(Hutchins, 

Klenke et al. 

2013) 

HeLa cells Mathematical 

modeling 

Circulating Gal-3 activates the 

Calcium sensitive PKC-dependent 

pathway by activating ERK1/2 

promoting cell migration. 

(Gao, Balan 

et al. 2014) 

HUVECs Confocal microscopy Ca2+ acts as a secondary massager in 

RTK and PLC signaling.   

(Tsai, Seki 

et al. 2014) 

 

Table 2.3: Calcium imaging in drug screening and disease diagnosis 

Target Disease Techniques used Cell  line Main Aim References  

Epilepsy 

(disease 

diagnosis) 

Electrophys-

iological 

Recordings 

Stomato-

sensory 

cortex 

Morphological 

characterization of 

neurons and determine 

the single cell 

property.  

(Badea, 

Goldberg et 

al. 2001) 

Alzheimer’s 

disease 

(drug 

screening) 

FRET based 

confocal imaging 

(calcium 

monitoring) 

HEK293 Establishment of high-

throughput drug 

screening assay 

through calcium 

imaging. 

(Honarnejad, 

Daschner et 

al. 2013) 

 

2.3-Significance of GPCR mediate calcium response: 

Since GPCR is the target receptor for almost 45% of the drug in pharmaceutical 

industry, quantification of GPCR mediated (Aggarwal, Sethi et al. 2007) calcium response is 

crucial in case of cell-signaling studies as well as drug screening (Honarnejad, Daschner et al. 
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2013). Screening of GPCR targeting drugs based on calcium imaging has also been reported 

(Table 2.3). Although such high resolution calcium imaging using confocal microscopy is 

becoming important for screening of drugs,  the data analysis remains as a challenge. 

Pharmacokinetic or pharmacogenomics studies required for drug validations are based on the 

dose response characteristics (Michelini, Cevenini et al. 2010). Construction of such a dose-

response curve based on single cell calcium dynamics is rather challenging as the cells show 

high cell-to-cell variability in their response to the drug. 

2.4-Chemokine receptors 4(CXCR4): Structural integrity with GPCR 

CXCR4 (also known as fusin, CD184) is a seven-pass transmembrane Class1 GPCR 

(Gi) (rhodopsin like GPCR family). It is a 352-355 amino acid protein span through plasma 

membrane with three extracellular (N-terminal) domain and three intracellular (C-terminal) 

domain (See Figure 2.1) (Busillo and Benovic 2007, Wegner, Ehrenberg et al. 1998). Here 

we choose to study calcium response mediated by the chemokine receptor type-4 (CXCR-4), 

that belongs to the GPCR family (Choi, Duggineni et al. 2012) and binds with its ligand 

stromal-cell derived factor-1α (SDF-1α) (Zlotnik and Yoshie 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: CXCR 4 receptor (7 transmembrane domains) 
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2.5-Chemokine ligand 12(CXCL12)/SDF-1α: 

SDF-1 is a peptide produced in two forms, SDF-1α/CXCL12a and SDF-

1β/CXCL12b, by alternate splicing of the same gene. These are the small cytokine peptide 

that belong to the intercrine family. The mouse SDF-1α proteins are identical with SDF-1β  

in the 89 N-terminal amino acids but the beta form has an additional 4 residues at the C-

terminus (Nishikawa, Ogawa et al. 1988). The human and mouse predicted protein sequences 

are approximately 92% identical (Shirozu, Nakano et al. 1995). The calcium responses for 

SDF-1α–CXCR4 interactions has been studied in CHO cells and other cells a shown in Table 

2.4. 

(Table 2.4: CXCR4- SDF-1α interactions) 

Cell line/type Techniques used Conclusion  References  

CHO cells 

Neutrophils 

Monocytes 

PBLs 

Fura-2 (fluorescence 

spectrophotometer) 

 

Human stromal cell-derived factor 1 

(SDF-1α), acts as the natural ligand 

for LESTR/fusin (CXCR-4 receptor) 

(Oberlin, 

Amara et al. 

1996) 

CHO cells 

PBMCs 

Fura-2 (fluorescence 

spectrophotometer) 

SDF-1α induced an increase in 

intracellular Ca2+ and chemotaxis in 

CXCR-4-transfected cells. 

(Bleul, 

Farzan et al. 

1996) 

2.6-Chemokine receptors 4(CXCR4): Physiological role 

It has been also reported that CXCR4 acts as Ca2+ mediated neuromodulator (Guyon, 

Skrzydelski et al. 2008) and regulates the migration of IEC-6 and CaCo2 cells by release of 

intracellular Ca2+ when stimulated by SDF-1α (dose-dependent manner) (Agle, Vongsa et al. 

2010). In rat neonatal cardio-myocytes, SDF-1α acts as cardio-protective chemokine and 

enhanced the beat frequency (i.e. improved systolic function) by enhancing the Ca2+ transient 

(Hadad, Veithen et al. 2013). 

2.7-Data quantification: single cell analysis and heterogeneity 

Mostly, the quantification of the cell response to drugs is based on population-average 

measurements (See Figure 1.3). However the single-cell analysis have demonstrated that 

there is inherent heterogeneity present in cell populations for many systems (Slack, Martinez 

et al. 2008). Recent studies suggest that the variability may signify important information that 

can unravel the classification of cell states (Snijder and Pelkmans 2011).  Towards this, a 

major challenge is to find the biological significance of the cell states (Colman-Lerner, 
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Gordon et al. 2005). In this context, we need to develop computational tools along with the 

experimental platform based on high resolution imaging. Characterization of heterogeneity 

has been carried based on fixed-cell assays/immunofluorescent assays in Hela cells (Slack, 

Martinez et al. 2008) but limited studies are there to characterize the heterogeneity in live cell 

dynamic responses. To best of our knowledge, there is no live imaging and analysis of 

CXCR4 mediated calcium responses in Hela cells. 

2.8 Mathematical modeling of calcium oscillations: 

Calcium encoding can be mathematically characterized by biophysical 

models of calcium signaling (Baran 1996, Falcke 2004). Phase plane and bifurcation 

analysis of can be used  to study how the frequency and amplitude of calcium oscillations 

may vary as a function of any parameter of the model (Giri, Patel et al. 2014). Occurrence of 

AM-, FM- or AFM-encoding can be assessed on the extension of the minimum to maximum 

range of amplitude and frequency of Ca2+ oscillations and the bifurcation structure of 

the system under study (Berridge 1997). 

(Table 2.5: Mathematical modeling and high dimension (biological) data analysis) 

Target 

data type 

Problems 

related to data 

Main conclusion References  

Calcium 

oscillations 

Synchronizatio

n of channel 

cluster opening 

and closing. 

