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Abstract 

 

TSC has a potential for high temperature applications. For high temperature structural 

application, parts with good strength & oxidation resistance materials are always 

desirable. The aim of the present study is to produce high purity TSC powder, high 

density parts of TSC by using pressureless sintering, with some sintering aids like Si, 

Ni etc. Effects of sintering aid on sintering kinetics have been studied. This work 

attempts to study the sintering mechanism of TSC compound using dilatometer 

experiments under pressureless condition, Diffusion parameters, such as coefficient of 

diffusion and activation energy have been estimated. The present investigation focused 

on the non-isothermal sintering as well as isothermal sintering behavior. Activation 

energy for densification during non-isothermal heating was calculated using Young and 

Cutler’s equation for different sintering mechanisms, it was observed that the values of 

activation energies increases with addition of sintering aids (Nickel). The Johnson 

Model was used for isothermal sintering study for TSC samples. Grain boundary 

diffusion coefficient and volume diffusion coefficient were calculated with the function 

of particle size and time. 

Keywords: MAX phase, sintering, activation energy, diffusion, sintering aids. 
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Chapter 1 

Introduction 

 

MAX phases are ternary carbides or Nitrides having Mn+1AXn as general formula, 

where ‘M’ is early transition element from periodic table, ‘A’ is A group element, 

mostly they are IIIA and IVA group elements and ‘X’ is carbon or nitrogen. MAX 

phases have layered Hexagonal crystal structure and depending upon the value of n it 

can be called, 312, 413 materials [1]. It has unique combination of properties of metal 

and ceramics and the main reason for growing interest in the MAX phases lies in their 

unusual and sometimes unique set of properties, which makes them suitable for 

structural as well as functional application. Major difference between binary ceramics 

and MAX phase material is that MAX phase compounds basal dislocations numerously 

multiply and are mobile at room temperature as well as at high temperatures, where as 

in typical ceramic the number of slip system is zero at room temperature [2]. The 

ductility increases with increasing temperature. Ti3SiC2, Ti3AlC2, Ti3GeC2, Cr2AlC, 

Ti2AlC are the most studied MAX phase compounds. Before 2004, more than 50 

M2AX (211 phase) compounds were determined. However, there are only three 

M3AX2compounds (Ti3SiC2, Ti3AlC2, Ti3GeC2) and one M4AX3 compound (Ti4AlN3) 

[1, 3]. There are several new phases which might be stable due to the stable crystal 

structure of single cell, such as Ti4AlC3, V4SiC3, and Ti4SiN3, however, to date; these 

phases could not be factually fabricated in experiments. 

 

Crystal structure of Ti3SiC2 (TSC) is shown in Fig 1.1. Ti3SiC2 MAX phase material 

comes under 312 phase hexagonal crystal structure, at one layer of titanium, silicon and 

carbon is nearest atoms and at other layer of Ti on both sides only carbon layers are  

present. Every fourth layer is Si atoms layer and carbon is located at octahedral sites 

[5]. It has low density, high melting point, high young modulus, excellent thermal 

shock resistance, high electrical and thermal conductivities, good machinability, 

fracture toughness, good damage tolerance [2]. Damage tolerance is ability to resists 

the fracture from the preexistent cracks for a given period of time and is an essential 
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attribute of components, whose failure could result in catastrophic loss of life or 

property. The damage tolerance starts where the safe life ends. If we compare the 

properties of few selected MAX phase compound, most significant compound is TSC.  

 

 

 

Figure1.1 Crystal structure of Ti3SiC2 [5] 
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Chapter 2 

 Literature Review 

 

TSC is the most widely studied compound in MAX phase group which is produced 

using various combination of raw materials, like elemental powder synthesis [7], 

TiC+Si and TiC+SiC [1] etc . TSC was first synthesized by Jeitschko & Nowotny via 

chemical reaction, later it was produced through different synthesis routes [1]. There 

was difficulty in producing single phase TSC synthesis due to the very narrow region in 

the Ti-Si-C ternary diagram (Figure 2.1). Solid state reaction between TiC0.67 and Si 

reported to yield TSC0.67, with low amount of TiC and intermetallic impurities. To 

produce high purity TSC phase excess amount of Si was used and small amounts of Al 

and B2O3 were found to enhance the purity of TSC phase. It was reported that, at 

1300
0
C, about 83% TSC phase was obtained after addition of sintering aid of B2O3. 

The mutual combustion reaction between elemental powders of Ti, Si, & C can be 

avoided by using B2O3 and hence the binary phase impurity can be minimized. It was 

reported that, synthesis temperature was decreased with addition of aluminum (Al) and 

sintering temperature was decreased for single phase TSC. Addition of Al helped to 

control the decomposition of TSC phase. Al served as melting pool during sintering. It 

was reported that, during the sintering of TSC from Ti/SiC/C powder mixture, twin 

boundary energy of TiC was reduced effectively using Al. It was also reported that too 

much Al leads to the formation of aluminum related compound such as Ti3AlC2 etc. It 

was reported that TiC, SiC and intermetallics were common impurities in TSC 

synthesis process [7-11]. Depending upon starting material different synthesis 

processes are used like direct synthesis of elemental powders and two stage synthesis 

processes where carbide is prepared first and then Si is added in second stage. The DSC 

analysis of mixed TiC0.67 and Si powder reported that exothermic nature of reaction 

during process. At 800 
0
C reaction was started and it was observed that huge peak at 

985 
0
C and followed by number of small peaks were observed. The peak at 985 

0
C 

represents major reaction and other peaks represent by-product formation. Before 

synthesis ball milling of mixed powders were done to obtain ultrafine powders [9]. Li 

et al. [13] have found that TiC, Ti5Si3 and TiSi2 phases in the samples synthesized from 



11 

 

elemental powders. Silicon content is the main factor that determines the phase 

composition of the final products. Yang et al [10] reported the studies are the effect of 

varying silicon content in Ti/Si/TiC reactant mixture and concluded that the optimum 

silicon content should exceed the stoichiometric composition by about 10 wt%. They 

mentioned that excess silicon, compensated for Si loss by evaporation [10]. On the 

other hand too much Si increased undesired titanium silicides formation. By some 

authors TSC was also synthesized from TiC/Si powder mixtures, thus avoiding the use 

of pure titanium. Radhakrishnan et al. [7] reported that a reaction of 3TiC/2Si powders 

firstly generated TiSi2 intermediate phase at a temperature of 1170 °C. In a second step 

it was converted to TSC where SiC was formed simultaneously. It was also reported 

that TSC was thermodynamically stable up to 1600 
0
C in vacuum for 24 hr. 

