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Abstract

Mixture Model is least computational approach for solving Multiphase problems. We aim to

develop a general-purpose and robust incompressible flow solver to help in analysing Jets for

laminar flows. The present work aims to include Mixture Model in Thunder Strom Solver

developed by previous post-graduate student. In this work, disperse phase is considered as

solid particals and a Lagrangian algebric slip mixture model has been deployed to study gas-

particle two phase flows. By the above approach the relation between Euler and Lagrangian

equations is established. Results of differetnt density ratios and loadings are validated by

comparing with commercial solver Fluent.
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Chapter 1

Introduction

To develop a multiphase solver which is used to solve computational flows for engineering

problems, significantly in Jets. Unstructured grids are used for grid generation because

lesser computational cost and their ease in adapting the complex domain, when compared to

structured grids. Most of the engineering problems involve turbulent flow through complex

flow domains. Major of current work is done in laminar flow and will be extended to

Turbulent flows .

Jet systems are widely used in many chemical, petrochemical and biochemical industries,

such as absorption, oxidation,coal combustion,food and commodity transfer,solid rocket

jets, pharmaceutical granulators , coal liquefaction, coal combustion boilers and aerobic

fermentation. When a Jet from the nozzle, it causes a turbulent stream to enable an

optimum interaction between the phases. Because of low cost and ease of maintenance,

it is built in numerous forms of construction. The mixing is done by the droplets and

it requires less energy. In thesis we mainly concentrate on solving the problems in gas-

solid particle two-phase flow using Lagrangian algebraic slip mixture model(LASMM). In

two-phase flow, we consider dispersed phase as solid particles which is considered to be

fine powder with size is from micrometers to several hundred micrometers. The flow is

considered to be homogeneous and interfacial forces between the particles like drag force,

lift force, virtual mass force etc is included by employing Lagrangian Algebraic Slip Mixture

Model(LASMM). By this accuracy of Mixture Model is increased.

A Multiphase system is defined as a mixture of the phases of solid,liquid and gases.

Multiphase flows are often classified according to the nature of the system [1]: dispersed

flows like particle or droplet in liquid or gas, bubbles in liquid, Separated flows like annular

flows in circular pipes, stratified flow in horizontal pipes, and Transitional flows combination

of both the flows. Depending on the strength of the coupling between the phases, different

modeling approaches are suggested.In the Euler-Euler approach, the different phases are

treated mathematically as inter penetrating continuum. Since the volume of a phase can-

not be occupied by the other phases, the concept of phase volume fraction is introduced.

These volume fractions are assumed to be continuous functions of space and time and their
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sum is equal to one. Conservative equations for each phase are derived to obtain a set

of equations, which have similar structure for all phases. These equations are closed by

providing constitutive relations that are obtained from empirical information.The different

Euler-Euler approach are given below.

The VOF Model: The VOF(Volume of Fluid) Model is a surface-tracking technique ap-

plied to a fixed Eulerian mesh. It is designed for two or more immiscible fluids where the

position of the interface between the fluids is of interest. In the VOF model, a single set of

momentum equations is shared by the fluids, and the volume fraction of each of the fluids in

each computational cell is tracked throughout the domain. Applications of the VOF model

include stratified flows, free-surface flows, filling, sloshing, the motion of large bubbles in

a liquid, the motion of liquid after a dam break, the prediction of jet breakup (surface

tension), and the steady or transient tracking of any liquid-gas interface.

The Mixture Model: The Mixture model is a simplified multiphase model that can be

used to model multiphase flows where the phases move at different velocities, but assume

local equilibrium over short spatial length scales. The mixture model solves for the mixture

momentum equation and have algebraic expressions for the relative velocities between the

phases . Applications of the mixture model include particle-laden flows with low loading,

bubbly flows, sedimentation , and cyclone separators. The mixture model can also be used

without relative velocities for the dispersed phases to model homogeneous multiphase flow.

The Eularian Model: The Eulerian model is the most complex of the multiphase models.

It solves a set of momentum and continuity equations for each phase. Coupling between the

phases is achieved through the pressure and inter-phase exchange coefficients. Applications

of the Eulerian multiphase model include bubble columns, risers, particle suspension, and

fluidized beds.

From the above discussion we can say that the Mixture model and the Eulerian model

are ease to implement for solving multiphase flows. The Mixture model and the Eulerian

model are appropriate for flows in which the phases mix or dispersed-phase volume frac-

tions exceed 10%. The main reason behind choosing Mixture model over Eulerian Model

is computational effort.If there is a wide distribution of the dispersed phases the mixture

model is preferable due to computational effort but the accuracy of Mixture Model is less

than Eulerian Model. And also complexity of the Eulerian model can make it less compu-

tationally stable than the mixture model.Accuracy of Mixture Model can be improved by

using Lagrangian algebraic slip velocity approach (slip velocity concept) which is discussed

in chapter 2. In this model the slip velocity between gas and solid particles was derived from

Lagrangian form. Hence the accelerations of various forces on the particle were considered
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through the single solid particle Lagrangian momentum equation. Owing to the governing

equations of LASMM based on Euler equations, this model therefore realized the connection

between Eulerian model and Lagrangian model. Through the comparisons of the numerical

simulations of code to fluent, this model was validated for laminar flows.

Finite Volume method has been used for discretization of governing equations. The

method of discretization for unstructured grid is discussed in thesis of Vatsalya Sharma [2].

In the Finite Volume method, the solution domain is subdivided into a number of finite vol-

ume cells defined by the coordinates of their vertices read from the CGNS grid. Collocated

grid arrangement has been implemented where all the dependent variables are defined at

the centroid of the individual cells. Primitive variables (like velocity and temperature) are

being solved directly.

1.1 Literature survey

The report on Mixture Model by Mikko Mannianen and Veikko Taivassalo [3] deals with

two-phase gas-particle flow, explains about the effect of different drag models and closure

equations of slip(relative) velocity. The form of the constitutive equations for the relative

velocities varies in the different mixture model. The basic assumption in this formulation is

that a local equilibrium establishes over short spatial length scales. A group of models have

been developed on the basis of assumptions of a local equilibrium and depending upon exact

formulations used to determine the velocity differences model is called as drift flux model[4],

the mixture model[1], Algebraic slip model[5], the suspension model[6], the diffusion flux

model[7][1],local equilibrium model[8]. In addition, the closure relations for multiphase flow

include uncertainties [9] [10] which were ignored to make the equations simpler.Different

constitutive relations have been examined [11] for the determination of relative velocity.

