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Abstract

Finite-dimensional approximations are developed for retarded delay differential equations (DDEs).
The DDE system is equivalently posed as an initial-boundary value problem consisting of hyperbolic
partial differential equations (PDEs). By exploting the equivalence of partial derivatives in space and
time, we develop a new PDE representation for the DDEs that is devoid of boundary conditions. The
resulting boundary condition—free PDEs are discretized using the Galerkin method with Legendre
polynomials as the basis functions, whereupon we obtain a system of ordinary differential equations
(ODEs) that is a finite-dimensional approximation of the original DDE system. We present several
numerical examples comparing the solution obtained using the approximate ODEs to the direct nu-
merical simulation of the original nonlinear DDEs. Stability charts developed using our method are
compared to existing results for linear DDEs. The presented results clearly demonstrate that the
equivalent boundary condition—free PDE formulation accurately captures the dynamic behaviour of
the original DDE system.

As a second work, we study the stability of human balance during stance using inverted single- and
double-pendulum models, accounting for physiological reflex delays in the controller. The governing
second-order neutral delay differential equation (NDDE) is transformed into an equivalent partial
differential equation constrained by a boundary condition, then into a system of ordinary differential
equations (ODEs) using the Galerkin method. The stability of the ODE system approximates that
of the original NDDE system; convergence is achieved by increasing the number of terms used in the
Galerkin approximation. We validate our formulation by deriving analytical expressions for the sta-
bility margins of the double-pendulum human stance model. Numerical examples demonstrate that
proportional-derivative—acceleration feedback generally, but not always, results in larger stability

margins than proportional-derivative feedback in the presence of reflex delays.
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Chapter 1

Introduction

Mathematical models involving delay differential equations (DDEs) [1] are used to represent time-
delay effects in a wide range of engineering systems. Examples include control systems [2], machine
tool vibration [3,4], fluid-structure interaction [5], and traffic flow modelling [6].

The infinite-dimensional nature of DDEs complicates their analysis. We can always pose a
DDE as an equivalent hyperbolic partial differential equation (PDE) constrained by a nonlinear
boundary condition [7-9]. The mathematical representation of the PDE system appears to be more
complicated than that of the original DDE; however, several methods are available for converting
the PDE into a system of simple ordinary differential equations (ODEs) [10]. We, thus, arrive at
a finite-dimensional ODE approximation of the original DDE, and can then make use of existing
algorithms for the integration and continuation of these ODEs [11,12]. Therein lies the benefit of
this approach: by converting DDEs into systems of ODEs, we can exploit all existing tools developed
for ODE systems to analyze the original DDEs.

Galerkin methods [10] are considered to be the optimal choice for obtaining reduced-order models
for PDEs; however, in the case of a DDE-equivalent PDE, one must also handle the nonlinear
boundary condition. Once a PDE has been discretized, the boundary condition can be incorporated
using a Lagrange multiplier [13] or by employing the tau method [7,14,15]. In this work, we propose
a formulation in which the boundary condition is completely eliminated and embedded directly into
the PDE. Consequently, no special treatment of the boundary condition is necessary when applying
the Galerkin method.

As a second work, we study a problem of bio mechanics. Persons aged 60 and over represent
the fastest-growing sector of the worldwide population—a great triumph of humanity, but also a
great economic challenge. In persons aged 65 and over, falling is the leading cause of both fatal and
nonfatal injury [16], with approximately 28-36% of persons in this cohort falling each year [17]. In
2000, falls among the elderly in the United States accounted for over $19 billion in direct medical
costs [18]; this economic burden is expected to increase in the future. A deeper understanding of
human balance will contribute to improving the quality and longevity of life for the elderly, while
reducing healthcare costs for hospitalization and rehabilitation resulting from falls.

In this work, we model the human as a double inverted pendulum in the sagittal plane, with
controllers at both the ankle and hip. Due to the reflex delay and acceleration feedback in the

model, the governing dynamic equation is a neutral delay differential equation (NDDE)—that is,



the equation takes the form of a DDE with a delayed argument in the highest-order derivative.
Thus, the stability of human balance during stance must be determined by analyzing the stability
region of an NDDE [19]. Unfortunately, NDDEs are infinite-dimensional systems and, as such, their
characteristic equations are quasi-polynomials with an infinite number of roots—all of which must
lie in the left half-plane if the NDDE is to be stable. Insperger et al. obtained analytical results by
inspecting the characteristic equation of the single-pendulum NDDE directly. Here, we extend their
strategy to the analysis of a double inverted pendulum, and use symbolic computational techniques
to obtain analytical expressions for the stability margins of this more complex model. We also apply
an approximate method [20] to analyze the stability of second-order NDDEs by first transforming the
NDDE into an equivalent partial differential equation (PDE) constrained by a boundary condition,
then converting the PDE into a system of ordinary differential equations (ODEs) using the Galerkin
method. Comparison between the analytical and numerical results demonstrates that the stability
of the ODE system approximates that of the original NDDE system, and convergence is achieved
by increasing the number of terms used in the Galerkin approximation.

We first apply our numerical Galerkin approach to obtain the stability diagrams for a single-
pendulum human model with reflex delay, controlled using both PD and PDA feedback control
strategies [21]. We compare our results with those obtained by Insperger et al. [21] to validate the
developed method. We then use the same strategy as Insperger et al. to derive analytical expressions
for the stability margins of the double inverted pendulum model. Next, we apply our numerical
technique to a double-pendulum model with reflex delay, and perform numerical experiments to
compare the Galerkin and analytical methods. We also seek to determine whether a PDA controller
provides a larger stability region than a PD controller for this more complex model. Our results
indicate that the stability margins obtained with the Galerkin and analytical approaches are in
excellent agreement, and that PDA feedback generally remains superior to PD feedback when motion
at the hip is considered.

In the next section, we discuss the literature review for obtaining an approximate solution to

constant coefficient DDEs and the stability of human model during stance (sagittal plane).

1.1 Literature review

Many methods have been proposed in literature to obtain an approximate solution to constant
coefficient DDEs and to analyze their stability. In this section, however we only review papers that
have been most relevant to our work. Kalmdar-Nagy [22] used the method of steps and inverse Laplace
transform to determine the stability regions for higher order constant coefficient DDEs. Ulsoy et al
developed the Lambert W function method to obtain analytical solutions for scalar first order DDE,
which was later extended to matrix Lambert W function to solve system of linear DDEs [23].

It is very well known that the infinite dimensional nature of the DDEs complicates their analysis.
Maset [9] obtained a finite dimensional ODE approximation of constant coefficient linear DDEs by
posing them as abstract Cauchy problem. The transformation proposed by Maset converts the
original DDE into an equivalent hyperbolic PDE constrained by a boundary condition, which is
then discretized into a system of ODEs using the method of lines. Koto [8] also used the same
Cauchy transformation to numerically solve initial value problem DDEs by posing them as initial

boundary value problem.



The application of Galerkin methods to project a DDE into an approximated system of finite
dimensional ODEs was discussed very first in detail by Wahi et al [7]. They first transform the
DDEs into an equivalent PDE system constrained by a boundary condition, which may be nonlin-
ear. The resulting PDE system is then finally truncated into a finite dimensional system of ODEs
using Galerkin projections. To incorporate the ODE corresponding to the boundary condition, they
use the tau method in which the last row of the system ODEs is replaced by the boundary condition.
A notable point of this method is that it can be used for both linear as well as nonlinear DDEs.
An interested reader is referred to their paper to get a detailed understanding of the technique.
Vyasarayani [13] also developed a method based on Galerkin projections to obtain ODE approxima-
tions for higher order DDEs and proposed the use of Langrange multipliers to enforce the nonlinear
boundary constraints.

