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Abstract 

 

Cr2AlC is one of the important member of MAX phase group. Sintering kinetics of 

freshly synthesis Cr2AlC ternary carbide powder has been studied using dilatometric 

sintering methods. Dilatomertic data showed that onset of sintering of Cr2AlC powder 

was about 1180 0C. There was a distinct change in the sintering rate at about 1315 0C. 

Non-isothermal sintering kinetics of Cr2AlC powder were analyzed for different sintering 

mechanisms. Two different sintering models, i.e., Young & Cutler’s model and 

Johnson’s model were employed to estimate the diffusion parameters such as diffusion 

coefficients and activation energies. The estimation of diffusion coefficient were carried 

out for a range of particle sizes. Attempts were made to study the effect of sintering aids 

on the densification behavior of Cr2AlC powder. Various amount of Zr powder was used 

as sintering aid. It was noticed that large amount of Zr caused expansion on the compact, 

Very small amount of Zr powder may be helpful to enhance the sintering of Cr2AlC.
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Chapter 1 

Introduction 

 

1.1 Introduction 

MAX phases are nano-layered ternary carbides with general formula of Mn+1AXn (n = 1-3), 

where M is an early transition metal, A is a group IIIA or IVA element and X is either 

carbon or nitrogen.[1] These materials have unique combination of properties of both 

ceramics and metals with exceptional combination of mechanical, electrical and thermal 

properties. Similar to ceramics, they have low density, low thermal expansion coefficient, 

high modulus, high strength and good oxidation resistance at high temperature. They are 

good electrical and thermal conductors, easily machinable and have good thermal shock 

resistances like metals [1]. Due to these unique combination of attractive properties they are 

promising candidate for diverse field of applications, especially as high temperature 

materials, protective coatings, materials for lead-cooled reactors and electrical contact 

materials [2]. The MAX phases crystallize in hexagonal structure with space group of 

P63/mmc. Up to now, more than 60 members of MAX phases have been discovered to be 

thermodynamically stable. Depending on the value of n, MAX phases have been 

categorized into 3 major groups: i.e. M2AX (211 phase), M3AX2 (312 phase) and M4AX3 

(413phase). Some of the members such as Ti3SiC2, Ti3AlC2, Ti2AlC and Cr2AlC are among 

the well investigated. Figure 1.1 (a), (b) and (c) demonstrates the crystal structure of 211, 

312 and 413 phases respectively [1]. 

 

Nearly close-packed M-layer is interleaved by the A-layer, and the X-atoms filling the 

octahedral sites of M-layers. Similar to rock salt structure, M6X octahedral are edge 

sharing. The A-group atoms are located at the center of trigonal prisms, larger than 

octahedral sites so that, it can accommodate the larger A-atoms [3]. The main difference in 

structures as shown in Figure 1.1 is the number of M layers separating the A layers: in the 

211 phase, there are two; in the 312 phase, there are three; and in the 413 phase, there are 

four. Bonding in the MAX phases is a combination of metallic, covalent and ionic. Like 

MX compounds, there is a strong overlap between the p-levels of the X atoms and the d-

levels of the M atoms, leading to strong covalent bonds. The p-orbitals of A-atoms overlap 
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the d-orbitals of the M-atoms, leads to metallic M-A bonding. In the M2AlC phases, there is 

a net transfer of charge from the A to the X atoms [3, 38]. 

 

 

Figure 1.1: Crystal structure of 211 (a), 312 (b) & 413 (c) MAX phases 

respectively. [2] 

 

Some of the early MAX phase compounds were initially synthesized in powder form, more 

than 35 years ago by H. Nowotny. Although little was known about their properties until 

1996 when Barsoum group got breakthrough in synthesis of high purity bulk Ti3SiC2 [4]. 

The bulk and powder samples of these compounds are generally produced by solid-solid or 

solid-liquid reactions by using elemental powders or by some intermediate carbides. 

Although MAX phases have many potential applications, obtaining monolithic is a 

prerequisite before they can be used in industry. 

 

1.2 Cr2AlC 

At present date, Cr2AlC (CAC) is one the most studied compound among all the MAX 

phases after Ti3SiC2 and Ti3AlC2 [5]. CAC is the only stable ternary carbide in Cr-Al-C 

system and was first discovered by Jeitschko et al. [6] in 1980s. Stoichiometric CAC 

involves 72.7 wt. % Cr, 18.9 wt. % Al and 8.4 wt. % C [7]. Figure 1.2(a) shows the crystal 

structure of CAC. As shown in Figure 1.2 (b), stacking sequence of Cr and Al layer along 

X - elements 
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the [0001] direction is ABABAB where the underlined letters refer to Al layer [8]. The 

carbon atoms occupy the interstitial sites of Cr octahedral as shown in Figure 1.2 (c). 

Lattice parameters of CAC are a = 2.858 Å, and c = 12.818 Å respectively. 

 

 

(a)     (b)      (c) 

Figure 1.2: (a) Crystal structure of CAC, (b) arrangement of atoms on a (1210) plane 

and (c) position of C atoms in Cr octahedral. [8, 11] 

 

 

Table 1.1: Properties of Cr2AlC[2, 5, 10, 11, 39] 

Lattice parameter (Å) a = 2.86, c = 12.82 

Density (g/cm3) 5.1 - 5.24 

Vickers hardness (GPa) 5.5 ± 0.4 

Young's Modulus (GPa) 288 

Flexural Strength (MPa) 483 

Compressive Strength (MPa) 1159 

Electrical resistivity (µΩm) 0.71 - 0.74 

Thermal expansion coefficient (K-1) 1.26 X 10-05 

 

 



4 

Ab initio calculation and experimental investigation indicates that CAC has 11 % larger 

bulk modulus than Ti3SiC2, exhibits relatively higher hardness, better corrosion-oxidation 

resistance then other MAX phases. Good high temperature oxidation resistance and hot 

corrosion resistance is attributed to the formation of protective alumina scale [1, 9]. Few 

important physical properties of CAC have been tabulated in Table 1.1. High density parts 

of CAC were produced by elemental powders of Cr, Al & C mostly through hot pressing or 

sintering under applied pressure, including spark plasma sintering and pulse discharge 

sintering. Producing a high-density parts through pressureless sintering [5] is a 

breakthrough in the technological as well as economical point of view and also enhance the 

application area of this compound. At the same time, to achieve maximum of theoretical 

bulk density is always desirable for powder-metallurgical parts for load bearing and 

mechanical applications. 