The Drag force represents additional forces on a particle due to velocity relative to the

fluid. Different formulations of drag coefficient are studied [12] [13][14]. Many assumptions

are made to keep computation of gas-particle flow simpler but in dense suspensions, particle

tend to form clusters affecting the average drag force[15].

There are many applications of Mixture model in industrial problems.The separation of

a solid particles in a liquid due to gravitation and centrifugal forces is extensively studied

using mixture model[16][17].One of the major application of this model is in hydrocyclone

problems. Pericleous & Drake [5] modeled the flow of the air, liquid and particles in a com-

plicated hydro cyclone classifier by using mixture model. Brennan [18] used Mixture model

for hydro cyclone problems with different Turbulent model and found that LES simulations

gave good agreement with experimental data . By Lagrangian particle method, M.Narsimha

[19] were able to simulate dense medium cyclone which was modeled by coupling compo-

nents models for the air core, the magnetite medium and coal particles. The results showed

good agreement with experimental data. The gas-solid two phase flow is mainly seen in
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powder technology, Zhi Shang [20] has validated mixture model with the experimental data

in gas-solid two phase flows. Algebraic slip Mixture model of gas-particle flows generally

used for simulation of wind blown particles like sand, snow. Alhajraf [21] used the model

to simulate the flow field around fences for two applications, snow drift at single row fence

and sand drift at double row fence. Akbarinia [22] has used mixture model on laminar

mixed convection heat transfer in a circular Curved tube with a nanofluid consisting of

water and 0.01 volume of Aluminum oxide,to investigate effects of the diameter of particles

on the hydrodynamic and thermal parameters.The drift flux model has been implemented

by Ruichang [23] for the analysis of two dimensional two phase flow in horizontal heated

tube bundles. The present work relies on the unstructured grid handling schemes proposed

by Dr.Dalal[24].The discretization of equations according to unstructured grid is taken from

the thesis of Vatsalya sharma [2].

1.2 Objective of present work

• To develop robust Multiphase module in Thunderstorm solver by incorporating La-

grangian Algebraic Slip Mixture Model(LASMM) .

• To incorporate different Drag Models.

• To validate this solver for different density ratios with different loading for the 3D

cases for laminar flow.
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Chapter 2

Governing Equations of Mixture

Model

A multiphase flow system consists of a number of single phase regions bounded by moving

interfaces. The description is limited to dispersed multiphase flows.The theory of gas parti-

cle system contains several complications i.e, the size distribution, other physical properties

of the solid particles and the collision processes of the solid particles with each other and

with gas molecules are difficult to account for.The theory for the application of Mixture

model on gas-solid particle two-phase flow taken from the report of Mikko Manninen and

Veikko Taivassalo [3].

The Lagrangian approach treats the fluid phase a continuum and the time average is taken

by following a certain solid particles and observing it at some time level. Particle trajectories

are calculated from the equation of particle motion.Lagrangian averages are popular espe-

cially in modeling the dynamics of single particle or dilute suspension and been extended

to more dense flows[25].

In the Eulerian approach, the particle phase is also treated as continuum. It consists of

three essential parts: Field equations consists of conservative principles momentum and

mass, Constitutive equation close the equation system by taking into account the structure

of the flow and material properties by experimental correlations.

The averaged equations of multiphase flow can be written in numerous ways. Equations

can de derived by time averaging, space averaging, or by combination of these. In all these

methods the resulting equation contain basically same terms.Modeling of the turbulent

terms is essential part of the equation closure . The field equations are given below in

general form and later used for deriving the basic equations for mixture model.We restrict

our analysis on the mechanics of multiphase system.Therefore thermodynamic relations are

not considered.

If we denote the local instant velocity of the phase k by uIk, the averaged velocity can

be defined as uk = uIk, where over bar indicates the averaging domain .The alternative
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definition of the averaged velocity is based on weighing the velocity with the local density

ρk

uk =
ρIkuIk
ρIk

=
ρIkuIk
ρk

(2.1)

ρk denotes the average material density,uk denotes Favre averaged velocity.

The Favre averaged balance equations are presented by several authors[1][13][26] . We follow

notations of Mikko Manninen and Veikko Taivassalo [3]. According to it the continuity and

momentum equations for each phase k as follows

∂

∂t
(φkρk) + O.(φkρkuk) = Γk (2.2)

∂

∂t
(φkρkuk) + O.(φkρkukuk) = −φkOpk + φkρkg

+O.[αk(τk + τTk)] +Mk

(2.3)

where φk is the volume fraction of phase k. The term Γk represents the rate of mass

generation of phase k at the interface and Mk is the average inter-facial momentum source

for the phase k, τk and τTk are the average stress tensor and turbulent stress tensor.

τTk = −ρIkuFkuFk (2.4)

uFkis the fluctuating component of the velocity, i.e. uFk = uIk −uk Before they are solved

constitutive equations for the average stress, turbulent stress term ad the inter-facial forces

between the phases have to be formulated. As current work deals with the laminar flow,

Turbulent stress terms are neglected in all the equations.

A common simplification that we discussed earlier in multiphase flows is that the dispersed

phase is assumed to be consisting of spherical particles of a single average particle size.

The interactions between different phases are frequently neglected. A typical assumption

is that the particle are distributed in homogeneous way inside the local averaged domain

corresponding to the control volume.

2.1 Field Equations

Consider a mixture with n phases. Assume one phase is continuous phase with a subscript

c. The dispersed phases can comprises of particles.In this approach both continuity and

momentum equations are written for the mixture of phases. The Particle concentrations are

solved from continuity equations of each discrete phase. The momentum equations for each

discrete phases are approximated by algebraic equations. The mixture model equations are

derived in the literature applying various approaches [26][1][7]. In this we derive general

equations of mixture model starting from equations of individual phases.
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2.1.1 Continuity equation of mixture

From the continuity equation (2.2) by summing over all the phases.