Decomposition of TSC was due to the presence of impurities [3]. Phase stability of 

MAX phases depends on their constitutive elements, atmosphere and the vapor 

pressure of the elements. For TSC system it was reported that, thin films decompose at 

lower temperature in comparison to the bulk TSC [3]. It has been reported that Self-

propagating high temperature synthesis was not giving TSC phase for 1Ti+2TiC+1.1Si 

composition, because powder mixture highly stable TiC needs a lot of time at high 

temperature to react with other elements. TSC was obtained by SHS reaction with the 

maximum content of 88% and 86% from 3Ti+1.2SiC+0.8C and 3Ti+1.3Si+2C reactant 

mixtures respectively. The simultaneous formation of some intermediate phases such as 

TiC and TiSi2 were detected [32]. 

 

Reaction mechanisms of TSC system were reported in some literatures. At the 

temperatures below 1400 
0
C, about five different reactions were observed for the 

reactant mixture of Ti, SiC and Graphite powder, as shown from eq. (1) to (5). 

Ti + C → TiC    ΔG (1400 °C) = −167.7 kJ mol
−1

 (1) 

Ti + 3 SiC + (x - 3) C → Ti5Si3Cx ΔG (1400 °C) = −402.7 kJ mol
−1

        (2) 

   (0 < x < 1) 

Ti + SiC → TiSi + C   ΔG (1400 °C) = −66.7 kJ mol
−1

 (3) 

Ti + 2 SiC  → TiSi2 + 2C  ΔG (1400 °C) = −0.54 kJ mol
−1 

(4) 

Ti + SiC → TiC + Si   ΔG (1400 °C) = −105.5 kJ mol
−1

 (5) 
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According to Eq. (5), free Si atoms can be formed during the sintering at high 

temperature.  It was observed from Ti–Si–C phase diagram; liquid phase was appeared 

at above 1485 °C [35].  

L + Ti5Si3Cx → Ti
3
SiC

2
+ TiSi

2
 (0 < x < 1)     (6)   

Where L = liquid phase, ΔG = Gibbs free energy.  

 

The high density parts of TSC were produced through the hot pressing, self-

propagating high temperature synthesis process and pulse discharge sintering. Recently, 

Barsoum et al. made a great contribution to the synthesis and characterization on this 

material. They were successful in sintering of TSC through the hot isotactic pressing, 

while obtaining 80-90% of phase purity, with other unwanted phase of TiC [26]. High 

density of TSC was produced by using elemental mixtures as starting powder through 

HIP route. Both solid state reactions as well the liquid phase reactions were observed. It 

was reported that TSC prepared by HIP method had high bending strength and hardness 

than any other method [29]. Hot pressing methods limit the application area of sintered 

product. Pulse Discharge Sintering (PDS) technique was used for sintering of TSC. It is 

an innovative technique for rapid shrinkage, deducted from hot pressing sintering. In 

PDS computer aided control system is used, PDS requires less time compared to 

conventional sintering, the heating rate is too high; hence it can control grain 

coarsening. Sintering temperature was decreased by 100 - 200 
0
C for TSC by using 

PDS, it was reported to produce high density component at relatively lower 

temperatures and in shorter time [28]. It was reported that addition of small amount of 

Al in 3Ti/SiC/C system, sintering temperature of TSC was decreased. There are some 

reports on sintering of TSC by using pressure-less sintering.  Pressure-less sintering of 

MAX phase powder is difficult, due to its easy decomposability at high temperatures, 

loss of Si from TSC or loss of Al from Ti3AlC2 powders. Racault et al. [13] were the 

first to report the decomposition of Ti3SiC2 into TiC and gaseous Si. They observed 

that decomposition occurred at 1450 °C using an alumina crucible, or at 1300 °C when 

using a graphite crucible. The same was confirmed by various authors. High density 

TSC product produced through pressureless sintering could be economical and also 

broadens application area. There are some reports on TSC production through 

pressureless sintering [1, 12]. They achieved sintering density around 96% without 



13 

 

sintering aid and 99% with sintering aid at 1 wt% of Si and 98% with sintering aid at 

1wt% of Ni. TSC has a good combination of flexural strength, high temperature 

properties, oxidation resistance and corrosion resistance. The stress at fracture using the 

flexure test is known as flexural strength, this is an important mechanical property for 

brittle materials. In MAX phase for any microstructure flexural strength are typically 

50% lower than the compressive strength [6]. Comparison of tensile, compressive and 

flexural strength for TSC has been shown in Table 2.1. MAX phase tested to undergo a 

brittle to plastic transition (BPT), It was reported that for TSC; BPT is in the range of 

1150 
0
C to 1200 

0
C (Figure 2.2). 

 

 

Figure 2.1: Isothermal sections of Ti-Si-C system at 1250 
0
C [36] 
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Table 2.1: Comparison of tensile, compressive and flexural strength with different 

microstructure of TSC [6] 

Strength Fine grain 

(Strength in MPa) 

Coarse grain 

(Strength in MPa) 

Tensile 298  180   

Compressive 1050   720   

Flexural 600   350   

  

 

Reason behind plastic deformation at high temperature is Kink Band (KB) formation 

[2]. Response of TSC during compressive loading was reported by T. Zhen et. al [33] 

that at lower temperature the stress- strain curves are fully reversible whose size  and 

shape depend on grain size but not on strain rate. Fine grain (size) and Coarse grain 

(size) microstructure becomes softer with increasing temperature; the initial slopes of 

the stress-strain cycles of both FG and CG materials were close to the true elastic 

Figure 2.2:  For Fine grain microstructure; Engineering stress Vs strain (a) & 

true stress Vs strain (b) at 1150 
0
C under tensile load are plotted. Engineering 

stress Vs strain (c) & true stress Vs strain (d) at 1200 
0
C under tensile load. 