The inter spike interval (ISI) consists of a 

deterministic and a stochastic part 

(spontaneous oscillations obeys a Poisson 

process), calcium oscillations can be described 

by a time dependent nucleation  

(Skupin and 

Falcke 

2007) 

Microarray 

data of 

metabolite 

profiles  

Integration of 

different data 

types  

 

Algorithm proposed for the identification of 

coordinated patterns; clustering; a parameter 

that can evaluate the biological significance of 

the clusters found  

(Stegmayer, 

Gerard et 

al. 2012) 

Gene 

expression 

High 

dimensional 

data 

Principal component analysis (PCA) as a  

dimension reduction approach 

(Ma and 

Dai 2011) 

Ca2+ 

dynamics 

Automated 

sorting for 

Image segmentation to separate highly 

correlated cells, PCA for dimensional 

(Mukamel, 

Nimmerjah
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in large 

numbers of 

cells 

cells’ locations 

and their 

dynamics 

reduction, Temporal deconvolution and spike 

detection to extract spike times 

n et al. 

2009) 

Exercise 

stress test 

(EST)  

 

High 

dimensional 

data with 

various feature 

PCA for dimensional reduction that reduces 

the training error and the sum of the training 

and test times. 

(Babaoğlu, 

Fındık et al. 

2010) 

Biological 

imaging 

data 

Pattern 

recognition 

Toolbox proposed combining PCA and k-

means clustering 

(Shamir, 

Delaney et 

al. 2010) 

2.9-Existing Challenges with respect to cell-to-cell variability 

 The existing heterogeneity in the single cell responses makes the data analysis rather 

challenging. 

 It is difficult to obtain the dose response curve for drug-cell interactions during drug 

screening. 

 It is difficult to obtain the specific signature corresponding to a disease (diagnosis) with 

respect to the cell responses in a large population. 

2.10-Objective: 

In this study, we plan to develop a generalized framework that can be used for 

classification of cells with respect to any GPCR mediated calcium response. Such analysis 

can be used to classify the cells, (on cells, off cells, delayed response, quick response) 

quantify the cell-to-cell variability in a cell population and dose response relationship. 

The purpose of the present work is twofold- 

i- This study is aimed at developing an algorithm that allows the classification of the 

cells in a population with respect to its dynamic properties (during drug-cell 

interactions). 

ii- Validation of the algorithm through construction of dose-response curves for various 

GPCR targeting drugs such as SDF-1α, endothelin, norepinephrine from real-time 

imaging of calcium dynamics. 
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Chapter 3: Materials and methods  

 

3.1-Cell culture  

HeLa cells were cultured in MEM medium (Cellgro, Manassas, VA) 

supplemented with 10% dialyzed fetal bovine serum (Atlanta Biologicals, Flowery 

Branch, GA) and antibiotics. 0.2 x 106 cells were seeded on 29 mm glass bottom 

dishes (In Vitro Scientific, Sunnyvale, CA) and maintained in culture until 70–80% 

confluency (in a 37°C and 5% CO2 incubator). 

3.2-Drug and concentrations: 

The time series data for 3 GPCR targeting drugs has been used. Norepinephrine 

(Sigma, St. Louis, MO) in HBSS was used to activate the Alpha-2 adrenergic receptor at 

different concentrations (1–200 mM). Stromal derived factor (Sigma, St. Louis, MO) in 

HBSS was used to activate the CXCR4 receptor at different concentrations (1–800 ng) 

and Endothelin was used to activate endothelin receptor (50-1000 ng). 

3.3-Live cell imaging and image analysis 

For the time-series data, Hela cells were imaged on 29 mm glass bottom dishes 

using Leica-Andor spinning disc confocal imaging system with EM-CCD camera. 20X 

objective was used to perform calcium imaging of 28 cells/field of view (in Hank’s 

Balanced Salt Solution, HBSS, Invitrogen, Life Technologies, Grand Island, NY) 

(approximately). Cells were loaded with 2 microM Fluo-4 (Molecular Probes, Life 

Technologies, Grand Island, NY, Exc: 488nm; Em: 510 nm) for 30 min in HBSS. Then 

the cells were washed with HBSS for three times (each time 15 min incubation). Time-

lapse imaging was performed every second before and after drug addition. Raw image 

data were analyzed with Andor software to obtain the time course of fluorescence 

levels in single cells. Image background correction was done by using the Andor 

background subtraction. For each cell, cytosolic calcium increase was measured by 

quantifying the fold change of the fluorescence level of Fluo-4 with respect to the 

basal level.  A cell population of size >54 was used for each of the doses of a 

specific drug.  

3.4-Histogram and kernel density analysis:   

In order to find the probability distribution of different dynamic properties (peak 
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intensity of Fluo-4, time required to reach peak intensity and area under the curve),  we 

performed a histogram analysis and kernel density analysis. For comparison of cell 

population at different drug doses, histograms were plotted and kernel-density function 

was fitted using MATLAB. 

3. 5 Algorithm for the classification of calcium responses: 

 

 
Figure 3.1: Schematic diagram for calcium imaging using microscopy and data analysis 

3.6-Feature Extraction using principal component 

analysis (PCA): 

PCA is a dimension reduction technique to 

project high dimensional data into a new dimensional 

representation of the data that describes as much of 

the variance in the data as possible with minimum 

reconstruction error. Mathematically, PCA is defined 

as an orthogonal linear transformation that transform 

the data into new coordinate system such that the 

greatest variance by any projection of the data comes 

to lie on the first coordinate (called the first PC), the 

second greatest variance on the second coordinate, and 

so on. PCs are calculated using the Eigen value decomposition of a data covariance matrix. 

The transformation of the dataset to the new principle 

component axis produces the number of PCs 

equivalent to the number of original variables (See Figure 3.2). But for many dataset, the first 

Figure 3.2: PCA Algorithm  
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several PCs explain the most of the variances, so the rest can be eliminated with minimal loss 

of information. PCs whose Eigen values are very small i.e. near to zero are generally 

eliminated. 

For each cell population, we had a vector of size 56x130 and principal-components 

analysis (PCA) was used to reduce the dimensionality (time series data for the cell 

population) from 56x130 to 56x8. The final dimension to be retained was determined through 

the computation of the eigenvalues of the covariance matrix (Figure 3.3). 
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Figure 3.3: Sorted Eigen-value (λ) plot for the data co-variance matrix from Ca2+ response 

imaging data (for various drug doses) 

3.6-K-means clustering: 

Clustering is the task of grouping a set of objects in such a way that objects in the 

same group (called a cluster) are more similar to each other than to those in other groups. In 

supervised learning, the computer system is trained using a set of pre-defined classes, and 

then used to classify unknown objects based on the patterns detected in training. In 

unsupervised learning there are no classes defined a priori, and the computer system 

subdivides or clusters the data, usually by using a set of general rules. An example of 

supervised learning is automatic detection of protein localization, in which the computer 

system is trained using images of probes for known sub-cellular compartments. An example 
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of unsupervised learning is clustering an expression profiling microarray experiment into 

groups of genes with similar expression patterns. 