Thus, we see that in obtaining finite dimensional ODE approximation of DDEs, the boundary
condition must be handled explicitly. They are incorporated into the system ODZEs either using Tau
or the Langrange multiplier technique. However, we observed that using the equivalence of partial
derivatives at the boundary, we can directly incorporate the PDE corresponding to the boundary

condition into the system PDE, and obtain boundary free ODE approximations to the DDE.

As a second work, we focus on the stability of human balance during quiet standing, which is
often studied using a single inverted pendulum [24]. An inverted pendulum is inherently unstable,
and can remain upright only when assisted by a controller [25]. Similarly, humans use their muscles
to apply control torques about the ankle, again to stabilize an otherwise unstable system. Note,
however, that the control torques applied by humans are intermittent: there is substantial reflex
delay between detecting a loss of balance and generating muscle forces [26,27] due to delays in
the human sensing, processing, and actuation systems [28,29]. It has recently been shown that
the strategy used by humans to maintain stability cannot be proportional-derivative (PD) control,
relying on proprioceptive [30] and visual sensors alone, since the required control gains correspond
to forces that exceed the capabilities of human muscles [31]. A recent study by Insperger et al. [21]
suggests that humans instead use a proportional-derivative-acceleration (PDA) control strategy,
aided by the acceleration feedback signal generated within the vestibular system [32]. Insperger et
al. established that PDA control provides a larger stability margin than PD control when applied
to a single-pendulum model. There is some debate as to whether a single inverted pendulum is an
adequate representation of a human when standing, since there is also considerable angular motion
at the hip during postural sway [31]. In this work, we model the human as a double inverted
pendulum in the sagittal plane, with controllers at both the ankle and hip and compare the PD and
PDA stability margins.

1.2 Thesis structure

The entire thesis has been divided in four chapters. The first chapter is the introduction, wherein we
discuss the application of delay differential equations, the different types of DDEs such as constant
coeflicient or time periodic DDEs, and a brief overview of the method proposed in the thesis to model
them. We then discuss the different methods proposed in literature to obtain an approximate solution

to the system of DDEs. Finally, we define the problem that we are going to focus on. In the second



chapter, we first discuss the mathematical modeling of DDEs and propose our embedded boundary
method for retarded DDEs. Next we discuss the tau and lagrange multiplier techniques, the two
popular methods to model DDEs. Finally, we present several numerical examples to demonstrate
the efficacy of the proposed method. In the third chapter, we present the application of Galerkin
methods to a problem of bio-mechanics. First we model the governing equation of the single-
pendulum human stance model during stance using the Galerkin method and compare the obtained
stability margins with the analytical results. Then we extend this strategy and derive analytical
stability margins for the double- pendulum model and compare them with the Galerkin results.

Finally conclusions are provided in chapter 4.



Chapter 2

Embedded boundary method for
Retarded Delay Differential

Equations

In this chapter, we propose the embedded boundary method for obtaining approximate solutions to
DDEs. In the first section, we discuss the mathematical modeling of the DDEs. First we present
the class of DDEs in which we are interested in, and the equivalent PDE representation of the DDE.
We then propose our embedded boundary method to obtain boundary free ODE approximations of
the DDE. Next for the sake of comparison, we discuss the tau and Lagrange multiplier methods, the
already existing techniques to obtain approximate solutions to DDEs. In the next section, we present
the approximate solution and stability charts using the proposed embedded boundary method for
first and second order DDEs. We also discuss an interesting relationship between the embedded
boundary and the Lagrange multiplier method. Finally, we present the application of our proposed

method on a control problem.

2.1 Mathematical modeling

Consider the following system of n first-order DDEs:
Zi:fi(paq%t)a i:1727"'7na (21)

where p = [21,22,...,2,] and q; = [21(t — a41), 22(t — @42), ..., 2n(t — ain)]. The delays are a; =
[ai1 > 0,040 >0,..., 04, >0],i=1,2,...,n and the initial functions are z;(t) = ¥;(t), —ajm <t <
0,i = 1,2,...,n; Q4 is the maximum delay appearing in z;(t). Since the delay argument does
not appear in the highest-derivative term, (2.1) is referred to as a retarded DDE. We introduce the

following standard transformation [8,9]:

yi(s,t) 2 2t +s), (2.2)



and convert the DDE system (2.1) and its history functions into the following equivalent initial-

boundary value problem:

Oyi _ Oy
= > —Q, < 8 < .
ot s’ t >0, im <5 <0 (2 3&)
0y (s, t) . .
o |, fi(u,vi,t) (2.3b)
yi(sa O) = ¢i(5)7 (23(3)
where

u= [y]. (O’ t)? Y2 (07 t)) R yn(07 t)] (243.)
Vi = [yl(_ail7 t)? y2(—0<i27 t)) ) yn(_ainv t)] . (24b)

Here, y;(0,t) represents the solution to the DDE (2.1) when s = 0. Several methods have been
proposed in the literature to incorporate the boundary condition (2.3b) when discretizing the

PDE (2.3a), such as the Lagrange multiplier and tau methods.

2.2 Embedded boundary method

We now present our procedure for embedding the boundary condition into the PDE, thereby eliminat-
ing the boundary condition from the formulation. We first rewrite (2.3b) exploiting the equivalence
of partial derivatives in space and time (2.3a):

6yi (Oa t)

T — fi(u, Vi,t) =0. (25)

Next, we combine the PDE (2.3a) and the modified boundary condition (2.5):

Oy; Oy n 0y (0,1)
ot 0s

D~ fiwvit)) o) (26)
where 0(s) is the Dirac delta function and c is the boundary contribution parameter, which is
assumed to be 1. We can see that collocating the PDE at any point on the domain —ay, < s <0
satisfies (2.3a), and by collocating at the boundary s = 0, we recover the boundary condition (2.5).

We now assume an N-term series solution y;(s,t) for the PDE:

yi(s,t) = ¢i(s) m:(t), (2.7)

T

where ¢i(s) = [¢1(s), 63(s), ..., 6 (s)] " are the global shape functions and ;(£) = [ni1 (£), mia (£), -, min ()]
are the independent coordinates. Shifted Legendre polynomials are used as global shape functions:

#1(s) =1 (2.8a)
Pa(s) =1+ 275 (2.8b)
Bis) = (20 —3) ¢2(8)¢FZ’1(_8)1_ (1—2) ¢i72(8)’ i=3.4... N (2.8¢)



In retarded DDEs, where the order of the delayed arguments is less than that of the highest-order
derivative, the solution will become smoother with every knot. If the solution is C°-continuous at
time t=0, for example, the solution will be C'-continuous after time ¢ = 7 (the first knot) and
C™-continuous after n knots [33]. Retarded DDEs always eventually become smooth, which is the
reason this approximation is effective.