∂

∂t

n∑
k=1

(φkρk) + O.

n∑
k=1

(φkρkuk) =

n∑
k=1

Γk (2.5)

As total mass is conserved, mass generation term must be zero.

n∑
k=1

Γk = 0 (2.6)

We obtain the continuity equation of the mixture

∂ρm
∂t

+ O.(ρmum) = 0 (2.7)

Here the mixture density and mixture velocity are defined as

ρm =

n∑
k=1

φkρk (2.8)

um =
1

ρm

n∑
k=1

(φkρkuk) (2.9)

um represents the velocity of mass center. Note that ρm varies but the material densities

will be constant.

2.1.2 Momentum equation of mixture

The momentum equation for mixture as follows from(2.3) by summing over all phases

∂

∂t

n∑
k=1

(φkρkuk) + O.

n∑
k=1

(φkρkukuk) = −
n∑
k=1

φkOpk +

n∑
k=1

φkρkg

+O.

n∑
k=1

φk(τk + τTk) +

n∑
k=1

Mk

(2.10)

By the definitions of mixture density ρm and the mixture velocity um,the second term can

be written as
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O.

n∑
k=1

(φkρkukuk) = O.(ρmumum) + O.

n∑
k=1

(φkρkuMkuMk) (2.11)

where uMkis the diffusion velocity, i.e.,the velocity of phase k relative to the center of the

mixture mass.

uMk = uk − um (2.12)

The momentum equation of mixture takes the form

∂

∂t
(ρmum) + O.(ρmumum) = Opm + +O.(τm + τTm) + O.τDm

+ρmg +Mm

(2.13)

As flow is laminar, Turbulent stresses in the equation are neglected. The three stresses

tensors are defined as

τm =

n∑
k=1

φkτk (2.14)

τDm = −
n∑
k=1

φkρkuMkuMk (2.15)

The mixture pressure is defined by the relation

Opm =

n∑
k=1

φkOpk (2.16)

We consider the phase pressures are often equal i.e, pk = pm, except in the case of expanding

bubble.The last term on right hand side of equation (2.13) is the influence of surface tension

force on the mixture and is defined as

Mm =

n∑
k=1

Mk (2.17)

The term Mm depends on the geometry of the interface.The additional term of (2.13) OτDm
represents the momentum diffusion due to relative velocity motion.The Mixture model will

8



be inaccurate if the above term is missing [6].

2.1.3 Continuity equation of phase

Taking continuity equation of phase (2.2) and applying diffusion velocity (2.12) definition

phase velocities are eliminated.The equation we get is:

∂

∂t
(φkρk) + O.(φkρkuk) = Γk − O.(φkρkuMk) (2.18)

If the phase densities are constant and phase changes do not occur,the continuity equation

reduces to

∂

∂t
(φk) + O.(φkuk) = −O.(φkuMk) (2.19)

Above equation referred as diffusion equation [7], accordingly mixture model is often called

as diffusion model.In practice the diffusion velocity has to be determined by the relative

(slip) velocity which is defined as the velocity of the dispersed phase relative to the contin-

uous phase.

uCk = uk − uc (2.20)

In two-phase gas-solid particle flow, solid particles often considered as dispersed phase and

indicated with the subscript of p. The diffusion velocity of a dispersed phase p, uMp =

up − um, can be presented in terms of relative velocities

uMp = uCp −
n∑
k=1

CkuCk (2.21)

As we consider only one dispersed phase, above equation take the following form

uMp = (1− Cp)uCp (2.22)

The field equations of mixture model as well as the continuity equation of phase k in

terms of mixture velocity were obtained from the original phase equations by algebraic

manipulations. The closure of field equations require as in full multiphase models. The

most important assumption of the mixture model will be made in replacing the phase

momentum equations with algebraic equations for the diffusion velocity uMk .
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2.1.4 Relative velocity

Before solving the continuity equation for phase k and the momentum equation for the

mixture, the diffusion velocity has to be determined. In the present analysis we make local

equilibrium approximation in the momentum equation for the dispersed phases.In this we

consider that particle is accelerated to terminal velocity in short distance. The relative

velocity uCp often called as slip velocity [5][8] is obtained from force balance equation and

is used to calculate diffusion velocity (2.12).

Using the continuity equation (2.2)the momentum equation of dispersed phase d can be

written as(turbulent fluctuations are ignored)

φdρd
∂ud
∂t

+ φdρd(ud.O)ud = −φdOpd + φdρdg

+O.[αdτd] +Md

(2.23)

And the corresponding mixture momentum equation after using mixture continuity equation

(2.7) is

ρm
∂um
∂t

+ ρm(um.O)um = Opm + +O.τm + O.τDm

+ρmg +Mm

(2.24)

Here in solid particle flow, the surface tension forces are neglected and consequentlyMm = 0.

We make the assumption that the phase pressures are equal.

pd = pm = p (2.25)

Now eliminate the pressure gradients from two equations by multiplying (2.24) with φd and

subtracting from (2.23). We get the following equation

Md = φd

[
ρd
∂uMd

∂t
+ (ρd − ρm)

∂um
∂t

]
+ φd

[
ρd(ud.O)ud − ρm(um.O)um

]
−φd(ρd − ρm)g − O.

[
φdτd

]
+ φdO.

[
τm + τDm

] (2.26)

Now we will make several approximations to simplify (2.26). Using local equilibrium ap-

proximation, we drop the first term the time derivative of uMd. In the second term, we

approximate
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(ud.O)ud ≈ (um.O)um (2.27)

The viscous and diffusion stresses are omitted as small compared to the leading terms.The

Turbulent stress is ignored in present work.

In this derivation we are considering only viscous drag. The drag induced momentum

transfer Md is

Md = −βuCd +M
′
d (2.28)

where M
′
dis the term caused by velocity fluctuations [27]. The drag function βdepends

on the particle Reynolds number,solid concentration and particle size. Many models are

available for β formulation. For the derivation we take the model of Ishii & Mishima[13],

then β takes the form

β =
3

4
CD

φdρc | uCd |
dd

(2.29)

where CDis determined by drag models. From the equations (2.26) we get the final simplified

equilibrium equation for the relative velocity

1

2
ρcAdCD | uCd | uCd = Vd(ρd − ρm)

[
g − (um.O)um −

∂um
∂t

]
+M

′
p (2.30)

Generally the relative velocity have fluctuations [1]. But for simplification fluctuations are

neglected. Therefore the equation (2.30) takes the following form

1

2
ρcAdCD | uCd | uCd = Vd(ρd − ρm)

[
g − (um.O)um −

∂um
∂t

]
(2.31)

The generalized equation for the slip velocity

uCd =
τd
fdrag

(ρd − ρm)

ρd

[
g − (um.O)um −

∂um
∂t

]
(2.32)

where τd is relaxation time, fdrag drag function.

