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Abstract

Finite-dimensional approximations are developed for retarded delay differential equations (DDEs).

The DDE system is equivalently posed as an initial–boundary value problem consisting of hyperbolic

partial differential equations (PDEs). By exploting the equivalence of partial derivatives in space and

time, we develop a new PDE representation for the DDEs that is devoid of boundary conditions. The

resulting boundary condition–free PDEs are discretized using the Galerkin method with Legendre

polynomials as the basis functions, whereupon we obtain a system of ordinary differential equations

(ODEs) that is a finite-dimensional approximation of the original DDE system. We present several

numerical examples comparing the solution obtained using the approximate ODEs to the direct nu-

merical simulation of the original nonlinear DDEs. Stability charts developed using our method are

compared to existing results for linear DDEs. The presented results clearly demonstrate that the

equivalent boundary condition–free PDE formulation accurately captures the dynamic behaviour of

the original DDE system.

As a second work, we study the stability of human balance during stance using inverted single- and

double-pendulum models, accounting for physiological reflex delays in the controller. The governing

second-order neutral delay differential equation (NDDE) is transformed into an equivalent partial

differential equation constrained by a boundary condition, then into a system of ordinary differential

equations (ODEs) using the Galerkin method. The stability of the ODE system approximates that

of the original NDDE system; convergence is achieved by increasing the number of terms used in the

Galerkin approximation. We validate our formulation by deriving analytical expressions for the sta-

bility margins of the double-pendulum human stance model. Numerical examples demonstrate that

proportional–derivative–acceleration feedback generally, but not always, results in larger stability

margins than proportional–derivative feedback in the presence of reflex delays.
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Chapter 1

Introduction

Mathematical models involving delay differential equations (DDEs) [1] are used to represent time-

delay effects in a wide range of engineering systems. Examples include control systems [2], machine

tool vibration [3, 4], fluid–structure interaction [5], and traffic flow modelling [6].

The infinite-dimensional nature of DDEs complicates their analysis. We can always pose a

DDE as an equivalent hyperbolic partial differential equation (PDE) constrained by a nonlinear

boundary condition [7–9]. The mathematical representation of the PDE system appears to be more

complicated than that of the original DDE; however, several methods are available for converting

the PDE into a system of simple ordinary differential equations (ODEs) [10]. We, thus, arrive at

a finite-dimensional ODE approximation of the original DDE, and can then make use of existing

algorithms for the integration and continuation of these ODEs [11, 12]. Therein lies the benefit of

this approach: by converting DDEs into systems of ODEs, we can exploit all existing tools developed

for ODE systems to analyze the original DDEs.

Galerkin methods [10] are considered to be the optimal choice for obtaining reduced-order models

for PDEs; however, in the case of a DDE-equivalent PDE, one must also handle the nonlinear

boundary condition. Once a PDE has been discretized, the boundary condition can be incorporated

using a Lagrange multiplier [13] or by employing the tau method [7,14,15]. In this work, we propose

a formulation in which the boundary condition is completely eliminated and embedded directly into

the PDE. Consequently, no special treatment of the boundary condition is necessary when applying

the Galerkin method.

As a second work, we study a problem of bio mechanics. Persons aged 60 and over represent

the fastest-growing sector of the worldwide population—a great triumph of humanity, but also a

great economic challenge. In persons aged 65 and over, falling is the leading cause of both fatal and

nonfatal injury [16], with approximately 28–36% of persons in this cohort falling each year [17]. In

2000, falls among the elderly in the United States accounted for over $19 billion in direct medical

costs [18]; this economic burden is expected to increase in the future. A deeper understanding of

human balance will contribute to improving the quality and longevity of life for the elderly, while

reducing healthcare costs for hospitalization and rehabilitation resulting from falls.

In this work, we model the human as a double inverted pendulum in the sagittal plane, with

controllers at both the ankle and hip. Due to the reflex delay and acceleration feedback in the

model, the governing dynamic equation is a neutral delay differential equation (NDDE)—that is,
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the equation takes the form of a DDE with a delayed argument in the highest-order derivative.

Thus, the stability of human balance during stance must be determined by analyzing the stability

region of an NDDE [19]. Unfortunately, NDDEs are infinite-dimensional systems and, as such, their

characteristic equations are quasi-polynomials with an infinite number of roots—all of which must

lie in the left half-plane if the NDDE is to be stable. Insperger et al. obtained analytical results by

inspecting the characteristic equation of the single-pendulum NDDE directly. Here, we extend their

strategy to the analysis of a double inverted pendulum, and use symbolic computational techniques

to obtain analytical expressions for the stability margins of this more complex model. We also apply

an approximate method [20] to analyze the stability of second-order NDDEs by first transforming the

NDDE into an equivalent partial differential equation (PDE) constrained by a boundary condition,

then converting the PDE into a system of ordinary differential equations (ODEs) using the Galerkin

method. Comparison between the analytical and numerical results demonstrates that the stability

of the ODE system approximates that of the original NDDE system, and convergence is achieved

by increasing the number of terms used in the Galerkin approximation.

We first apply our numerical Galerkin approach to obtain the stability diagrams for a single-

pendulum human model with reflex delay, controlled using both PD and PDA feedback control

strategies [21]. We compare our results with those obtained by Insperger et al. [21] to validate the

developed method. We then use the same strategy as Insperger et al. to derive analytical expressions

for the stability margins of the double inverted pendulum model. Next, we apply our numerical

technique to a double-pendulum model with reflex delay, and perform numerical experiments to

compare the Galerkin and analytical methods. We also seek to determine whether a PDA controller

provides a larger stability region than a PD controller for this more complex model. Our results

indicate that the stability margins obtained with the Galerkin and analytical approaches are in

excellent agreement, and that PDA feedback generally remains superior to PD feedback when motion

at the hip is considered.

In the next section, we discuss the literature review for obtaining an approximate solution to

constant coefficient DDEs and the stability of human model during stance (sagittal plane).

1.1 Literature review

Many methods have been proposed in literature to obtain an approximate solution to constant

coefficient DDEs and to analyze their stability. In this section, however we only review papers that

have been most relevant to our work. Kalmár-Nagy [22] used the method of steps and inverse Laplace

transform to determine the stability regions for higher order constant coefficient DDEs. Ulsoy et al

developed the Lambert W function method to obtain analytical solutions for scalar first order DDE,

which was later extended to matrix Lambert W function to solve system of linear DDEs [23].

It is very well known that the infinite dimensional nature of the DDEs complicates their analysis.

Maset [9] obtained a finite dimensional ODE approximation of constant coefficient linear DDEs by

posing them as abstract Cauchy problem. The transformation proposed by Maset converts the

original DDE into an equivalent hyperbolic PDE constrained by a boundary condition, which is

then discretized into a system of ODEs using the method of lines. Koto [8] also used the same

Cauchy transformation to numerically solve initial value problem DDEs by posing them as initial

boundary value problem.
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The application of Galerkin methods to project a DDE into an approximated system of finite

dimensional ODEs was discussed very first in detail by Wahi et al [7]. They first transform the

DDEs into an equivalent PDE system constrained by a boundary condition, which may be nonlin-

ear. The resulting PDE system is then finally truncated into a finite dimensional system of ODEs

using Galerkin projections. To incorporate the ODE corresponding to the boundary condition, they

use the tau method in which the last row of the system ODEs is replaced by the boundary condition.

A notable point of this method is that it can be used for both linear as well as nonlinear DDEs.

An interested reader is referred to their paper to get a detailed understanding of the technique.

Vyasarayani [13] also developed a method based on Galerkin projections to obtain ODE approxima-

tions for higher order DDEs and proposed the use of Langrange multipliers to enforce the nonlinear

boundary constraints.

Thus, we see that in obtaining finite dimensional ODE approximation of DDEs, the boundary

condition must be handled explicitly. They are incorporated into the system ODEs either using Tau

or the Langrange multiplier technique. However, we observed that using the equivalence of partial

derivatives at the boundary, we can directly incorporate the PDE corresponding to the boundary

condition into the system PDE, and obtain boundary free ODE approximations to the DDE.