Upon substituting the series solution (2.7) into (2.6), we obtain the following:

T /

$:(5) (1) = #1() m0) + (6,(0) (1) = filw,vi,0) 8s), i=12m (29)

where ¢, (s) = 0¢,(s)/0s. Finally, we pre-multiply both sides of (2.9) by ¢,(s), integrate over the

domain s € [—m, 0], and collect the terms involving 1,(¢) to obtain a system of ODEs:

Min;(t) = Kiny(t) — ¢,(0) fi(w,vi,t), i=1,2,....m, (2.10)

where
M= Oa. i()i(s) ds— ,(0)9,(0) £ A — ,(0),(0)" (2.11a)
K= [ 008l ds (2.11b)

The use of shifted Legendre polynomials as global shape functions allows us to write the entries of

matrices A; and K; in closed form as follows:

_ Qim
2c—1

2, ifc<dand c+dis odd
K. = c=1,2,....,N;d=1,2,...,N. (2.12b)
0, otherwise

A Sed c=1,2,...,N;d=1,2,...,N (2.12a)

In (2.10), the term f;(u,v;,t) can be obtained by substituting the series solution (2.7) into the

expressions for u and v; (2.4): We now determine the initial conditions for the ODE system.
= [6:0) 10, 62(0) 0 (1), 6,(0) m (1] (2130)
vi = [@1(=ai) my (1), da(—aiz) ma(t), - By (—in) M, (1)) (2.13)

We now substitute the series solution (2.7) into the initial conditions (2.3c):

T

bi(s) = ¢, (s)m;(0), i=1,2,...,n. (2.14)

Finally, we pre-multiply both sides of (2.14) by ¢,(s) and integrate over the domain s € [—a;pm, 0]
to obtain the following initial conditions for the ODE system:

0
m(O)ZAZl/_V o, (s)i(s)ds, i=1,2,...,n, (2.15)

where A; is defined in (2.11a). Thus, we have converted the original DDE (2.1) into a system of
ODEs (2.10) with initial conditions given by (2.15). The ODEs can be solved numerically to obtain



7,(t), whereupon an approximate solution for the DDE (2.1) can be obtained as follows:

T

yi(0,8) = nio(t) = ¢;(0) m; (). (2.16)

We define the following error metric to quantify how well the solutions of (2.6) satisfy the original
boundary conditions (2.3b):

_ Ayi

eilt)= 57|~ fi=(0) mi(t) ~ fi i=12...n. (2.17)
0,t

In the sequel, we use a 2-norm to establish the error associated with all boundary conditions:

e(t) = Vel ()2 +ex(t)2 + ...+ en(t)2. (2.18)

We now compare the proposed formulation to the tau and Lagrange multiplier techniques, the two

most common strategies for obtaining approximate solutions to DDEs.

2.3 Tau method

In this method, the series solution (2.7) is first substituted into the equivalent system of PDEs (2.3a),

di(s) 0(t) = i(s) my(t) i=1,2,....m, (2.19)

Pre-multiplying both sides with ¢,(s) and integrating over the domain s € [—a;m, 0], we obtain the
following ODEs:

where A; and K; are the same as defined in (2.12a) and (2.12b) respectively. Next we substitute
the series solution (2.7) into the boundary condition (2.3b) to obtain,

T

¢,(s) n;(t) = filu,vi,t) i=1,2,...,n, (2.21)

and the expressions of u,v; are obtained as:

= [61(0) my(8), $2(0) my(0). ., 6,(0) ', (1) (2.22a)
v = [¢1(-0@1)Tn1(t), Bo(—ai2) my(t), ..., d)n(—ozm)Tnn(t)] . (2.22b)

The boundary condition (2.21) is then incorporated to the ODEs (2.20) by replacing the last row of
A; and K; in (2.20) with the boundary condition. Thus, finally we arrive at the following system
of ODEs:
Aitauiti(t) = Kiraumi () +Fi i =1,2,...m, (2.23)
where A;7au = l A 1 KiTau = [ K 1 and F; = ~
¢(0)" 0 fi(u, vi, t)

Here A; and K; are obtained by deleting the last row of A; and K;, and F; is a column vector



whose all entries are zero except the last one. The initial condition for Eq. (2.23) is given by

1,(0) = Ai_1 /O A o, (s)i(s)ds, i=1,2,...,n, (2.24)

Finally the system of ODEs (2.23) is then integrated forward in time to obtain an approximate
solution to the DDEs (2.1). The approximate solution is obtained as:

T

yi(0,8) = nio(t) = ¢;(0) m; (). (2.25)

2.4 Lagrange Multiplier method

Another widely used method to obtain an approximate solution to the DDEs is the Lagrange multi-
plier method. In this method, the boundary constraint (2.3b) is enforced using Lagrange multipliers.
Firstly, the PDE (2.3a) is written as:

9y _ y;
ot  9s

+0(s)v(t), i=1,2,...n (2.26)

Here ~v;(t) denotes the lagrange multiplier, which is time dependent. On substituting the series
solution (2.7) in (2.26), we obtain

$i(5)T71:(0) = B,(5) (1) + 8()%(), i=1,2, (2.27)

Pre-multiplying both sides of (2.27) with ¢,(s) and integrating over the domain (—a;, < s < 0)
yields

A (t) =Kin,(t) + ¢,(0)y(t), i=1,2,...,n (2.28)

where A; and K; are the same as defined in (2.12a) and (2.12b) respectively. Now substituting
the series solution (2.7) into the boundary condition (2.3b) results in,

(077, (t) = filu, vi, t), i=1,2,...,n (2.29)

where u and v; are the same as obtained in (2.4a) and (2.4b) respectively. We now use (2.28) and
(2.29) to obtain the following expression for the lagrange multiplier(~y;(t)):

W= SO A 6 0] O [A )] (230)

On substituting back the expression of (v;(¢)) in (2.28) and using the initial condition n,;(0) =
AT

solution is then obtained as:

¢,(s)i(s), we integrate the ODEs forward in time to get n,(¢f). The approximation

QAXim

yi(0,4) = mio(t) = $;(0) m;(t). (2.31)

In summary, we have developed a method to convert a system of DDEs into a system of PDEs
without any boundary conditions. The PDEs are discretized using the Galerkin method and con-
verted into a system of ODEs, which can then be solved numerically. As will be demonstrated in

Section 2.5, our approach satisfies the original boundary conditions with only small amounts of er-



ror, and produces results that compare favourably with those obtained using the tau and Lagrange

multiplier methods.

2.5 Numerical Studies

In this section, we present four test cases to investigate the accuracy of the approximation method
we propose. The developed theory is applied to systems of first- and second-order DDEs. The
numerical results for the proposed method are obtained using the odelbs solver in Matlab, and are
compared to those obtained by integrating the DDEs directly using the dde23 [34] solver. Relative

and absolute integration tolerances of 10~% are used throughout.

2.5.1 Coupled First-order DDEs

Consider the following system of retarded DDEs:

Z1 (t) + b121 (t) + b22’2<t) + b3z (t — a11) + b422(t — a12)3 =0 (2.32&)
Zg(t) + by 21 (t) + bﬁZQ(t) + brz1 (t — 0121) + bsz’g(t — 0422)3 = Fsin(wt). (232b)

This is a nonlinear system of coupled DDEs containing delays in both z; and z5. The initial history

functions are assumed to be the following:

(t)

z9 (t)

0, —max(ogg,a2)<t<0 (2.33a)
0, —max(aa,an) <t <0. (2.33b)

In Figure 2.1, we compare the displacements y; (0,¢) and y2(0, t) obtained using the Galerkin method
to those obtained using the dde23 solver in Matlab; the parameters are provided in the figure caption.
Clearly, the results obtained using the Galerkin method match the direct numerical integration of
(2.32). In Figure 2, we plot the least -square errors for y1(0,t) and y2(0, t) as functions of the number
of terms used in the series approximation (2.7):
10000
Ers= Y (2(tx) — y1(0,1x))*. (2.34)

k=1

The simulation was performed for ¢ € [0,100], which was divided into 10,000 equidistant points to
compute the error (2.34). As shown in Figure 2.2, N = 7 terms are sufficient to achieve an error of
0.01. Also note that the error associated with all the methods decreases as N increases, indicating

convergence.