Table 3.1: Various K-means 

Types of K-means References 

K-means Khalilian et. Al., 2010 

A Hybridized K-means clustering Dash et al., 2010 

The K-means algorithm is one of the unsupervised clustering method. Given a set of numeric 

objects A and an integer number k, the K-means algorithm searches for a partition of  A into k 

clusters that minimizes the within groups Euclidean distance. The K-means algorithm starts 

by initializing the k cluster centers. 

The steps of the K-means algorithm are written below (Figure 3.4): 

1. Initialization: Choose randomly K input vectors (data points) to initialize the clusters. 

2. Nearest-neighbor search: For each input vector, find the cluster center that is closest, and 

assign that input vector to the corresponding cluster. 

3. Mean update: update the cluster centers in each cluster using the mean (centroid) of the 

input vectors assigned to that cluster. 

4. Stopping rule: repeat steps 2 and 3 until no more change in the value of the centroids. 

K-means clustering was used for the 56x8 vector and the clustered cells were 

visualized again using principle component analysis (56x2).  

 
Figure 3.4: K-means clustering algorithm 
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3.7-Silhouette plot: Cluster validation: 

Silhouette values of each point in their own cluster shows how much closely they are 

related to each other. 

Silhouette Value: 

 
 

Which can be written 

 
a(i) is average dissimilarity of i with all other data within the same cluster. 

b(i) be the lowest average dissimilarity of i to any other cluster which i is not a member. 

3.8-Determination of number of clusters using Silhouette plot:  

To determine the number of k in the K-means clustering, we performed simulation of 

clustering for various k values (k=2, k=3, k=4) (Figure 3.5). For each of the k-values, the 

performance of the K-means classification is validated by the Silhouette plot. The Silhouette 

plot for the clustering corresponding to various k’s clearly shows that, for k=3, k-means 

clustering gives the clusters that are tightly grouped (for k=2, the negative Silhouette values 

indicates the possible presence of another cluster; for k=4, one of the cluster is having very 

small size: number of cells in the group <2) (Figure 3.5 and 3.6). Hence, using this technique 

the cell population can be classified with respect to three states for any drug doses.  

(Table 3.2: Silhouette values and their significance) 

Silhouette value Conclusion 

1.0-0.7 A strong structure has been found 

0.7-0.5 A reasonable structure has been found 

0.5-0.25 The structure is weak and could be artificial 

<0.25 No substantial structure has been found 
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Figure 3.5: Silhouette Clustering (k=2, 3, 4) 
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Figure 3.6: Silhouette Clustering for different dose (k=3) 
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Chapter 4: Results and Discussion 
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Figure 4.1: Heterogeneity in calcium dynamics of Hela cells during SDF-1α mediated 

CXCR4 activation  (A) Representative images of HeLa Cells showing Ca
2+

 response in 

presence of SDF-1α (CXCR-4 specific agonist) (I=1 ng, II=40 ng, III=100 ng, III=400 

ng). (B) Time course of Ca
2+

 response: SDF-1α was added at 30 s, (shown by dashed line) 

and then response was measured for up to 130s. Maximum Fluo-4 intensity (corresponds 

to maximum Ca
2+

 response) and time reaching to maximum Fluo-4 intensity (Tmax) was 

calculated for each cells (point highlighted with red star). 
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The results clearly shows that the addition the SDF-1α (CXCR-4 specific agonist) 

induces CXCR4 receptor activation and hence Ca2+ responses were observed (Gi-mediated 

calcium responses). The response was measured by monitoring the Fluo-4 intensity through 

time lapse imaging.  At lower range of drug dose (1 ng and 40 ng) most of the cells were non-

responding (note that the maximum Fluo-4 intensity is detected before the drug addition). At 

low dose very few cells are responding as these cells may have smaller number of the 

receptors at cell surface (with proper orientation) that can be activated. At a higher dose, (100 

ng and 400 ng), most of the cells were showing relatively higher amplitude responses 

(magnitude of maximum fluorescence). 
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Figure 4.2 A and C clearly shows that the variability in the cells significantly changes 

with change in drug dose. Also the kernel density function fitted to the response 

characteristics at various drug doses indicates that the probability distribution does not follow 

a normal distribution (Figure 4.2 B and D). The histogram representation of the maximum 

Fluo-4 intensity (Cmax) indicates that with increasing the drug dose, initially, the population 

mean shifts from a lower Cmax to higher Cmax value, and then from higher Cmax to lower Cmax 

value. The respective nonparametric kernel density function also shows that the population 

mean is toggling between lower and higher Cmax changes in drug doses. The kernel density fit 

for Tmax shows that similar trends exists for Tmax (Tmax toggling with drug doses). 

 

Figure 4.2: Comparison of the probability distribution (cell-to-cell variability) of the 

calcium response in HeLa cell at various doses of SDF-1α (A) The histogram 

representation of the maximum Fluo-4 intensity in a cell population at various doses and 

(B) The kernel density fitted to the maximum Fluo-4 intensity (Cmax) in a cell population 

at various doses (C) The histogram representation of the time required to reach maximum 

Fluo-4 intensity (Tmax) in a cell population at various doses and (D) The kernel density 

fitted to the time required to reach maximum Fluo-4 intensity (Tmax)  in a cell population 

at various doses. The calcium imaging was done at 4 drug doses (1 ng, 40 ng, 100 ng, 400 

ng). 
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Similar toggling effect was noticed even for AUC (as it is in Figure 4.2-B &D). The 

cell population shifts to a higher AUC with increase in the drug dose followed by a decrease 

in AUC with further increase in drug dose (toggling). 
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Figure 4.3: Comparison of the probability distribution (cell-to-cell variability) with 

respect to the area under the curve (AUC) of calcium response in HeLa cell at various 

doses of SDF-1α. The area under curve was calculated up to the maximum Fluo-4 

intensity. (A) The histogram representation of the AUC (average maximum Calcium 

signal) for various drug doses. (B) Nonparametric kernel-density function fitted to the 

AUC of a cell population. 
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We performed K-means classification of the cells in a 2-D plane where we plotted 

maximum Fluo-4 intensity in X-direction and the time required to reach the maximum (Tmax) 

in Y-direction. Considering these two dynamic parameters, k-means (using k=3) clustering 

was performed and individually three subpopulation was characterized (S1, S2, S3; red, blue 

Figure 4.4: Characterization of CXCR4 mediated calcium responses in HeLa cell 

population as a mixture of subpopulations (method I). (A) Scatter plots: In graph, X-axis 

is maximum Fluo-4 intensity (corresponds to max Ca2+ concentration) and Y-axis is 

corresponding time required to reach maximum Fluo-4 intensity (Tmax). Using these two 

features, K-means (k=3) clustering has been performed (representative calcium dynamics 

plot for each subpopulation is plotted by side- cell response close to the centroid of a 

cluster). (B) Classification of cell states with respect to Ca2+ response at various drug dose 

(non-responding, responding-quick, responding-delayed). (C) Stacked bar plots 

representing the relative proportion of each cell state/subpopulation at various drug doses. 
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and cyan color respectively). The centroid of each subpopulations were shown to represent 

the average behavior in each clusters with various drug doses (Figure 4.4a). 