As a second work, we focus on the stability of human balance during quiet standing, which is

often studied using a single inverted pendulum [24]. An inverted pendulum is inherently unstable,

and can remain upright only when assisted by a controller [25]. Similarly, humans use their muscles

to apply control torques about the ankle, again to stabilize an otherwise unstable system. Note,

however, that the control torques applied by humans are intermittent: there is substantial reflex

delay between detecting a loss of balance and generating muscle forces [26, 27] due to delays in

the human sensing, processing, and actuation systems [28, 29]. It has recently been shown that

the strategy used by humans to maintain stability cannot be proportional–derivative (PD) control,

relying on proprioceptive [30] and visual sensors alone, since the required control gains correspond

to forces that exceed the capabilities of human muscles [31]. A recent study by Insperger et al. [21]

suggests that humans instead use a proportional–derivative–acceleration (PDA) control strategy,

aided by the acceleration feedback signal generated within the vestibular system [32]. Insperger et

al. established that PDA control provides a larger stability margin than PD control when applied

to a single-pendulum model. There is some debate as to whether a single inverted pendulum is an

adequate representation of a human when standing, since there is also considerable angular motion

at the hip during postural sway [31]. In this work, we model the human as a double inverted

pendulum in the sagittal plane, with controllers at both the ankle and hip and compare the PD and

PDA stability margins.

1.2 Thesis structure

The entire thesis has been divided in four chapters. The first chapter is the introduction, wherein we

discuss the application of delay differential equations, the different types of DDEs such as constant

coefficient or time periodic DDEs, and a brief overview of the method proposed in the thesis to model

them. We then discuss the different methods proposed in literature to obtain an approximate solution

to the system of DDEs. Finally, we define the problem that we are going to focus on. In the second
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chapter, we first discuss the mathematical modeling of DDEs and propose our embedded boundary

method for retarded DDEs. Next we discuss the tau and lagrange multiplier techniques, the two

popular methods to model DDEs. Finally, we present several numerical examples to demonstrate

the efficacy of the proposed method. In the third chapter, we present the application of Galerkin

methods to a problem of bio-mechanics. First we model the governing equation of the single-

pendulum human stance model during stance using the Galerkin method and compare the obtained

stability margins with the analytical results. Then we extend this strategy and derive analytical

stability margins for the double- pendulum model and compare them with the Galerkin results.

Finally conclusions are provided in chapter 4.
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Chapter 2

Embedded boundary method for

Retarded Delay Differential

Equations

In this chapter, we propose the embedded boundary method for obtaining approximate solutions to

DDEs. In the first section, we discuss the mathematical modeling of the DDEs. First we present

the class of DDEs in which we are interested in, and the equivalent PDE representation of the DDE.

We then propose our embedded boundary method to obtain boundary free ODE approximations of

the DDE. Next for the sake of comparison, we discuss the tau and Lagrange multiplier methods, the

already existing techniques to obtain approximate solutions to DDEs. In the next section, we present

the approximate solution and stability charts using the proposed embedded boundary method for

first and second order DDEs. We also discuss an interesting relationship between the embedded

boundary and the Lagrange multiplier method. Finally, we present the application of our proposed

method on a control problem.

2.1 Mathematical modeling

Consider the following system of n first-order DDEs:

żi = fi(p,qi, t), i = 1, 2, . . . , n, (2.1)

where p = [z1, z2, . . . , zn] and qi = [z1(t− αi1), z2(t− αi2), . . . , zn(t− αin)]. The delays are αi =

[αi1 > 0, αi2 > 0, . . . , αin > 0] , i = 1, 2, . . . , n and the initial functions are zi(t) = ψi(t),−αim ≤ t ≤

0, i = 1, 2, . . . , n; αim is the maximum delay appearing in zi(t). Since the delay argument does

not appear in the highest-derivative term, (2.1) is referred to as a retarded DDE. We introduce the

following standard transformation [8, 9]:

yi(s, t) , zi(t+ s), (2.2)
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and convert the DDE system (2.1) and its history functions into the following equivalent initial–

boundary value problem:

∂yi
∂t

=
∂yi
∂s

, t ≥ 0, −αim ≤ s ≤ 0 (2.3a)

∂yi(s, t)

∂t

∣∣∣∣
s=0

= fi(u,vi, t) (2.3b)

yi(s, 0) = ψi(s), (2.3c)

where

u = [y1(0, t), y2(0, t), . . . , yn(0, t)] (2.4a)

vi = [y1(−αi1, t), y2(−αi2, t), . . . , yn(−αin, t)] . (2.4b)

Here, yi(0, t) represents the solution to the DDE (2.1) when s = 0. Several methods have been

proposed in the literature to incorporate the boundary condition (2.3b) when discretizing the

PDE (2.3a), such as the Lagrange multiplier and tau methods.

2.2 Embedded boundary method

We now present our procedure for embedding the boundary condition into the PDE, thereby eliminat-

ing the boundary condition from the formulation. We first rewrite (2.3b) exploiting the equivalence

of partial derivatives in space and time (2.3a):

∂yi(0, t)

∂s
− fi(u,vi, t) = 0. (2.5)

Next, we combine the PDE (2.3a) and the modified boundary condition (2.5):

∂yi
∂t

=
∂yi
∂s

+

(
∂yi(0, t)

∂t
− fi(u,vi, t)

)
cδ(s), (2.6)

where δ(s) is the Dirac delta function and c is the boundary contribution parameter, which is

assumed to be 1. We can see that collocating the PDE at any point on the domain −αim ≤ s < 0

satisfies (2.3a), and by collocating at the boundary s = 0, we recover the boundary condition (2.5).

We now assume an N -term series solution yi(s, t) for the PDE:

yi(s, t) = φi(s)
T

ηi(t), (2.7)

where φi(s) = [φ1(s), φ2(s), . . . , φN (s)]
T

are the global shape functions and ηi(t) = [ηi1(t), ηi2(t), . . . , ηiN (t)]
T

are the independent coordinates. Shifted Legendre polynomials are used as global shape functions:

φ1(s) = 1 (2.8a)

φ2(s) = 1 +
2s

τ
(2.8b)

φi(s) =
(2i− 3)φ2(s)φi−1(s)− (i− 2)φi−2(s)

i− 1
, i = 3, 4, . . . , N. (2.8c)
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In retarded DDEs, where the order of the delayed arguments is less than that of the highest-order

derivative, the solution will become smoother with every knot. If the solution is C0-continuous at

time t=0, for example, the solution will be C1-continuous after time t = τ (the first knot) and

Cn-continuous after n knots [33]. Retarded DDEs always eventually become smooth, which is the

reason this approximation is effective.

Upon substituting the series solution (2.7) into (2.6), we obtain the following:

φi(s)
T

η̇i(t) = φ′

i(s)
T

ηi(t) +
(
φi(0)

T

η̇i(t)− fi(u,vi, t)
)
δ(s), i = 1, 2, . . . , n, (2.9)

where φ′

i(s) ≡ ∂φi(s)/∂s. Finally, we pre-multiply both sides of (2.9) by φi(s), integrate over the

domain s ∈ [−αim, 0], and collect the terms involving η̇i(t) to obtain a system of ODEs:

Miη̇i(t) = Kiηi(t)− φi(0)fi(u,vi, t), i = 1, 2, . . . , n, (2.10)

where

Mi =

∫ 0

−αim

φi(s)φi(s)
T

d s− φi(0)φi(0)
T

, Ai − φi(0)φi(0)
T

(2.11a)

Ki =

∫ 0

−αim

φi(s)φ
′

i(s)
T

d s. (2.11b)

The use of shifted Legendre polynomials as global shape functions allows us to write the entries of

matrices Ai and Ki in closed form as follows:

Acd =
αim

2c− 1
δcd c = 1, 2, . . . , N ; d = 1, 2, . . . , N (2.12a)

Kcd =




2, if c < d and c+ d is odd

0, otherwise
c = 1, 2, . . . , N ; d = 1, 2, . . . , N. (2.12b)

In (2.10), the term fi(u,vi, t) can be obtained by substituting the series solution (2.7) into the

expressions for u and vi (2.4): We now determine the initial conditions for the ODE system.