(a) (b) 

(c) (d) 
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modulus of Fine grain samples, the response of the CG samples at 500 
0
C was 

comparable to that of the FG samples at 1100 
0
C, both the relaxation times and total 

recovered Strain was higher in the CG microstructure than FG (Figure 2.3). Tensile, 

relaxation and cycling loading–unloading tests indicated that the mechanical response 

of TSC has a strong dependence on temperature and strain rate, but a weak dependence 

on grain size [33]. At low temperature with high strain rate brittle failure was observed 

[34]. Thermal properties of TSC were reported by Barsoum et al. [35] that, amplitude 

of vibration of Si atoms was higher than Ti and C atoms. The amplitudes of vibration 

of the Ti atoms adjacent to the Si atoms were higher and more anisotropic than for the 

other Ti atom sandwiched between the C-layers. Thermal expansion coefficient was 

slightly different along the a and c axes. 

 

 

 

 

 

 

 

Figure 2.3: Temperature dependence of cyclic stress–strain for: (a) CG and (b) FG TSC 

samples. Inset in (b) compares the first cycles for both microstructures. Time 

dependencies of stress and strain during loading and unloading of both microstructures, 

for (c) relatively fast unloading, and (d) slower unloading respectively, at 1200 
0
C. Note 

time delay in the position of the maximum stress and maximum strain. Also note 

relaxation after load is removed [6]. 
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The response to the thermal shock was reported to depend on the grain size. The coarse 

grained TSC was far better than the fine grained TSC. TSC is easily machinable & the 

holes are easily drillable with no lubrications. It was observed that TSC becomes self-

lubricating during machining [4]. It was reported that TSC showed lower crack growth 

than the conventional ceramic during fatigue loading, the high fatigue resistance was 

originated from the heterogeneous and laminated structure. The creep behaviors of TSC 

were reported for tensile as well as compressive loadings; it was observed that the 

creep rates in compression were roughly an order of magnitude lower than that in 

tension [3]. 

 

Oxidation rate of TSC was found to be lower than the TiC. Oxidation in TSC occurs 

due to outward diffusion of Ti and carbon; and inward diffusion of oxygen. SiO2 layer 

was found on TSC surface after short term oxidation at 1000 
0
C in air [3]. Corrosion 

resistance of TSC in acid or alkaline solutions was found to be better than pure Ti [3]. 

There are some applications of MAX phase materials like, rotating electrical contacts 

and bearings, heating elements, nozzles, heat exchangers, tools for die pressing. Self-

lubrication property is advantageous over graphite in applications where rotating 

electrical contacts are required such as commutating brushes for AC motors. Many of 

these applications are currently being field tested and are at various stages of 

development. There are several hurdles to commercialization, including the relative 

high cost of the powders and sintered components compared with conventional 

ceramics such as SiC and alumina [1], etc. 

 

It was reported that addition of sintering aids in TSC improves sintering density of TSC 

powder with small amount (1 and 2 wt. %) of Si powder, under pressureless condition. 

The final product had a very low amount of impurities [1]. There are no other reports 

on sintering kinetics of TSC powder in addition to the sintering aids. It has also been 

reported that nickel was used as sintering aid for the metal and ceramic powders, due to 

its ability to form intermetallic compound at high temperature as well as at low 

temperature. Nickel is known as fast diffuser in the metals like titanium and is found to 

enhance the sintering rates of titanium, tungsten and some ceramic powders. Addition 

of Ni in small amounts shows liquid phase sintering behavior. Bulk samples prepared 
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from TSC-1Ni, exhibited good mechanical properties. However, there are no reported 

studies on the sintering kinetic of TSC powder so far [9, 12]. A critical literature study 

shows that, still there are many issues, which need to be addressed, such as pressure-

less sintering of TSC, effect of addition of sintering aids, microstructural changes due 

to sintering aids and effect of sintering aids on mechanical properties of TSC etc. 

 

2.1 Objectives 

 

The objectives of the present investigations are:  

 To achieve high density parts through pressure-less sintering by adding 

sintering aids like Si, Ni and analyze effect of sintering aids.  

 To study the sintering mechanism for isothermal heating by using 

Johnson’s Model.  

 To study sintering mechanism for non-isothermal heating by using Young 

& Cutler’s Model. 
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Chapter 3 

Experimental Procedure 

 

Titanium powder of 99.5 wt% purity (-325 mesh), graphite powder of 99 wt%, (7 to 11 

µm) and Silicon powder of 99.5 wt% purity (-325 mesh) were procured from Alfa 

Aesar. 

 

3.1 Synthesis 

The experiments were conducted in three different stages: (i) Synthesis of Ti3SiC2 

powder, (ii) Pressureless sintering of Ti3SiC2 and (iii) Dilatometry of Ti3SiC2 with 

different sintering aids such as Nickel and Silicon. Synthesis of Ti3SiC2 was carried out 

in two ways: (i) Synthesis of TiC and then synthesis of TSC; (ii) Direct synthesis by 

using elemental mixture of Ti, Si and graphite powders. 

  

3.1.1 Synthesis of Ti3SiC2 using TiC0.67+Si 

In first method, Ti and graphite powders are mixed in a molar ratio of 3:2 by agate 

mortar and pestle. Toluene was added for proper mixing. About 4% wt paraffin wax 

was added as a binder, for compaction. Powder was compacted uniaxially in a steel die 

(diameter of 10 mm) at low pressure (~ 20 MPa). These compacts were kept in 

alumina crucible and heated in a tubular furnace at 1300 
0
C for 90 minutes under 

flowing high purity argon gas, with heating rate of 10 
0
C/min. At 300 

0
C, 20 minutes 

hold was given for the evaporation of binder. Synthesized TiC0.67 was pulverized and 

sieved using -325 mesh size screens. The synthesized TiC0.67 powder was mixed with 

Si in a molar ratio of 3:1 by agate mortar and pestle. Samples were kept in tubular 

furnace up to 1200 
0
C in isothermal condition for 60 minutes under flowing high purity 

argon gas with heating rate of 10 
0
C/min.  