2.5.2 Second-order DDE

To test the developed formulation for higher-order DDEs, we now consider the following second-order

nonlinear DDE:

5(t) + b12(t) 4 boz(t) + b3z(t — a)® + byi(t — B) = Fsin(wt), (2.35)

10
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method y;(0,t) for (2.32). The parameters are by =bg =2, bo =by =g =1,b3 =b; =bg = a1 =
0.1, b5 =0.75, g = 0.3, a3 = 0.5, F = 1.8, w =27, and N = 7.
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Figure 2.2: Maximum absolute error between direct numerical solution z;(¢) and solution obtained
using the Galerkin method y;(0,¢) for (2.32) as frequency w varies. Parameters are given in the

caption for Figure 2.1.
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Figure 2.3: Comparison of direct numerical solution z(t) and solution obtained using the Galerkin
method y;(0,t) for (2.35). The parameters are by = 0.01, bo = b3 = a =1,b, =0, 8 = F = 0.5,
w=2m,and N =7.

which contains delays in both z(¢) and 2(t). The initial history functions are assumed to be
2(t) = 2(t) = 0,—1 < t < 0. In Figures 2.3, 2.4, and 2.5, we compare the displacement y;(0,t)
obtained using the Galerkin method to that obtained using the dde23 solver in Matlab using three
sets of parameters (provided in the figure captions). In all three cases, the results obtained using
the Galerkin method are in good agreement with the direct numerical integration of (2.35). In
Figure 2.3(b), we show that the error associated with satisfying the boundary conditions is less than
8 x 10~ using the first set of parameters; the absolute error is also low, as shown in Figure 2.4(b)
for the second parameter set. In Figure 2.5(b), we plot the least-square error as a function of the
number of terms N used in the series approximation (2.7):

The simulation was performed for ¢ € [0,100], which was divided into 10,000 equidistant points
to compute the error (2.34). As shown in Figure 2.5(b), convergence is achieved at N = 11, and the

least-square error remains below 6 x 10™% even when only 5 terms are retained in the series solution.

2.5.3 Stability charts

For linear DDEs, (2.10) takes the following form:
7= Cn, (2.36)

where n = [n,(t),n5(t),...,n, (t)]T. The stability of linear DDEs can be analyzed by evaluating the
stability of the ODEs obtained from the Galerkin approximation (2.36). The characteristic equation
for a DDE is a quasi-polynomial with an infinite number of roots; to ascertain stability, we must
determine whether all the roots have negative real parts. The roots of the characteristic equation
can be found using a nonlinear solver; however, providing the solver with good initial guesses is
a nontrivial task. In contrast, the Galerkin approximation of a linear DDE results in a system of
ODEs of the form shown in (2.36), and we can directly evaluate the eigenvalues of these ODEs to
establish system stability. In fact, the eigenvalues of (2.36) approximate the characteristic roots [35]

of the original DDEs, and the approximation becomes increasingly accurate as the number of terms
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Figure 2.4: Comparison of direct numerical solution z(t) and solution obtained using the Galerkin
method y1(0,¢) for (2.35). The parameters are by = by =0, bp = 1.5, b3 =0.1, a = F =1, § = 0.5,
w=6m, and N =7.
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Figure 2.5: Comparison of direct numerical solution z(t) and solution obtained using the Galerkin
method y1(0,¢) for (2.35) when the velocity delay term is nonzero. The parameters are b; = 0.05,
bo =0.75, b3 =a=F=1,by=0.1, 5 = 0.5, and w = 4.
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Figure 2.6: Stability regions obtained analytically (red lines) and using the Galerkin method (blue
dots) for first- and second-order systems.

in the series solution is increased. The system is stable if all eigenvalues of (2.36) have negative real
parts.

Consider the following equation:
&(t) = bx(t) + ax(t — 7). (2.37)

The stability of (2.37) changes as we vary parameters a and b. Figure 2.6(a) shows the stability
diagram for (2.37) with 7 = 1. The region within the red lines is the stable region, as reported
previously [22]; the blue dots indicate the same stable region, determined using the Galerkin method
with N = 5. We have also studied the stability of a second-order system that arises in the study of

machine tool vibration [36]:
Z(t) +2¢e(t) + (1 +p) x(t) — pz(t —7) = 0. (2.38)

Figure 2.6(b) shows the stability diagram for (2.38) with ¢ = 0.01 as p and 7 vary. The red lines
indicate the stable region determined analytically [36]. Once again, the blue dots indicate that the

same stable region is obtained using the Galerkin method.

2.6 Relationship between Embedded boundary and Lagrange

multiplier

We now recall the proposed embedded boundary formulation(2.6):

ot s

oy 0Oy (51/(8?; ) f) co(s)

We observed that for large values of the parameter ¢, the method approximates the Lagrange mul-
tiplier technique (2.4). To illustrate this point further, we plot the error between the numerical
and the approximated solution for (2.5.2) using both the embedded boundary and the Lagrange
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multiplier method. In Figure 2.7(a), we observe that with ¢ = 1 the error using both the methods is
very less, but Lagrange multiplier technique performs better than the embedded boundary method.
However, in Figure 2.7(b) with ¢ = 1000, we see that the error using the embedded boundary method
exactly matches with that of Lagrange multipliers. Thus we can conclude that the embedded bound-
ary method approximates the Lagrange multiplier technique for obtaining approximate solution of

DDEs.

s .
6% 10 ‘ ‘ ‘ ‘ ‘ 3% 10
. P - - -Lagrange —c=1 ---Lagrange —c=1¢°
ol
ol
_ LU l il _a
= T :
S -2 1 f 0 \J
s | =
6
_2—
g
7100 2 4 6 8 10 12 _30 2 4 6 8 10 12
Time [s] Time [s]

Figure 2.7: Comparison of the error between the Lagrange multiplier and the embedded boundary
method for the second order dde (2.5.2) with (a) c=1 and (b) ¢=1000. The parameter values are

the same as used to generate Figure 2.5.

2.7 Application to control

Numerical integration of a DDE using the dde23 solver will generally be faster than integrating a set
of ODEs obtained using the Galerkin approximation. The real advantage of the proposed formulation
lies in the design of observers, filters, and control systems for physical processes governed by DDEs.
Modern control theory often assumes that the plant model can be approximated using ODEs, and
several theoretical proofs are available for such models. Control theory for DDEs, on the other
hand, is a topic of ongoing research [2], and the authors believe the field is underdeveloped. In this
example, we apply the proposed boundary conditionfree formulation to a control problem to take
advantage of control theory developed for systems described by ODEs.
Consider a process governed by following second order DDE:

54205+ kiz+ koz(t—7) =0 (2.39)

where the parameters are ( = 2, ky = 5, k2 = 5 and 7 = 1. The objective is to design an
observer which can accurately track the response of the DDE (2.39). We obtain the plant output
by integrating the DDE numerically using the following history functions:

2(t) = —1, 2(t) = 0, t € [-1,0] (2.40)

We then use the approximated ODEs with history functions as z(t) = 2,2(t) = 0, ¢t € [-1,0] to
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track the plant response, whereupon traditional control strategies can be applied. Since Eq. (2.39)
is a second order DDE, retaining N terms in the series approximation results in a system of (2.39)
of 2N (corresponding to N displacements and N velocities). Inspired by the idea of high gain
observer [37], we add 20(z(¢) —y1(0,t)) to the first displacement level ODE and 20(2(t) — y2(0,t)) to
the first velocity-level ODE. Here, y1(0,t) and y2(0, t) indicate the observer output for displacement
and velocity respectively. Finally, we integrate the ODEs forward in time and compare the plant and
observer outputs. We then integrate the ODEs forward in time and compare the plant and observer
outputs. Asshown in Figure 2.8, the observer output y; (0, t) is in very good agreement with the plant
output z(t), and the tracking error quickly becomes negligible. This example clearly demonstrates
that the proposed method can be used for control purposes (such as designing observers, filters, and

controllers) for systems governed by retarded DDEs.