u =
[
φ1(0)

T

η1(t),φ2(0)
T

η2(t), . . . ,φn(0)
T

ηn(t)
]

(2.13a)

vi =
[
φ1(−αi1)

T

η1(t),φ2(−αi2)
T

η2(t), . . . ,φn(−αin)
T

ηn(t)
]
. (2.13b)

We now substitute the series solution (2.7) into the initial conditions (2.3c):

ψi(s) = φ
T

i (s)ηi(0), i = 1, 2, . . . , n. (2.14)

Finally, we pre-multiply both sides of (2.14) by φi(s) and integrate over the domain s ∈ [−αim, 0]

to obtain the following initial conditions for the ODE system:

ηi(0) = A−1
i

∫ 0

−αim

φi(s)ψi(s) d s, i = 1, 2, . . . , n, (2.15)

where Ai is defined in (2.11a). Thus, we have converted the original DDE (2.1) into a system of

ODEs (2.10) with initial conditions given by (2.15). The ODEs can be solved numerically to obtain
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ηi(t), whereupon an approximate solution for the DDE (2.1) can be obtained as follows:

yi(0, t) = ηi0(t) = φi(0)
T

ηi(t). (2.16)

We define the following error metric to quantify how well the solutions of (2.6) satisfy the original

boundary conditions (2.3b):

ei(t) =
∂yi
∂t

∣∣∣∣
0,t

− fi = φi(0)
T

η̇i(t)− fi, i = 1, 2, . . . , n. (2.17)

In the sequel, we use a 2-norm to establish the error associated with all boundary conditions:

e(t) =
√
e1(t)2 + e2(t)2 + . . .+ en(t)2. (2.18)

We now compare the proposed formulation to the tau and Lagrange multiplier techniques, the two

most common strategies for obtaining approximate solutions to DDEs.

2.3 Tau method

In this method, the series solution (2.7) is first substituted into the equivalent system of PDEs (2.3a),

φi(s)
T

η̇i(t) = φ′

i(s)
T

ηi(t) i = 1, 2, . . . , n, (2.19)

Pre-multiplying both sides with φi(s) and integrating over the domain s ∈ [−αim, 0], we obtain the

following ODEs:

Aiη̇i(t) = Kiηi(t) i = 1, 2, . . . , n, (2.20)

where Ai and Ki are the same as defined in (2.12a) and (2.12b) respectively. Next we substitute

the series solution (2.7) into the boundary condition (2.3b) to obtain,

φi(s)
T

η̇i(t) = fi(u,vi, t) i = 1, 2, . . . , n, (2.21)

and the expressions of u,vi are obtained as:

u =
[
φ1(0)

T

η1(t),φ2(0)
T

η2(t), . . . ,φn(0)
T

ηn(t)
]

(2.22a)

vi =
[
φ1(−αi1)

T

η1(t),φ2(−αi2)
T

η2(t), . . . ,φn(−αin)
T

ηn(t)
]
. (2.22b)

The boundary condition (2.21) is then incorporated to the ODEs (2.20) by replacing the last row of

Ai and Ki in (2.20) with the boundary condition. Thus, finally we arrive at the following system

of ODEs:

AiTauη̇i(t) = KiTauηi(t) + Fi i = 1, 2, . . . , n, (2.23)

where AiTau =

[
Āi

φ(0)T

]
, KiTau =

[
K̄i

0

]
and Fi =




...

fi(u, vi, t)


.

Here Āi and K̄i are obtained by deleting the last row of Ai and Ki, and Fi is a column vector
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whose all entries are zero except the last one. The initial condition for Eq. (2.23) is given by

ηi(0) = A−1
i

∫ 0

−αim

φi(s)ψi(s) d s, i = 1, 2, . . . , n, (2.24)

Finally the system of ODEs (2.23) is then integrated forward in time to obtain an approximate

solution to the DDEs (2.1). The approximate solution is obtained as:

yi(0, t) = ηi0(t) = φi(0)
T

ηi(t). (2.25)

2.4 Lagrange Multiplier method

Another widely used method to obtain an approximate solution to the DDEs is the Lagrange multi-

plier method. In this method, the boundary constraint (2.3b) is enforced using Lagrange multipliers.

Firstly, the PDE (2.3a) is written as:

∂yi
∂t

=
∂yi
∂s

+ δ(s)γi(t), i = 1, 2, ...., n (2.26)

Here γi(t) denotes the lagrange multiplier, which is time dependent. On substituting the series

solution (2.7) in (2.26), we obtain

φi(s)
T η̇i(t) = φ

′

i(s)
Tηi(t) + δ(s)γi(t), i = 1, 2, ...., n (2.27)

Pre-multiplying both sides of (2.27) with φi(s) and integrating over the domain (−αim ≤ s ≤ 0)

yields

Aiη̇i(t) = Kiηi(t) + φi(0)γi(t), i = 1, 2, ...., n (2.28)

where Ai and Ki are the same as defined in (2.12a) and (2.12b) respectively. Now substituting

the series solution (2.7) into the boundary condition (2.3b) results in,

φi(0)
T η̇i(t) = fi(u, vi, t), i = 1, 2, ...., n (2.29)

where u and vi are the same as obtained in (2.4a) and (2.4b) respectively. We now use (2.28) and

(2.29) to obtain the following expression for the lagrange multiplier(γi(t)):

γi(t) =
fi(u, vi, t)

φi(0)
T
[
A−1

i φi(0)
] −

φi(0)
T
[
A−1

i Kiηi(t)
]

φi(0)
T
[
A−1

i φi(0)
] , i = 1, 2, ...., n (2.30)

On substituting back the expression of (γi(t)) in (2.28) and using the initial condition ηi(0) =

A−1
i

∫ 0

−αim
φi(s)ψi(s), we integrate the ODEs forward in time to get ηi(t). The approximation

solution is then obtained as:

yi(0, t) = ηi0(t) = φi(0)
T

ηi(t). (2.31)

In summary, we have developed a method to convert a system of DDEs into a system of PDEs

without any boundary conditions. The PDEs are discretized using the Galerkin method and con-

verted into a system of ODEs, which can then be solved numerically. As will be demonstrated in

Section 2.5, our approach satisfies the original boundary conditions with only small amounts of er-
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ror, and produces results that compare favourably with those obtained using the tau and Lagrange

multiplier methods.

2.5 Numerical Studies

In this section, we present four test cases to investigate the accuracy of the approximation method

we propose. The developed theory is applied to systems of first- and second-order DDEs. The

numerical results for the proposed method are obtained using the ode15s solver in Matlab, and are

compared to those obtained by integrating the DDEs directly using the dde23 [34] solver. Relative

and absolute integration tolerances of 10−8 are used throughout.

2.5.1 Coupled First-order DDEs

Consider the following system of retarded DDEs:

ż1(t) + b1z1(t) + b2z2(t) + b3z1(t− α11) + b4z2(t− α12)
3 = 0 (2.32a)

ż2(t) + b5z1(t) + b6z2(t) + b7z1(t− α21) + b8z2(t− α22)
3 = F sin(ωt). (2.32b)

This is a nonlinear system of coupled DDEs containing delays in both z1 and z2. The initial history

functions are assumed to be the following:

z1(t) = 0, −max(α11, α21) ≤ t ≤ 0 (2.33a)

z2(t) = 0, −max(α12, α22) ≤ t ≤ 0. (2.33b)

In Figure 2.1, we compare the displacements y1(0, t) and y2(0, t) obtained using the Galerkin method

to those obtained using the dde23 solver in Matlab; the parameters are provided in the figure caption.

Clearly, the results obtained using the Galerkin method match the direct numerical integration of

(2.32). In Figure 2, we plot the least -square errors for y1(0, t) and y2(0, t) as functions of the number

of terms used in the series approximation (2.7):

ELS =

10000∑

k=1

(z(tk)− y1(0, tk))
2
. (2.34)

The simulation was performed for t ∈ [0, 100], which was divided into 10,000 equidistant points to

compute the error (2.34). As shown in Figure 2.2, N = 7 terms are sufficient to achieve an error of

0.01. Also note that the error associated with all the methods decreases as N increases, indicating

convergence.