 

3.1.2. Synthesis of Ti3SiC2 through elemental powders 

In second method elemental powders of Ti, Si and graphite were mixed in the molar 

ratio 3:1:2 by agate mortar and pestle. Toluene and 4 wt% paraffin wax was added. 
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Same procedure was followed for pellet preparation like TiC0.67 synthesis, as discussed 

in earlier section. Heating was carried out in tubular furnace made Inconel up to 1100 

0
C and kept at isothermal condition for 60 minutes, under flowing high purity Argon 

gas with heating rate of 10 
0
C/min. At 300 

0
C 20 minutes hold was given for 

evaporation of binder. Synthesized Powder was pulverized and sieved using -325 mesh 

size screens. Since the degree of conversion to TSC was not very high, the product 

contain large amount of TiC0.67 and other impurities, therefore this synthesized product 

was further mixed in ball mill and reheated to 1100 
0
C for the isothermal condition of 

60 minutes, to increase the conversion. This double heated powder pulverized and 

sieved using -325 mesh screens. For each experiment before synthesis Argon gas was 

flushed in tube for 30 minute to remove residual air. Powder which was synthesized by 

second method was used for sintering study.  

 

3.2 Sintering  

Five types of powders were taken for sintering a) TSC powder b) mixed powders TSC 

+ 1 wt% Si (designated as TSC-1Si), c) mixed powders TSC+ 2 wt% Si (designated as 

TSC-2Si),  d) mixed powders TSC+ 1 wt% Ni (designated as TSC-1Ni) & e) mixed 

powders TSC+2 wt % Ni (designated as TSC-2Ni). About 4 wt% of paraffin wax as 

binder was first dissolved in toluene and then the powders were mixed (procedures 

were same for all types of powders). These powders mixed by agate mortar and pestle 

for about half an hour and dried while stirring continuously. 

 

3.2.1 Sintering aids 

Small amount of additive causes large enhancement in sintering is called as activated 

sintering. Activated sintering is performed in the presence of small amounts of metal 

additives, at temperatures below the melting point of the additive, for solid state 

sintering. It is possible to lower the sintering temperature substantially through 

activated sintering.  

 

3.2.2 Criteria for sintering aids 

It is important to analyses all phase diagrams of sintering aids with respect to all 

element which are present in parent material. The additives have to be insoluble in base 
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material at sintering temperature to inhibit grain growth. The mixture sits at a two 

phase region at the sintering temperature where melting points are depressed and the 

activator A is nearly insoluble in the base B, but the reverse solubility is required 

(Figure 3.1). 

 

 

 

 

3.2.3 Selection of Ni and Si as sintering aids 

Nickel is known as a fast diffuser in the metal and ceramic systems [24]. It is also 

observed that Ni suppressed grain coarsening process up to some extent during 

sintering [24]. It has been reported that for TSC, not only sintering density increase but 

also the mechanical properties [6]. Ni has good solubility in Ti as well as in Si at 

elevated temperature and forms many low melting intermetallic compounds. Therefore 

it is expected that Ni can act as sintering aid for TSC system. At high temperature 

sintering, there may be possibility of decomposition of TSC phase into TiC and loss of 

Si. Therefore additional Si is required to compensate the loss of Si and to increase the 

TSC formation while reacting with retained titanium carbides.   

 

 

 

Figure 3.1: Idealized binary-phase diagram for solid-state activated sintering [25].  
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3.2.4 Pressureless Sintering 

Powders were compacted uniaxially using steel die (7 mm diameter) at low pressure 

(20 MPa) and then cold isostatically pressed (CIP, Insmart Hyderabad, India) at a 

pressure of 200 MPa for a holding time of 1 min. The weight of each compact was 

around 0.5 gm. Green density of the cylindrical compact was estimated by their weight 

and dimensions. The green compacts were kept in alumina crucible and placed in to a 

tubular furnace. After loading the sample in furnace, high purity Argon gas was flushed 

in tube for half an hour, then furnace was heated at the rate of 10 
0
C/min. and held at 

300 
0
C for 30 min. This step was carried out for removing binder (paraffin wax) 

completely. The furnace was heated up to 1500 
0
C for isothermal time of 60 min. The 

argon gas flow was continued till the end of cooling step. Cooling rate was 10 
0
C/min. 

Density measurements of sintered samples were carried out. The phase were 

determined using X-ray powder diffractometer (PANalytical X’Pert Pro) with Cu Kα (λ 

= 1.5456 
0
A, step size 0.01

0
) radiation. Micrographs were characterized by using 

scanning electron microscope (FESEM- CARLZEISS, SUPRA-40, Germany). 

Indentations were done on TSC and TSC-1Ni sintered samples using Vickers hardness 

test at 2 Kg load and 5 Kg load. 

 

3.3 Dilatometry 

Dilatometry has been used to study the sintering behavior of powder compacts. 

Dimensional change data is collected with respect to time and temperature. Dilatometer 

data was used for studying isothermal and non-isothermal behavior during sintering of 

TSC. For non-isothermal heating study, five types of powder were taken for 

Dilatometer experiment:  a) TSC powder, b) TSC-1Si, c) TSC-2Si, d) TSC-1Ni and e) 

TSC-2Ni and similar methods (as prepared for pressureless sintering) were followed to 

prepare green compacts for dilatometer experiments. The green compact kept in sample 

holder (alumina), which was kept in dilatometer setup (Single push rod Dilatometer, 

Dilamatic II, Theta Industries US) with push rod carrying 25 gm of load. Experiment 

has been carried out for five different samples for non-isothermal heating upto 1500 
0
C. 

For isothermal heating study three green compacted samples of TSC were sintered in 

dilatometer at 1200 
0
C, at 1400 

0
C & at 1500 

0
C. Data were collected in the form of 

thermal expansion with respect to temperature and time. 
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3.4 Characterization  

Initially as received powders of titanium, silicon and graphite were characterized by 

using X-ray diffraction method. X-ray diffraction were done for TiC0.67 and TSC 

powders. Scanning electron microscope micrographs of synthesized powder of TSC 

were taken at different magnification, EDX were done for analyzing elemental 

composition (Working distance = 5 mm, EHT = 5 kV) for sintered samples were 

broken into two pieces. SEM micrographs of fractured surface were taken for all five 

samples at various magnifications. For X-ray characterization, samples were crushed 

and formed powder by using agate mortar and pestle followed by sieving by using -325 

mesh size. Dimensional and weight measurement of the green compact and sintered 

samples were carried out. Experimental procedure has been outlined by flow chart 

(Figure 3.1). 
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Figure 3.1: Flow chart of experimental procedure 
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Chapter 4 

Results and Discussion 

 

Figure 4.1 represents the XRD pattern of as received Ti, Si and graphite powders. It has 

been compared with their standard JCPDS (Ti-441294, Si-271402, and Graphite-

411487) data for phase identification. 

