
Service Oriented Packet Forwarding in SDN

Rahul Patil

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

Department of Computer Science and Engineering

June 2015

Acknowledgements

Foremost, I would like to express my sincere gratitude to my adviser Dr. Kotaro Kataoka for

his valuable guidance, motivation, enthusiasm, and immense knowledge. Without his guidance

and persistent help the completion of this dissertation would not have been possible. My sincere

thanks to the entire faculty of the CSE department who inspired all the students towards Computer

Science. I am also thankful to Prakash Pawar and Uttam Dhabas for their help in completing this

dissertation. I would not forget to remember my colleagues, for their support, feedback and constant

encouragement, without their cooperation this dissertation would not have been possible. I would

like to make a special mention of DISANET project which gave me an opportunity to work on a

live project and explore new areas of Computer Science.

Finally, I thank my family and friends for supporting me throughout my studies at the institute.

iv

Abstract

Today’s enterprise networks rely on a variety of middleboxes. These middleboxes provide various

improvements on services in the network such as security, management, performance and scalability.

Some of the popular examples of middleboxes are Proxy, NAT, Load-Balancer, Firewall, DPI etc.

Even though middleboxes offer significant benefits, they introduce new challenges such as difficulty in

ensuring service chaining. Service chaining virtually inserts services into the flow of network traffic.

As packets traverse the network, their headers and contents may get modified by middleboxes, that

are deployed along the network path; e.g., NAT and Load-Balancer rewrites IP header, whereas

proxy terminates sessions. These modifications eliminate the possibility of re-purposing available

header fields such as DSCP bits in the IP header for realizing service chain.

To integrate middleboxes into SDN-capable network and leverage the benefits of both, this

research proposes a novel approach using packet tagging, which addresses the challenge of enabling

service chaining without modifying middleboxes. The proposed system tags packets of flows at the

ingress switch, to determine the sequence of middleboxes for these packets and enforce them to

follow the given service chain. Middleboxes do not need to be aware of the added tags and hence no

modifications are required to the middlebox software to guarantee correct middlebox traversal. In

addition the proposed solution is simple and lightweight because we do not require special techniques

to detect the impact of service application on the packet. This thesis also discusses the feasibility

to integrate with the existing infrastructure to support L4-L7 capability. Future work includes

use of 802.1ad for the scalability of the existing solution. A proof of concept of proposed system is

implemented using open source protocol, OpenFlow version 1.0 and open source controller, floodlight

and tested with the MiniNet network emulator by running network testing tool, iperf and tcpdump.

v

Contents

Declaration . ii

Approval Sheet . iii

Acknowledgements . iv

Abstract . v

Nomenclature vii

1 Introduction 1

1.1 Service Chaining . 1

1.2 Overview of the Work . 2

1.3 Thesis Outline . 2

2 SDN and OpenFlow 4

2.1 Software Defined Networking . 4

2.2 OpenFlow Protocol . 5

3 Service Oriented Packet Forwarding in SDN 8

4 Related Work 12

5 System Design 14

5.1 Shallow Packet Inspector . 15

5.2 Packet Tagging at Ingress & Egress Switch . 16

5.3 Flow Rule Compaction . 16

5.4 Deep Packet Inspector . 16

5.5 Policy Specification . 16

6 System Implementation 18

6.1 Data Structures . 18

6.2 Proactive Flow Rule Injection . 19

6.3 Encoding tag in 802.1Q header . 19

6.4 Network Configuration and Traffic Handling for Middleboxes 19

6.5 Addition of a new Middlebox in the Existing Network 21

6.6 Dynamic Policy Change . 22

vi

7 Evaluation 23

7.1 Proof of Concept . 23

7.1.1 Time to Install Flow Rules . 24

7.2 Overhead : SPI and Additional 802.1Q Header . 24

7.3 Benefits of Our System . 24

7.4 Number of Flow Rules . 24

7.5 Discussion . 26

7.5.1 Double Tagging for Scalable Service Chaining 26

7.5.2 Middlebox Placement Problem . 27

7.5.3 SPI Interface . 27

8 Conclusions and Future Work 28

References 29

A VLAN Configuration 32

A.1 IEEE 802.1Q . 32

A.2 IEEE 802.1ad (QinQ) [1] . 32

vii

Chapter 1

Introduction

Today’s networks are growing in terms of bandwidth, number of devices supported, various network

access technologies and services used. Enterprise networks also have similar characteristics and

these characteristics leads to real and pressing problems and the needs that are not likely to go

away e.g. NAT to solve the problem of IP address space depletion, Firewall to deal with various

attacks on internal network from the outside large network. So it is vital to have middleboxes in

the network to address these problems. But the introduction of middleboxes cause new important

and common problem, i.e. Middlebox Sequencing also known as Service Chaining. So it is natural

to look for a solution which effectively solves this problem. Software-Defined Networking (SDN)

is a networking architecture which has been gaining momentum in the past few years. Because

of flexible and programmable feature of SDN, such technology is promising to solve the service

chaining problem effectively. This thesis addresses the challenge of ensuring service chaining without

modifying middleboxes in an enterprise network using SDN.