2.5.2 Second-order DDE

To test the developed formulation for higher-order DDEs, we now consider the following second-order

nonlinear DDE:

z̈(t) + b1ż(t) + b2z(t) + b3z(t− α)3 + b4ż(t− β) = F sin(ωt), (2.35)
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Figure 2.1: Comparison of direct numerical solution zi(t) and solution obtained using the Galerkin
method yi(0, t) for (2.32). The parameters are b1 = b6 = 2, b2 = b4 = α4 = 1, b3 = b7 = b8 = α1 =
0.1, b5 = 0.75, α2 = 0.3, α3 = 0.5, F = 1.8, ω = 2π, and N = 7.
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Figure 2.2: Maximum absolute error between direct numerical solution zi(t) and solution obtained
using the Galerkin method yi(0, t) for (2.32) as frequency ω varies. Parameters are given in the
caption for Figure 2.1.
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Figure 2.3: Comparison of direct numerical solution z(t) and solution obtained using the Galerkin
method y1(0, t) for (2.35). The parameters are b1 = 0.01, b2 = b3 = α = 1, b4 = 0, β = F = 0.5,
ω = 2π, and N = 7.

which contains delays in both z(t) and ż(t). The initial history functions are assumed to be

z(t) = ż(t) = 0,−1 ≤ t ≤ 0. In Figures 2.3, 2.4, and 2.5, we compare the displacement y1(0, t)

obtained using the Galerkin method to that obtained using the dde23 solver in Matlab using three

sets of parameters (provided in the figure captions). In all three cases, the results obtained using

the Galerkin method are in good agreement with the direct numerical integration of (2.35). In

Figure 2.3(b), we show that the error associated with satisfying the boundary conditions is less than

8× 10−4 using the first set of parameters; the absolute error is also low, as shown in Figure 2.4(b)

for the second parameter set. In Figure 2.5(b), we plot the least-square error as a function of the

number of terms N used in the series approximation (2.7):

The simulation was performed for t ∈ [0, 100], which was divided into 10,000 equidistant points

to compute the error (2.34). As shown in Figure 2.5(b), convergence is achieved at N = 11, and the

least-square error remains below 6×10−4 even when only 5 terms are retained in the series solution.

2.5.3 Stability charts

For linear DDEs, (2.10) takes the following form:

η̇ = Cη, (2.36)

where η = [η1(t),η2(t), . . . ,ηn(t)]
T

. The stability of linear DDEs can be analyzed by evaluating the

stability of the ODEs obtained from the Galerkin approximation (2.36). The characteristic equation

for a DDE is a quasi-polynomial with an infinite number of roots; to ascertain stability, we must

determine whether all the roots have negative real parts. The roots of the characteristic equation

can be found using a nonlinear solver; however, providing the solver with good initial guesses is

a nontrivial task. In contrast, the Galerkin approximation of a linear DDE results in a system of

ODEs of the form shown in (2.36), and we can directly evaluate the eigenvalues of these ODEs to

establish system stability. In fact, the eigenvalues of (2.36) approximate the characteristic roots [35]

of the original DDEs, and the approximation becomes increasingly accurate as the number of terms

12
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Figure 2.4: Comparison of direct numerical solution z(t) and solution obtained using the Galerkin
method y1(0, t) for (2.35). The parameters are b1 = b4 = 0, b2 = 1.5, b3 = 0.1, α = F = 1, β = 0.5,
ω = 6π, and N = 7.
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Figure 2.5: Comparison of direct numerical solution z(t) and solution obtained using the Galerkin
method y1(0, t) for (2.35) when the velocity delay term is nonzero. The parameters are b1 = 0.05,
b2 = 0.75, b3 = α = F = 1, b4 = 0.1, β = 0.5, and ω = 4π.
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Figure 2.6: Stability regions obtained analytically (red lines) and using the Galerkin method (blue
dots) for first- and second-order systems.

in the series solution is increased. The system is stable if all eigenvalues of (2.36) have negative real

parts.

Consider the following equation:

ẋ(t) = bx(t) + ax(t− τ). (2.37)

The stability of (2.37) changes as we vary parameters a and b. Figure 2.6(a) shows the stability

diagram for (2.37) with τ = 1. The region within the red lines is the stable region, as reported

previously [22]; the blue dots indicate the same stable region, determined using the Galerkin method

with N = 5. We have also studied the stability of a second-order system that arises in the study of

machine tool vibration [36]:

ẍ(t) + 2ζẋ(t) + (1 + p)x(t)− px(t− τ) = 0. (2.38)

Figure 2.6(b) shows the stability diagram for (2.38) with ζ = 0.01 as p and τ vary. The red lines

indicate the stable region determined analytically [36]. Once again, the blue dots indicate that the

same stable region is obtained using the Galerkin method.

2.6 Relationship between Embedded boundary and Lagrange

multiplier

We now recall the proposed embedded boundary formulation(2.6):

∂y

∂t
=
∂y

∂s
+

(
∂y(0, t)

∂t
− f

)
cδ(s)

We observed that for large values of the parameter c, the method approximates the Lagrange mul-

tiplier technique (2.4). To illustrate this point further, we plot the error between the numerical

and the approximated solution for (2.5.2) using both the embedded boundary and the Lagrange

14



multiplier method. In Figure 2.7(a), we observe that with c = 1 the error using both the methods is

very less, but Lagrange multiplier technique performs better than the embedded boundary method.

However, in Figure 2.7(b) with c = 1000, we see that the error using the embedded boundary method

exactly matches with that of Lagrange multipliers. Thus we can conclude that the embedded bound-

ary method approximates the Lagrange multiplier technique for obtaining approximate solution of

DDEs.
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Figure 2.7: Comparison of the error between the Lagrange multiplier and the embedded boundary

method for the second order dde (2.5.2) with (a) c=1 and (b) c=1000. The parameter values are

the same as used to generate Figure 2.5.

2.7 Application to control

Numerical integration of a DDE using the dde23 solver will generally be faster than integrating a set

of ODEs obtained using the Galerkin approximation. The real advantage of the proposed formulation

lies in the design of observers, filters, and control systems for physical processes governed by DDEs.

Modern control theory often assumes that the plant model can be approximated using ODEs, and

several theoretical proofs are available for such models. Control theory for DDEs, on the other

hand, is a topic of ongoing research [2], and the authors believe the field is underdeveloped. In this

example, we apply the proposed boundary conditionfree formulation to a control problem to take

advantage of control theory developed for systems described by ODEs.

Consider a process governed by following second order DDE:

z̈ + 2ζż + k1z + k2z(t− τ) = 0 (2.39)

where the parameters are ζ = 2, k1 = 5, k2 = 5 and τ = 1. The objective is to design an

observer which can accurately track the response of the DDE (2.39). We obtain the plant output

by integrating the DDE numerically using the following history functions:

z(t) = −1, ż(t) = 0, t ∈ [−1, 0] (2.40)

We then use the approximated ODEs with history functions as z(t) = 2, ż(t) = 0, t ∈ [−1, 0] to
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track the plant response, whereupon traditional control strategies can be applied. Since Eq. (2.39)

is a second order DDE, retaining N terms in the series approximation results in a system of (2.39)

of 2N (corresponding to N displacements and N velocities). Inspired by the idea of high gain

observer [37], we add 20(z(t)−y1(0, t)) to the first displacement level ODE and 20(ż(t)−y2(0, t)) to

the first velocity-level ODE. Here, y1(0, t) and y2(0, t) indicate the observer output for displacement

and velocity respectively. Finally, we integrate the ODEs forward in time and compare the plant and

observer outputs. We then integrate the ODEs forward in time and compare the plant and observer

outputs. As shown in Figure 2.8, the observer output y1(0, t) is in very good agreement with the plant

output z(t), and the tracking error quickly becomes negligible. This example clearly demonstrates

that the proposed method can be used for control purposes (such as designing observers, filters, and

controllers) for systems governed by retarded DDEs.
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Figure 2.8: (a) Comparison of the plant output z(t) and observer output (y1(0, t)) for Eq. (2.39) (b)

Tracking error as a function of time. The number of terms used in the galerkin series approximation

are N = 20.
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Chapter 3

Galerkin Methods for stability

analysis with application to

Bio-Mechanics

In this chapter we first present the mathematical model for the single-pendulum model of a human

during stance (sagittal plane). Then we discuss our Galerkin method to determine the stability

of the governing equation of motion. We derive analytical expressions of the stability boundary

for this model and compare them with the numerical results. Next we develop the mathematical

model for the PDA controlled double-pendulum model of a human during stance. We also derive

analytical expressions for this model and compare them with the Galerkin results. Next we carry

out extensive parametric studies to compare the PD- and PDA- controlled stability margins for this

model. Finally we discuss the limitations of the analytical approach and the need of a numerical

technique such as the proposed Galerkin method to determine the stability margins.