15p —Plant - - -Observer

2(t), 1(0, )

Tracking error

- . . . . . . . . . . . .
0 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20
Time [s] Time [s]

(a) (b)

Figure 2.8: (a) Comparison of the plant output z(¢) and observer output (y1(0,t)) for Eq. (2.39) (b)
Tracking error as a function of time. The number of terms used in the galerkin series approximation
are N = 20.
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Chapter 3

Galerkin Methods for stability
analysis with application to

Bio-Mechanics

In this chapter we first present the mathematical model for the single-pendulum model of a human
during stance (sagittal plane). Then we discuss our Galerkin method to determine the stability
of the governing equation of motion. We derive analytical expressions of the stability boundary
for this model and compare them with the numerical results. Next we develop the mathematical
model for the PDA controlled double-pendulum model of a human during stance. We also derive
analytical expressions for this model and compare them with the Galerkin results. Next we carry
out extensive parametric studies to compare the PD- and PDA- controlled stability margins for this
model. Finally we discuss the limitations of the analytical approach and the need of a numerical

technique such as the proposed Galerkin method to determine the stability margins.

3.1 Mathematical Modeling

For clarity, we develop our theory on a single second-order neutral DDE; extension of the method
to coupled DDEs is trivial. We first consider a single-pendulum model, as shown in Figure 3.1. The

dynamics of this single-pendulum model are governed by the following second-order ODE [21]:
JA0(t) + b0(t) + k0(t) — mglacsin (0(t)) = Q(¢) (3.1)

where the pendulum is of mass m and length ¢ with orientation 6 relative to vertical; Jp is the
moment of inertia of the body about the ankle (point “A” in Figure 3.1); the passive torques applied
by the plantarflexor and dorsiflexor muscles are lumped into a single torsional spring of stiffness k;
and a single torsional dashpot with damping coefficient by; and g is the gravitational acceleration.
Q(t) is the feedback or active control torque required to prevent the human from falling, and can be

expressed as follows:
Qt) = —K0(t —7) — Kgf(t — 7) — K, 0(t — ) (3.2)
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L2222

Figure 3.1: Single-pendulum model of a human during stance (sagittal plane). The body is rep-
resented by an inverted pendulum of mass m and length ¢ with orientation 6 relative to vertical.
Passive muscle torques generated at the ankle are modeled as a torsional spring of stiffness k; and
a torsional dashpot with damping coefficient b;.

where 7 is the reflex delay and K, K4, and K, are, respectively, the proportional (position), deriva-
tive (velocity), and acceleration control gains. The ODE in (3.1) becomes a DDE upon substitution
of (3.2) due to the reflex delay 7. We linearize (3.1) about the vertical equilibrium point and define
parameters « = by /Jx, B2 (ke — mglac) /JIa, kp = —K,/Ja, kq & —Kq/Ja, and k, = —K,/Js to
obtain the following DDE:

O(t) + af(t) + BO(t) = k0t — 7) + kab(t — 7) + ka6(t — 7) (3.3)

The problem at hand is to determine the parameters for which (3.3) is stable. Substituting

0(t) = e, we obtain the following characteristic equation:
2 2 —rT __
r*+ar+f— (kp 4+ kar + kar®) e =0 (3-4)

which is a quasi-polynomial and has infinitely many roots. The system is stable if, and only if, all
the roots of the characteristic equation lie in the left half of the complex plane; however, verifying
that all roots of (3.4) lie in the left half-plane is difficult, and this strategy will be impractical
for more complex models. We instead determine the stability of an approximation to the DDE, a
strategy that is equally suitable for low- and high-order models. We first introduce the following
transformation:

y(s,t) =0(t + s) (3.5)

where y is a function of s and ¢, and s varies from —7 to 0. Differentiating (3.5) with respect to s
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and t, we obtain the following:

y(s,t) _ 06(2) 0= _90(2) (3.6a)
88 82 88 z=t+s 0z z=t+s .
0y(s,t) _ 90(z) 0z _ 00(z) (3.6b)
ot 0z Ot|,_,., 07 |, '

and note that dy(s,t)/0s = Oy(s,t)/0t. We now differentiate this relation with respect to time to

obtain a second-order PDE:

0?y(s,t) _ 9%y(s,t)
ot? otos ’

—7<s<0 (3.7)

Using relations y(0,t) = 6(t) and y(—7,t) = 6(t — 7) obtained from (3.5), we derive the following
3.3

):

boundary condition from (

82y(07t) ay(07t) 8y(_7-7 t) 82y(_7a t)
o T 5t By(0,t) = kpy(—7,t) + kg o the 5 (3.8)
We now approximate the solution y(s,t) of the PDE (3.7) as follows:
N T
y(s,t) =Y dils)ni(t) = & (s)m(t) (3.9)
i=1

where @(s) = [p1(s), d2(s), .. ., qu(s)}T are the basis functions and n(t) = [1(t), n2(t), . .. ,nN(t)]T
are independent coordinates. In this study, we use the following shifted Legendre polynomials [38]

as the basis functions:

p1(s) =1 (3.10a)
P2(s) =1+ 275 (3.10b)
(Z)k(S) _ (Qk — 3) ¢2(S)¢k_];(j)l_ (k — 2) ¢k—2(8)7 k=3,4,....N (3100)

which are known to have better convergence properties than a mixed Fourier basis [35]. Substituting

the approximate solution (3.9) into the PDE (3.7), we obtain the following:

¢ (s)ij(t) = & (s)'0(t) (3.11)

where ¢T(s)’ = 8¢T(s)/8s. Pre-multiplying (3.11) by ¢(s) and integrating over s from —7 to 0, we

arrive at a system of second-order ODEs:
Aij = Bij (3.12)

where A = f_OT d)(s)qST (s)ds and B = f_OT ¢(s)¢T (s)' ds. Note that we can represent the solution
using any complete set of basis functions (e.g., Chebyshev, Lagrange, and Hermite polynomials). In

this work, we use shifted Legendre polynomials as global shape functions because they allow us to
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write the entries of matrices A and B in closed form as follows:

/Lj:ﬁ&j i=1,2,...,N;j=1,2,...,N (3.13a)
P

~ 2, ifi<jandi+jisodd )
Bij = i=1,2,...,N;j=1,2,...,N (3.13b)
0, otherwise

The boundary condition is enforced by first substituting the series solution (3.9) into (3.8):
aij(t) = bn(t) + cn(t) (3.14)

where a = ¢ (0) — ko (—7), b = —ag (0) + k¢ (—7), and ¢ = —B¢ (0) + kp¢p (—7). The
boundary condition is incorporated into the system of ODEs using the tau method [35]. In this
method, we replace the last row of (3.12) with (3.14):

A#j=Bn+Cn (3.15)

. T R T T ~ ~
where A = [A, a} ,B= [B,b] ,and C = [O,c] ; matrices A and B are the matrices obtained
by deleting the last row from matrices A and ]~3, respectively. Finally, we introduce the state vector

X 2 [n,ﬁ]T and write (3.15) in first-order form:
% = Dx (3.16)
where

0 1
A-'C A'B

(3.17)

In summary, we have converted the NDDE (3.3) into a system of first-order ODEs (3.16), the
stability of which can be readily determined by examining the eigenvalues of matrix D. If each
eigenvalue of D has a negative real part, then the system is stable. In fact, these eigenvalues
approximate the characteristic roots of (3.4), and the approximation improves [35] as we increase

the number of terms N in the series solution (3.9).

3.2 Results and Discussion

In this section, we first validate our developed method using a single-pendulum, sagittal-plane model
of a human during quiet standing. We then extend our analysis to a double-pendulum model, which
is governed by a system of coupled NDDEs. The analysis presented in Section 3.1 is applied to the
first model directly, and can be readily extended to determine the stability of coupled NDDEs [20].