At lower drug dose concentration (1 and 40 ng), approximately all the cells were non-

responding (as shown in representative plot for each subpopulation with the three colors, 

Figure 4.4b). On increasing the drug dose concentration (100 ng and 400 ng), most of the 

cells were responding (as shown in representative plots for each subpopulation, Figure 4.4 a). 

By comparing the 100 ng and 400 ng drug dose response, 100 ng drug dose yielded the 

responses in all three subpopulations; indicating it as an optimum dose (Figure 4.4 b). The 

stacked bar plot for the 100 ng drug dose shows that, almost 95% of the cells were 

responding. Also, at 100 ng drug dose, the highest proportion of the S3 subpopulation 

corresponding to the quick responding cells was observed (clearly depicted from stacked bar 

plot-red subpopulation). At 100 ng drug dose, the high amplitude responsive cells 

corresponds to S3 subpopulation and lower amplitude cells corresponds to S2 subpopulation. 
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Figure 4.5: Characterization of CXCR4 mediated calcium responses in HeLa cell 

population as a mixture of subpopulations (method II): Visualization of heterogeneous 

calcium response in a cell-population as mixture of subpopulation. (A) Method II involves 

a combination of dimension reduction by PCA and classification using K-means (k-3). 

(B) Scatter plots: cells are visualized as points using PCA, dimension reduced to two PCs 

(respective subpopulations are shown in red, blue and cyan color). The centroid positions 

of respective subpopulations are shown in black cross (representative response for each of 

the subpopulation is plotted by side). (B) Classification of cell states with respect to Ca2+ 

response at various drug dose (low amplitude, high amplitude-quick and high 

amplitude-delayed). (C) Stacked bar plots representing the relative proportion of each 

cell state/subpopulation at various drug doses. 
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A combination of dimension reduction by PCA (dimension reduced from 130 to 8) 

and classification using K-means had been used to characterize the cellular heterogeneity in 

HeLa cells in the presence of SDF-1α (CXCR-4 specific agonist).  After classification we 

further used PCA (from 8 components to 2 components) to visualize the data in two 

dimension (Figure 4.5 A). The k-means classification results clearly shows that the cells can 

be classified as multiple cell states (defined as the subpopulations) for each doses. 

Classification of the cells clearly shows that at low doses (1 ng and 40 ng), most of the cells 

are non-responsive. Whereas at higher doses (100 ng and 400 ng), most of the cells are 

responsive with three major states: 1. low amplitude, 2. high amplitude-quick and 3. high 

amplitude-delayed) (Figure 4.5 B). The stacked bar plot shows that the relative proportion of 

various cell states as a function of drug doses follow a non-linear trend (Figure 4.5 C). Also it 

was found that the proportion of the high amplitude-delayed cells is increasing with 

increasing doses. Such behavior could be due to the presence of negative feedback in the 

system (inhibition of enzyme through product inhibition or substrate inhibition). 

In summary, the cell population clearly demonstrates heterogeneity with varying drug 

dose concentration. Subpopulation profiles allow more precise quantitative comparison of the 

responses across doses. As the subpopulation centroid position toggles with drug dose 

variation, this technique may be implemented for determination for an optimal dose during 

drug screening. 

Similarly for the other GPCR targeting drugs (such as Endothelin and 

Norepinephrine), the heterogeneity in calcium dynamics were characterized by method-I and 

method-II (Appendix I, Figure S1,S2, S3 and S4).   
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Chapter 5: Conclusions 

5.1-Status with respect to cell-to-cell heterogeneity 

In recent times, biological systems are being investigated at a higher resolution with 

respect to spatiotemporal dynamics. Such studies reveal the cell-to-cell variability for 

various cases such as apoptosis, cancer heterogeneity, stem cell differentiation and nuclear 

factor- κB (Snijder and Pelkmans 2011).   Previous investigations on population-context 

shows that cell-to-cell variability is present in various systems. For example virus-infection 

efficiency is heterogeneous and is regulated by cellular crowding and cell-cell-contacts 

(Snijder, Sacher et al. 2009). However, the study on cell-to-cell variability and clustering of 

cell states are rather limited in case of drug-cell interaction studies based on live imaging. 

Specifically, the detailed analysis of cell states on GCPR mediated calcium dynamics has 

not been performed so far.  The main reason behind this is the absence of an integrated 

platform that includes the imaging, cell segmentation, quantification as well as high-

dimensional data analysis.  In current study, we propose an integrated scheme for imaging 

cytosolic calcium in HeLa cells and analyzing the temporal responses in a cell population 

using clustering techniques. A combination of dimension reduction by PCA and 

classification using K-means has been successfully used to analyze the cellular 

heterogeneity and identification of cell states. 

5.2-Status with respect to high-dimensional data analysis 

Many research groups are taking significant effort in advanced statistical analysis of 

cell responses (Slack, Martinez et al. 2008, Qiu, Simonds et al. 2011).  The heterogeneity of 

the cancer cell population were characterized as a mixture of phenotypically distinct 

subpopulations for cancer cells using Gaussian mixture model (Slack, Martinez et al. 2008).  

They offered a computational framework to assess the cellular heterogeneity and 

classification of drugs based on heterogeneity. Other groups used approaches based on 

spanning-tree progression analysis of density-normalized events to analyze the mass 

spectrometry data from human bone marrow towards analysis of the heterogeneity in 

multiples parameters from single cells (Qiu, Simonds et al. 2011). Despite recent 

advancement in the algorithms (Falcke 2004, Skupin and Falcke 2007, De Pittà, Volman et 

al. 2008, De Pittà, Volman et al. 2009, Mukamel, Nimmerjahn et al. 2009, Dupont, 

Combettes et al. 2011, Honarnejad, Kirsch et al. 2013), it remains challenging to analyze 

high-dimensional cell-response data, as the techniques to be selected on the basis of the 
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biological hypothesis. Also it will depend on the characteristics of specific system of interest. 

Here we attempt to create a platform for the analysis of cell-drug interactions when calcium 

dynamics is measured in live cells.   

5.3 Major findings 

We found that the dynamic properties of the calcium responses shows significant 

variation when they are stimulated using the GPCR targeting drugs. Here we implemented 

K-means based clustering to classify the cells with respect to their dynamic properties. We 

found that approximately two cell states are possible at the lower dose and three cell states 

are possible at the higher doses. The high dimension data (for large cell number and large 

number of time points) can be visualized using principle component analysis. We 

demonstrate that our method is robust to different types of GPCR-based drugs.  