The simplest algebraic slip formulation is the so-called drift flux model, in which the ac-

celeration of the particle is given by gravity and/or a centrifugal force and the particulate

relaxation time is modified to take into account the presence of other particles.
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2.1.5 Relaxation Time τp

The particle relaxation time is a measure of particle inertia and denotes the time scale

with which any slip velocity between the particles ad the fluid is equilibrated [28].The local

equilibrium approximation requires that the particle is rapidly accelerated to the terminal

velocity. A criteria for neglecting the acceleration is related to the relaxation time of the

particle,τp defined by simplified equations. τd is given by

td =
ρdd

2
d

18µm
(2.33)

We assume that the suspension is homogeneous in small spacial scales. If this is not the case

and the dense clusters of particles are formed, the mixture model usually not applicable.The

clustering can lead to a substantial decrease in the effective drag coefficient and the local

equilibrium approximation is not valid. Although the mixture model principle valid for

small particles (dd < 50µm) , it can be used only for dilute suspension with secondary to

primary phase mass ratio below 1.

2.1.6 Drag Force

The Drag force represents the additional forces on a particle due to velocity relative to

fluid.For a single rigid spherical particle in a fluid, the drag function FDcan be written as

follows [12]

FD =
1

2
ρcAdCD | uCd | uCd (2.34)

In the present work Virtual mass and Basset history terms are neglected. For calculating

the relative velocity from the equation(2.32) we need to model the drag function fdrag from

below relation.

fd =
CDRed

24
(2.35)

There are different drag coefficient models depending on various factors.At small particle

Reynolds number, the total drag coefficient is given by stokes law [12]

CD,st =
24

Red
(2.36)

The paricle Reynolds numberRep is defined as follows

Red =
ddρc | uCd |

µc
(2.37)

An often used expression for the drag coefficient is due to schiller & Nauman [12]
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CD =
24

Red
(1 + 0.15Re0.687d ) Red < 1000

= 0.44 Red > 1000

(2.38)

Above equation is derived by considering single particle in a fluid. In a suspension, the

influence of the distortion of the flow field is caused by the presence of other particles has to

be taken into account. With in increase in particle concentration, a particle feels an increase

in flow resistance which in turn leads to a higher drag coefficient. Alternate way, [11] the

viscosity of the continuous phase in expressions for drag coefficient should be replaced by

the apparent viscosity of the mixture µm. Their formulation for drag coefficient of solid

particle is

CD =
24

Red
(1 + 0.15Re0.75d ) Red < 1000

= 0.45

{
1 + 17.67

[
f(φd)

]6/7
18.67f(φd)

}
Red > 1000

f(φd) =
√

1− φd
 µc
µm


Red =

dd

uCd

ρc
µm

(2.39)

Ding & Gidaspow [14] equations for CD for dense suspensions:

CD =
24

φcRed
(1 + 0.15(φcRed)

0.687) φcRed < 1000

= 0.44 φcRed > 1000

(2.40)

Each drag function has differentβ formulation (2.29).

2.2 Constitutive Equations

In order to have the field equations(2.7)(2.13)(2.19)(2.32)for the mixture model in a form

suitable for applications, they have to be closed, i.e., constitutive models for various terms

are required. This closure problem is often very difficult. Some of the closure equations are

obvious consequences from the approach used in developing the field equations, Such as the

definition of velocity and density of mixture.

Constitutive equations of the mixture models are not theoretically studied as extensively as

those for full multiphase models.The approach of writing he closure laws directly in terms

13



of the mixture model parameters is more straightforward and consistent with derivation of

the field equations[1].

saturation condition

When a mixture is fully saturated

n∑
k=1

φk = 1 (2.41)

This was already used in deriving relation between various velocities indicates that com-

putation of the volume fraction from the phase continuity equation can be omitted for one

phase.

Mixture properties

The mixture density and viscosity is defined in (2.8)(2.9)

ρm =

n∑
k=1

φkρk (2.42)

µm =

n∑
k=1

φkµk (2.43)

It has been discussed in the beginning.

Kinematic closure relations

By employing the diffusion and relative velocity relations the diffusion stresses can be ex-

pressed as the function of uCp as follows

τDm = −ρm

n∑
k=1

CkuCkuCk + ρm

n∑
k,l=1

CkCluCkuCl (2.44)

As we are doing for only one dispersed phase

τDm = −ρmCd(1− Cd)uCduCd (2.45)

Pressure differences

The properties of interface determine the pressure difference. With out any surface tension

pressures of all the phases are taken to be equal .This assumption is customarily made
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except in the case of expanding bubbles [10].While deriving mixture momentum equation

we assumed in (2.13) for pressure of the mixture that

Opm =

n∑
k=1

φkOpk (2.46)

Interfacial momentum conservation

The term Mmin the mixture momentum equation (2.13) denotes the mixture momentum

source due to the surface tension and depends upon the geometry of the interface. In case

of two phase flow, the mixture momentum source is given by [1]

Mm = κklσOφd +MHm (2.47)

The first term of the right hand side is zero if the surface tension is neglected. The last term

MHmrepresents the effect of changes in the mean curvature(reference), assumed thatMHm =

0. Commonly and especially in practical applications, the mixture momentum sourceMmis

ignored [8][7].

Interfacial mass conservation

The balance equation for interfacial mass conservation is given by (2.6)

n∑
k=1

Γk = 0 (2.48)

If the phase changes does not occur the interfaces between the phases, Γk = 0

Viscous shear stress

The general form for the viscous shear stress tensor in Newtonian viscous fluid is

τ = µ

[
Ou + (Ou)T

]
+ λ(O.u)I (2.49)

where λ is the second viscosity coefficient and I is the unit tensor. The stokes relation,

λ = −2

3
µ (2.50)

is generally assumed to be valid. The term involving the shear stress tensor in the Navier

stokes equation would be

O.τ = µ

[
O2u +

1

3
O(O.u)

]
(2.51)
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where a constant viscosity coefficient µ is assumed. For a single incompressible fluid

O.u = 0 (2.52)

Accordingly last terms of (2.51) can be ignored. In multiphase flow (2.52) it is not necessary

valid for an individual phase.The divergence of mixture velocity is neither generally equal

to zero.