3.1 Mathematical Modeling

For clarity, we develop our theory on a single second-order neutral DDE; extension of the method

to coupled DDEs is trivial. We first consider a single-pendulum model, as shown in Figure 3.1. The

dynamics of this single-pendulum model are governed by the following second-order ODE [21]:

JAθ̈(t) + btθ̇(t) + ktθ(t)−mgℓAC sin (θ(t)) = Q(t) (3.1)

where the pendulum is of mass m and length ℓ with orientation θ relative to vertical; JA is the

moment of inertia of the body about the ankle (point “A” in Figure 3.1); the passive torques applied

by the plantarflexor and dorsiflexor muscles are lumped into a single torsional spring of stiffness kt

and a single torsional dashpot with damping coefficient bt; and g is the gravitational acceleration.

Q(t) is the feedback or active control torque required to prevent the human from falling, and can be

expressed as follows:

Q(t) = −Kpθ(t− τ)−Kdθ̇(t− τ)−Kaθ̈(t− τ) (3.2)
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m, ℓ

θ

bt kt
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C 

Figure 3.1: Single-pendulum model of a human during stance (sagittal plane). The body is rep-
resented by an inverted pendulum of mass m and length ℓ with orientation θ relative to vertical.
Passive muscle torques generated at the ankle are modeled as a torsional spring of stiffness kt and
a torsional dashpot with damping coefficient bt.

where τ is the reflex delay and Kp, Kd, and Ka are, respectively, the proportional (position), deriva-

tive (velocity), and acceleration control gains. The ODE in (3.1) becomes a DDE upon substitution

of (3.2) due to the reflex delay τ . We linearize (3.1) about the vertical equilibrium point and define

parameters α , bt/JA, β , (kt −mgℓAC) /JA, kp , −Kp/JA, kd , −Kd/JA, and ka , −Ka/JA to

obtain the following DDE:

θ̈(t) + αθ̇(t) + βθ(t) = kpθ(t− τ) + kdθ̇(t− τ) + kaθ̈(t− τ) (3.3)

The problem at hand is to determine the parameters for which (3.3) is stable. Substituting

θ(t) = ert, we obtain the following characteristic equation:

r2 + αr + β −
(
kp + kdr + kar

2
)
e−rτ = 0 (3.4)

which is a quasi-polynomial and has infinitely many roots. The system is stable if, and only if, all

the roots of the characteristic equation lie in the left half of the complex plane; however, verifying

that all roots of (3.4) lie in the left half-plane is difficult, and this strategy will be impractical

for more complex models. We instead determine the stability of an approximation to the DDE, a

strategy that is equally suitable for low- and high-order models. We first introduce the following

transformation:

y(s, t) = θ(t+ s) (3.5)

where y is a function of s and t, and s varies from −τ to 0. Differentiating (3.5) with respect to s

18



and t, we obtain the following:

∂y(s, t)

∂s
=
∂θ(z)

∂z

∂z

∂s

∣∣∣∣
z=t+s

=
∂θ(z)

∂z

∣∣∣∣
z=t+s

(3.6a)

∂y(s, t)

∂t
=
∂θ(z)

∂z

∂z

∂t

∣∣∣∣
z=t+s

=
∂θ(z)

∂z

∣∣∣∣
z=t+s

(3.6b)

and note that ∂y(s, t)/∂s ≡ ∂y(s, t)/∂t. We now differentiate this relation with respect to time to

obtain a second-order PDE:

∂2y(s, t)

∂t2
=
∂2y(s, t)

∂t∂s
, −τ ≤ s ≤ 0 (3.7)

Using relations y(0, t) = θ(t) and y(−τ, t) = θ(t − τ) obtained from (3.5), we derive the following

boundary condition from (3.3):

∂2y(0, t)

∂t2
+ α

∂y(0, t)

∂t
+ βy(0, t) = kpy(−τ, t) + kd

∂y(−τ, t)

∂t
+ ka

∂2y(−τ, t)

∂t2
(3.8)

We now approximate the solution y(s, t) of the PDE (3.7) as follows:

y(s, t) ≈

N∑

i=1

φi(s)ηi(t) = φ
T

(s)η(t) (3.9)

where φ(s) = [φ1(s), φ2(s), . . . , φN (s)]
T

are the basis functions and η(t) = [η1(t), η2(t), . . . , ηN (t)]
T

are independent coordinates. In this study, we use the following shifted Legendre polynomials [38]

as the basis functions:

φ1(s) = 1 (3.10a)

φ2(s) = 1 +
2s

τ
(3.10b)

φk(s) =
(2k − 3)φ2(s)φk−1(s)− (k − 2)φk−2(s)

k − 1
, k = 3, 4, . . . , N (3.10c)

which are known to have better convergence properties than a mixed Fourier basis [35]. Substituting

the approximate solution (3.9) into the PDE (3.7), we obtain the following:

φ
T

(s)η̈(t) = φ
T

(s)′η̇(t) (3.11)

where φ
T

(s)′ ≡ ∂φ
T

(s)/∂s. Pre-multiplying (3.11) by φ(s) and integrating over s from −τ to 0, we

arrive at a system of second-order ODEs:

Ãη̈ = B̃η̇ (3.12)

where Ã =
∫ 0

−τ
φ(s)φ

T

(s) ds and B̃ =
∫ 0

−τ
φ(s)φ

T

(s)′ ds. Note that we can represent the solution

using any complete set of basis functions (e.g., Chebyshev, Lagrange, and Hermite polynomials). In

this work, we use shifted Legendre polynomials as global shape functions because they allow us to
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write the entries of matrices Ã and B̃ in closed form as follows:

Ãij =
τ

2i− 1
δij i = 1, 2, . . . , N ; j = 1, 2, . . . , N (3.13a)

B̃ij =




2, if i < j and i+ j is odd

0, otherwise
i = 1, 2, . . . , N ; j = 1, 2, . . . , N (3.13b)

The boundary condition is enforced by first substituting the series solution (3.9) into (3.8):

aη̈(t) = bη̇(t) + cη(t) (3.14)

where a = φ
T

(0) − kaφ
T

(−τ), b = −αφ
T

(0) + kdφ
T

(−τ), and c = −βφ
T

(0) + kpφ
T

(−τ). The

boundary condition is incorporated into the system of ODEs using the tau method [35]. In this

method, we replace the last row of (3.12) with (3.14):

Aη̈ = Bη̇ +Cη (3.15)

where A =
[
Â,a

]T
, B =

[
B̂,b

]T
, and C =

[
0, c

]T
; matrices Â and B̂ are the matrices obtained

by deleting the last row from matrices Ã and B̃, respectively. Finally, we introduce the state vector

x , [η, η̇]
T

and write (3.15) in first-order form:

ẋ = Dx (3.16)

where

D =

[
0 1

A−1C A−1B

]
(3.17)

In summary, we have converted the NDDE (3.3) into a system of first-order ODEs (3.16), the

stability of which can be readily determined by examining the eigenvalues of matrix D. If each

eigenvalue of D has a negative real part, then the system is stable. In fact, these eigenvalues

approximate the characteristic roots of (3.4), and the approximation improves [35] as we increase

the number of terms N in the series solution (3.9).