 

Sintering is a process in which particles bond together when heated to a sufficiently high 

temperature. The driving force is the net reduction in the surface energy. Liquid-phase 

sintering (LPS) involves the formation of a liquid phase to promote higher densification 

rates and lower the sintering temperatures. There are two main forms of LPS. When a 

liquid phase is obtained by melting of powder mixture and is persistent throughout the 

high-temperature portion of the sintering cycle, the process is termed as persistent LPS. In 

some systems with a low inter-solubility even in the presence of a persistent liquid, an 

activator can be used to enhance sintering. This is termed as activated liquid-phase sintering 

(ALPS). Alternatively, transient liquid-phase sintering (TLPS) involves liquid that 

disappears due to dissolution into the solid or formation of a new phase/compound [12]. 

Referring to the Cr-Zr phase diagram, as shown in Figure 1.3, chromium has almost 

negligible solubility for zirconium, while β-zirconium can dissolve more than about 7 wt.% 

chromium at the eutectic temperature of 1332 0C. This type of solubility characteristics is 

one of the essential criteria for designing the sintering aids. Due to this eutectic point of 

composition of Zr –14 wt.% Cr at 1332 0C, there is a strong possibility for the formation of 

liquid phase during the sintering cycle. By adding very small amount of Zr in CAC, 

transient liquid phase sintering might be expected.  
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Figure 1.3: Zr-Cr Phase Diagram. [13] 
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Chapter 2 

Literature Review 

 

MAX phases can be made directly from starting materials by in situ synthesis or reacting 

sintering, which combine the synthesis reaction and densifying process. The solids can also 

be made by only the densifying process from pre-made MAX-phase powders. The powders 

can be made directly in powder form or by breaking partially sintered porous samples [14]. 

Moreover thin film and coatings of MAX phase have also been developed by physical 

vapor deposition (PVD), chemical vapor deposition (CVD) and thermal spray (TS).  

 

Barsoum and group [16] fabricated bulk polycrystalline Ti3SiC2 using 3Ti/SiC/C powders 

through hot isostatic pressing. The powders were cold-pressed at the applied pressure of 

180 MPa and then HIPed 1600 °C for 4 hours. Flexible container dies are used in HIP with 

isotropic pressurization. Consolidation of powder container occurs in internally heated 

pressure vessel. High pressure gas i.e. argon or nitrogen, is used to transfer heat and 

pressure to the compact. There was less than 1 vol. % SiC and TiC in the final product. 

Later, Barsoum et al. [17] successfully synthesized Ti3AlC2 from Ti, Al4C3 and graphite 

mixture by HIP at 1400 °C for 16 hours. The samples were predominantly single phase, 

fully dense with containing about 4 vol.% Al2O3 as an impurity. Encouraged by the success 

of obtaining pure Ti3SiC2 and Ti3AlC2, they subsequently fabricate many other MAX 

phases, such as Ti4AlN3, Ta2AlC, Ti2InC, Zr2InC, Hf2PbC, Zr2PbC and V2AlC [2]. In that 

way HIP was a breakthrough for fabricating pure bulk MAX phases. Zhou et al [18] 

developed an in-situ hot pressing / solid–liquid reaction synthesis to fabricating monolithic 

MAX phases in a short time which saves considerable energy with large-scale samples. Hot 

pressing (HP) is the stress enhanced densification process [15]. The die is usually made up 

from graphite to allow external induction heating. Sun et al. [19] adopted in-situ HP / solid–

liquid reaction to fabricate Ti3SiC2. Spark plasma sintering (SPS) [22] provides a very 

quick heating, and has been widely used to fabricate wide verity of bulk polycrystalline 

materials. SPS utilizes uniaxial force and ON-OFF DC pulse energizing. The ON-OFF DC 

pulse voltage and current creates spark discharge and Joule heat points between material 

particles i.e., high-energy pulses at the point of inter-granular bonding. The high frequency 

transfers and disperses the spark/Joule heating phenomena throughout the specimen, 
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resulting in a rapid and thorough heat distribution, high homogeneity and consistent 

densities. Gao et al [23] synthesized and simultaneously consolidated Ti3SiC2 from the 

starting mixture of Ti/Si/2TiC by SPS at 1200 °C. They have reported that the final 

compositions could be tailored by adjusting the process parameters. Zhu et al [24] studied 

the effect of aluminium on synthesis of Ti3SiC2 by SPS from Ti, Al, Si and C elemental 

powders and shows that proper addition of Al not only favored the formation but also 

accelerated the crystal growth of Ti3SiC2. Bulk Ti3SiC2 material with high purity and 

density could be obtained by SPS from the elemental powder mixture with starting 

composition of Ti3Si1−xAlxC2, where x = 0.05–0.2. Zhou et al. [25] obtained dense Ti2AlC 

from 2Ti/1.2Al/C mixture at 1100 °C and 30 MPa for 1 hour by SPS. Synthesis of pure 

MAX-phase powders is more important because powders are essential for fabricating 

complex shapes and composite bulk materials. Pressureless sintering (PS) is a conventional 

powder metallurgy route, where sintering of a green compact is carried out without 

application of mechanical pressure. The advantages of PS are simple devices, low cost, 

easy to make mass production and good control over purity and particle size. Sun et al [19] 

have reported synthesize of Ti3SiC2 powder by pressureless sintering. Single phase Ti3SiC2 

has been obtained by heating Ti, Si, and TiC powders with a composition of 

Ti/1.10Si/2TiC. It was found that adding 10 % excess Si is essential for preparation of 

Ti3SiC2 because Si evaporates at high temperature. 