1.1 Service Chaining

End users are often unaware of the existence of middleboxes in their traffic’s path. Middleboxes

are inevitably deployed in enterprise networks, and more recently in data centers and cloud envi-

ronments. While they have received a significant amount of attention in recent years [2–4], Citation

there is still no satisfactory solution to the problem of directing the traffic through the desired se-

quence of middleboxes. It requires carefully planned network topology, manually set up rules to

route traffic through the desired sequence of middleboxes, and implement safeguards for correct

operation in the presence of failures and overload.

Service chaining is required when traffic needs to traverse through more than one middleboxes

in a specific sequence (e.g. web traffic should be processed by a web proxy and then a firewall). If

more than one sequence of middleboxes/services are possible, then the network configuration needs

to be done so that the right traffic goes through right path of middlebox. This process of network

configuration is complex and rigid, it often leads to the mis-configurations and errors. Lack of

availability of protocols and tools to carry out this configuration makes the service chaining problem

more complex. SDN offers a promising alternative for solving the service chaining problem. It uses

logically centralized management, decouples the data and control plane, and provides programability

1

of forwarding flows.

This thesis tries to give a simple but effective and immediately deployable approach to service

chaining problem by using existing technologies. In brief, we utilize VALN ID field of 802.1Q header

within each packet, which can be used for yet another purpose of forwarding packets in the network.

We tag each packet at the ingress switch, this tag is used to control the forwarding of the packets in

the network. Tagging decision is taken at controller with the help of Shallow Packet Inspector (SPI).

Tagging avoids the need of having per flow basis rules at each switch in the network, this results,

reduction in number of required flow rules. As the middleboxes may modify the contents of the

upper layer packet headers we cannot preserve tag, if we use other available fields such as 6-bit DS

field (part of the 8-bit ToS) at IP layer. In order to overcome this, We make use of VLAN ID field

which is part of 802.1Q header to store the tag. The proposed solution is a novel approach and is

easy to deploy, without much modifications to the existing network configuration. flow-unique rule

at each switch in the network. Our proof-of-concept implementation can achieve service chaining

with minimal changes in the network configuration and without modifying actual middleboxes. We

can configure the middleboxes as per our convenience so that desired network configuration can help

us achieve the service chaining. While the primary focus of this thesis is service chaining, the system

evaluation also shows how it may be useful in different scenarios such as profiling and QoS control.

Profiling can help to define different policy sets for different profiles, whereas QoS control can help

in controlling resource allocation to the flows.

1.2 Overview of the Work

This work includes the study of SDN and OpenFlow [5] for solving the service chaining problem in

the enterprise networks. OpenFlow was introduced by the Open Networking Foundation. This work

utilizes SDN as an infrastructure to achieve service chaining. It is difficult to achieve service chaining

when we have mangling middleboxes in the network. Mangling middleboxes modify the packet

header contents. This modification causes context loss and makes it more difficult to determine

the next hop for packet, in the path of a service chain. The work done in this thesis tries to

solve the problem of service chaining by supporting mangling middleboxes and without making any

modifications to the middleboxes. The proposed system includes SPI to define and apply the policies

across the network. It gives a flow, the service chain corresponding to a path through which it should

traverse. SPI also helps in dropping unnecessary traffic at the edge switches e.g. certain web site is

blocked for some user. The solution includes tagging the packets at the ingress switches and use this

tag for steering. VLAN ID field of 802.1Q header is used to store the tags. The proposed system

is implemented using OpenFlow version 1.0 [5] and floodlight [6] and tested with the MiniNet [7]

network emulator.

1.3 Thesis Outline

This thesis is structured as follows. Chapter 2 briefly explains about the SDN and OpenFlow. We

introduce the problem and summarize the limitations of the existing approaches in chapter 3 and 4

respectively. Chapter 5 and 6 describes system design and implementation of the proposed system

respectively. We evaluate our system in chapter 7. Other possible solution within the scope of SDN

2

and OpenFlow for solving service chaining problem are discussed in chapter 8. Conclusions and

future work are presented in chapter 9.

3

Chapter 2

SDN and OpenFlow

Computer networks are large, complex and difficult to manage. Traditional networks are classified

considering their non-programmable, vertically integrated, closed and vendor specific architecture.

Due to the lack of centralized control it is difficult to control and manage the traditional network.

Networking devices run complex, distributed control software that is typically closed and proprietary

and each device needs to be configured separately.

Software Defined Networking (SDN) is an approach to networking in which control is decoupled

from the physical infrastructure and it promises to simplify the control and management of the

network. SDN makes networks more simple, dynamic, open and programmable. OpenFlow [8] is

the first open standard interface for implementing the SDN.