3.2 Results and Discussion

In this section, we first validate our developed method using a single-pendulum, sagittal-plane model

of a human during quiet standing. We then extend our analysis to a double-pendulum model, which

is governed by a system of coupled NDDEs. The analysis presented in Section 3.1 is applied to the

first model directly, and can be readily extended to determine the stability of coupled NDDEs [20].

3.2.1 Single-pendulum human stance model

We first discuss the analytical results reported by Insperger et al. [21] for the single-pendulum

human stance model. We then compare these results with those obtained using the Galerkin method
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Parameter Case 1 Case 2
m 60 kg 75.5 kg
ℓAC 1 m 0.92 m
JA 60 kgm2 63.9 kgm2

kt 471 Nmrad−1 595.5 Nmrad−1

bt 4.0 Nms rad−1 4.011 Nms rad−1

τ 0.2 s 0.2 s

Table 3.1: Parameter values for single-pendulum human stance model. Insperger et al. [21] obtained
these parameters from Asai et al. [39] (Case 1) and Loram and Lakie [40] (Case 2).

presented in Section 3.1.

Analytical stability margins

Recall the characteristic equation (3.4) for the single-pendulum model:

r2 + αr + β −
(
kp + kdr + kar

2
)
e−rτ = 0 (3.18)

For constant-coefficient DDEs, the eigenvalues at the stability boundaries are purely imaginary;

thus, we substitute r = jω into (3.18):

−ω2 + jαω + β −
(
kp + jkdω − kaω

2
)
e−jωτ = 0 (3.19)

Next, we expand ejω as cos(ω) + j sin(ω) and separate the real and imaginary parts to obtain the

following transcendental equations:

−ω2 + β − kp cos(ωτ)− kdω sin(ωτ) + kaω
2 cos(ωτ) = 0 (3.20a)

αω + kp sin(ωτ)− kdω cos(ωτ)− kaω
2 sin(ωτ) = 0 (3.20b)

Using (3.20a) and (3.20b), we obtain the following closed-form expressions for kp and kd:

kp = −αω sin(ωτ) +
(
−ω2 + β

)
cos(ωτ) + kaω

2 (3.21a)

kd =
−ω2 + β

ω
sin(ωτ) + α cos(ωτ) (3.21b)

Thus, by varying parameter ω in (3.21), we can obtain the analytical stability boundaries for the

PDA-controlled single-pendulum human stance model; to obtain the stability boundaries for the

PD-controlled model, we simply set the acceleration gain ka = 0 in (3.21a).

Galerkin stability margins

To validate the theory presented in Section 3.1, we have generated the stability diagrams for (3.1)

using the parameters given in Table 3.1, and have compared our results with the analytical results

discussed in Section 3.2.1 and reported by Insperger et al. [21]. The stability regions for Case 1 with

PD and PDA controllers are shown in Figure 3.2 as the number of terms N in the series solution (3.9)

increases. When N = 5, we obtain convergence with the analytical solution reported by Insperger et

al. Table 3.2 confirms that the rightmost eigenvalue converges as we increase the number of terms
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Figure 3.2: Stability regions for the single-pendulum human stance model (Case 1) using
proportional–derivative (PD, open circles) and proportional–derivative–acceleration (PDA, filled cir-
cles) controllers, with (a) N = 2, (b) N = 3, and (c) N = 5 terms in the series solution. The shaded
areas are the analytical stability regions reported by Insperger et al. [21]. The approximate Galerkin
method converges to the analytical solution at N = 5. The parameters used in the simulation are
Ka = 54 Nms2 rad−1 and those listed for Case 1 in Table 3.1.

Parameters Rightmost eigenvalue
Kp Kd N = 3 N = 5 N = 7
1764 600 0.69 + 11.71i 0.70 + 11.21i 0.70 + 11.21i
2940 600 0.55 + 10.37i 0.65 + 10.01i 0.65 + 10.01i
3528 600 0.94 + 9.58i 1.03 + 9.35i 1.03 + 9.35i

Table 3.2: Convergence analysis for the rightmost eigenvalue of the PDA-controlled single-pendulum
human stance model. The values of parameters Kp and Kd are expressed in SI units; the values of
all other parameters are as indicated in the caption for Figure 3.2.

N in the series solution (3.9).

We have also compared our results to those obtained by Insperger et al. for a second set of

parameters (Case 2 in Table 3.1), shown in Figure 3.3. Once again, the proposed method converges

to the analytical solution. These results confirm that the PDA controller provides a larger stability

region than the PD controller for the sets of parameters we studied.

3.2.2 Double-pendulum human stance model

We now consider a double-pendulum human stance model in the sagittal plane, shown in Figure 3.4,

where an additional active controller has been included at the hip. We assume that active torques are

generated at the ankle and hip by continuous, time-delayed PDA feedback controllers to maintain an

upright posture. We seek to determine whether the PDA controller remains superior to PD control

for this two-degree-of-freedom human stance model, whose dynamics are more realistic than those

of the single-pendulum model presented in Section 3.2.1.

After linearization, the dynamics of a double-pendulum model are governed by the following

second-order ODE:

Mθ̈ +Cθ̇ +Kθ = F (3.22)
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Figure 3.3: Stability regions for the single-pendulum human stance model (Case 2) using
proportional–derivative (PD, open circles) and proportional–derivative–acceleration (PDA, filled
circles) controllers. The shaded areas are the analytical stability regions reported by Insperger
et al. [21]. The approximate Galerkin method converges to the analytical solution at N = 5. The
parameters used in the simulation are Ka = 57.51 Nms2 rad−1 and those listed for Case 2 in Ta-
ble 3.1.

m2, 2ℓ2

m1, 2ℓ1

b1
k1

θ1

b2

k2

θ2

Figure 3.4: Double-pendulum model of a human during stance (sagittal plane). The lumped thigh
and shank segment has mass m1, length 2ℓ1, and orientation θ1 relative to vertical; the knee is
assumed to remain locked. The head, arms, and trunk are represented by a pendulum of mass m2

and length 2ℓ2 with orientation θ2 relative to vertical. Passive muscle torques generated at the ankle
and hip are modeled as torsional springs of stiffness k1 and k2, respectively, and torsional dashpots
with damping coefficients b1 and b2.
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where matrices M, C, and K are defined as follows:

M =

[
J1 +m1ℓ

2
1 + 4m2ℓ

2
1 2m2ℓ1ℓ2

2m2ℓ1ℓ2 J2 +m2ℓ
2
2

]
(3.23a)

C =

[
b1 + b2 −b2

−b2 b2

]
(3.23b)

K =

[
k1 + k2 − (m1 + 2m2) gℓ1 −k2

−k2 k2 −m2gℓ2

]
(3.23c)

The lumped thigh and shank (leg) segment has mass m1, length 2ℓ1, and moment of inertia J1

about its centroid; the knee is assumed to remain locked. The head, arms, and trunk (HAT) are

represented by a pendulum of mass m2, length 2ℓ2, and moment of inertia J2 about its centroid.

Passive torques applied by the plantarflexor and dorsiflexor muscles at the ankle are lumped into a

single torsional spring of stiffness k1 and a single torsional dashpot with damping coefficient b1; the

hip flexors and extensors are modeled analogously. The time-delayed feedback torque F in (3.22) is

given by the following:

F = −kpθpos − kdθ̇vel − kaθ̈acc (3.24)

where gain matrices kp, kd, and ka, and time-delayed state vectors θpos, θ̇vel, and θ̈acc are defined

as follows:

kp =

[
kp11 kp12

kp21 kp22

]
, kd =

[
kd11 kd12

kd21 kd22

]
, ka =

[
ka11 ka12

ka21 ka22

]
(3.25a)

θpos =

{
θ1(t− τp)

θ2(t− τp)

}
, θ̇vel =

{
θ̇1(t− τv)

θ̇2(t− τv)

}
, θ̈acc =

{
θ̈1(t− τa)

θ̈2(t− τa)

}
(3.25b)

In the following experiments, we use proportional gains kp1 , kp11 = kp21 (ankle) and kp2 , kp12 =

kp22 (hip); similarly, the derivative gains are kd1 , kd11 = kd21 and kd2 , kd12 = kd22, and the

acceleration gains are ka1 , ka11 = ka21 and ka2 , ka12 = ka22. The physical parameters used

in Section 3.2.1 are distributed between the leg and HAT segments of the model to resemble the

distribution in the human body [41]. In particular, 40% of the total mass is apportioned to the

legs and 60% is assigned to the HAT segment. To maintain the same centroid position, the ratio of

leg-to-HAT segment lengths is also 2:3.