 

Figure 4.1: XRD- pattern of as- received powders: a) pure Ti, b) pure Si & c) pure 

graphite 

 

4.1 Synthesis 

XRD-pattern of TSC synthesized by two stage method has been shown in Figure 4.2. 

XRD graph were compared with their standard JCPDS (TiC- 652224, TSC-653559, 

TiSi2-710187) data for phase identification. It appears that TiC did not react well with 

Si. Major peaks belong to TiC phase, where as TSC and TiSi2 were present in small 

fractions. XRD- pattern of synthesized TSC by elemental powders has been shown in 

Figure 4.3.  Major peaks belong to TSC and other phases like TiC and TiSi are 
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reminder. It has been observed from XRD (Figure 4.3); after double heating some 

peaks were disappeared. XRD pattern of synthesized powder by first method showed 

that, TSC phase was present in small fraction, while TiC phase was the major fraction. 

The reason for these results could be due to problem with received titanium powder as 

it was slightly oxidized on surface and also some amount of silicon loss was observed. 

 

 

 

 

Figure 4.3: X-ray diffraction pattern of, a) TSC JCPDS b) mixed 3Ti+Si+2C powder, c) 

once heated TSC at 1100 
0
C- 1 hr & d) double heated TSC at 1100 

0
C- 1 hr. 

Figure 4.2: XRD pattern of TiC-synthesized at 1300 
0
C-1.5 hr. and TSC synthesized at 

1200 
0
C-1 hr. 
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In the second method, it was observed that synthesis of TSC was possible through 

elemental powder synthesis route, synthesized TSC had particle size ranging from 4 

µm to 40 µm and some particles were agglomerated [Figure 4.4 (a)]. Stepped surface 

particles are observed [shown by arrow in Figure 4.4 (b)], white color particles are 

titanium carbides [Figure 4.4 (c)], agglomerated particles are shown at high 

magnification- 32KX [Figure 4.4 (d)]. 

  

4.2 Sintering 

Figure 4.5 represents XRD pattern of all five samples sintered at 1500 
0
C. It was 

observed from XRD pattern (Figure 4.5) that TSC phase was decomposed from all 

samples (TSC, TSC-1Si, TSC-2Si, TSC-1Ni & TSC-2Ni). Decomposition of TSC 

phase leads to form TiC phase. At 1500 
0
C all samples decomposed and form TiC as 

Figure 4.4: SEM micrograph of synthesized powder at 1100 
0
C-60 minutes (double 

heated): a) at 1 KX, b) at 50 KX (stepped surface particles are shown by arrow), c) at 

100 KX (stepped surface particles are shown by arrow) and d) agglomerated particles 

at 30 KX 
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major phase. SEM micrograph of fractured surface of sintered samples indicates, few 

particles have stepped surface that represents presence of TSC phase. EDX analysis of 

sintered samples confirms elemental presence on all powders. Sintering additives have 

played role in on-set sintering temperature and shrinkage behavior during sintering. 

Figure 4.5: XRD pattern of pressureless sintered samples b) TSC, c) TSC-1Si, d) TSC-

2Si, e) TSC-1Ni and f) TSC-2Ni at 1500 
0
C. 

 

 

Figure 4.6: SEM micrograph of fracture surface of Sintered TSC sample at 1500 
0
C, 

ductile fracture shown by arrow. 
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It has been observed that particles are in irregular shape, some fractured particles 

are showing stepped surface, at some places ductile fracture was observed (Figure 

4.6). Figure 4.7: represents EDX analysis of fractured surface of TSC sample sintered 

at 1500 
0
C-1 hr. and elemental mapping for Ti & Si [Figure 4.7 (b)].  It was observed 

that distribution of Ti was in proportion [Figure 4.7 (c)], Si was not dispersed well, and 

Si rich regions were formed [Figure 4.8 (d)]. Figure 4.8 represents SEM micrograph of 

fractured surface of sintered samples at 1500 
0
C-60 minutes isothermally hold, it was 

observed that samples are not dense, in TSC-1Si few particles are showing stepped 

surface shown by arrow [Figure 4.8 (a)]. In TSC-2Si  plate like particles are observed 

in SEM micrograph indicating preferential growth of MAX phase grains [Figure 4.8 

(b)], in TSC-1Ni  and in TSC-2Ni at some places fractured surfaces show ductile 

failure [Figure 4.8 (c) & (d)]. Figures 4.9, 4.10, 4.11, and 4.12 show EDX analysis of 

TSC-1Si, TSC-2Si, TSC-1Ni and TSC-2Ni samples respectively. It was observed that 

Si and Ti are well dispersed in TSC-1Si [Figure 4.9 (c) & (d)]. In TSC-2Si distribution 

of Ti was in proportion [Figure 4.10 (C)], content of Si was increased [Figure 4.10 (d)] 

and it was well distributed. [Figure 4.11(b), (c) & (d)] & [Figures 4.12(b), (c) & (d)] 

show distribution in proportion for Ni, Ti & Si elements respectively. 

 

 

 

(a
) 

(b
) 

(d
) 

(c
) 

 
Ti 

Si 
C 

 
Ti 

Figure 4.7: EDX analysis of Sintered sample-TSC-1500 
0
C-1 hr a) SEM micrograph considered for 

EDX, b) graphical representation of elemental mapping c) distribution of Ti d) distribution of Si. 
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(a) 
(b
) 

(C) 

(d) 

 Ti 

 Ti 

 C 
 Si 

Figure 4.8: SEM micrograph fractured surface of sintered samples at 1500 
0
C-1 hr. 

a) TSC-1Si, b) TSC-2Si, c) TSC-1Ni & d) TSC-2Ni 

Figure 4.9: EDX of Sintered sampleTSC-1Si-1500 
0
C: a) SEM micrograph 

considered for EDX, b) graphical representation of elemental mapping c) 

distribution of Ti d) distribution of Si 
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Figure 4.10: EDX analysis of sintered samples TSC-1Si-1500 
0
C: a) SEM 

micrograph considered for EDX, b) graphical representation of elemental mapping, c) 

distribution of Ti & d) distribution of Si 

Figure 4.11:  EDX of Sintered sample-1Ni-TSC-1500 
0
C a) SEM micrograph 

considered for EDX, b) Distribution of Ni, c) Distribution of Si & d) 

Distribution of Ti 
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 (a)  (b) 

 (C)  (d) 

 

 

 

 

Density of sintered samples and green density have been represented in Table 4.1; all 

sintered samples are having relative density in the range of 60 to 75 % (theoretical 

density of TSC-4.5 gm/cm
3
 has been taken for reference). 