The total viscous stress for a multiphase mixture can be represented as a sum of the con-

tribution of the individual phases (2.51) present in the mixture.

τm =

n∑
k=1

φkµk

{[
Ouk + (Ouk)

T
]}

(2.53)

Representing phase velocity in terms of the mixture and diffusion velocities, the viscous

shear stress tensor for the mixture can be written as follows:

τm =

n∑
k=1

φkµk

{[
Ouk + (Ouk)

T
]}

+

n∑
k=1

φkµk

{[
OuMk + (OuMk)

T
]}

(2.54)

Compare to the formulation for single phase flow, the viscous stress in a mixture has a

additional term caused by relative motion. This term is often small and, when drift velocity

is constant, it can even ignored. The viscosity of the mixture is

µm =

n∑
k=1

φkµk (2.55)

Considering the contribution of one phase to the viscous stress term of the mixture momen-

tum equation, we obtain

The closure law for viscous term of mixture can be determined analogously to single

phase flow in terms of mixture parameters

τm = µm

[
Oum + (O.uk)−

2

3
(O.um)I

]
(2.56)

where µmis the dynamic viscosity for mixture.And is often assumed that O.Um = 0.

2.3 summary

In the following, a summary the mixture model equations is presented for case of one

dispersed phase p for laminar flows.
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∂

∂t
ρm + O.(ρmum) = 0 (2.57)

∂

∂t
(ρmum) + O.(ρmumum) = −Opm + ρmg + µm

[
Oum + (Oum)T

]
−O.

[
ρmCd(1− Cd)uCduCd

] (2.58)

∂φd
∂t

+ O.(φdum) = −O.
[
φd(1− Cd)uCd

]
(2.59)

In above equations(2.58)(2.59) the phase slip terms are expressed explicitly as function of

the relative velocity,rather than diffusion velocity. The relative velocity is obtained from

the generalized equation

uCd =
τd
fdrag

(ρd − ρm)

ρp

[
g − (um.O)um −

∂um
∂t

]
(2.60)

where the particles are assumed to be spherical and the fluctuation in slip velocities are

ignored as the principle contributors of turbulence are turbulent stress term in momentum

equation. For laminar flow set of equations is now complete. Empirical correlations have to

be used for the quantities CD and µm. If multiple dispersed phases are present, the mixture

model equations are not simple. The continuity equation is solved for each dispersed phase.

Determining the relative velocity becomes more complicated because the hindrance effects

of the particles of the other phases need to be taken into account[29]. Mixture including

several particle phases with different material densities can be considered as above. The

formulation applies also if the density of the material of the dispersed phase is constant

but the particle size varies. Particles are classified according to their size and each group is

considered as a separate phase.
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Chapter 3

Discretization of Equations

Solver named as Thunderstorm is based on the Anupravah 2 developed by Dr. Amaresh

Dalal and Prof. Vinayak Eswaran.The development of 3D unstructured code with single

phase is carried out by Vatsalya Sharma[2] and Dr. Raja Banerjee.It is a semi implicit

solver capable of handling unstructured grids. Its ability to read grid in CGNS format and

write the results in same. It has a text based interface (TBI )and most of the files are

written in C language.

3.1 Solution algorithm

The final discretized form of the governing differential equations are:

Continuity: The continuity equation is discretized as follows,∑
f

Fn+1
f = 0 (3.1)

where

Ff = un+1
f Sfx + vn+1

f Sfy + wn+1
f Sfz (3.2)

Sfx denotes area of f face and x component of it. Momentum:The momentum Equation

is discretized as follows

Vp
(ρm,pup)

n+1 − (ρm,pup)
n

4t
+
∑
f

Fn+1
f un+1

f +
∑
f

Fn+1
duf =

−
∑
f

pn+1
f Sfx + (Su)pVp

(3.3)
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Vp
(ρm,pvp)

n+1 − (ρm,pvp)
n

4t
+
∑
f

Fn+1
f vn+1

f +
∑
f

Fn+1
dvf =

−
∑
f

pn+1
f Sfy + (Sv)pVp

(3.4)

Vp
(ρm,pwp)

n+1 − (ρm,pwp)
n

4t
+
∑
f

Fn+1
f wn+1

f +
∑
f

Fn+1
dwf =

−
∑
f

pn+1
f Sfz + (Sw)pVp

(3.5)

Volume Fraction:The Volume Fraction Equation is discretized as follows

Vp
(ρk,pφp)

n+1 − (ρk,pφp)
n

4t
+
∑
f

Fn+1
k,f φn+1

f

∑
f

Fn+1
dφf = (Su)pVp (3.6)

where subscript p denotes the value of variable at the cell center in current cell. As we

are taking diffusion equal to zero last term in LHS is omitted. where (n + 1) denotes the

unknown value of the current time step

In the present study, the Navier stokes and volume fraction equations are solved using

the finite volume method. We have used collocated grid arrangement, where the depen-

dent variables are calculated from the centroid of the finite volume. This arrangement

produces pressure velocity decoupling(refer patankar and vatsalya thesis). The solution to

this problem is explained in the thesis of Vatsalya Sharma [2].

3.1.1 SemiImplicit Algorithm

In semi Implicit algorithm the Navier stokes and Volume Fraction equations are solved using

flux and mixture density value of the previous step. This eliminates the need for flux con-

vergence loop, decreasing the amount of time taken to achieve convergence.As both Implicit

and Semi Implicit algorithm are first order accurate in time, semi Implicit algorithm gives

acceptable results even for unsteady problems. Initial condition fr velocity and pressure are

prescribed at all points in the domain and boundary conditions are defined at the start of

the problem.

Step 0: Initialize all the variables to their respective initial conditions.

