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Abstract

The problem of designing the spectrum of a linear scalar distributed delay system has been studied.

Systems with delays have infinite spectrum. There are many methods for doing this.The generalized

stability charts can give a lot of information about the system in question. However using this

method can become quite complicated for many types of delay distributed systems. There are other

approaches like using the Lambert W function to tackle the problem using numerical methods.
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Chapter 1

Introduction

Delay differential equations are a class of differential equations in which the value of the derivative

of the function is dependent on the history of that function. As opposed to ordinary differential

equations, they have an infinite dimensional state vector because of their dependence on the history

function. In many engineering and design applications, we have to deal with dynamic behavior

which is modeled using a system of delay differential equations. Our aim is to design the eigenvalues

of the equivalent linear systems of these applications, through which we try to achieve the required

dynamic response from the system.

Few applications of delay differential equations are in machining processes, population models,

neural networks, vibration absorbers and disease transmission models. In any engineering area where

feedback plays a role, signal processing induces time delay. When this delay in the feedback network

is considered, the system model will use delay differential equations. The delays present in these

problems could take the form of discrete or continuous delays. The aim of studying this area is to

determine the conditions for stability of a system. For a system to be considered stable, it should be

able to bounce back to it’s original state of stability when some disturbance happens. Time delay

systems have an infinite spectrum which renders the process of spectrum design challenging. The

rightmost eigenvalues in the solution influence the stability of the system the most as they are the

solutions with the slowest decay. So our aim is to select the right system parameters and tune the

delays appropriately such that the system displays the required dynamic behavior.

When tuning the delays, one of the difficulties that often arises is the limitation on the values of

delays obtainable when those values are small in magnitude. To mitigage that problem, we can use

distributed delays.

1.1 Literature review

The problem of spectrum design using distributed delays has been the major focus of [1]. Two

complementary methods were used to approach this problem. The concept of stability charts is

a very helpful tool to tackle this problem. It uses the geometric properties of the curves and the

surfaces to design a spectrum or a spectral gap. Another important approach that can be applied

is using the Lambert W function.

Lambert W function W(x) is defined as the solution to the equation
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x = W (x)eW (x)

Numerical methods along with the use of lambert W function has been shown to aid in the

problem of spectrum design [1]. An immense advantage of the solution using lambert W method is

that the eigenvalues were found to follow the same order as the principal branches of the Lambert

W function. However this method suffered from numerical convergence issues.

1.2 Problem definition

Take the following model of a system with one delay.

∂

∂t
x(τ) = αx(τ) + β

∫ b

a

w(ξ)x(t+ ξ)dξ (1.1)

The history function is given by x(τ) = φ(τ) for −h ≤ τ ≤ 0. The kernel function is according

to the condition
∫ 0

−h w(ξ)dξ = 1.

The infinite spectrum of this system is {λ}∞i=1. The solution of this system will be of the form
∞∑
1
Cie

λiτ . The first few eigenvalues dominate and dictate the behavior of the system. The coefficients

of the eigenvalues depend on the initial value of the system.

The concept of spectral gap is relevant here. Say we want a number of the rightmost eigenvalues

to dominate the behavior of the system. One way of ensuring it to happen is by specifying that the

group of these eigenvalues should have a definite gap between them and the rest of the eigenvalues.

Consider k rightmost eigenvalues λ1, λ2, ..., λk. For spectrum design, the required condition is

that there have to be a spectral gap of G (a positive real number) between the k values and the rest

of the eigenvalues in the spectrum.

Re(λy) ≤ Re(λx)−G ∀ 1 ≤ x ≤ k < y

Now rescaling the design parameters τ = ht and ξ = hθ we can rewrite Eq. (1.1) as

ẋ(t) = ax(t) + b

∫ 1

0

w(θ)x(t+ θ)dθ (1.2)

Where a = hα and b = h2β. w is the weight function. w can be created using polynomial

functions as

w(θ) =

n∑
i=0

Ciθ
i (1.3)

The weight function w has to be normalized.
∫ 0

−1 w(θ)dθ = 1. Now substituting the trial solution

x(t) = eλt into Eq (1.2) and using the definition of w from Eq (1.3) we get the general solution

D(λ) = λ− a− b

λn+1

n∑
i=0

(
i!(−1)iciλ

n−i
(

1− e−λ
i∑

j=0

λj

j!