 

Zhijun et al. [7] have synthesized bulk Cr2AlC by in-situ HP/ solid-liquid reaction method 

using Cr, Al and graphite elemental powders as starting materials. The relative density of 

the as-synthesized sample was 95 %. This was the earliest attempt for the bulk sample 

synthesis of CAC. They observed small amount of Cr9Al17, Al8Cr5 and AlCr2 impurities. 

The whole reaction process explained with following equations: 

9 Cr + 17 Al → Cr9Al17 (670 0C)     (1) 

Cr9Al17 + 25 Cr → 17 AlCr2 (850 0C)    (2) 

8 Cr9Al17 + 13 Cr →17 Al8Cr5 (850 0C)    (3) 

Al8Cr5 +11 Cr + 8 C → 8 Cr2AlC (1050 0C)   (4) 

AlCr2 + C → Cr2AlC (1050 0C)     (5) 

 

Looking at the thermodynamic studies of Cr-Al-C ternary phase diagrams, Nowotny et al. 

[6] reported that at 1000 0C Cr2AlC is in equilibrium with Al4C3, Al4C3, γ-Cr5Al8, Cr (solid 
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solution with Al), Cr7C3, and Cr3C2. At 800°C, Cr2AlC coexists also with graphite and β-

Cr2Al. Hallstedt et al. [20] has reported that Cr2AlC is the only ternary phase in Cr-Al-C 

system. Cr2AlC melts incongruently at about 1500 0C to form Cr7C3 (or Cr3C2) and Al4C3 

with some amount of liquid. Tian et al [21] reported phase formation sequence of Cr2AlC 

ceramics starting from Cr-Al-C powders, from the hot pressed specimen at 20 MPa in 

argon atmosphere in the temperature range of 850-1450 0C. They found Cr5Al8, Cr2Al and 

Cr7C3 as an intermediate phases during initial heating process. Cr2AlC forms gradually with 

increase in temperature at the expense of these intermediates and unreacted Cr and C, and 

finally reaches to the maximum purity at around 1250 0C. Up to now, the in-situ HP / solid–

liquid reaction synthesis is one of the most effective and practical techniques for the 

fabrication of monolithic and dense MAX phases. Later Tian et al. [26] have used SPS 

method to synthesis bulk CAC samples starting with elemental powders. They used two 

kinds of starting powders; coarse and fine particle size, and obtained density of around 

5.12-5.14 g/cm3 with some impurities of AlCr2 and Cr7C3 in the end product. Same author 

have also reported synthesis reaction of Cr2AlC from Cr-Al4C3-C [27] by pulse discharge 

sintering (PDS). PDS were carried out in vacuum for the temperature range of 850-1350 0C. 

It has been presumed that Cr2AlC phase formed near Al4C3 particles by the diffusion of Cr 

and its reaction with Al4C3. Corresponding reactions occurring in the temperature range of 

850-1050 0C were explained as follows: 

Cr + Al4C3 → Cr2AlC + Cr2Al      (6) 

Cr2Al + C → Cr2AlC        (7) 

Cr2Al + Cr + Al4C3 → Cr2AlC      (8) 

With the increasing temperature, Cr2AlC becomes the major phase with the small amount 

of impurity of Cr7C3. 

Cr2Al + Cr + Al4C3 → Cr2AlC + Cr7C3     (9) 

 

SPS and PDS are an expensive techniques and can only fabricate small scale samples, 

accordingly they are mainly employed at the laboratory scale. Some other work has been 

reported in which pulse discharge sintering, hot pressuring of mechanically activated HP as 

well as pressured-assisted self-propagating high-temperature synthesis (PSHS) has been 

employed for the bulk sample preparation of Cr2AlC and other MAX phases [2, 14]. 
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Tian et al [28] reported a unique molten salt method for Cr2AlC powder preparation using 

NaCl-KCl salt mixture at their eutectic composition. They used Cr-Al-C (2:1:1 & 2:1.1:1) 

elemental powder mixture and mixed them with salt mixture in 2:1, 1.1 and 1:2 powder to 

salt ratio and heated them in vacuum using quartz tube. Cr2AlC powder with 4-7 µm 

particle size were produced at 1000 0C while using 1:1 powder to salt ratio. Panigrahi et al. 

[29, 30] reported powder synthesis of Ti3AlC2 and Ti3SiC2 via a new route that consist of 

two-step process. In both the cases, TiCx powder was synthesized first, which reacts 

subsequently with Al and Si in the second step to get Ti3AlC2 and Ti3SiC2 powders 

respectively. Two step process have some advantages like better control over purity and 

grain size. Same authors have reported similar work for CAC [5] powder synthesis and 

subsequently by pressureless sintering and 95.7 % dense CAC bulk sample was achieved. 

Here also two-step process was adopted for CAC powder synthesis in which reaction 

between previously synthesized CrCx and elemental Al was carried out. This was one the 

earliest report on pressureless sintering of CAC powder for the bulk sample preparation. 

The major reactions were explained as follows: 

In first step, while ignoring small amount of Cr2C, 

10 Cr + 5 C → Cr3Cr2 + Cr7C3      (10) 

And in second step: 

Cr3Cr2 + Cr7C3 + 5 Al → 5 Cr2AlC    (11) 

Recently, Zhongliang et al [31] reported almost similar method of pressureless sintering 

starting from Cr-Al-C elemental powder instead of two step process. Cr:Al:C powder in the 

ratio of 2:1.05:1 were taken and sintered at 1350 0C for 30 minutes of shocking time. High 

purity (97.2 wt. %) Cr2AlC powder with very small amount of Cr7C3 had been synthesized. 