3.2.1 Single-pendulum human stance model

We first discuss the analytical results reported by Insperger et al. [21] for the single-pendulum
human stance model. We then compare these results with those obtained using the Galerkin method
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Parameter Case 1 Case 2

m 60 kg 75.5 kg
Iac 1m 0.92 m

Ja 60 kgm? 63.9 kg m?

ke 471 Nmrad™!  595.5 Nmrad '
by 4.0 Nmsrad™'  4.011 Nmsrad ™!
T 0.2s 0.2 s

Table 3.1: Parameter values for single-pendulum human stance model. Insperger et al. [21] obtained
these parameters from Asai et al. [39] (Case 1) and Loram and Lakie [40] (Case 2).

presented in Section 3.1.

Analytical stability margins

Recall the characteristic equation (3.4) for the single-pendulum model:
r?+ar+ B — (ky + kar + kar?) e "7 =0 (3.18)

For constant-coefficient DDEs, the eigenvalues at the stability boundaries are purely imaginary;

thus, we substitute r = jw into (3.18):
—w? + jaw+ 4 — (k‘p + jkqw — k‘awz) eI =0 (3.19)

Next, we expand e/ as cos(w) + jsin(w) and separate the real and imaginary parts to obtain the

following transcendental equations:

—w? + B — ky cos(wT) — kqw sin(wr) + kaw? cos(wr) =0 (3.20a)

aw + ky sin(wt) — kqw cos(wr) — kaw? sin(wr) =0 (3.20b)
Using (3.20a) and (3.20b), we obtain the following closed-form expressions for k, and kq:

kp = —awsin(wr) + (—w? + B) cos(wr) + kew? (3.21a)

,w2+5

kg = —Q0 sin(wt) 4+ a cos(wT) (3.21b)

Thus, by varying parameter w in (3.21), we can obtain the analytical stability boundaries for the
PDA-controlled single-pendulum human stance model; to obtain the stability boundaries for the

PD-controlled model, we simply set the acceleration gain k, = 0 in (3.21a).

Galerkin stability margins

To validate the theory presented in Section 3.1, we have generated the stability diagrams for (3.1)
using the parameters given in Table 3.1, and have compared our results with the analytical results
discussed in Section 3.2.1 and reported by Insperger et al. [21]. The stability regions for Case 1 with
PD and PDA controllers are shown in Figure 3.2 as the number of terms N in the series solution (3.9)
increases. When N = 5, we obtain convergence with the analytical solution reported by Insperger et

al. Table 3.2 confirms that the rightmost eigenvalue converges as we increase the number of terms
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Figure 3.2: Stability regions for the single-pendulum human stance model (Case 1) using
proportional-derivative (PD, open circles) and proportional-derivative-acceleration (PDA, filled cir-
cles) controllers, with (a) N =2, (b) N =3, and (¢) N =5 terms in the series solution. The shaded
areas are the analytical stability regions reported by Insperger et al. [21]. The approximate Galerkin
method converges to the analytical solution at N = 5. The parameters used in the simulation are
K, = 54 Nms?rad ™! and those listed for Case 1 in Table 3.1.

Parameters Rightmost eigenvalue

K, Kg N =3 N =5 N=7
1764 600 | 0.69+ 11.71% 0.70+11.21¢ 0.70 + 11.21¢
2940 600 | 0.55+10.37¢ 0.65+ 10.01¢ 0.65+ 10.01¢
3528 600 | 0.94+49.58: 1.03+9.35¢  1.03 4+ 9.35¢

Table 3.2: Convergence analysis for the rightmost eigenvalue of the PDA-controlled single-pendulum
human stance model. The values of parameters K, and K, are expressed in SI units; the values of
all other parameters are as indicated in the caption for Figure 3.2.

N in the series solution (3.9).

We have also compared our results to those obtained by Insperger et al. for a second set of
parameters (Case 2 in Table 3.1), shown in Figure 3.3. Once again, the proposed method converges
to the analytical solution. These results confirm that the PDA controller provides a larger stability

region than the PD controller for the sets of parameters we studied.

3.2.2 Double-pendulum human stance model

We now consider a double-pendulum human stance model in the sagittal plane, shown in Figure 3.4,
where an additional active controller has been included at the hip. We assume that active torques are
generated at the ankle and hip by continuous, time-delayed PDA feedback controllers to maintain an
upright posture. We seek to determine whether the PDA controller remains superior to PD control
for this two-degree-of-freedom human stance model, whose dynamics are more realistic than those
of the single-pendulum model presented in Section 3.2.1.
After linearization, the dynamics of a double-pendulum model are governed by the following
second-order ODE:
M6 + CO+ KO =F (3.22)
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Figure 3.3: Stability regions for the single-pendulum human stance model (Case 2) using
proportional-derivative (PD, open circles) and proportional-derivative—acceleration (PDA, filled
circles) controllers. The shaded areas are the analytical stability regions reported by Insperger
et al. [21]. The approximate Galerkin method converges to the analytical solution at N = 5. The
parameters used in the simulation are K, = 57.51 Nms?rad™' and those listed for Case 2 in Ta-
ble 3.1.
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Figure 3.4: Double-pendulum model of a human during stance (sagittal plane). The lumped thigh
and shank segment has mass mq, length 2/;, and orientation #; relative to vertical; the knee is
assumed to remain locked. The head, arms, and trunk are represented by a pendulum of mass mso
and length 2¢5 with orientation 65 relative to vertical. Passive muscle torques generated at the ankle
and hip are modeled as torsional springs of stiffness k; and ko, respectively, and torsional dashpots
with damping coefficients b; and bs.
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where matrices M, C, and K are defined as follows:

7 24 dmal? 2malyd

M = |71 Tt Amaty 2mabi by (3.23a)
L 2m2€1€2 J2 + mgég
(b, + by —b

c— 1T 0 (3.23b)

by by

ey + key — 2 ¢ —k

K- ™ + ko — (mq + 2ma) gby 2 (3.23¢)
L —kz kz - m2952

The lumped thigh and shank (leg) segment has mass mq, length 2¢;, and moment of inertia J;
about its centroid; the knee is assumed to remain locked. The head, arms, and trunk (HAT) are
represented by a pendulum of mass mo, length 2¢5, and moment of inertia Jo about its centroid.
Passive torques applied by the plantarflexor and dorsiflexor muscles at the ankle are lumped into a
single torsional spring of stiffness k; and a single torsional dashpot with damping coefficient b;; the
hip flexors and extensors are modeled analogously. The time-delayed feedback torque F in (3.22) is

given by the following:

F = k0,05 — kiOper — Kaboce (3.24)
where gain matrices ky,, kg, and k,, and time-delayed state vectors 6,,s, 0'1,6;, and éacc are defined
as follows:

k k k k k k
k, — pll  Kp12 7 K, — d11 Rdi2 7 K, — a1l Kal2 (3.25a)
kpo1  kpao kao1  kdoo ka21  Ka22

B — {91“ - >} o {911“ - T”} G {9:1“ - T“)} (3.250)

O2(t — 1p) Oa(t — 1) O2(t — 74)
In the following experiments, we use proportional gains & £ kpi1 = kpo1 (ankle) and kpo £ kpio =
kp2o (hip); similarly, the derivative gains are kq1 L kai1 = ko1 and kgo £ kgio = kgoo, and the
acceleration gains are kq1 £ ka1 = kao1 and kuo = kg1 = kgoo. The physical parameters used
in Section 3.2.1 are distributed between the leg and HAT segments of the model to resemble the
distribution in the human body [41]. In particular, 40% of the total mass is apportioned to the

legs and 60% is assigned to the HAT segment. To maintain the same centroid position, the ratio of

leg-to-HAT segment lengths is also 2:3.

Analytical stability margins

Substituting @ = @pe®! into (3.22), we obtain the following system of equations:
Z(s) = Ms? + Cs + K + ke *™ + kgse ™ + k,s%e ™7 (3.26)

For non-trivial solutions, the determinant of (3.26) must vanish—that is, we require |Z(s)| = 0.