Step 1: Evaluate the Mass velocities, u∗, by solving the ”Mass velocity equation” which is

basically the Navier Stokes equation but without the pressure term. These are given by,

Vp
(ρm,pup)

∗ − (ρm,pup)
n

4t
+
∑
f

Fnf u
∗
f +
∑
f

F ∗duf = (Su)pVp (3.7)
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Vp
(ρm,pvp)

∗ − (ρm,pvp)
n

4t
+
∑
f

Fnf v
∗
f +
∑
f

F ∗dvf = (Sv)pVp (3.8)

Vp
(ρm,pwp)

∗ − (ρm,pwp)
n

4t
+
∑
f

Fnf w
∗
f +
∑
f

F ∗dwf = (Sw)pVp (3.9)

Usually the source terms are lagged to the values of the previous time step. And the flux

of the previous time step are being used here.

Step 2:Calculate the mass flux at the each face of the control volume using the newly

evaluated mass velocity values.

F ∗f = ρf .u
∗
f .Sf (3.10)

u∗f =
Vpu

∗
n + Vnu

∗
p

Vp + Vn
(3.11)

ρ∗f =
Vpρ
∗
n + Vnρ

∗
p

Vp + Vn
(3.12)

Step 3:Evaluate the values of pressure at (n + 1)th time step using the pressure poison

euqtion, ∑
f

(Opn+1
f ).Sf =

1

4t

∑
f

F ∗f (3.13)

Step 4: Calculate the mass flux of (n+ 1)th time step using the expression

Fn+1
f = F ∗f −4t(Opn+1

f ).Sf (3.14)

Now that the mass flux will satisfy continuity.

Step 5: Now we solve the complete Navier Stokes equation given by,

Vp
(ρm,pup)

n+1 − (ρm,pup)
n

4t
+
∑
f

Fnf u
n+1
f +

∑
f

Fn+1
duf =

−
∑
f

pn+1
f Sfx + (Su)pVp

(3.15)

Vp
(ρm,pvp)

n+1 − (ρm,pvp)
n

4t
+
∑
f

Fnf v
n+1
f +

∑
f

Fn+1
dvf =

−
∑
f

pn+1
f Sfy + (Sv)pVp

(3.16)
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Vp
(ρm,pwp)

n+1 − (ρm,pwp)
n

4t
+
∑
f

Fnf w
n+1
f +

∑
f

Fn+1
dwf =

−
∑
f

pn+1
f Sfz + (Sw)pVp

(3.17)

After convergence we the values of un+1, vn+1, wn+1, these are the current time step velocity

values. Here all the fluxes are taken from the previous time step values. The source terms

are usually lagged to the previous time step values.

Step 6: After this we solve for scalar in this case we solve volume fraction equation given

by,

Vp
(ρk,pφp)

n+1 − (ρk,pφp)
n

4t
+
∑
f

Fn+1
k,f φn+1

f = (Su)pVp (3.18)

Step 7: After getting scalar values we use to update the density and dynamic viscosity

values.

ρm =

n∑
k=1

αkρk (3.19)

µm =

n∑
k=1

αkµk (3.20)

Step 8: Now we find the slip velocity which are added in the source term of momentum

and volume fraction equations.

uCp =
τp
fdrag

(ρp − ρm)

ρp

[
g − (um.O)um −

∂um
∂t

]
(3.21)

Step 8: If it is a steady state problem, check whether velocities and scalars are converged

to required level of accuracy. If not converged then set un+1 → un, Fn+1 → Fn,φn+1 → φn,

t→ t+4t and go to step 1. If it is unsteady problem the continue as many time steps as

needed.

Source Terms

We have added, relative velocity flux terms in mixture momentum equation (2.58) and vol-

ume fraction equation of disperse phase (2.59) to source terms for corresponding equations.

The relative velocity terms are computed from previous time step values. The respective

source terms are:

Smomentum = −
∑
f

FRel,fucd,f (3.22)
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Svolfrac = −
∑
f

Fvol,fφd (3.23)

where the subscript d is used to denote the dispersed phase , Smomentum is the source

term and FRel,f is the relative velocity flux of mixture momentum equation. Svolfrac is

source term and Fvol,f is the relative velocity flux in volume fraction equation of dispersed

phase.The φd is the volume fraction of the dispersed phase. Both the flux terms have

different formulations, the flux term in mixture momentum equation is given by

FRel,f = ρm,fCdf
(
1− Cdf

)[
ucd,f .Sfx + vcd,f .Sfy + wcd,f .Sfz

]
(3.24)

The flux term in volume fraction equation is

Fvol,f =
(
1− Cdf

)[
ucd,f .Sfx + vcd,f .Sfy + wcdf .Sfz

]
(3.25)

where the Cd is from the equation (2.22).The calculation of above variable at the face centers

have been mentioned in the Appendix.

3.2 Closure

The discretization of the equations according to unstructured grid are mention in thesis of

Vatsalya Sharma [2]. And the discretization of relative velocity terms in momentum and

volume fraction equations are mentioned in Appendix.
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Chapter 4

Laminar Validation of Multiphase

Module

4.1 Introduction

The code results are compared with the Fluent for Laminar flows. In all the cases, we

used Jet problems to validate. The validation is done for different density ratios(secondary

phase to primary phase) and different Reynolds number with varying loading. In all the

simulations, viscosity ratio (secondary phase to primary phase) is kept constant and particle

size is taken to be 70µm.

The domain size of our problem is 1× 1× 5 with 1.2 million cells. Results are compared

on YZ plane shown in figure(figure number) and values of X,Y,Z components of velocity

taken from the central line of the plane. They are compared to Fluent results at different

time levels. In this problem, a mixture of fluids is injected from inlet in to a tube with

boundary conditions mentioned below.

Boundary Conditions

Inlet: The Mixture is injected in the Z direction, so the Dirichlet boundary condition

to Z component of velocity and homogeneous Dirichlet boundary condition to remaining

components u = v = 0, w = constant. Pressure has uniform Neumann boundary condition
∂p
∂n = 0. Volume fraction has Dirichlet boundary condition φ = constant.

Sides: The homogeneous Dirichlet boundary condition to all components of velocity u =

v = w = 0.Pressure and volume fraction have uniform Neumann boundary condition ∂p
∂n =

0, ∂φ∂n = 0.

Outlet: Volume fraction and all the components of velocity have uniform Neumann bound-

ary condition ∂u
∂n = 0, ∂v∂n = 0, ∂w∂n = 0∂φ∂n = 0. Pressure has homogeneous Dirichlet boundary

condition p = 0.