 

Table 4.1 Density of Samples with respect to theoretical density of Ti3SiC2 Sintered at 

1500 
0
C 

 SAMPLE Green density in % Sintered density % 

 TSC  59  67 

 TSC-1Si  55  60 

 TSC-2Si  54  70 

 TSC-1Ni  55  75 

 TSC-2Ni  53  60 

Figure 4.12: EDX of fractured surface of sintered samples of TSC-2Ni 1500 
0
C a) 

SEM micrograph considered for EDX, b) Distribution of Ni, c) Distribution of Ti & d) 

Distribution of Si 
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4.3 Dilatometry 

Dilatometer plot for TSC has been shown in Figure 4.13. It was observed that on-set 

sintering temperature was around 900 
0
C during isothermal holding at 1500 

0
C samples 

shows rapid shrinkage. 

 

Figure 4.13: Dilatometer plot of TSC sintered at -1500
0
C for 1-hr 

 

 

 

Figure 4.14: Dilatometer plots for TSC sample sintered at: a) 1200 
0
C, b) 1400 

0
C & c) 

1500 
0
C 
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Figure 4.15: Dilatometer plots for: a) TSC, b) TSC-1Si, c) TSC-2Si, d) TSC-1Ni & e) 

TSC-2Ni sintered at 1500 
0
C 

 

Figure 4.14 shows Dilatometer plots for TSC samples sintered at various temperatures. 

Very less shrinkage was observed in TSC-1200 
0
C (Figure 4.14 a), about 9% shrinkage 

was observed in TSC-1400 
0
C (Figure 4.14 b), rapid shrinkage was observed for TSC-

1500 
0
C during isothermal holding (Figure 4.14 c). Figure 4.15 shows dilatometer plots 

for TSC, TSC-1Si, TSC-2Si, and TSC-1Ni & TSC-2Ni. It was observed that on-set 

sintering temperature    for TSC-1Si was 1300 
0
C (Figure 4.15 b), on-set sintering 

temperature for TSC-2Si was 1400 
0
C (Figure 4.15 c) & on-set sintering temperature 

for TSC-1Ni was 1280
0
C (Figure 4.15 d) and on-set sintering temperature for TSC-2Ni 

was1230 
0
C (Figure 4.15 e). 

 

4.3.1 Analysis of isothermal sintering 

Dilatometer data has been analyzed for TSC- samples which were heated up to 1200 

0
C, 1400 

0
C & 1500 

0
C and isothermally hold for 60 minutes. Dimensional change data 

has been collected from the time where isothermal holding starts to the time where it 
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ends. Reference line is theoretical thermal expansion line for TSC. Shrinkage (Sn) 

measured from reference line to thermal expansion curves for TSC-1200 
0
C, TSC-1400 

0
C & TSC-1500 

0
C has been shown in Figure 4.16, 4.17 & 4.18 respectively.  

 

Figure 4.16: Measurement of shrinkage from dilatometer plot of TSC-1200 
0
C; S0, S1, 

S2 etc. are shrinkages at different times. 

 

 

 

Figure 4.17: Measurement of shrinkage from dilatometer plot of TSC-1400 
0
C, S0, S1, 

S2 etc. are shrinkages 
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Figure 4.18: Measurement of shrinkage from dilatometer plot of TSC-1500 
0
C, S0, S1, 

S2 etc. are shrinkages. 

 

Shrinkage and shrinkage rate were calculated for 1200 
0
C, 1400 

0
C & 1500 

0
C by using 

equation   

Shrinkage (Y) = Sn / L1 

Where Sn = S0, S1, S2, S3, S4, S5. 

L1 = L0 + h, 

h = Distance between reference line where isothermal hold starts to base line in 

mm 

L0 = Initial length of sample in mm.  

Shrinkage rate (Y
*
) = Yn / tn        (1) 

t = time in seconds, t0 = 0, t1 = 10 * 60, t2 = 20 * 60,  ,  , ,tn. 

 

For TSC, Shrinkage was found to increase with increasing sintering temperature 

(Figure 4.19). It was observed that, for TSC-1500 
0
C & for TSC-1400 

0
C shrinkage 

rates were decreased with increasing time [Figure 4.20 (c) & (b)], for TSC-1200 
0
C 

shrinkage rate was slow. Johnson’s sintering models [36] were used for estimation of 

grain boundary diffusion coefficient and volume diffusion coefficient and activation 

energies; as shown in equation (2) & (3). 
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Figure 4.19:  Measured shrinkage as function of isothermal holding time for TSC 

sintered at temperatures a) 1200 
0
C, b) 1400 

0
C & c) 1500 

0
C 

 

 

 

Figure 4.20: Shrinkage rate as function of isothermal time plot for TSC samples 

sintered at: a) 1200 
0
C, b) 1400 

0
C & c) 1500 

0
C 
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For grain boundary diffusion  

   
 

2.03 2.14
                     bbDdY

kTrdt
Y

  
  
  

4    (2)  

 

For volume diffusion  

   
1.04 v

3

5.34γΩD
 

kTr

( )
Y dY

dt

  
 



    (3) 

Where,  

t = time in seconds, 

γ = surface free energy of TSC = 55.4 X 10
-3 

J/m
2
,  

T = temperature in degree Kelvin, 

K = Boltzmann constant =1.38064 X 10
-23

 m
2
 kg s

-2
 K

-1
, 

Db = Coefficient of grain boundary diffusion, 

B = Grain boundary width,  

Ω = Atomic volume of TSC = 7.18 X 10
-29 

m
3
, 

Dv = Coefficient of volume diffusion, 

r = radius of particle (m) 