5.4 Application of the technique 

The clissiication technique proposed can be used for identification of distinct patterns 

corresponding to drug cell interactions from time-series data obtained through live cell 

imaging. It can also be used for other systems in order to compare cell populations with 

pharmacological treatments (different drugs and doses) and genetic perturbations (protein 

overexpression and SiRNA knockdown studies). 

5.5 Advantages of the technique: 

The proposed algorithm enables automated analysis and extraction of feature from 

high-dimension data. Additionally, we were able to perform an unbiased analysis on all the 

arrays. The Feature extraction in 2-D can be used for formulation of a predictive framework 

using interpolation. 

5.6 Disadvantages of the technique:  

The number of groups in a cell population (subpopulations) needs to be fixed by the 

analyzer before analysis i.e. the algorithm itself cannot choose the number of clusters. The 

classification across all doses are not on the basis of similar classes/same principal 

components. The proposed algorithm does not help in explaining the biophysical mechanism. 
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Chapter 6: Future Scope 

6.1-Improvement on the computational technique: 

The existing technique can be further improved by clubbing the data for all the doses 

and performing PCA to find principal components common for all doses. Using those 

components we can find the reduced matrix for all the doses. In addition to K-means 

clustering we may investigate other clustering techniques such as SVM/GMM and their 

efficiency in classification. Additionally, further analysis can be done using other statistical 

techniques such as box plot, hypothesis testing (ANOVA) and correlation techniques. In 

order to predict the responses for a given drug dose, interpolation can be used  with the 2-d 

plots of the high-dimension data. 

6.2-Proposed experimental Project: 

Study of cell cycle phases in stem cells using the proposed technique and 
immunological staining for specific proteins 

 

 

 

 

 

 

 

 

 

 

 

 

Ca imaging 

Hypothesis: Cell division 
Phase 
G0- OFF Cells. 
G1- ON Cells: Quick, High 
amplitude. 
S-ON Cells: Delayed, low 
amplitude 
G2- ON Cells: High 
amplitude, low adaptation. 
M-ON Cells: High 
amplitude, high adaptation 
time. 

Validation 
Immuno-staing with 

Markers for Cell 
division phases   
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Appendix I: Other GPCR and drugs drug interactions  

CXCR4-SDF-1α)(n=28) 

 

 

 

 

Figure S1: Characterization of cell-to-cell variability as a mixture of subpopulations for 

CXCR4-SDF-1α (A) using stacked bar plots (method I) (B) classified subpopulation 

representative (C) Characterized cells subpopulations using stacked bar plots (method II). 

(D) classified subpopulation representative (method II). 
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Figure S2: Characterization of cell-to-cell variability as a mixture of subpopulations for 

ETR-endotheline (A) using stacked bar plots (method I) (B) classified subpopulation 

representative (C) Characterized cells subpopulations using stacked bar plots (method II). 

(D) classified subpopulation representative (method II). 
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α2-Adrenergic receptor-Norepinephrine (Drug dose variation) 

 

 

 

Figure S3: Characterization of cell-to-cell variability as a mixture of subpopulations for 

α2-Adrenergic receptor-Norepinephrine (drug dose variations) (A) using stacked bar plots 

(method I) (B) classified subpopulation representative (C) Characterized cells 

subpopulations using stacked bar plots (method II). (D) classified subpopulation 

representative (method II). 
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α2-Adrenergic receptor-Norepinephrine (Cell Number variation) 

 

 

 

Figure S4: Characterization of cell-to-cell variability as a mixture of subpopulations for 

α2-Adrenergic receptor-Norepinephrine (cell number variations) (A) using stacked bar 

plots (method I) (B) classified subpopulation representative (C) Characterized cells 

subpopulations using stacked bar plots (method II). (D) classified subpopulation 

representative (method II). 
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Appendix II: Amino acid sequences of GPCRs and drug peptids 

CXCR4- amino acid sequences 

10         20         30         40         50 

MEGISIYTSD NYTEEMGSGD YDSMKEPCFR EENANFNKIF LPTIYSIIFL  

        60         70         80         90        100 

TGIVGNGLVI LVMGYQKKLR SMTDKYRLHL SVADLLFVIT LPFWAVDAVA  

       110        120        130        140        150 

NWYFGNFLCK AVHVIYTVNL YSSVLILAFI SLDRYLAIVH ATNSQRPRKL  

       160        170        180        190        200 

LAEKVVYVGV WIPALLLTIP DFIFANVSEA DDRYICDRFY PNDLWVVVFQ  

       210        220        230        240        250 

FQHIMVGLIL PGIVILSCYC IIISKLSHSK GHQKRKALKT TVILILAFFA  

       260        270        280        290        300 

CWLPYYIGIS IDSFILLEII KQGCEFENTV HKWISITEAL AFFHCCLNPI  

       310        320        330        340        350 

LYAFLGAKFK TSAQHALTSV SRGSSLKILS KGKRGGHSSV STESESSSFH  

 

SS             

 

CXCL12- amino acid sequences 

10         20         30         40         50 

MNAKVVVVLV LVLTALCLSD GKPVSLSYRC PCRFFESHVA RANVKHLKIL  
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        60         70         80         90  

NTPNCALQIV ARLKNNNRQV CIDPKLKWIQ EYLEKALNKR FKM  

 

 

 

 

α2-Adrenergic receptor 

 

 

 

        10         20         30         40         50 
MGSLQPDAGN ASWNGTEAPG GGARATPYSL QVTLTLVCLA GLLMLLTVFG  
        60         70         80         90        100 
NVLVIIAVFT SRALKAPQNL FLVSLASADI LVATLVIPFS LANEVMGYWY  
       110        120        130        140        150 
FGKAWCEIYL ALDVLFCTSS IVHLCAISLD RYWSITQAIE YNLKRTPRRI  
       160        170        180        190        200 
KAIIITVWVI SAVISFPPLI SIEKKGGGGG PQPAEPRCEI NDQKWYVISS  
       210        220        230        240        250 
CIGSFFAPCL IMILVYVRIY QIAKRRTRVP PSRRGPDAVA APPGGTERRP  
       260        270        280        290        300 
NGLGPERSAG PGGAEAEPLP TQLNGAPGEP APAGPRDTDA LDLEESSSSD  
       310        320        330        340        350 
HAERPPGPRR PERGPRGKGK ARASQVKPGD SLPRRGPGAT GIGTPAAGPG  
       360        370        380        390        400 
EERVGAAKAS RWRGRQNREK RFTFVLAVVI GVFVVCWFPF FFTYTLTAVG  
       410        420        430        440        450 
CSVPRTLFKF FFWFGYCNSS LNPVIYTIFN HDFRRAFKKI LCRGDRKRIV  