))
(1.4)

We have infinite eigenvalues λ as the solution for this equation. The expression from Eq. (1.4)
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can serve as a generator for the infinite dimensional space of continous functions on [-1,0];
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Chapter 2

Generalized stability charts

The stability charts of functions can be made use of while designing the spectral gap in a system. For

a linear system, there are two ways by which it can lose stability while changing the values of different

parameters. A real eigenvalue could pass zero and cross into the imaginary plane. This is the case

of non-oscillatory stability loss. When this is happening, fold bifurcation occurs. Correspondingly

we can observe it in the case of fold curves. The other case of stability loss happens when a pair

of complex conjugate eigenvalues cross the imaginary axis. This means that hopf bifurcation is

occurring and the stability loss is oscillatory. The frequency of this stability loss is given by the

imaginary part of the eigenvalues.

The case when w(θ) = C0 = 1 is considered. So Eg (1.2) on substitution gives

ẋ(t) = ax(t) + b

∫ 1

0

x(t+ θ)dθ (2.1)

Eq (1.4) gives the solution as

D(λ) = λ− a− b1− e−λ

λ
= 0 (2.2)

Solving this equation to find the relation between parameter values,

a = γ +
γ − e−γ(γ cosω − ω sinω)

1− e−γ ω cosω+γ sinω
ω

(2.3)

b = − γ2 + ω2

1− e−γ ω cosω+γ sinω
ω

(2.4)

With these equations, we get the hopf curves. When ω = 0 we get

b =
γ

1− e−γ
(γ − a) (2.5)

This equation corresponds to the fold curve.

Stability charts are plotted in Fig. (2.1) for three values of γ, 0, a positive value and a negative

value. The red lines corresponds to the fold curves and the blue lines corresponds to the various

hopf curves. Stability region in these curves is determined from the intersection of various curves.

For the first case, the values of a and b approach∞ for certain values of ω. The second case where γ
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Figure 2.1: Stability charts for the DDE in Eq. (2.1): (a) is for the case when γ = 0 (b) is for the
case with γ having a negative value of -0.5 and (c) is for the case with a positive value of 0.5

is negative looks similar to the first case. In this case also a and b are approaching very high values

for certain values of frequency. However the third case when γ has a positive value, the curve is

different. It forms self intersecting loops and does not blow out the value of parameters.

One of the observations noted is that the parameters a and b goes to infinity because the de-

nominators in Eq. (2.3) and Eq. (2.4) goes to zero. The term responsible for this is

d(γ, ω) = 1− e−γ (ω cosω + γ sinω)

ω
(2.6)

The case when γ = -0.5, the curves are hyperbolic whereas for γ =0 the curves are parabolic. In

the former case, it exhibits asymptotic behavior when d from Eq. (2.6) goes to zero as well.

The value of d from Eq. (2.6) is plotted against different values of ω. The red line is for the

case when γ = 0. This red line touches the value of zero in regular intervals when w → wk, where

wk = 2kπ, k =1, 2, .... The denominator when γ is negative is shown as the green line. It crosses

the zero mark and comes back up. During the range of frequencies, when this value crosses zero and

comes back, the hopf curve in the stability charts for the function is above the horizontal axis. And

for the case when ω is positive, the blue line representing the denominator does not touch zero at

all. The corresponding hopf curve simply loops back in the stability chart.

The concept of the stability charts can also be extended for equations with higher orders where the

hopf and fold curves become surfaces and hyper surfaces.
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Figure 2.2: Values of denominator plotted against frequency. The red line is the case for γ = 0, the
green line for γ = -0.5 and the blue line for γ = 0.5
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Chapter 3

Bifurcation theory approach

For the system from Eq. (1.1), we consider the case of spectrum design with w(θ) = 1 .Following

cases can be considered.

• Designing two real eigenvalues. ( λ1 = −1 and λ2 = −3 )

• One real eigenvalue and the real part of a pair of complex conjugate eigenvalues. ( λ1 = −1

and λ2,3 = −3± iω )

• Real parts of two pairs of complex conjugate eigenvalues ( λ1,2 = −1± iω and λ3,4 = −3± iω̃
)

3.1 Two real eigenvalues

When we specify two real eigenvalues we have fixed the spectral gap. γ1 =-1 and γ2 =-3 . To find

the value of the parameters a and b, we use Eq. (2.5) which gives,

ã = γ1 +
G(1− eγ1)(γ1 −G)

G(1− eγ1)− γ1(1− eG)
(3.1)

and

b̃ =
γ1Ge

γ1(γ1 −G)

G(1− eγ1)− γ1(1− eG)
(3.2)

G=γ1 − γ2 = 2 is the spectral gap.The curves are plotted in Fig. (3.1). We find that ã = -0.26

and b̃ = -0.43 for γ1 = -1 and γ2 = -3 . One of the inferences from this case is that for all different

values of γ we get different hopf curves which are lines. These lines are not parallel. So it is possible

to design a multitude of real values for the two eigenvalues.