 

Calculations of ln (bDb) & ln (Dv) at 1200 
0
C, 1400 

0
C & 1500 

0
C for isothermal time 

30 min and 60 minute are tabulated in tables 4.2, 4.3, 4.4, 4.5, 4.6 & 4.7.  Logarithmic 

plots of the ln (bDb) and ln (Dv) with respect to the inverse of temperature were plotted 

for estimation of activation energy and frequency factor for particle size of 8 µm, 24 

µm and 32 µm (Figure 4.21). To determine the activation energy for the any particle 

size equation (4) was used. Activation energy and frequency factor were calculated at 

time 30 min & 60 min (Table 4.5 & 4.6). It was observed that as particle size increases 

activation energy decreases. There was not a significant change in activation energy as 

time increases from 30 min to 60 min. 
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      0  b

Q
ln bD ln D

RT
 

    (4) 

 Where, R = 8.314 Joule/mole, 

  T = temperature (K) 

 

Table 4.2: Calculations of ln (bDb) values for 8 µm size particle, For TSC samples 

sintered at 1200 
0
C, 1400 

0
C & 1500 

0
C for the isothermal time of 30 min & 60 min. 

Temp. (
0
C) 

bDb t=30min 

(m
3
/s) ln(bDb) t=30 min 

bDb t=60min 

(m
3
/s) ln(bDb) t=60 min 

1200 4.2*10
-24

 -53.8 3.1*10
-24

 -54.1 

1400 3.3*10
-21

 -47.1 3.2 *10
-21

 -47.2 

1500 1.3*10
-20

 -45.7 8.2*10
-21

 -46.2 

 

Table 4.3: Calculations of ln(bDb) values for 24 µm size particle, For TSC samples 

sintered at 1200 
0
C, 1400 

0
C & 1500 

0
C for the isothermal time 30 min & 60 min. 

Temp. (
0
C) 

bDb t=30min 

(m
3
/s) ln(bDb) t=30 min 

bDb t=60min 

(m
3
/s) ln(bDb) t=60 min 

1200 3.4*10
-22

 -49.4 2.5*10
-22

 -49.7 

1400 2.6*10
-19

 -42.7 2.6*10
-19

 -42.8 

1500 1.1 *10
-18

 -41.3 6.6*10
-19

 -41.8 

 

Table 4.4: Calculations of ln(bDb) values for 32 µm size particle, For the TSC samples 

sintered at 1200 
0
C, 1400 

0
C & 1500 

0
C for the isothermal time 30 min & 60 min. 

Temp. (
0
C) 

bDb t=30min 

(m
3
/s) ln(bDb) t=30 min 

bDb t=60min 

(m
3
/s) ln(bDb) t=60 min 

1200 4.5*10
-21

 -46.8 3.3*10
-21

 -47.1 

1400 8.5*10
-19

 -41.6 8.2*10
-19

 -41.6 

1500 3.4*10
-18

 -40.2 2.1*10
-18

 -40.7 
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Table 4.5: Calculations of ln(Dv) values for 8 µm size particle for the TSC samples 

sintered at, 1200 
0
C, 1400 

0
C & 1500 

0
C for the isothermal time 30 min & 60 min. 

Temp.(
0
C) Dv t=30min (m

2
/s) ln(Dv) t=30min Dv t=60min (m

2
/s) ln(Dv) t=60min 

1200 7.5*10
-17

 -37.1 5.6*10
-17

 -37.4 

1400 1.3*10
-14

 -32.1 1.1*10
-14

 -32.2 

1500 3.4*10
-14

 -31.1 1.9*10
-14

 -31.5 

 

 

Table 4.6: Calculations of ln(Dv) values for 24 µm size particle for TSC samples 

sintered at, 1200 
0
C, 1400 

0
C & 1500 

0
C for the isothermal time 30 min & 60 min. 

Temp. (
0
C) Dv t=30min (m

2
/s) ln(Dv) t=30min Dv t=60min (m

2
/s) ln(Dv) t=60min 

1200 2.1*10
-15

 -33.8 1.5*10
-15

 -34.1 

1400 3.4*10
-13

 -28.7 2.7*10
-13

 -28.9 

1500 9.1*10
-13

 -27.7 5.3*10
-13

 -28.2 

 

 

Table 4.7: Calculations of ln(Dv) values for 32µm size particle, For the TSC samples 

sintered at, 1200 
0
C, 1400 

0
C & 1500 

0
C for the isothermal time 30 min & 60 min 

Temp. (
0
C) Dv t=30min (m

2
/s) ln(Dv) t=30min Dv t=60min (m

2
/s) ln(Dv) t=60min 

1200 4.8* 10
-15

 -32.9 3.6* 10
-15

 -33.2 

1400 8.1* 10
-13

 -27.8 6.4* 10
-13

 -28.1 

1500 2.1* 10
-12

 -26.8 1.2* 10
-12

 -27.4 

 

Table 4.8:  Frequency factor (D0) and Activation energy estimated for various initial 

particle size of TSC sintered for 30 min. 

Particle Size 

(µm) 

Do(frequency 

factor) For GBD 

(m
2
/sec) 

Activation 

energy(kJ/mole) 

GBD 

Do(frequency 

factor)(m
2
/sec) 

Activation 

energy(kJ/mole) 

VD 

8 17.2 576.8 3562.9 438. 7 

24 1393.8 576.8 96197.6 438. 7 

32 2.8 470.9 228024.9 438. 7 
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Table 4.8:  Frequency factor (D0) and Activation energy estimated for various initial 

particle size of TSC sintered for 60 min 

Particle Size 

(µm) 

Do(frequency 

factor) for GBD 

(10
-4 

m
2
/sec) 

Activation energy 

(kJ/mole) GBD 

Do(frequency 

factor) for VD 

(10
-4 

m
2
/sec) 

Activation energy 

(kJ/mole) VD 

8 8.1 570.2 902.8 424.6 

24 654.4 570.2 24376.1 424.6 

32 1.4 464.3 57778.9 424.6 

 

 

Figure 4.21:  Logarithmic plots of the diffusion coefficient with respect to inverse of 

the temperature for particle size 8 µm, 24 µm & 32 µm. 