Norepinephrine 
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Endothelin 

10         20         30          

CSCSSLMNKE CVTFCHLNII W  

 

Endothelin receptor 

      10         20         30         40         50 
METLCLRASF WLALVGCVIS DNPERYSTNL SNHVDDFTTF RGTELSFLVT  
        60         70         80         90        100 
THQPTNLVLP SNGSMHNYCP QQTKITSAFK YINTVISCTI FIVGMVGNAT  
       110        120        130        140        150 
LLRIIYQNKC MRNGPNALIA SLALGDLIYV VIDLPINVFK LLAGRWPFDH  
       160        170        180        190        200 
NDFGVFLCKL FPFLQKSSVG ITVLNLCALS VDRYRAVASW SRVQGIGIPL  
       210        220        230        240        250 
VTAIEIVSIW ILSFILAIPE AIGFVMVPFE YRGEQHKTCM LNATSKFMEF  
       260        270        280        290        300 
YQDVKDWWLF GFYFCMPLVC TAIFYTLMTC EMLNRRNGSL RIALSEHLKQ  
       310        320        330        340        350 
RREVAKTVFC LVVIFALCWF PLHLSRILKK TVYNEMDKNR CELLSFLLLM  
       360        370        380        390        400 
DYIGINLATM NSCINPIALY FVSKKFKNCF QSCLCCCCYQ SKSLMTSVPM  
       410        420  
NGTSIQWKNH DQNNHNTDRS SHKDSMN  
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Appendix III:MATLAB code for characterization 

close all; clear all;clc; 
%% 1. for a.data 
a = importdata('800 ng-mL frame 30 dish 7.xlsx'); 
a.data = a.data(~ismember(1:size(a.data, 1), [1:5]), :);          %rows 
a.data( :, ~any(a.data,1) ) = [];                                 %columns 
runningfile_a = a.data(1:end,:); 
time0 = a.data(:,2); 
time_a = time0/1000; 
all_cell_Ca_response = runningfile_a(:,3:end); 
[row_all, column_all] = size(all_cell_Ca_response); 
% %% 2. for b.data 
% b = importdata('10 ng frame 30 dish 8.xlsx'); 
%  
% b.data = b.data(~ismember(1:size(b.data, 1), [1:5]), :);          %rows 
% b.data( :, ~any(b.data,1) ) = [];                                 %columns 
%  
% runningfile_b = b.data(1:end,:); 
% time00 = b.data(:,2); 
% time_b = time00/1000; 
%  
% calresponse_b = runningfile_b(:,3:end); 
% [row_b,column_b] = size(calresponse_b); 
%% 3. Interpolation 
% g=1; 
% for i=1:1:column_b  
%     runningbase = calresponse_b(:,i); 
%     for j=1:1:length(time_b) 
%         calresponse_interp(j) = interp1(time_b,calresponse_b(:,i),time_a(j),'pchip','extrap'); 
%     end 
%      
%     all_calresponse_interp(:,i) = calresponse_interp; 
%       
%     figure(1) 
%     plot(time_b,calresponse_b(:,i)+16*g,'r'); 
%     hold on 
%     plot(time_a,all_calresponse_interp(:,i)+16*g,'k'); 
%      
%     axis([0 130 17 350]); 
%     xlabel('Time(sec)','Fontsize',16); 
%     ylabel('Fluo-4 intensity','Fontsize',16); 
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%     title('Dose=10 ng (Interpolation)','Fontsize',16); 
%     g=g+1;      
% end 
%% 4. All cell Ca response in one variable 
% all_cell_Ca_response = horzcat(calresponse_a,all_calresponse_interp); 
% [row_all,column_all] = size(all_cell_Ca_response); 
% 5. Normalization 
for i=1:1:column_all 
    runningbasemeanst = all_cell_Ca_response(:,i); 
    runningbasemean = sum(runningbasemeanst(1:25))/25; 
    runningcalnorm = all_cell_Ca_response(:,i)/runningbasemean; 
    runningcalnormnew(:,i) = runningcalnorm; 
end 
 
% 6. Appending Ca response plot after normalization with highlighted maxima in each cell response 
g=1; 
for i=1:1:column_all 
    figure(2) 
    plot(time_a,all_cell_Ca_response(:,i)+16*g,'k') 
    set(gca, 'XTick',[30 130],'XGrid','on'); 
    set(gca, 'YTickLabel',{1:1:column_all}, 'YTick',[16:16:448] ,'Fontsize',8); 
     hold on 
    m=max(all_cell_Ca_response(:,i)); 
    t=time_a(find(all_cell_Ca_response(:,i)==m)); 
    plot(t,m+16*g,'r*'); 
        axis([0 130 15 450]); 
    xlabel('Time(sec)','Fontsize',13); 
    ylabel('Fluo-4 intensity','Fontsize',13); 
    title('Dose=10 ng','Fontsize',13); 
        hold on 
    g=g+1; 
end 
 
%% 7. Finding Ca_max and corresponding T_max in each individual cell 
n=1; 
for i=1:1:column_all 
    [max_response(:,n), I(:,n)] = max(all_cell_Ca_response(:,i)); 
    tmax(:,n)=time_a(find(all_cell_Ca_response(:,i)==max_response(:,n))); 
        n=n+1; 
end 
%% 8. Histogram 
% For Ca_max 
inval1 =2; 
w1 =1; 
len1 = length(max_response); 
N1=max(max_response); 
x1 = 0:inval1:N1; 
%plotting the histogram 
figure(3) 
[countlow1,cenlow1] = hist(max_response); 
% Cells in percent  
bar(cenlow1,(countlow1*100)/len1); 
perlow1 =(countlow1*100)/len1; 
histspike1(:,1)= cenlow1; 
histspike1(:,2) = perlow1; 
%axis([0 30 0 40]); 
xlabel('Maximum Fluo-4 intensity','Fontsize',16); 
ylabel('Percentage of cells','Fontsize',16); 
title('Dose=10 ng','Fontsize',16); 
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% For T_max 
inval2 = 12; 
w2 =6; 
len2 = length(tmax); 
N2=max(tmax); 
x2 = 0:inval2:N2; 
%plotting the histogram 
figure(4) 
[countlow2,cenlow2] = hist(tmax,x2); 
% Cells in percent  
bar(cenlow2,(countlow2*100)/len2); 
perlow2 =(countlow2*100)/len2; 
histspike2(:,1)= cenlow2; 
histspike2(:,2) = perlow2; 
%axis([0 120 0 45]); 
xlabel('Corresponding maxima time(sec)','Fontsize',16); 
ylabel('Percentage of cells','Fontsize',16); 
title('Dose=10 ng','Fontsize',16); 
%% 9. Clustering based on Ca_max and T_max by k-means 
value = [max_response', tmax']; 
k=3; 
[idx1,C1]= kmeans(value,k,'Replicates',100); 
% hmo = HeatMap(idx1); 
location1 = knnsearch(value,C1); 
figure(5) 
plot(value(idx1==1,1),value(idx1==1,2),'ro') 
hold on 
plot(value(idx1==2,1),value(idx1==2,2),'bo') 
hold on 
plot(value(idx1==3,1),value(idx1==3,2),'co') 
hold on 
plot(value(idx1==4,1),value(idx1==4,2),'mo') 
plot(C1(:,1),C1(:,2),'kx','MarkerSize',12,'LineWidth',3) 
%axis([0 30 0 140]); 
xlabel('Maximum Fluo-4 intensity','Fontsize',16); 
ylabel('Corresponding maxima time(sec)','Fontsize',16); 
title('Dose=10 ng','Fontsize',16); 
figure(19); 
silhouette(value,idx1); 
%% 14. Tracking back the cells on the basis of PCA and k-means clustering 
g=1; 
for i=1:1:column_all 
    figure(6) 
        if idx1(i)==1 
        plot(time_a,all_cell_Ca_response(:,i)+16*g,'r'); 
    elseif idx1(i)==2 
        plot(time_a,all_cell_Ca_response(:,i)+16*g,'b'); 
    elseif idx1(i)==3 
        plot(time_a,all_cell_Ca_response(:,i)+16*g,'c'); 
    else 
        plot(time_a,all_cell_Ca_response(:,i)+16*g,'m'); 
    end 
    set(gca, 'XTick',[30 130],'XGrid','on'); 
    set(gca, 'YTickLabel',{1:1:column_all}, 'YTick',[16:16:448] ,'Fontsize',8); 
        axis([0 130 15 450]); 
    xlabel('Time(sec)','Fontsize',13); 
    ylabel('Fluo-4 intensity','Fontsize',13); 
    title('Dose=10 ng','Fontsize',13); 
        hold on 
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        g=g+1; 
    %annotation('textarrow',[0.309 0.309],[0.96 0.925],'String','SDF-1\alpha') 
end 
 