Simulations are done on following domain
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Figure 4.1: Domain

4.2 Different Density Ratios

Code is validated with different density ratios 1.1, 10, 100 with Reynolds number(Re) rang-

ing from 100, 500, 1000, different volume fraction(VF) 0.1, 0.2, 0.3, 0.4 of secondary phase at

the inlet.

4.2.1 Density ratio 1.1

Results for density ratio 1.1 is validated with the Fluent are mentioned below. As we are

doing transient problem, values are compared at 1, 1.5, 2, 2.4 seconds.

The contour of Velocity Z and volume fraction are shown in figure 4.2,4.3 for Re = 100.

Comparison is done for X,Y,Z velocities of mixture and Volume fraction of secondary phase.
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Figure 4.2: Contour of Velocity Z of mixture on YZ plane
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Figure 4.3: Contour of Volume fraction(VF) of secondary phase on YZ plane
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(a) X velocity (b) Y velocity

(c) Z velocity (d) Volume fraction

Figure 4.4: Comparison of code to Fluent for Re = 100 and V F = 0.1 for density ratio 1.1,

As velocity Z is more dominating figure 4.4 , further comparisons are done for only velocity

Z. The difference in value of the code and Fluent is increasing as time progress. Further

simulations are done for Re = 100 for different volumetric loading (VF). For all figures

similar line pattern represents same time.
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(a) VF=0.1 (b) VF=0.2

(c) VF=0.3

Figure 4.5: Comparison of Velocity Z for Re = 100 and V F = 0.1, 0.2, 0.3, 0.4 for density
ratio 1.1,

From figure 4.5 it can be noticed that difference in values increasing, as volumetric loading

increases and also if time progresses. Similar pattern is observed in figure 4.6,4.7.
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(a) VF=0.1 (b) VF=0.2

(c) VF=0.3 (d) VF=0.4

Figure 4.6: Comparison of Velocity Z for Re = 500 and V F = 0.1, 0.2, 0.3, 0.4 for density
ratio 1.1,
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(a) VF=0.1 (b) VF=0.2

(c) VF=0.3 (d) VF=0.4

Figure 4.7: Comparison of Velocity Z for Re = 1000 and V F = 0.1, 0.2, 0.3, 0.4 for density
ratio 1.1,
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4.2.2 Density ratio 10:

From the figure 4.8,4.9,4.10, observed that difference between the values of code and Fluent

not only increase with time, volumetric loading but also with Reynolds number.

(a) VF=0.1 (b) VF=0.2

(c) VF=0.3 (d) VF=0.4

Figure 4.8: Comparison of Velocity Z for Re = 100 and V F = 0.1, 0.2, 0.3, 0.4 for density
ratio 10
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(a) VF=0.1 (b) VF=0.2

(c) VF=0.3 (d) VF=0.4

Figure 4.9: Comparison of Velocity Z for Re = 500 and V F = 0.1, 0.2, 0.3, 0.4 for density
ratio 10
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(a) VF=0.1 (b) VF=0.2

(c) VF=0.3 (d) VF=0.4

Figure 4.10: Comparison of Velocity Z for Re1000 and V F = 0.1, 0.2, 0.3, 0.4 for density
ratio 10
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4.2.3 Density ratio 100

From the figure 4.11,4.12,4.13, code is diverging from Fluent across the section.

(a) VF=0.1 (b) VF=0.2

(c) VF=0.3 (d) VF=0.4

Figure 4.11: Comparison of Velocity Z for Re = 100 and V F = 0.1, 0.2, 0.3, 0.4 for density
ratio 100,
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(a) VF=0.1 (b) VF=0.2

(c) VF=0.3 (d) VF=0.4

Figure 4.12: Comparison of Velocity Z for Re = 500 and V F = 0.1, 0.2, 0.3, 0.4 for density
ratio 100
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(a) VF=0.1 (b) VF=0.2

(c) VF=0.3 (d) VF=0.4

Figure 4.13: Comparison of Velocity Z for Re = 1000 and V F = 0.1, 0.2, 0.3, 0.4 for density
ratio 100
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Gravity

In many industrial applications, Jets are influenced by Gravitational field . Code is studied

for density ratio 1.1, Re = 100 , V F = 0.1 and g = 9.8, Gravity is applied in Z direction.

From the figure 4.2.3 as time progresses difference in values of code and Fluent is increasing.

Figure 4.14: comparison of code and Fluent for gravity

4.3 Closure

From the above discussion, code is agreeing with Fluent for low density ratios with low

volumetric loading. Over prediction is seen in code as time progresses. Code is unable to

handle high density ratio and high volumetric loading.
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Chapter 5

Results and Discussion

The Mesh dependency of the code is checked and different drag models are analyzed with

varying Reynolds number and volumetric loading. In all the cases viscosity ratio (secondary

phase to primary phase) is 1 and particle size taken to be 70µm. Boundary conditions are

given as mentioned in Chapter 4.

5.1 Grid Independence

The Code is analyzed with different mesh sizes 0.2, 0.6, 0.9, 1.2 million. Comparison is done

for 100 and 500 Reynolds number, with 0.1, 0.2 volumetric loading. From figures 5.1,5.2,

5.3, 5.4, observed that for Re = 100 velocity profile is same for all the mesh sizes but as

Reynolds number increased to 500 it showing small difference in values.
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(a) time 1.0 sec (b) time 1.5 sec

(c) time 2.0 sec (d) time 2.4 sec

Figure 5.1: comparison at different time steps for Re = 100 with volume fraction at inlet
V F = 0.1

38



(a) time 1.0 sec (b) time 1.5 sec

(c) time 2.0 sec (d) time 2.4 sec

Figure 5.2: comparison at different time steps for Re = 100 with volume fraction at inlet
V F = 0.2
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(a) time 1.0 sec (b) time 1.5 sec

(c) time 2.0 sec (d) time 2.4 sec

Figure 5.3: comparison at different time steps for Re = 500 with volume fraction at inlet
V F = 0.1
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(a) time 1.0 sec (b) time 1.5 sec

(c) time 2.0 sec (d) time 2.4 sec

Figure 5.4: comparison at different time steps for Re = 500 with volume fraction at inlet
V F = 0.2
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5.2 Comparison of different Drag models