 

Johnson’s model was used for estimation of diffusion coefficient for grain boundary 

diffusion and volume diffusion for samples of TSC that were heated isothermally at 

1200 
0
C, 1400 

0
C & 1500 

0
C. It was found that activation energy to be constant as 

particle size increased. It was observed that as particle size increases diffusion 

coefficient decreases. 

 

4.4.2 Analysis of non-isothermal sintering 

It was observed from dilatometer plot that onset sintering temperature was 900 
0
C for 

TSC, onset sintering temperature 1300 
0
C for 1Si-TSC, onset sintering temperature 
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1360 
0
C for 2Si-TSC, onset sintering temperature 1250 

0
C for 1Ni-TSC and onset 

sintering temperature 1250 
0
C for 2Ni-TSC. After addition of sintering aids onset 

sintering temperature was increased for all the samples. Non- isothermal sintering data 

were collected for TSC-1400 
0
C, TSC-1Ni-1500 

0
C and TSC-2Ni-1500 

0
C, as shown in 

Figures 4.22, 4.23 and 4.24 respectively. Data were collected from on-set sintering 

temperature point to the point where isothermal holding starts. 

 

Figure 4.22: Non-isothermal shrinkage measurement for TSC sample sintered 

at 1400 
0
C 

 

Figure 4.23: Non-isothermal shrinkage measurement for TSC-1Ni sample sintered at 

1500 
0
C 
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Figure 4.24: Non-isothermal shrinkage measurement for TSC-2Ni sample sintered at 

1500 
0
C 

 

 

 

Figure 4.25: Non-isothermal shrinkage measured as a function of temperature for TSC-

1400 
0
C, TSC-1Ni- 1500 

0
C and TSC-2Ni-1500 

0
C sample. 
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Figure 4.26: Shrinkage rate as a function of temperature measured for sintered sample, 

TSC-1400 
0
C, TSC-1Ni-1500 

0
C and TSC-2Ni- 1500 

0
C. 

 

Figure 4.25 and 4.26, represents shrinkage and shrinkage rate with respect to 

temperature, 15 to 16% of shrinkage for TSC-2Ni was observed; shrinkage rate was 

decreases as temperature increases. For TSC-1Ni sample shrinkage was around 12 to 

15% and shrinkage rate was low for TSC-1Ni. 

 

Dilatometer data has been analyzed for non-isothermal heating of TSC-1Ni, TSC-2Ni 

and TSC up to 1500 
0
C, to understand the sintering kinetics by estimating activation 

energies. For analysis the data between on-set sintering temperatures to point where 

isothermal shrinkage starts, was considered. The activation energy (Q) was estimated 

using equation (5), reported for non-isothermal sintering by Han et al [19] based on 

Young and Cutler’s equation [20]. 

 

 

 

 

Where  

Y= dL0/L0, dl0 is change in length, L0=L+dl0,  

L=initial length, for next temperature L1=L+dl1, continued up to point where 

Isothermal holding starts. 

   1
p QdYln T lnC

dT n RT

 
    

(5) 
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T = Temperature in Kelvin, 

R= Universal gas constant (8.314 Joule/mole), 

C = Constant depending upon material parameters, 

P has the value of 1 for viscous flow (VF), 3/2 for volume diffusion (VD) and 5/3 for 

GBD. The values of n are 0, 1 and 2 for VF, VD and GBD respectively. Figure 4.27, 

4.28 & 4.29 show the plots based on equation (5) for estimation activation energies for 

TSC, TSC-1Ni & TSC-2Ni. Data were tabulated for different mechanisms (Table 4.10, 

4.11& 4.12). During non-isothermal heating it was observed that, as Ni content 

increases, activation energy also increases. 

 

Table 4.10: Calculated activation energy for TSC (non-isothermal) 

Mechanism Q- activation energy 

(kJ/mole) 

Grain Boundary Diffusion 160.5 

Volume Diffusion 102.9 

Viscous Flow 45.4 

 

 

Figure 4.27: Arrhenius plots to estimate activation energies for different mechanisms 

for TSC- samples sintered at 1400 
0
C (non-isothermal) 

1/T (10
-4

) K
-1
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Figure 4.28: Arrhenius plots to estimate activation energies for different mechanisms 

for TSC-1Ni samples sintered at 1500 
0
C (non-isothermal) 

 

 

Figure 4.29: Arrhenius plots to estimate activation energies for different mechanisms 

for TSC-2Ni samples sintered at 1500 
0
C (non-isothermal heating) 

 

VD 

VF 

GBD 
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Table 4.11: Calculated activation energy (Q) for TSC-1Ni-1500 
0
C (non-isothermal) 

Mechanism Q (kJ/mole) 

Grain Boundary Diffusion 644.2 

Volume Diffusion 424.8 

Viscous Flow 205.4 

 

Table 4.12: Calculated activation energy (Q) for TSC-2Ni-1500 
0
C (non-isothermal) 

Mechanism Q (kJ/mole) 

Grain Boundary Diffusion 963.3 

Volume Diffusion 602.6 

Viscous Flow 294.4 

 

4.5 Mechanical properties  

Indentation were done on TSC and TSC-1Ni sintered samples for 2 kg and 5 kg load by 

using Vickers indentation test. It was observed that, indent size were significant 

smaller in the sample sintered with Ni additives compared to TSC samples; indicating 

the higher level of densification in TSC-1Ni sample [ Figures 4. 30 (a), (b), (c) & (d)] . 

 

 

 
Figure 4.30 Vickers indentation test for TSC and TSC-1Ni a) 2 Kg indentation on 

TSC b) 5 Kg indentation on TSC c) 2 Kg indentation on TSC-1Ni & d) 5 Kg 

indentation on TSC-1Ni. 
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Chapter 6 

Conclusions 

 

The effect of sintering aids on sintering behavior of TSC have been studied  

1. Sintering behavior of TSC powder were studied using vertical dilatometer 

system. Isothermal & non-isothermal sintering kinetics were analyzed, by 

estimating diffusion coefficients and activation energies. 

2. Effect of sintering aids, such as Si & Ni on TSC powder were studied and the 

sintering kinetics were analyzed. Additives are found to enhance the sintered 

density of TSC powder. The activation energy of sintering, estimated for non-

isothermal sintering, was found to be changed significantly by sintering aids. 
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