Following reaction mechanism were proposed: 

At 900 -1000 0C: 

5 Cr + 8 Al → Cr5Al8       (12) 

2 Cr + Al → Cr2Al       (13) 

Cr5Al8 + 13 Cr + Al → 9 Cr2Al     (14) 

At 1100-1250 0C: 

Cr2Al +C → Cr2AlC       (15) 

7 Cr + 3 C → Cr7C3       (16) 
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Advancing further in their paper, Panigrahi et al. [29, 30] also reported Nickel assisted 

sintering and enhancement of density of Ti3AlC2 and Ti3SiC2 powder under pressureless 

condition. Nickel is known for its higher diffusivity in titanium and was found to enhance 

the sintering rate of titanium. It also suppressed the grain coarsening process up to certain 

extent during sintering. By addition of Ni, relative density of 97.6 % and 98.5 % were 

achieved for Ti3AlC2 and Ti3SiC2 respectively. Also some elementary work to predict the 

diffusion parameters [32] of Cr2AlC and Ti3SiC2 were reported. Johnson model was applied 

to non-isothermal sintering data; and volume and grain boundary activation energies were 

estimated. This is the only reported work available on the sintering kinetics of CAC 

powder. Hence there is a scope to further investigate the sintering kinetics of CAC and to 

estimate the physical parameters i.e., diffusion coefficient and activation energy. 

Application of some other models also helps to compare the different outcomes. Also the 

sintering kinetics of CAC has not been reported as per best of our knowledge. Hence the 

effect of sintering aid on the sintering behavior of CAC powder is the area in which one can 

focus. So as already outlined, after going through different Cr based binary phase diagrams, 

effect of Zr as a sintering additive needs to be explored more. 

 

Following objectives have been setup for the present work. 

 To study the sintering kinetics of Cr2AlC powder during non-isothermal 

sintering. 

 To study the effect of little amount of Zr addition on sintering behaviour and 

microstructure of Cr2AlC powder. 
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Chapter 3 

Experimental Procedure 

 

3.1 Synthesis of Cr2AlC Powder 

Cr2AlC powder synthesis has been carried out by two step process [5] in the present work. 

In the first step CrCx (x=0.5) powder was produced from elemental Cr (99.5 %, -325 mesh, 

Alfa Aesar) and graphite (99 %, 7-11 µm, Alfa Aesar) powders. Cr:C has been taken in 2:1 

mole ratio and mixed by turbo mixture using toluene as a mixing medium. The dried 

mixture was heated in tubular furnace with flowing Argon atmosphere at 1350 0C for 2 

hours. The partially sintered CrCx was ground in agate mortar-pastel and sieved by -325 

mesh screen. 

 

In second step, CrCx powder mixed with Al (99.5 %, -325 mesh, Alfa Aesar) elemental 

powder in 2:1.1 mole ratio by using similar method. Dried mixture was heated in the same 

furnace with flowing Argon at 1250 0C for 2 hours. Here excess amount of Al was added to 

compensate the loss of Al due to evaporation at such a high temperature. Partially sintered 

compact was crushed to fine size powder by agate mortar-pastel, sieved by -325 mesh 

screen and used for further sintering studies. 

 

3.2 Sintering of Cr2AlC Powder 

To prepare pellets of freshly synthesized CAC powder, 4 wt.% binder (paraffin wax) was 

first dissolved in toluene and then CAC powder was added. After proper mixing and 

drying, several pallets was prepared from this power by compacting at 40 MPa of applied 

pressure using 7 mm diameter cylindrical steel die and punch. Also to study the effect of 

sintering-aid, 1, 2 & 5 wt. % Zr has been added in CAC powder and pellets were prepared 

by similar method (CAC-1Zr, CAC-2Zr & CAC-5Zr). 

 

Sintering of CAC samples were carried out at two different temperatures of 1300 0C and 

1400 0C on Single push rod Dilatometer (Dilamatic II, Theta Industries US). Similarly 

dilatometry sintering of CAC-1Zr, CAC-2Zr & CAC-5Zr samples were carried out in 

identical condition at 1300 0C. After inserting sample, first of all dilatometer tube were 

evacuated for 10 minutes followed by purging of Ar for 30 minutes to ensure the inert 
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atmosphere during sintering. For all the samples, same heating rate of 10 0C/min with 10 

minutes of holding time at 400 0C was employed to remove the binders before the onset of 

sintering.  

 

3.3 Characterization 

Dimensional and weight measurements of all the green and sintered samples were carried 

out. Density of all green and sintered samples were calculated from measured weight and 

volume of each pellets. All as received elemental powders have been characterized by X-

ray powder diffractometer (PANalytical X’Pert Pro) with Cu Kα (λ = 1.5456 Å, step size 

0.010) radiation. Also the constituent phases of both CrCx & Cr2AlC powders were analyses 

using XRD. All sintered samples were characterized by XRD with the help of multi-

purpose stage equipped with the same instrument. Care has been taken to ensure the flat 

upper surface after removal of top layer by polishing to get rid-off oxide layer. The 

morphology of synthesized Cr2AlC powder has been observed by scanning electron 

microscope (FESEM: Carl Zaiss NTS GmbH - Germany). Morphology of the broken 

surfaces of all the sintered samples have been observed by SEM. Also the elemental 

mapping and EDX analysis were carried out for selective sintered samples. Differential 

scanning calorimetric (DSC: NETZSCH DSC 404F3) analysis has also been carried out for 

different combinations of Cr, Al & C as well as synthesized Cr2AlC powder and all Zr 

added CAC-Zr mixed powders. 

 

3.4 Dilatometer Sintering 

Push rod dilatometer serve the measurement of the change in length as a function of 

temperature. Dilatometry is the method for precise measurement of dimensional change of 

solid compacts at a programmed temperature change and over a range of time with 

negligible sample strain (ASTM E831, ASTM D 696). Hence dilatometry has been used for 

the long time to study the sintering behavior of powder compacts. Dilatometer sintering 

plot can be evaluated in two different region, i.e. non-isothermal part and isothermal. 

During non-isothermal sintering, temperature is continuously increased at a constant 

heating rate, while in isothermal sintering temperature is kept constant for the range of 

time. A schematic presentation of shrinkage measurement method has been shown in figure 

3.1. Suppose the sample is expected to show a net expansion of h when the temperature 

reached T. Then the new length of the sample L1 at temperature T1 can be given as L0 + h, 
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where L0 is the sample length at room temperature. For the non-isothermal sintering plot, a 

straight line of expansion with a constant slope can be plotted parallel to the sintering plot 

with assumption that the thermal expansion coefficient is constant throughout the 

temperature range. At higher temperature, just after the onset of sintering dilatometer plot 

shows a change in slope and gradually slope becomes negative. Shrinkage was measured at 

each temperature point from the sample length Ln (at temperature Tn), considering thermal 

expansion. Shrinkage Sa is shown at temperature Ta in figure 3.1. Similarly for isothermal 

sintering plot, straight line of thermal expansion with zero slope can be obtained. Shrinkage 

Sb, Sc etc. has been measured in the similar manner from this line at regular interval of time 

(t1, t2 etc.) as shown in figure 3.1. 