Different Drag models are implemented and analyzed with the code. The Models are Stokes

(2.35), Schiller & Nauman (2.38), Ishii & Mishima (2.39), Ding & Gidaspow (2.40). The

formulations are explained in Chapter 2. All of them compared for different Reynolds

number 100 to 500 with 0.1, 0.2, 0.3 volumetric loading. From the figure 5.7,5.7,5.7,5.7 it is

observed that there is no much difference in flow solution for different drag models. As flow

is laminar and value of Reynolds number of particle is very low
(
Rep =

dpρc|uCd|
µc

)
. Mikko

Manninen & Veikko Taivassalo [3] have analyzed the drag function fdrag and drag coefficient

CD with different drag model. According to the report, there is no much difference in fdrag

and CD for low Rep with low volumetric loading.
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(a) V F = 0.1,time 1.0 sec (b) V F = 0.1,time 2.4 sec

(c) V F = 0.2,time 1.0 sec (d) V F = 0.2,time 2.4 sec

(e) V F = 0.3,time 1.0 sec (f) V F = 0.3,time 2.4 sec

Figure 5.5: comparison at different time steps with different loading, different drag models
for Re = 100
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(a) V F = 0.1,time 1.0 sec (b) V F = 0.1,time 2.4 sec

(c) V F = 0.2,time 1.0 sec (d) V F = 0.2,time 2.4 sec

(e) V F = 0.3,time 1.0 sec (f) V F = 0.3,time 2.4 sec

Figure 5.6: comparison at different time steps with different loading, different drag models
for Re = 200
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(a) V F = 0.1,time 1.0 sec (b) V F = 0.1,time 2.4 sec

(c) V F = 0.2,time 1.0 sec (d) V F = 0.2,time 2.4 sec

(e) V F = 0.3,time 1.0 sec (f) V F = 0.3,time 2.4 sec

Figure 5.7: comparison at different time steps with different loading, different drag models
for Re = 300
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(a) V F = 0.1,time 1.0 sec (b) V F = 0.1,time 2.4 sec

(c) V F = 0.2,time 1.0 sec (d) V F = 0.2,time 2.4 sec

(e) V F = 0.3,time 1.0 sec (f) V F = 0.3,time 2.4 sec

Figure 5.8: comparison at different time steps with different loading, different drag models
for Re = 400
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(a) V F = 0.1,time 1.0 sec (b) V F = 0.1,time 2.4 sec

(c) V F = 0.2,time 1.0 sec (d) V F = 0.2,time 2.4 sec

(e) V F = 0.3,time 1.0 sec (f) V F = 0.3,time 2.4 sec

Figure 5.9: comparison at different time steps with different loading, different drag models
for Re = 500

47



Shear Deformation

Due to the relative velocity between two phases, a shear deformation is observed on the

Jet. When a Jet comes out from inlet it displaces existing phase and try to penetrate. Due

to this vortices are formed on either side of the Jet. The figure 5.10 shows the following

phenomenon.

(a) Top view of Jet with shear deformation on sides (b) Side view with vortex formation

(c) Vortices (d) Countour of Jet with Vortices

Figure 5.10:
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Chapter 6

Conclusion and Future work

Building on the earlier work of Vatsalya Sharma[2], Multiphase module have been added to

existing Single phase solver. A Lagrangian Algebraic Slip Mixture Model has been imple-

mented and throughly validated for laminar cases. Validation is carried for Jet problems

and compared with Fluent. It is observed that the solver results are same as Fluent for low

density ratios with low volumetric loading. Over prediction of solution is observed in solver

as time progresses. It may be rectified by switching to higher order convective schemes .

For high density ratios, better interpolation scheme is required for calculation of density

(ρm) terms at the faces.

Solver is checked for grid dependency. It is observed that for low Reynolds number solver

is grid independent but as increase in Reynolds number causes difference in velocity profile

between coarse and fine mesh. Different drag models are analyzed for various volumetric

loading and Reynolds number. It is observed that for low volumetric loading and low par-

ticle Reynolds number (Red) all the models gives the same velocity profile. According to

Mikko Manninen & Veikko Taivassalo [3], variation above parameters is observed at higher

Red .

At the end, we are presenting a Multiphase solver with Lagrangian algebraic slip mixture

model catering for industrial applications exclusively for Jets.

Following points can be used for future work.

1. Turbulence model LES is implemented but solver should be accelerated with LIS

(Linear iterative solver) and AMG (Algebraic multi grid) techniques to get faster

convergence.

2. Solver can be extended for more than two phases. To solve non-isothermal cases Scalar

equation for energy has to be added .

3. Accuracy of Mixture model can be improved by adding forces like Lift force, Dispersion

force, Virtual force in particle momentum equation.
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Appendix A

Source Terms Formulation

The discretization of Momentum , scalar and pressure poison equations according to the

unstructured grid is explained in the thesis of Vatsalya Sharma [2]. The extra terms that

are generated due to the derivation of Mixture model equations(2.58)(2.59) have to be

discretized. By applying the control volume formulation the RHS term of Momentum

equation may take the following form,∫
V
−O.

[
ρmCd(1− Cd)uCduCd

]
= −
∑
f

FRel,fucd,f (A.1)

where subscript d is for disperse phase. And the flux is modeled as follows

FRelf = ρm,fCdf
(
1− Cdf

)[
ucd,f .Sfx + vcd,f .Sfy + wcd,f .Sfz

]
(A.2)

From equation (2.21) Cd is written as

Cd =
φdρd
ρm

(A.3)

The quantities that have subscript f in (A.2) have to be calculated by volume interpolation

formula.

ucd,f =
Vpucd,n + Vnucd,p

Vn + Vp
(A.4)

here V denotes volume of the cell, subscript p denotes the current cell and n denotes the

neighbor cell. The above volume interpolation is done for vcd,f ,wcd,f , ρm,f and Cdf .

By applying Control volume formulation the RHS term of volume fraction equation may

take the following form ∫
V
−O.

[
φd(1− Cd)uCd

]
= −
∑
f

Fvol,fφd (A.5)

51



the flux term is

Fvol,f =
(
1− Cdf

)[
ucd,f .Sfx + vcd,f .Sfy + wcdf .Sfz

]
(A.6)

The face values are determined as mentioned in equation (A.4).
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