3.2 One real eigenvalue and real part of a pair of complex

conjugate eigenvalues

In this case λ1 = γ1 = -1 is fixed and λ2,3 = −3 ± iω. Plotting the fold curve for γ1 = -1 and the

hopf curve for γ2 = -3 in Fig. (3.2) the curves are found to intersect at ã = -4.97 and b̃ = 2.97 . In
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Figure 3.1: Two real eigenvalues have been specified. The red line is the fold curve for γ = -1 and
the green line is the fold curve for γ = -3
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Figure 3.2: One real eigenvalue and the real part of a pair of complex conjugate eigenvalues have
been specified. The red line is the fold curve for γ = -1 and the green line is one of the hopf curves
for γ = -3

this case also it is proved that the required configuration of spectrum can be designed.

3.3 Real parts of two pairs of complex conjugate eigenvalues

The four rightmost eigenvalues are λ1,2 = -1 ±iω and λ3,4 = -3 ±iω̃. In Fig. (3.3), a few hopf curves

regarding to both the eigenvalues are plotted. There are multiple intersection points. So the current

configuration of spectrum design can also be possible with certain parameter values.
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Figure 3.3: Real parts of two pairs of complex conjugate eigenvalues have been specified. The red
line is one of the hopf curves for γ = -1 and the green line is one of the hopf curves for γ = -3
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Chapter 4

Galerkin approximation method

Stability studies of delay differential equations is a cumbersome task because of the equations being

infinite dimensional in nature. In [2], a method has been found to convert delay integro-differential

equations (DIDEs) into a system of ODEs. Using certain transformations, the system of DIDEs

can be transformed into a set of partial differential equations (PDEs). Plugging in the boundary

conditions, the system is transformed to a set of ODEs and then stability analysis is easily carried out.

4.1 Formulation

ẍ+ c1(t)ẋ+ k1(t)x(t) + c2(t)

∫ l2

l1

C(τ1)ẋ(t− τ1)dτ1 + k2(t)

∫ m2

m1

K(τ2)x(t− τ2)dτ2 = 0 (4.1)

Here x(t) is the state vector. The initial conditions are

x(t) = α(t),−τ ≤ t ≤ 0

x(t) = α(t),−τ ≤ t ≤ 0

where τ = max(l1, l2,m1,m2)

To convert Eq (4.1) to a system of PDEs, we use the transformation

y(s, t) = x(t+ s) (4.2)

Differentiating,

∂y

∂t
=

∂x

∂t+ s
(4.3)

∂y

∂s
=

∂x

∂t+ s
(4.4)
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From Eq. (4.3) and Eq (4.4)

∂y

∂t
=
∂y

∂s
(4.5)

Again differentiating Eq. (4.5) with respect to t,

∂2y

∂t2
=

∂2y

∂t∂s
,−τ ≤ s ≤ 0, t ≥ 0 (4.6)

We have obtained a second order PDE.The boundary condition is obtained by substituting Eq. (4.2)

in Eq. (4.1)

ÿ(0, t) + c1(t)ẏ(0, t) + c2(t)

∫ l2

l1

C(s)ẏ(−s, t)ds+ k2(t)

∫ m2

m1

K(s)y(−s, t)ds = 0 (4.7)

Now the solution of the PDE in Eq. (4.6) is approximated as

y(s, t) '
N∑
k=1

φk(s)ηk(t) = φTη(t) (4.8)

The basis functions are φ(s) = [φ1(s), φ2(s), ..., φN (s)]T and the η(t) = [η1(t), η2(t), ..., ηn(t)]T are

the generalized coordinates.

Our choice of basis functions includes shifted Legendre polynomials. So the basis functions are now

given by

φ1(s) = 1

φ2(s) = 1 +
2s

τ

φn(s) =
(2k − 3)φ2(s)φk−1(s)− (k − 2)φk−2(s)

k − 1
, k = 3, 4, ..., N

Substituting Eq. (4.8) into Eq. (4.6) and pre-multipyling by φ(s) and integrating with respect to s

from −τ to 0, the system of second order ODEs is obtained.