 

Figure 3.1: Schematic representation of shrinkage measurement from dilatometer plot. 
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Chapter 4 

Results and Discussion 

 

4.1  Synthesis of Cr2AlC Powder 

Figure 4.1 shows the XRD patterns of as received Cr, Al & graphite powders and have been 

compared with their standard ICDD (C – 411487, Al – 894037, Cr - 894055) data for the 

phase identification. Similarly, as synthesized CrCx and Cr2AlC powders were analyzed as 

shown in Figure 4.2 and Figure 4.3 respectively. It has been observed that CrCx mainly 

consists of three different carbides; namely Cr23C6, Cr7C3 and Cr3C2, (ICDD file no. 

350783, 361482 & 350804 respectively) whereas Cr2AlC powder was found to be of high 

purity with negligible amount of Cr7C3 as an impurity. All the peaks of Cr2AlC have been 

identified and indexed as per the ICDD file no. 892275. 

 

 

Figure 4.1: XRD patterns of Cr, Al & C elemental powders. 

 

Figure 4.4 (a) and (b) shows the SEM micrograph of Cr2AlC powder, having particle size 

in the range of 1-20 µm with an average size of about 10 µm. Large amount of 

agglomerates were observed in the powder as shown in figure 4.4 (c), due to the partial 
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sintering during the synthesis itself. Also the layered structure can been seen in figure 4.4 

(d), an inherent characteristic of MAX phase compounds. 

 

 

Figure 4.2: XRD pattern of synthesized CrCx powder. 

 

 

 

 

 

Figure 4.3: XRD pattern of synthesized Cr2AlC powder. 
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    (a)        (b) 

 

 

 

 

 

 

    (c)       (d) 

Figure 4-4: SEM micrograph of synthesis Cr2AlC powder; (a) & (b) shows the wide range 

of particle size, (c) agglomerated particles and (d) layered structure of CAC. 

 

4.2  Sintering of Cr2AlC Powder 

From some of the previous work reported on the sintering of Cr2AlC [5, 32], we have 

decided to start with the sintering temperature of 1300 0C. Figure 4.5 shows the dilatometer 

sintering plot of Cr2AlC powder compact. Sintering onset temperature was around 1180 0C. 

At about 1315 0C there was a significant change in the nature of curve; sintering process 

seems to be accelerated at this point. Shrinkage in the isothermal region has been measured 

by the method as already outline in the previous section. Corresponding shrinkage and 

shrinkage rate as a function of time from t = 0 (beginning of isothermal region) is plotted in 

Figure 4.6. Shrinkage increases whereas shrinkage rate decreases as a function of time. 

 

Because of the very small region of the non-isothermal section available after the onset of 

sintering, next sintering was carried out at some higher temperature of 1400 0C. Instead of 

60 minutes, in this case isothermal shocking time was increased to 120 minutes. As shown 
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in Figure 4.7, again the sintering onset temperature was 1179 0C. Corresponding shrinkage 

and shrinkage rate as a function of isothermal time have been plotted in Figure 4.8. Due to 

higher temperature, higher shrinkage was observed, with shrinkage rate becomes constant 

at longer socking time. By enlarging the non-isothermal region as shown in Figure 4.9, 

abrupt change in slope of sintering plot at around 1315 0C has been observed. After plotting 

shrinkage vs temperature for this region, Figure 4.10, slope change was clearly revealed. 

This is possibly due to the different sintering mechanism active at higher temperature. 

Therefore non-isothermal shrinkage data has been separately analyzed for two different 

range of temperatures i.e. 1180-1315 0C and 1315-1400 0C. 

 

 

 

 

Figure 4.5: Dilatometer plot of the CAC sample sintered at 1300 0C for isothermal 

holding of 1 hr. 
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Figure 4.6: Measured shrinkage & shrinkage rate as a function of isothermal holding time 

at 1300 0C. 

 

 

 

 

Figure 4.7: Dilatometer plot of the CAC sample sintered at 1400 0C for isothermal holding 

of 2 hr. 
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Figure 4.8: Measured shrinkage & shrinkage rate as a function of isothermal holding time 

at 1400 0C. 

 

 

 

 

Figure 4-9: Dilatometer plot of the CAC sample sintered up to 1400 0C for non-

isothermal sintering. 
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Figure 4.10: Measured shrinkage as a function temperature for non-isothermal 

section up to 1400 0C. 

 

4.3  Analysis of Sintering Kinetics 

The activation energy(Q) has been estimated using equation (4.1) for sintering during a 

constant heating rate as reported by the Young and Cutler [34], modified by Han et al. [35] 

for non-isothermal sintering. 

      (4.1) 

Y = Linear shrinkage (ΔL/Ln) 

T = Temperature in Kelvin 

R = Universal gas constant (8.314 J mol-1K-1) 

C = Material dependent constant 

n & P are constant, P = 1 & n = 0 (Viscous flow) 

     P = 3/2 & n = 1 (Volume diffusion) 

     P = 5/3 & n = 2 (Grain boundary diffusion) 

Figure 4.11 shows the Arrhenius plot of ln (Tp  vs 1/T for two different temperature 

range. Calculated activation energy have been tabulated in Table 5-1 for mechanisms. To 

estimate the diffusion parameter, Johnson’s models [32] have been employed separately for 

the same data. Here the assumption was made that during pressureless sintering, mainly 

two mechanisms controls the process: (a) grain boundary diffusion and (b) volume 
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diffusion [32]. For sake of simplicity we have considered that each mechanism is 

contributing independently. Following models were used to estimate diffusion parameters 

of CAC samples: 

For grain boundary diffusion; 

      (4.2) 

And for volume diffusion,  

      (4.3) 

Where, Y = Linear Shrinkage 

 ϒ = Surface free energy (37.3 x 10-3 J/m2) [32]  

 T = Temperature in Kalvin 

 t = Time 

 Ω = atomic volume (molecular volume) (=4.532 x 10-29 m3) 

 k = Boltzmann’s constant 1.381 x 10-23 m2kg/s2K 

 r = Particle radius 

 Dv = Coefficient of volume diffusion 

 Db = Coefficient of grain boundary diffusion 

 b = Grain boundary width 

 

As it has been already observed that the as synthesized CAC is not of uniform size and 

having a range of particle size. Hence to overcome the errors due to particle size variation, 

values of D (diffusion coefficient) has been calculated for the range of particle size as 

shown in Figure 4.12 and Figure 4.13. 