We use the Maple 16 computer algebra software to obtain the following characteristic equation

24



symbolically:

aps* + a1s® + ass® + ags + aq + asste ™ + agsPe T + arsPe T + agsle 5o

2 2 4 _—2sT,

+ ags’e” ™ + ajpse” " +aji1se” 7 + ajase” P +ajze” *P + aqus"e

2

+ a155%e 3™ + ajge” 2 4 aqr8°

e 5T 4 qigs2e 5 Tae TP 4 aqgse e ST = () (3.27)

The characteristic equation (3.27) is a quasi-polynomial; the coefficients {aq,...,a19} have been
reported in Appendix 4. Following a strategy similar to that discussed in Section 3.2.1, we now
substitute s = jw into (3.27):

aow? — jarw?® — asw? 4 jasw + a4 + aswe I — jagwde I — jazwde I

— agw?e Y — gow?e IV — grow?e I 4 jariwe V™Y + jajawe I TPV
4 0,136_]7—”“) =+ a14w46—]27uw _ a15w2e—]2‘rvw + a16e—]27'pw _ja17w3e—]7'awe—]n,w
— ajgwleITaYeTITIY | jgqwe T eI = ) (3.28)

Expanding the exponential terms and separating the real and imaginary parts yields the following

two transcendental equations:

agw? — agw? + ay + asw? cos(T,w) — agw? sin(T,w) — arw? sin(T,w) — agw? cos(T,w

— agw? cos(Tyw) — ajow? cos(Tpw) + ar1wsin(T,w) + ajaw sin(myw) + arz cos(Tpw
+ ap4w? cos(27,w) — a15w? cos(27,w) + aie cos(2m,w) — a17w? sin((1, + 7y )w

— a13w? cos((T4 + Tp)w) + arew sin((7, + 7 )w (3.29a)

— 41w + asw — asw? sin(T,w) — agw? cos(T,w) — arw? cos(T,w) + agw? sin(Tuw
+ agw? sin(Tyw) + aow? sin(7pw) + a11w cos(Tyw) + a1aw cos(Tpw) — azs sin(Tw
— apw® sin(27,w) + a5w? sin(27,w) — agg sin(27,w) — a17w? cos((Tq + Ty )w

)
)
)
) =
)
)
)
) =

+ arsw? sin((74 + 7)w) + arow cos((7, + 7 )w (3.29b)

where (3.29a) and (3.29b) are, respectively, the real and imaginary parts of (3.28). We next substi-
tute all parameters except for the two gains in which we are interested, thereby obtaining expressions
in terms of the two gains of interest and the parameter w. Finally, we solve for the gains to obtain
analytical expressions in terms of w, then vary w to obtain the stability boundaries. In the next
section, we compute analytical stability boundaries using the above technique and compare them

with the stability boundaries obtained using the Galerkin method presented in Section 3.1.

Galerkin stability margins

We now study several test cases using the parameters given in Table 3.3. Unless otherwise stated,
we assume the position (7,), velocity (7,), and acceleration (7,) time delays are all equal to 0.05 s.
Based on the convergence study shown in Table 3.4, we use N = 5 terms in the Galerkin series
approximation (3.9). As shown in Figure 3.5, the stability boundaries obtained using the Galerkin
and analytical approaches are in excellent agreement when N = 5 terms are used.

In Figures 3.6 and 3.7, we compare the stability diagrams for the PD- and PDA-controlled
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Parameter Value

mq 28.36 kg
mao 42.54 kg

lo 0.522 m

Y4 (61 + [2) m
J1 1.145 kg m?
Ja 3.864 kgm?
Ky 217.7 Nmrad ™"
ko 250 Nmrad™*

b1, bs 4.011 Nmsrad ™"

Table 3.3: Parameter values for double-pendulum human stance model. Insperger et al. [21] obtained
these parameters from Loram and Lakie [40]. The masses and lengths are distributed between the
leg and HAT segments in a 2:3 ratio.

Parameters Rightmost eigenvalue

k'pg de N - 3 N == 5 N = 7
12090 700 | 7.66 +37.86¢ 7.52+437.21¢ 7.524 37.21¢
12090 500 | 3.32+32.337  3.51+32.09¢ 3.51 4 32.09¢
9067.4 100 | 4.09+19.57¢ 4.09+19.57¢ 4.09 4+ 19.57¢
30225 50 | 1.68+412.38¢ 1.68+12.387 1.68 4 12.38:

Table 3.4: Convergence analysis for the rightmost eigenvalue of the PDA-controlled double-pendulum
human stance model (3.22). The values of parameters k2 and kg2 are expressed in SI units; the values
of the other parameters are k,; = 1813 Nm rad™!, kg1 = 300 Nms radfl7 ka1 = koo = 10 Nms? rad !,
and those listed in Table 3.3.

10 15 20 0 5 10 15 20 o 5 10
kp1/mgl kg2 (Nms rad 1) kp1/mgl

0 5

15 20

Figure 3.5: Stability regions obtained for the double-pendulum human stance model (3.22) using
Galerkin and analytical approaches. The parameter values are (a) kyy = 1813, kgo = 300, kg1 =
k/’ag = 10; (b) k‘pl = 18137 kdl = 300, kal = k/’ag = 10; and (C) kdl = kdg = 3007 kal = ka2 = 10.
Dots indicate stable points obtained using the Galerkin method and the solid red line indicates the
analytical stability boundary.
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Figure 3.6: Stability regions obtained for the double-pendulum human stance model (3.22) using
Galerkin and analytical approaches and the following parameters: (a) kq1 = ka2 = 300; (b) kye =
1813, kgy = 300; (c) kpy = 1813, kgy = 300; (d) kp = 1813, kg = 300; and (e) kp; = 1813,
kp2 = 2000. The acceleration gains are k,; = 5 and kg2 = 10 in all cases. Stable points obtained
using the Galerkin method are indicated with red dots (PDA) and blue circles (PD); the analytical
stability boundaries are indicated with dashed red (PDA) and solid blue (PD) lines.

double-pendulum human stance model with different gain combinations. We observe that the PDA
controller provides larger stability regions than the PD controller, with the exception of the case
shown in Figure 3.6(b). Finally, in Figure 3.8, we compare the PD and PDA stability regions
for (3.22) with different combinations of the position (7,), velocity (7,), and acceleration (7,) time
delays. Again, we find that the PDA-controlled model has larger stability regions than the PD-
controlled model. These examples suggest that the PDA controller generally provides larger stability
regions than the PD controller—that is, the double-pendulum human stance model will generally
remain stable for a larger range of hip torque controller gains when acceleration feedback is included

in the control scheme.