Mη̈(t) = Cη̇(t) (4.9)

M and C are given by

M =

∫ 0

−τ
φ(s)φ(s)T ds and C =

∫ 0

−τ
φ(s)φ′(s)T ds (4.10)

Since we have used Legendre polynomials as basis functions, we can obtain closed form expressions

for M and C as
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Mij =
τ

2i− 1
δij i, j = 1, 2, ..., N (4.11)

Cij =


0 if i ≥ j
2 if i < j and i+ j is odd i, j = 1, 2, ..., N

0 if i < j and i+ j is even

(4.12)

Making use of the boundary condition, substituting Eq. (4.8) in Eq. (4.7),

mη̈(t) = cη̇(t) + kη(t) (4.13)

where m, c and k are

m = φT (0) (4.14)

c = −c1(t)φT (0)− c2(t)

∫ l2

l1

C(s)φT (−s)ds (4.15)

k = −k1(t)φT (0)− k2(t)

∫ m2

m1

K(s)φT (−s)ds (4.16)

The terms
∫ l2
l1
C(s)φT (−s)ds and

∫m2

m1
K(s)φT (−s)ds can be evaluated using methods like trape-

zoidal quadrature. For solving Eq (4.9), spectral tau method is a good choice. In this method, we

incorporate the boundary condition of Eq (4.13) in the last row of Eq. (4.9).

M̃η̈(t) = C̃η̇(t) + K̃η(t) (4.17)

Here M̃ =

(
M̄

m

)
, C̃ =

(
C̄

c

)
and K̃ =

(
0̄

k

)
. M̄ and C̄ are matrices of dimension N-1 × N

formed by removing the last row of matrices M and C. If we use z = [ηT , η̇T ] , we can rewrite Eq.

(4.17) as

ż(t) = A(t)z(t) (4.18)

where

A(t) =

(
0 I

M̃
−1
K̃ M̃

−1
C̃.

)
(4.19)

I is an identity matrix of dimensions N × N

The DIDE from Eq. (4.1) has been converted into a set of ODEs as shown in Eq. (4.18). Using the

initial conditions,

x(s) = φT (s)η(0) = α(s) (4.20)

ẋ(s) = φT (s)η̇(0) = β(s) (4.21)

Take φ(s) and pre-multiply it on Eq. (4.20) and Eq. (4.21) and then integrate over s ε [−τ, 0]. Now

pre-multiplying with M−1, we get

12



η(0) = M−1
0∫
−τ

α(s)φ(s)ds (4.22)

η̇(0) = M−1
0∫
−τ

β(s)φ(s)ds (4.23)

Finally, we can find the functions x(t) and ẋ(t) as

x(t) = y(0, t) = φT (0)η(t) (4.24)

ẋ(t) = ẏ(0, t) = φT (0)η̇(t) (4.25)

4.2 Results

Galerkin approximation method was successfully employed for the IDDE from Eq. (1.2). Using

the approach discussed in the formulation,A from Eq. (4.19) was found. The stability analysis was

carried out and the results are shown in Fig. (4.1). The accuracy of roots found out using this

method depends on the number of terms taken in Eq. (4.8)
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Figure 4.1: Galerkin solutions are shown as blue dots : (a) is for the case when γ = 0 (b) is for the
case with γ having a negative value of -0.5 and (c) is for the case with a positive value of 0.5. The
red lines are the boundaries for the stability region as obtained using stability charts. It is found
that the results are in agreement with each other.
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Chapter 5

Conclusions

The aim of the project was to analyze the problem of spectrum design of a system of delay differential

equations. Equations with distributed delays were considered and it was shown that it is indeed

possible to design the spectrum for a linear scalar system. The concept of stability charts was used

for this problem. Stability charts for a system revealed various properties of the system. It was

found out that when stability charts are used, the problem of spectrum design was translated into

finding the intersecting regions between various curves and surfaces. Finally the method of Galerkin

approximation was studied. It was found that the system of DDEs can be transformed into PDEs

and subsequently into a system of ODEs which is a familiar territory for stability analysis. Galerkin

method gave good results on the system in question and the results were in agreement with the

results achieved using stability charts.
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