 

To measure the activation energy and frequency factors, ln (Dv) vs (1/T) for volume 

diffusion has been plotted for two different particle size of 8 and 12 µm as shown in Figure 

4.14 (a). Similarly Figure 4.14 (b) shows ln (bDb) vs (1/T) for grain boundary diffusion for 

the same particle size. Logarithmic form of Arrhenius relation [lnD = lnD0 – (Q/RT)] was 

used for the calculation; where R is universal gas constant, D0 is frequency factor and Q is 

activation energy. Results have been shown in Table 4.2. 

 

It has been observed that activation energy is independent of particle size as expected [32] 

and frequency factor increases with particle size. This is because for coarse particles, 
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relatively higher diffusion rate of longer time is require to produce the same amount of 

shrinkage, than for smaller particles. However, as diffusion coefficients of individual 

element in Cr-Al-C ternary system are not yet available, any definite conclusion cannot be 

drawn at present. Also the increase in activation energy indicating towards the different 

diffusive species at higher temperature.  

 

 

(a)               (b) 

Figure 4-11 - Arrhenius plots of equation (4.1) to estimate activation energy in two 

different temperature range (a) 1180-1315 0C and (b) 1315-1400 0C. 

 

 

 

 

 

Table 4.1: Calculated activation energies by Young and Cutler’s model. 

 

 

 

 

 

 

 

 

  Activation Energy (kJ/mol) 

  1160-1315 0C 1315-1400 0C 

Viscous Flow 242 449 

Volume Diffusion 496 912 

Grain Boundary Diffusion 750 1374 
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(a)     (b)  

Figure 4.12: Grain boundary diffusion coefficient, ln (bDb) as a function of temperature and 

particle size; (a) 1180-1315 0C and (b) 1315-1400 0C. 

 

 

 

(a)     (b) 

Figure 4.13: Volume diffusion coefficient, ln (Dv) as a function of temperature and particle 

size; (a) 1180-1315 0C and (b) 1315-1400 0C. 
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(a)           (b) 

Figure 4.14: ln (D) vs 1/T to calculate activation energy & frequency factors for different 

particle size of 8 & 12 µm; (a) 1180-1315 0C and (b) 1315-1400 0C. 

 

 

Table 4.2: Calculated activation energies and frequency factor of CAC using Johnson’s 

models. 

 

Vol. Diffusion GB Diffusion 

Particle Size 8 µm 12 µm 8 µm 12 µm 

  

  Frequency Factor 

  D0v (m
2/s) bD0b (m

3/s) 

1180-1315 0C 8.99 X 107 3.43 X 108 6.09 X 1015 3.09 X 1016 

1315-1400  0C 2.70 X 1019 9.13 X 1019 1.63 X 1030 8.27 X 1030 

  

  Activation Energy (kJ/mol) 

1180-1315 0C 685 685 1103 1103 

1315-1400  0C 1006 1006 1543 1543 

 

For further understanding, back scattered SEM images of polished sample has been taken to 

reveal any phase difference present. As it can be seen in Figure 4.15, some light region has 

been observed and point elemental analysis (EDS) of that region shows Al deficiency. 

Hence some carbides were certainly present with Cr2AlC. Similar observation have also 

been reported by Xiao et al [36]. 
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One possibility is the partial decomposition of Cr2AlC at higher temperature due to the 

small amount of oxygen present. Xiao et al. [36] have reported the decomposition reaction 

at 1500 0C; 

14Cr2AlC + O2 (g) → Cr23C6 + Al8Cr5 + 3Al2O3 + 8CO (g) 

 

XRD pattern of the sintered sample as shown in Figure 4.16, confirms the presence of 

Cr23C6 phases, although Al8Cr5 and Al2O3 could not be detected. 

 

 

 

 

 

 

 

(a)        (b) 

Figure 4.15: SEM backscattered image of CAC sintered at 1400 0C and EDS elemental 

analysis at two selected points (a) and (b). 

 

Element Atomic % 

C  31.3 

Al  1.4 

Cr  67.3 

Element Atomic % 

C  30.15 

Al  1.03 

Cr  68.82 
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Figure 4.16: XRD pattern of CAC sample sintered at 1400 0C for 2 hours. 

 

4.4  Effects of Zr addition on the sintering of CAC powder 

Figure 4.17 shows the sintering curves of all CAC, CAC-1Zr, CAC-2Zr and CAC-5Zr 

samples together. With the addition of Zr huge expansion of samples before the actual 

onset of shrinkage have been observed. In all cases, expansion starts at around 850 0C and 

maximum at about 1110 0C. 

 

 

Figure 4.17: Dilatometer plots of CAC-Zr systems sintered at 1300 0C. 
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Figure 4.18 compares the maximum relative expansion for various amount of Zr added and 

Figure 4.19 shows the shrinkage from maximum expansion to the end of non-isothermal 

part of sintering curve. Increase in shrinkage after maximum expansion were observed with 

Zr content, but final sintered density (Table 4.3) shows the opposite results. This is mainly 

due to the large expansion prior to the onset of shrinkage. This expansion is may be 

contributed partially by the phase transformation of Zr metal. Zirconium has hcp crystal 

structure (α-Zr) up to 855 0C, which then transform to less dense bcc structure (β-Zr). Small 

amount of impurities, particular oxygen strongly affect the transformation temperature [36]. 