3.3 Limitations of the Analytical Approach

In this section, we discuss the limitations of the analytical approach and the need for a numerical
technique such as the Galerkin method to determine the stability of the double-pendulum model.
In Figure 3.9, we plot the analytical stability boundary obtained as the parameter w in (3.28) is
varied from 0 to 100. For both cases shown, we observe that the analytical solution has multiple
branches as we sweep w. These branches correspond to different roots crossing the imaginary axis.
The problem at hand is illustrated in Figure 3.10: every root that is crossing the imaginary axis will
satisfy (3.29), and it is impossible to determine which portion of this graph corresponds to the zone

in which all roots lie in the left half of the complex plane. However, if we use the Galerkin method,
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Figure 3.7: Stability regions obtained for the double-pendulum human stance model (3.22) using
Galerkin and analytical approaches and the following parameters: (a) kq1 = 300, kg2 = 150; (b)
lips = 1813, kao = 300; (c) kpy = 1813, ko = 300; (d) kyp = 1813, kg1 = 300; and (e) ky, = 1813,
kp2 = 2000. The acceleration gains are k,; = 10 and k.2 = 5 in all cases. Stable points obtained
using the Galerkin method are indicated with red dots (PDA) and blue circles (PD); the analytical
stability boundaries are indicated with dashed red (PDA) and solid blue (PD) lines.
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Figure 3.8: Stability regions obtained for the double-pendulum human stance model (3.22) using
Galerkin and analytical approaches and the following position (7,), velocity (7,), and acceleration
(7o) time delays: (a) 7, = 0.05, 7, = 0.01, 7, = 0.09; (b) 7, = 0.09, 7, = 0.01, 7, = 0.05; and (c)
Tp = 0.09, 7, = 0.05, 7, = 0.01. The remaining parameters are the same as those used to generate
Figure 3.7(d). Stable points obtained using the Galerkin method are indicated with red dots (PDA)
and blue circles (PD); the analytical stability boundaries are indicated with dashed red (PDA) and
solid blue (PD) lines.
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Figure 3.9: Stability margins obtained for the double-pendulum human stance model using Galerkin
(shaded) and analytical (blue line) approaches with the following parameters: (a) k1 = 1813,
kg1 = 300, kg1 = 10, kao = 5, 7, = 0.05, 7, = 0.09, 7, = 0.01; and (b) kpy = 1813, kg1 = 300,
kq1 =10, kg2 =5, 7, = 7, = 7, = 0.05. Arrows indicate the direction of increasing w.
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Figure 3.10: Possible locations of roots of the transcendental equation (3.29) for a given value of w.
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Figure 3.11: Stability regions obtained for the double-pendulum human stance model using the
Galerkin method and the following parameter values: (a) ky1 = 1813, kg1 = 300, kg2 = 200, ko1 = 5,
ka2 = 10; and (b) kp1 = 1813, kye = 2000, kg1 = 300, kq1 = 5, kq2 = 10. Stability regions are shown
for PDA (shaded) and PD (dots) controllers.

we can precisely locate the stability regions without any ambiguity.

Finally, we investigate the stability regions as one gain and one time delay (7) vary. Here, we
assume equal position, velocity, and acceleration delays (i.e., 7 = Tp = Ty = T,). Because 7 appears
as an argument to the trigonometric functions in (3.29), a stability diagram with 7 as one of the
varying parameters will involve multiple lobes corresponding to different periods of the trigonometric
functions. In the cases shown previously (i.e., Figures 3.6 and 3.7) where two gains were varied, we
observed that, for a given value of w, we obtained linear expressions for the gains. In the present case,
however, for a given value of w, multiple solutions are possible because T appears as an argument to
trigonometric functions and the complexity of the model precludes obtaining an analytical expression
in which 7 is isolated. Thus, we must resort to a numerical strategy such as the proposed Galerkin
method to determine the stability regions in this case. As shown in Figure 3.11, the stability regions
obtained using the PDA controller are larger than those obtained using the PD controller—that is,
the double-pendulum human stance model remains stable for larger time delays when acceleration

feedback is included in the control scheme.
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Chapter 4

Conclusions

We have, for the first time, transformed a given DDE into an equivalent PDE without any boundary
conditions. This formulation allows us to apply the Galerkin method to the PDE without taking any
special care to incorporate boundary conditions (using Lagrange multipliers or the tau method, for
example). Legendre polynomials are used as the basis functions in the Galerkin method, and we ulti-
mately obtain finite-dimensional ODE approximations of the original DDEs. We have demonstrated
with several numerical examples that the ODEs obtained using our PDE formulation accurately
capture the dynamics of the original DDEs. Convergence is attained by increasing the number of
terms in the Galerkin approximation. We also observed that the proposed formulation approximates
the Lagrange multiplier method for DDEs. An application of the proposed formulation was demon-
strated to a problem of control. This formulation allows us to exploit existing tools developed for
ODE systems to analyze DDEs.

As a second work, an approximate method to determine the stability of NDDEs has been developed
to study the stability of human balance during stance. In particular, we use the Galerkin method to
convert the governing NDDE into a system of ODEs and determine the stability of the latter, which
is more tractable than determining the stability of the NDDE directly. We validated our method
by reproducing the stability diagrams found analytically for a single-pendulum human stance model
controlled by PD and PDA feedback controllers. We then derived analytical expressions for the
stability boundaries of a PDA-controlled double-pendulum human stance model. The analytical
and Galerkin stability boundaries were found to be in excellent agreement. Finally, we applied our
method to determine the stability of the double-pendulum model.

The single-pendulum human stance model was found to have greater stability margins when
acceleration feedback was available; for the double-pendulum model, we found that acceleration
feedback generally—but not always—resulted in larger stability regions. These results corroborate
those obtained by Insperger et al. [21] for the single-pendulum model, and further support the
hypothesis that humans may, indeed, use a PDA control structure for maintaining balance, aided
by sensory feedback from the vestibular system. As such, it may be crucial to include acceleration
feedback in the controllers used by orthotic or prosthetic devices that assist persons with balance de-
ficiencies [42]. It is also important to consider the complementary function of human muscle, which
can begin reacting to disturbances even before reflexes respond [43]. Understanding the mecha-

nisms of balance benefits the development of diagnostic criteria, assistive devices, and rehabilitation
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strategies that will effectively support the growing elderly population.
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Appendix
The double-pendulum human stance model has the following characteristic equation (3.27):

aps* + a1s® + ass® + ags + aq + asste ™ + agsde T + arsde T + agsle e

+ ags?e T + aj9s2e T 4 ay15e 5 + ajpse 5P + ajze P + ayste 25

2 2

+ ai5s 6—257'1, + 0,166_257-? + a1753€—s‘rae—s7'1, + a1ss e STag—57p + algse—s‘rve—s‘rp =0

where the coefficients are as follows:

ap = mil3Jo + dmali Jo + mylimals + JyJo + Jimals

ay = 4mol3by 4 by Jo 4 4maliloby + miliby + bomols 4 bymals 4 Jiby 4 boJo

az = —milimagly — glymimals + kimaly + myliks + kamols + 4moliky — 2g01m3 05

+ dmaliloky — Jymagls — dm3e3gls — glimyJo — 2glimads + ki Jo + Jika + bibo + ko Jo

az = — 2gl1maby + k1bg + b1k — bimagly — bamagls — glimiby

ay = — 2g01moks + 2g201maly — kymogls — komagly — glimiks + kiks + g201mimaols

a5 = ka11mal3 + Jikazs — 2malilakazr — 2ka1omalils + 4malikass + milikazs + ka11Jo

ag = ka12b2 + ka11b2 + bakaoa + b1ka2z + boka21

ar = Jikazs + karimaly + milikass + 4malikass — 2malilokany — 2karamalils + kai1 Jo

as = — glimikaza — 2g01makass — ka11magls + ka11ke + k1ka2z + kai2ke + kakao1r + koka22
ag = kai1be + b1kasz + bakaza + bakao1 + b2kai2
ar0 = m1likpoe + Amolikyon + kpiimals — 2malilakpar — 2malilokpia + kpi1Jo + kpoaJy
a1 = kikaga — 2g€imakazs + kokasa + k2kai1 — kaiimagle — glimakaz + kakaia + kakaz:
a12 = bikpoa + bakpa1 + bakpi1 + bakpao + bakpio
a13 = — kp11maglo + kaokpoo + kp1oks — glimakpas + ki1kpoo + kp11ks + kakpor — 2g€1makpg
ars = ka11ka22 — ka12ka21
ars = ka11kazz — kai2kazi
a16 = kpllkpZQ - kplep21
arr = — ka21ka12 + Ka11ka22 + ka11kaz2 — kaizka21
a18 = ka11kp22 — kp12kao1 — ka12kp21 + kpr1kao2

a1g = kai1kpoo — kpiokao1 + kp11kaze — ka12kpo1
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