%% Plots for the representative cluster (clustering based on Ca_max vs T_max) 
figure(45) 
subplot(3,1,1) 
plot (time_a,runningcalnormnew(:,location1(3,1)),'c'); 
xlabel('Time(sec)','Fontsize',13); 
ylabel('Fluo-4 intensity','Fontsize',13); 
annotation('textbox',[0.68 0.87 0.32 0.06],'String',{'\bf S1'},'FitBoxToText','off','LineStyle','none'); 
%title('S1','Fontsize',13); 
axis([0 130 0 3.2]); 
subplot(3,1,2) 
plot (time_a,runningcalnormnew(:,location1(2,1)),'b'); 
xlabel('Time(sec)','Fontsize',13); 
ylabel('Fluo-4 intensity','Fontsize',13); 
annotation('textbox',[0.68 0.57 0.32 0.06],'String',{'\bf S2'},'FitBoxToText','off','LineStyle','none'); 
%title('S2','Fontsize',13); 
axis([0 130 0 3.2]); 
subplot(3,1,3) 
plot (time_a,runningcalnormnew(:,location1(1,1)),'r'); 
xlabel('Time(sec)','Fontsize',13); 
ylabel('Fluo-4 intensity','Fontsize',13); 
annotation('textbox',[0.68 0.27 0.32 0.06],'String',{'\bf S3'},'FitBoxToText','off','LineStyle','none'); 
%title('S3','Fontsize',13); 
axis([0 130 0 3.2]); 
%% 10. Stacked bar plot by Ca_max and T_max and k-means 
xpCaT = length(idx1); 
% For IDX=1 
    j=1; 
    for i = 1:1:xpCaT 
    if idx1(i)==1 
        SPCaTa(j)=idx1(i);      % the cells in cluster 1 
        j=j+1; 
    else 
    end 
    end 
    % For IDX=2     
    j=1; 
    for i = 1:1:xpCaT 
    if idx1(i)==2 
        SPCaTb(j)=idx1(i);      % the cells in cluster 2 
        j=j+1; 
    else 
    end 
    end 
  