Expansion may also partially contributed due to the formation of Cr-Al-Zr ternary phase, 

but this needs further investigations.  

 

 

Figure 4.18: Maximum relative expansion observed during dilatometer sintering for all 

CAC-Zr samples. 
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Figure 4.19: Shrinkage from maximum expansion observed during dilatometer sintering for 

all CAC-Zr samples. 

 

 

Table 4.3: Relative Green & sintered density measured for all dilatometer sintered 

CAC-Zr samples. 

 

 

 

 

 

To further investigate the effect of Zr on the CAC, SEM images have been taken for some 

of the fracture surfaces. EDS elemental analysis have also been carried out for selected area 

of few samples. Figure 4.20 (a), (b), (c) and (d) shows CAC, CAC-1Zr, CAC-2Zr and 

CAC-5Zr at 5kX whereas (e), (f), (g) and (h) respectively  at 10 kX magnification . Figure 

4.21 (a) shows image of CAC-1Zr and elemental maps of Cr, Al and Zr for some image. 

Similarly Figure 4.21 (b) shows the image of CAC-5Zr and its elemental mappings. 

Elemental mapping is showing uniform distribution of Zr except for very few places and it 

was difficult to derive some conclusion. With increased amount of Zr content, pores in 

CAC lamina found to be increased as can be seen in Figure 4.20 (f), (g) and (h). Elemental 

mapping shows the uniform distribution of Zr along with Cr and Al except for very few 

  CAC CAC-1Zr CAC-2Zr CAC-5Zr 

Green Density 62.10% 62.80% 64.10% 63.30% 

Sintered Density 73.60% 70.70% 63.20% 63.80% 
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points. This is possibly because of atomic diffusion of Zr at higher temperature due to 

chemical gradient. XRD (Figure 4.22) shows somewhat higher amount of binary carbides 

along with small amount Cr-Al intermetallic, which may be indicating some decomposition 

during sintering. Amount of binary carbides and AlCr2 increase with Zr content, indicates 

towards the possible decomposition, due to higher amount of Zr. 

 

As shown in figure 4.23, DSC analysis of CAC-Zr samples do not detects any apparent 

change in profile with respect to pure CAC. Three major endothermic peaks attributes 

probably to the melting of some Cr-Al intermetallic compounds. Hence the reason for huge 

expansion of CAC in the presence of Zr is still not very clear and require further 

investigations.  
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Figure 4.20: SEM images of fracture surface of sintered CAC-Zr samples. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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(a) 

 

          (b) 

Figure 4.21: Elemental mapping of selected area of some sintered CAC-Zr samples (a) 

CAC-1Zr & (b) CAC-5Zr). 
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Figure 4.22: XRD of all CAC –Zr samples sintered at 1300 0C. 

 

 

 

Figure 4.23: DSC plots of all CAC-Zr samples. 
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Chapter 5 

Conclusions 

 

Sintering behavior of Cr2AlC powder as well as effect of sintering aids (zirconium powder) 

have been studied in the present work using dilatomeric sintering experiments. 

Experimentally obtained data were analyzed with the help of classical sintering models. 

Non-isothermal sintering kinetics data were analyzed using Young and Cutler’s as well as 

Johnson’s models. Dilatometer curve shows drastic change in shrinkage plot at 1315 0C, 

and hence data has been divided in two different temperature range. Activation energies for 

volume diffusion, grain boundary diffusion and viscous flow have been estimated. Addition 

of zirconium powder causes large expansion of Cr2AlC compact before the onset of 

sintering. The reason for this expansion is not very much clear. However after expansion 

samples shows rapid shrinkage. Role of Zr in Cr2AlC system is not fully understood and 

hence it requires further investigation. 

 



34 

References 

 

[1] M. W. Barsoum, “The Mn+1AXn Phases: A New class of Solids; 

Thermodynamically Stable Nanolaminates”, Progress in Solid State Chemistry 

28 (2000) 201-281 

[2] X. K. Qian, “Methods of MAX phase synthesis and densification – 1”, 

Advances in science and technology of Mn+1AXn Phases, Woodhead Publishing 

2012 

[3] M. W. Barsoum and Miladin Radovic, “Elastic and mechanical properties of 

MAX phases”, Annual Review of Materials Research 41 (2011) 195-227 

[4] M. W. Barsoum and T. El-Raghy, “Synthesis and Characterization of 

Remarkable Ceramic: Ti3SiC2”, Journal of American Ceramic Society 79 

(1996) 1953 

[5] B. B. Panigrahi, M-C Chu, Y-I Kin, S-J Cho and J. J. Gracio, “Reaction 

Synthesis and Pressureless Sintering of Cr2AlC Power”, Journal of American 

Ceramic Society 93 [6] (2010) 1530-1533 

[6] J. C. Schuster, H. Nowotny and C. Vaccaro, “The Ternary Systems: Cr-Al-C, 

V-Al-C and Ti-Al-C and the Behaviour of the H-phases (M2AlC)”, Journal of 

Solid State Chemistry 32 (1980) 213 

[7] Z J Lin, Y. C. Zhou, M. S. Li and J. Y. Wan, “In-situ hot pressing/solid-liquid 

reaction synthesis of bulk Cr2AlC”, Z. Metallkd. 96 (2005) 291 

[8] Zhijun Lin, M. Zhuo, Y. Zhou, M. Li and J. Wang, “Atomic scale 

characterization of layered ternary Cr2AlC ceramic”, Journal of Applied 

Physics 99 (2006) 076109 

[9] H. J. Yang, Y. T. Pei and J. Th. M. De Hosson, “Oxide-scale growth on Cr2AlC 

ceramic and its consequence for self-healing”, Scripta Materialia 69 (2013) 

203-206 

[10] T. H. Scabarozi, S. “Amini, O. Leaffer, A. Ganguly, S. Gupta, W. Tambussi, S. 