Analytical stability margins

Substituting θ = θ0e
st into (3.22), we obtain the following system of equations:

Z(s) = Ms2 +Cs+K+ kpe
−sτp + kdse

−sτv + kas
2e−sτa (3.26)

For non-trivial solutions, the determinant of (3.26) must vanish—that is, we require |Z(s)| = 0.

We use the Maple 16 computer algebra software to obtain the following characteristic equation
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symbolically:

a0s
4 + a1s

3 + a2s
2 + a3s+ a4 + a5s

4e−sτa + a6s
3e−sτa + a7s

3e−sτv + a8s
2e−sτa

+ a9s
2e−sτv + a10s

2e−sτp + a11se
−sτv + a12se

−sτp + a13e
−sτp + a14s

4e−2sτa

+ a15s
2e−2sτv + a16e

−2sτp + a17s
3e−sτae−sτv + a18s

2e−sτae−sτp + a19se
−sτve−sτp = 0 (3.27)

The characteristic equation (3.27) is a quasi-polynomial; the coefficients {a0, . . . , a19} have been

reported in Appendix 4. Following a strategy similar to that discussed in Section 3.2.1, we now

substitute s = jω into (3.27):

a0ω
4 − ja1ω

3 − a2ω
2 + ja3ω + a4 + a5ω

4e−jτaω − ja6ω
3e−jτaω − ja7ω

3e−jτvω

− a8ω
2e−jτaω − a9ω

2e−jτvω − a10ω
2e−jτpω + ja11ωe

−jτvω + ja12ωe
−jτpω

+ a13e
−jτpω + a14ω

4e−j2τaω − a15ω
2e−j2τvω + a16e

−j2τpω − ja17ω
3e−jτaωe−jτvω

− a18ω
2e−jτaωe−jτpω + ja19ωe

−jτvωe−jτpω = 0 (3.28)

Expanding the exponential terms and separating the real and imaginary parts yields the following

two transcendental equations:

a0ω
4 − a2ω

2 + a4 + a5ω
4 cos(τaω)− a6ω

3 sin(τaω)− a7ω
3 sin(τvω)− a8ω

2 cos(τaω)

− a9ω
2 cos(τvω)− a10ω

2 cos(τpω) + a11ω sin(τvω) + a12ω sin(τpω) + a13 cos(τpω)

+ a14ω
4 cos(2τaω)− a15ω

2 cos(2τvω) + a16 cos(2τpω)− a17ω
3 sin((τa + τv)ω)

− a18ω
2 cos((τa + τp)ω) + a19ω sin((τv + τp)ω) = 0 (3.29a)

− a1ω
3 + a3ω − a5ω

4 sin(τaω)− a6ω
3 cos(τaω)− a7ω

3 cos(τvω) + a8ω
2 sin(τaω)

+ a9ω
2 sin(τvω) + a10ω

2 sin(τpω) + a11ω cos(τvω) + a12ω cos(τpω)− a13 sin(τpω)

− a14ω
4 sin(2τaω) + a15ω

2 sin(2τvω)− a16 sin(2τpω)− a17ω
3 cos((τa + τv)ω)

+ a18ω
2 sin((τa + τp)ω) + a19ω cos((τv + τp)ω) = 0 (3.29b)

where (3.29a) and (3.29b) are, respectively, the real and imaginary parts of (3.28). We next substi-

tute all parameters except for the two gains in which we are interested, thereby obtaining expressions

in terms of the two gains of interest and the parameter ω. Finally, we solve for the gains to obtain

analytical expressions in terms of ω, then vary ω to obtain the stability boundaries. In the next

section, we compute analytical stability boundaries using the above technique and compare them

with the stability boundaries obtained using the Galerkin method presented in Section 3.1.

Galerkin stability margins

We now study several test cases using the parameters given in Table 3.3. Unless otherwise stated,

we assume the position (τp), velocity (τv), and acceleration (τa) time delays are all equal to 0.05 s.

Based on the convergence study shown in Table 3.4, we use N = 5 terms in the Galerkin series

approximation (3.9). As shown in Figure 3.5, the stability boundaries obtained using the Galerkin

and analytical approaches are in excellent agreement when N = 5 terms are used.

In Figures 3.6 and 3.7, we compare the stability diagrams for the PD- and PDA-controlled

25



Parameter Value
m1 28.36 kg
m2 42.54 kg
ℓ1 0.348 m
ℓ2 0.522 m
ℓ (ℓ1 + ℓ2) m
J1 1.145 kgm2

J2 3.864 kgm2

k1 217.7 Nmrad−1

k2 250 Nmrad−1

b1, b2 4.011 Nms rad−1

Table 3.3: Parameter values for double-pendulum human stance model. Insperger et al. [21] obtained
these parameters from Loram and Lakie [40]. The masses and lengths are distributed between the
leg and HAT segments in a 2:3 ratio.

Parameters Rightmost eigenvalue
kp2 kd2 N = 3 N = 5 N = 7

12090 700 7.66 + 37.86i 7.52 + 37.21i 7.52 + 37.21i
12090 500 3.32 + 32.33i 3.51 + 32.09i 3.51 + 32.09i
9067.4 100 4.09 + 19.57i 4.09 + 19.57i 4.09 + 19.57i
3022.5 50 1.68 + 12.38i 1.68 + 12.38i 1.68 + 12.38i

Table 3.4: Convergence analysis for the rightmost eigenvalue of the PDA-controlled double-pendulum
human stance model (3.22). The values of parameters kp2 and kd2 are expressed in SI units; the values
of the other parameters are kp1 = 1813 Nmrad−1, kd1 = 300 Nms rad−1, ka1 = ka2 = 10 Nms2 rad−1,
and those listed in Table 3.3.
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Figure 3.5: Stability regions obtained for the double-pendulum human stance model (3.22) using
Galerkin and analytical approaches. The parameter values are (a) kp2 = 1813, kd2 = 300, ka1 =
ka2 = 10; (b) kp1 = 1813, kd1 = 300, ka1 = ka2 = 10; and (c) kd1 = kd2 = 300, ka1 = ka2 = 10.
Dots indicate stable points obtained using the Galerkin method and the solid red line indicates the
analytical stability boundary.
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Figure 3.6: Stability regions obtained for the double-pendulum human stance model (3.22) using
Galerkin and analytical approaches and the following parameters: (a) kd1 = kd2 = 300; (b) kp2 =
1813, kd2 = 300; (c) kp1 = 1813, kd2 = 300; (d) kp1 = 1813, kd1 = 300; and (e) kp1 = 1813,
kp2 = 2000. The acceleration gains are ka1 = 5 and ka2 = 10 in all cases. Stable points obtained
using the Galerkin method are indicated with red dots (PDA) and blue circles (PD); the analytical
stability boundaries are indicated with dashed red (PDA) and solid blue (PD) lines.

double-pendulum human stance model with different gain combinations. We observe that the PDA

controller provides larger stability regions than the PD controller, with the exception of the case

shown in Figure 3.6(b). Finally, in Figure 3.8, we compare the PD and PDA stability regions

for (3.22) with different combinations of the position (τp), velocity (τv), and acceleration (τa) time

delays. Again, we find that the PDA-controlled model has larger stability regions than the PD-

controlled model. These examples suggest that the PDA controller generally provides larger stability

regions than the PD controller—that is, the double-pendulum human stance model will generally

remain stable for a larger range of hip torque controller gains when acceleration feedback is included

in the control scheme.

3.3 Limitations of the Analytical Approach

In this section, we discuss the limitations of the analytical approach and the need for a numerical

technique such as the Galerkin method to determine the stability of the double-pendulum model.