    % For IDX=3     
    j=1; 
    for i = 1:1:xpCaT 
    if idx1(i)==3 
        SPCaTc(j)=idx1(i);      % the cells in cluster 3 
        j=j+1; 
    else 
    end 
    end 
   % Subpopulation percentage calculation 
SPCaT1=(length(SPCaTa)/xpCaT)*100; 
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SPCaT2=(length(SPCaTb)/xpCaT)*100; 
SPCaT3=(length(SPCaTc)/xpCaT)*100; 
pyCaT=[SPCaT1, SPCaT2,SPCaT3]; 
figure(7) 
hbarCaT=bar([pyCaT; nan(1,3)], 'Stacked'); 
set(gca, 'YTickLabel',num2str(1.*get(gca,'YTick')','%g%%'),'Fontsize',14) 
axis([0.8 1 0 100]) 
set(gca,'xtick',1) 
set(hbarCaT,{'FaceColor'},{'r';'b';'c'}); 
xt = get(gca, 'XTick'); 
set(gca, 'XTick', xt, 'XTickLabel', {''}); 
yd = get(hbarCaT, 'YData'); 
labels = {'S3','S2','S1'}; 
barbase = cumsum([zeros(size(pyCaT,1),1) pyCaT(:,1:end-1)],2); 
joblblpos = pyCaT/2 + barbase; 
for k1 = 1:size(pyCaT,1) 
    text(xt(k1)*ones(1,size(pyCaT,2)), joblblpos(k1,:), labels, 'HorizontalAlignment','Right','Fontsize',12); 
end 
title('Dose=10 ng','Fontsize',16); 
%legend(hbarCaT, {'SP1=64.29%', 'SP2=35.71%', 'SP2=35.71%', 'SP2=35.71%'},'Location','southoutside'); 
legend('boxoff') 
%% 11. Area under curve calculation 
for i=1:1:column_all 
    IT=I'; 
    a=IT(i); 
    y=all_cell_Ca_response(:,i); 
    yi=[]; 
    timei=[]; 
    for xi=1:1:a 
        yi(xi)=y(xi); 
        timei(xi)=time_a(xi); 
    end 
    yi; 
    timei; 
        area=trapz(timei,yi); 
        tot_a(i)=area; 
end 
%% 12. Histogram for area under curve 
inval3 = 60; 
w3 = 30; 
len3 = length(tot_a); 
N3=max(tot_a); 
x3 = 0:inval3:N3; 
%plotting the histogram 
figure(8) 
[countlow3,cenlow3] = hist(tot_a,x3); 
% Making the Cells in percent  
bar(cenlow3,(countlow3*100)/len3); 
perlow3 =(countlow3*100)/len3; 
histspike3(:,1)= cenlow3; 
histspike3(:,2) = perlow3; 
%axis([-1 1300 0 25]); 
xlabel('Area under curve(arbitrary units)','Fontsize',16); 
ylabel('Percentage of cells','Fontsize',16); 
title('Dose=10 ng','Fontsize',16); 
%% 13. PCA and k-means by New code 
cov_lem = cov(all_cell_Ca_response); 
lem = eig(cov_lem); 
lem_s = sort(lem,'descend'); 
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% figure(9) 
% plot(lem_s); 
% xlabel('Number of eigen values','Fontsize',16); 
% ylabel('Eigen value(\lambda)','Fontsize',16); 
% title('Dose=10 ng','Fontsize',16); 
%set(gca, 'XTick',[0:1:rown_all]) 
% for saving the values for ksdensity plot 
% all_in_one=vertcat(max_response, tmax, tot_a); 
% for_ksdensity_eig=horzcat(lem_s,all_in_one'); 
% PCA 
noeig=8; 
[pcomp, transdata]= pcanalysis(all_cell_Ca_response', noeig); 
% k-means 
% k=2; 
[idx2,C2]= kmeans(transdata,k,'Replicates',100); 
% to visualize in 2D 
pc=2; 
[pcomp1, transdata1]= pcanalysis(transdata, pc); 
% New centroid position 
New_centroid = C2*pcomp1; 
location2 = knnsearch(transdata1,New_centroid); 
cluster1 = transdata1(idx2 == 1, :); 
cluster2 = transdata1(idx2 == 2, :); 
cluster3 = transdata1(idx2 == 3, :); 
cluster4 = transdata1(idx2 == 4, :); 
figure(10); 
scatter(cluster1(:,1),cluster1(:,2),'ro'); 
hold on; 
scatter(cluster2(:,1),cluster2(:,2),'bo'); 
hold on; 
scatter(cluster3(:,1),cluster3(:,2),'co'); 
hold on; 
scatter(cluster4(:,1),cluster4(:,2),'mo'); 
hold on; 
plot(New_centroid(:,1),New_centroid(:,2),'kx','MarkerSize',12,'LineWidth',3); 
%axis([-40 40 0 180]); 
xlabel('PC1','Fontsize',16); 
ylabel('PC2','Fontsize',16); 
title('Dose=10 ng','Fontsize',16); 
%% 14. Tracking back the cells on the basis of PCA and k-means clustering 
g=1; 
for i=1:1:column_all 
    figure(11) 
        if idx2(i)==1 
        plot(time_a,all_cell_Ca_response(:,i)+16*g,'r'); 
    elseif idx2(i)==2 
        plot(time_a,all_cell_Ca_response(:,i)+16*g,'b'); 
    elseif idx2(i)==3 
        plot(time_a,all_cell_Ca_response(:,i)+16*g,'c'); 
    else 
        plot(time_a,all_cell_Ca_response(:,i)+16*g,'m'); 
    end 
    set(gca, 'XTick',[30 130],'XGrid','on'); 
    set(gca, 'YTickLabel',{1:1:column_all}, 'YTick',[16:16:448] ,'Fontsize',8); 
    axis([0 130 15 450]); 
    xlabel('Time(sec)','Fontsize',13); 
    ylabel('Fluo-4 intensity','Fontsize',13); 
    title('Dose=10 ng','Fontsize',13); 
    hold on 
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        g=g+1; 
end 
%% Plots for the representative cluster (clustering based on K-means) 
figure(55) 
subplot(3,1,1) 
plot (time_a,runningcalnormnew(:,location2(3,1)),'c'); 
xlabel('Time(sec)','Fontsize',13); 
ylabel('Fluo-4 intensity','Fontsize',13); 
annotation('textbox',[0.68 0.87 0.32 0.06],'String',{'\bf S1'},'FitBoxToText','off','LineStyle','none'); 
%title('S1','Fontsize',13); 
axis([0 130 0 3.2]); 
subplot(3,1,2) 
plot (time_a,runningcalnormnew(:,location2(2,1)),'b'); 
xlabel('Time(sec)','Fontsize',13); 
ylabel('Fluo-4 intensity','Fontsize',13); 
annotation('textbox',[0.68 0.57 0.32 0.06],'String',{'\bf S2'},'FitBoxToText','off','LineStyle','none'); 
%title('S2','Fontsize',13); 
axis([0 130 0 3.2]); 
subplot(3,1,3) 
plot (time_a,runningcalnormnew(:,location2(1,1)),'r'); 
xlabel('Time(sec)','Fontsize',13); 
ylabel('Fluo-4 intensity','Fontsize',13); 
annotation('textbox',[0.68 0.27 0.32 0.06],'String',{'\bf S3'},'FitBoxToText','off','LineStyle','none'); 
%title('S3','Fontsize',13); 
axis([0 130 0 3.2]); 
%% 15. Stacked bar plot by PCA and k-means 
xp = length(idx2); 
% for idx2=1 
    j=1; 
    for i = 1:1:xp 
    if idx2(i)==1 
        SPa(j)=idx2(i);      % the cells in cluster 1 
        j=j+1; 
    else 
    end 
    end 
     
% for idx2=2     
    j=1; 
    for i = 1:1:xp 
    if idx2(i)==2 
        SPb(j)=idx2(i);      % the cells in cluster 2 
        j=j+1; 
    else 
    end 
    end 
    % for idx2=3     
    j=1; 
    for i = 1:1:xp 
    if idx2(i)==3 
        SPc(j)=idx2(i);      % the cells in cluster 3 
        j=j+1; 
    else 
     end 
    end 
SP1=(length(SPa)/xp)*100; 
SP2=(length(SPb)/xp)*100; 
SP3=(length(SPc)/xp)*100; 
py=[SP1, SP2, SP3]; 
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figure(12) 
hbar=bar([py; nan(1,3)], 'Stacked'); 
set(gca, 'YTickLabel',num2str(1.*get(gca,'YTick')','%g%%'),'Fontsize',14); 
axis([0.8 1 0 100]); 
set(hbar,{'FaceColor'},{'r';'b';'c'}); 
xt = get(gca, 'XTick'); 
set(gca, 'XTick', xt, 'XTickLabel', {''}); 
yd = get(hbar, 'YData'); 
labels = {'S3','S2','S1'}; 
barbase = cumsum([zeros(size(py,1),1) py(:,1:end-1)],2); 
joblblpos = py/2 + barbase; 
for k1 = 1:size(py,1) 
    text(xt(k1)*ones(1,size(py,2)), joblblpos(k1,:), labels, 'HorizontalAlignment','Right','Fontsize',12); 
end 
title('Dose=10 ng','Fontsize',16); 
%legend(hbar, {'SP1=87.50%','SP2=12.50%','SP3=12.50%','SP4=12.50%'},'Location','southoutside'); 
legend('boxoff') 
%% 16. Silhoutte plot 
figure(13); 
silhouette(transdata,idx2); 
title('Dose=10 ng','Fontsize',16); 
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