Clipper, J. E. Spanier, M. W. Barsoum, J. D. Hettinger and S. E. Lofland, 

“Thermal expansion of selected Mn+1AXn (M = early transition metal, A = A 

group element, X = C or N) phases measured by high temperature X-ray 

diffraction and dilatometry”, Journal of Applied Physics 105 (2009) 013543 



35 

[11] J. M. Schneider, Z. Sun, R. Mertens, F. Uestel and R. Ahuja, “Ab initio 

calculations and experimental determination of the structure of Cr2AlC”, Solid 

State Communication 130 (2004) 445-449 

[12] ASM Handbook, Volume – 7, Powder Metal Technologies and Applications 

[13] ASM Handbook, Volume – 3, Alloy Phase Diagrams 

[14] Zhou, “Methods of MAX-phase synthesis and densification – II” Advances in 

science and technology of Mn+1AXn Phases, Woodhead Publishing 2012 

[15] Randall M. German, “Powder Metallurgy Science”, Metal Powder Industries 

Federation 

[16] Barsoum M. W., El-Raghy T., “Synthesis and characterization of a remarkable 

ceramic: Ti3SiC2”, Journal of American Ceramic Society, 79 (1996) 1953-

1956 

[17] Tzenov N. V., Barsoum M. W., “Synthesis and characterization of Ti3AlC2”, 

Journal of American Ceramic Society 83 (2000) 825-832 

[18] Y. C. Zhou, Z. Sun, S. Chen, and Y. Zhang, “In situ hot pressing solid–liquid 

reaction synthesis of dense titanium silicon carbide bulk ceramics”, Mater Res 

Innovation, 2 (1998) 142-146 

[19] Z-M. Sun, S. Yang and H. Hashimoto, “Ti3SiC2 powder synthesis”, Ceramics 

International 30 (2004) 1873-1877 

[20] B. Hallstedt, D. Music and Z. Sun, “Thermodynamic evaluation of Al-Cr-C 

system”, International Journal of Materials Research 97 (2006) 539-542 

[21] W. B. Tian, P-L Wang, Y-M Kan, G-J Zhang, Y-X Li and D-S Yan, “Phase 

formation sequence of Cr2AlC ceramics starting from Cr-Al-C powders”, 

Materials Science and Engineering-A 443 (2007) 229-234 

[22] Randall M. German, “Sintering Technology”, CRC Press, 1996 

[23] N. F. Gao, J. T. Li, D. Zhang and Y. Miyamota, “Rapid synthesis of dense 

Ti3SiC2 by spark plasma sintering”, Journal of European Ceramic Society 22 

(2002) 2365-2370 

[24] Zhu J. Q. and Mei B. C., “Effect of aluminium on synthesis of Ti3SiC2 by spark 

plasma sintering (SPS) from elemental powders”, Journal of Mater Synth 

Process 10 (2002) 353-358 

[25] W. B. Zhou, B. C. Mei, J. Q. Zhu and X. L. Hong, “Rapid synthesis of Ti2AlC 

by spark plasma sintering technique”, Materials Letters 59 (2005) 131-134 

http://link.springer.com/search?facet-author=%22Y.+Zhang%22


36 

[26] W-B Tian, K. Vanmeensel, P. Wang, G. Zhang, Y. Li, J. Vaeugels, and O. Van 

der Biest, “Synthesis and characterization of Cr2AlC ceramics prepared by 

spark plasma sintering”, Materials Letters 61 (2007) 4442-4445 

[27] W-B Tian, Z-M Sun, Y. Du and H. Hashimoto, “Synthesis reaction of Cr2AlC 

from Cr-Al4C3-C by pulse discharge sintering”, Materials Letters 62 (2008) 

3852-3855 

[28] W-B Tian, P-L Wang, Y-M Kan and G-J Zhang, “Cr2AlC powders preparation 

by molten salt method”, Journal of Alloys and Compounds 461 (2008) L5-L10 

[29] B. B. Panigrahi, J. J. Gracio, M-C Chu, S-J Cho and N. Subba Reddy, “Powder 

synthesis, Sintering Kinetics, and Nickel-Activated Pressureless Sintering of 

Ti3AlC2”, International Journal of Applied Ceramic Technology 7 (2010) 752-

759 

[30] B. B. Panigrahi, N. Subba Reddy, A. Balakrishnan, M-C Chu, S-J Cho and J. J. 

Gracio et al. “Nickel assisted sintering of Ti3SiC2 powder under pressureless 

conditions”, Journal of Alloys and Compounds 505 (2010) 337 

[31] Z. Su, S. Zeng, J. Zhou and Z. Sun, “Synthesis and characterization of Cr2AlC 

with nanolaminated particles” Chinese Science Bulletin 59 (2014) 3266-3270 

[32] B. B. Panigrahi, “Prediction of Diffusion Coefficient of Ti3SiC2 and Cr2AlC 

Ceramics Using Sintering Models”, Transaction of Powder Metallurgy 

Association of India 38 (2012) 71-75 

[33] B. B. Panigrahi, “Evaluation of dimensional change from as received 

dilatometer sintering plot”, Materials Science and Technology 23 (2007) 103-

107 

[34] W. S. Young and I. B. Cutler, “Initial sintering with constant rate heating”, 

Journal of American Ceramics Society 53 (1970) 659-663 

[35] J. Han, A. M. R Senos and P. Q. Mantas, “Nonisothermal sintering of Mn 

doped ZnO”, Journal of European Ceramics Society 19 (1999) 1003-1006 

[36] L-O Xiao, S-B Li, G. Song and W. G. Sloof, “Synthesis and thermal stability 

of Cr2AlC”, Journal of European Ceramic Society 31 (2011) 1497-1502 

[37] ASM Handbook, Volume – 2, Properties of Selected Nonferrous Alloys and 

Special Purpose Materials 

[38] Michel Barsoum, “The MAX Phases: Unique New Carbides and Nitride 

Materials”, American Scientist 89 (4) (2001) 334 



37 

[39] W-B Tian, P-L Wang, Y. Liu, M-H Cao, and Shi-Xi Ouyang, “Mechanical 

Properties of Cr2AlC Ceraminc”, Journal of American Ceramic Society 90 

(2007) 1663-1666 

[40] C. W. Corti, “Sintering aids in powder metallurgy”, Platinum Metals Review 

30 (1986) 184-195 