In Figure 3.9, we plot the analytical stability boundary obtained as the parameter ω in (3.28) is

varied from 0 to 100. For both cases shown, we observe that the analytical solution has multiple

branches as we sweep ω. These branches correspond to different roots crossing the imaginary axis.

The problem at hand is illustrated in Figure 3.10: every root that is crossing the imaginary axis will

satisfy (3.29), and it is impossible to determine which portion of this graph corresponds to the zone

in which all roots lie in the left half of the complex plane. However, if we use the Galerkin method,
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Figure 3.7: Stability regions obtained for the double-pendulum human stance model (3.22) using
Galerkin and analytical approaches and the following parameters: (a) kd1 = 300, kd2 = 150; (b)
kp2 = 1813, kd2 = 300; (c) kp1 = 1813, kd2 = 300; (d) kp1 = 1813, kd1 = 300; and (e) kp1 = 1813,
kp2 = 2000. The acceleration gains are ka1 = 10 and ka2 = 5 in all cases. Stable points obtained
using the Galerkin method are indicated with red dots (PDA) and blue circles (PD); the analytical
stability boundaries are indicated with dashed red (PDA) and solid blue (PD) lines.
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Figure 3.8: Stability regions obtained for the double-pendulum human stance model (3.22) using
Galerkin and analytical approaches and the following position (τp), velocity (τv), and acceleration
(τa) time delays: (a) τp = 0.05, τv = 0.01, τa = 0.09; (b) τp = 0.09, τv = 0.01, τa = 0.05; and (c)
τp = 0.09, τv = 0.05, τa = 0.01. The remaining parameters are the same as those used to generate
Figure 3.7(d). Stable points obtained using the Galerkin method are indicated with red dots (PDA)
and blue circles (PD); the analytical stability boundaries are indicated with dashed red (PDA) and
solid blue (PD) lines.
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Figure 3.9: Stability margins obtained for the double-pendulum human stance model using Galerkin
(shaded) and analytical (blue line) approaches with the following parameters: (a) kp1 = 1813,
kd1 = 300, ka1 = 10, ka2 = 5, τp = 0.05, τv = 0.09, τa = 0.01; and (b) kp2 = 1813, kd1 = 300,
ka1 = 10, ka2 = 5, τp = τv = τa = 0.05. Arrows indicate the direction of increasing ω.
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Figure 3.10: Possible locations of roots of the transcendental equation (3.29) for a given value of ω.
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Figure 3.11: Stability regions obtained for the double-pendulum human stance model using the
Galerkin method and the following parameter values: (a) kp1 = 1813, kd1 = 300, kd2 = 200, ka1 = 5,
ka2 = 10; and (b) kp1 = 1813, kp2 = 2000, kd1 = 300, ka1 = 5, ka2 = 10. Stability regions are shown
for PDA (shaded) and PD (dots) controllers.

we can precisely locate the stability regions without any ambiguity.

Finally, we investigate the stability regions as one gain and one time delay (τ) vary. Here, we

assume equal position, velocity, and acceleration delays (i.e., τ , τp = τv = τa). Because τ appears

as an argument to the trigonometric functions in (3.29), a stability diagram with τ as one of the

varying parameters will involve multiple lobes corresponding to different periods of the trigonometric

functions. In the cases shown previously (i.e., Figures 3.6 and 3.7) where two gains were varied, we

observed that, for a given value of ω, we obtained linear expressions for the gains. In the present case,

however, for a given value of ω, multiple solutions are possible because τ appears as an argument to

trigonometric functions and the complexity of the model precludes obtaining an analytical expression

in which τ is isolated. Thus, we must resort to a numerical strategy such as the proposed Galerkin

method to determine the stability regions in this case. As shown in Figure 3.11, the stability regions

obtained using the PDA controller are larger than those obtained using the PD controller—that is,

the double-pendulum human stance model remains stable for larger time delays when acceleration

feedback is included in the control scheme.

30



Chapter 4

Conclusions

We have, for the first time, transformed a given DDE into an equivalent PDE without any boundary

conditions. This formulation allows us to apply the Galerkin method to the PDE without taking any

special care to incorporate boundary conditions (using Lagrange multipliers or the tau method, for

example). Legendre polynomials are used as the basis functions in the Galerkin method, and we ulti-

mately obtain finite-dimensional ODE approximations of the original DDEs. We have demonstrated

with several numerical examples that the ODEs obtained using our PDE formulation accurately

capture the dynamics of the original DDEs. Convergence is attained by increasing the number of

terms in the Galerkin approximation. We also observed that the proposed formulation approximates

the Lagrange multiplier method for DDEs. An application of the proposed formulation was demon-

strated to a problem of control. This formulation allows us to exploit existing tools developed for

ODE systems to analyze DDEs.

As a second work, an approximate method to determine the stability of NDDEs has been developed

to study the stability of human balance during stance. In particular, we use the Galerkin method to

convert the governing NDDE into a system of ODEs and determine the stability of the latter, which

is more tractable than determining the stability of the NDDE directly. We validated our method

by reproducing the stability diagrams found analytically for a single-pendulum human stance model

controlled by PD and PDA feedback controllers. We then derived analytical expressions for the

stability boundaries of a PDA-controlled double-pendulum human stance model. The analytical

and Galerkin stability boundaries were found to be in excellent agreement. Finally, we applied our

method to determine the stability of the double-pendulum model.

The single-pendulum human stance model was found to have greater stability margins when

acceleration feedback was available; for the double-pendulum model, we found that acceleration

feedback generally—but not always—resulted in larger stability regions. These results corroborate

those obtained by Insperger et al. [21] for the single-pendulum model, and further support the

hypothesis that humans may, indeed, use a PDA control structure for maintaining balance, aided

by sensory feedback from the vestibular system. As such, it may be crucial to include acceleration

feedback in the controllers used by orthotic or prosthetic devices that assist persons with balance de-

ficiencies [42]. It is also important to consider the complementary function of human muscle, which

can begin reacting to disturbances even before reflexes respond [43]. Understanding the mecha-

nisms of balance benefits the development of diagnostic criteria, assistive devices, and rehabilitation
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strategies that will effectively support the growing elderly population.
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Appendix

The double-pendulum human stance model has the following characteristic equation (3.27):

a0s
4 + a1s

3 + a2s
2 + a3s+ a4 + a5s

4e−sτa + a6s
3e−sτa + a7s

3e−sτv + a8s
2e−sτa

+ a9s
2e−sτv + a10s

2e−sτp + a11se
−sτv + a12se

−sτp + a13e
−sτp + a14s

4e−2sτa

+ a15s
2e−2sτv + a16e

−2sτp + a17s
3e−sτae−sτv + a18s

2e−sτae−sτp + a19se
−sτve−sτp = 0

where the coefficients are as follows:

a0 = m1ℓ
2
1J2 + 4m2ℓ

2
1J2 +m1ℓ

2
1m2ℓ

2
2 + J1J2 + J1m2ℓ

2
2

a1 = 4m2ℓ
2
1b2 + b1J2 + 4m2ℓ1ℓ2b2 +m1ℓ

2
1b2 + b2m2ℓ

2
2 + b1m2ℓ

2
2 + J1b2 + b2J2

a2 = −m1ℓ
2
1m2gℓ2 − gℓ1m1m2ℓ

2
2 + k1m2ℓ

2
2 +m1ℓ

2
1k2 + k2m2ℓ

2
2 + 4m2ℓ

2
1k2 − 2gℓ1m

2
2ℓ

2
2

+ 4m2ℓ1ℓ2k2 − J1m2gℓ2 − 4m2
2ℓ
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1gℓ2 − gℓ1m1J2 − 2gℓ1m2J2 + k1J2 + J1k2 + b1b2 + k2J2

a3 = − 2gℓ1m2b2 + k1b2 + b1k2 − b1m2gℓ2 − b2m2gℓ2 − gℓ1m1b2

a4 = − 2gℓ1m2k2 + 2g2ℓ1m
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a5 = ka11m2ℓ
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a16 = kp11kp22 − kp12kp21

a17 = − kd21ka12 + kd11ka22 + ka11kd22 − kd12ka21
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