2.1 Software Defined Networking

A traditional networking device consists of data plane and control plane as shown in Figure 2.1.

Data plane is responsible for forwarding a packet whereas control plane is responsible to determine

where to forward the packet. For instance, in a learning switch, data plane forwards a packet and

control plane maintains a MAC table i.e. reachability of a MAC addresses to determine the output

port for an incoming packet. In SDN architecture, control plane is programmable and logically

centralized (known as the controller) which allows network administrators to control all the data-

plane elements by writing a single control program. For control plane it is possible to have direct

access and manipulation of the forwarding plane. Centralized controller has a global view of the

network.

Data plane communicates with a centralized controller through an open standard (such as Open-

Flow). SDN facilitates the deployment of new services and protocols in the network, due to its vendor

independence architecture and network virtualization. It also reduces the capital and operational

costs for deploying and managing the network. Common SDN applications are network virtual-

ization, network monitoring, network security, network policy implementation, load balancing, user

authentication and cloud or data center network etc.

Figure 2.2 shows a logical view of SDN architecture. With a global view of the network at the

controller, applications and policy-engines which are built on top of the controller, view networking

devices as a single, logical switch. Networking devices needs to implement only basic packet forward-

4

Control plane (Forwarding Table)

Data plane (Packet Forwarding) Data Plane

Control Plane

OpenFlow Controller

OpenFlow

Protocol

OpenFlow SwitchTraditional Switch

TLS/SSL
TCP

Figure 2.1: Traditional Switch vs OpenFlow Switch

ing mechanism and greatly simplifies network design and operation. It also facilitates vendor-neutral

control over the network and real-time alteration of the network behavior.

SDN is not a new idea but has gained traction in recent times [10, 11]. Many vendors (such

as Cisco) have their proprietary implementations of the concept of SDN. OpenFlow is a widely

accepted implementation of SDN across the industry and academic research communities. The

OpenFlow protocol is an open source and aims at making network programmable, innovative and

vendor agnostic. One of the advantages of OpenFlow and its vendor independence is the rise of

the concept of virtual switches. These are software switches which are implemented usually as

user-space or kernel-space software. One such example is Open vSwitch [12, 13] which implements

the OpenFlow protocol. This enables any regular computer to be used as a dedicated switching

hardware and reduces the need of purchasing expensive hardware from proprietary vendors.

2.2 OpenFlow Protocol

OpenFlow [8] is a protocol designed by the Open Networking Foundation(ONF) which promotes

and adopts SDN. OpenFlow was the first SDN standard to realize the concept of Software Defined

Networking. The OpenFlow protocol is spoken between OpenFlow enabled switches and OpenFlow

Controller as shown in Figure 2.1. OpenFlow provides flow based switching which allows to control

the network on per-flow basis.

Match Fields Priority Counters Actions Timeouts Cookie

Table 2.1: A typical flow entry in a flow table

In OpenFlow enabled [5, 8], switches only consists forwarding plane equipped with flow tables

which performs packet lookup and forwarding. A switch can have multiple flow tables containing

several flow rules. Flow rules are similar to forwarding or routing rules in traditional switches and

routers. Each packet is matched against flows rules present in the flow tables. A flow rule includes

5

Network Device Network Device

Network Device

Network Device

Business Applications

INFRASTRUCTURE LAYER

CONTROL

LAYER
SDN

Control

Software Network Services

API API API

Control−Data Plane Interface

(e.g., OpenFlow)

APPLICATION LAYER

Figure 2.2: Software-Defined Network Architecture (Source: [9])

Ethernet VLAN IP TCP/UDP
Ingress Ether Ether Ether VLAN VLAN IP IP IP IP TCP/UDP TCP/UDP
Port Src Dst Type Id Priority Src Dst Proto ToS bits Src Port Dst Port

Table 2.2: Match fields used to match against packets

a match, priority, counters, actions, timeouts and cookies as shown in Table 2.1. Match fields which

are part of flow rules are used to compare against the incoming packets for matching. It currently

supports matching up to the transport layer as shown in Table 2.2.

When a new flow comes to OpenFlow switch, it forwards the packet to the controller through

the packet in message. Controller then determines the actions for this new flow depending on the

logic implemented. Depending on this logic, an OpenFlow switch may function like a router, switch,

firewall, or network address translator etc. To handle this new flow in future, controller either

installs a flow rule on the switch by sending a flow mod message or sends a packet out message.

In case of flow rule installation further packet in messages will not be sent to the controller for

the same flow unless it is mentioned explicitly in the action. Each flow rule has set of actions to

be taken on matching packets, e.g. it can forward the packet to a port or to the controller or it

may simply drop the packet. These actions may also include modifications to packet header, e.g.

changing the destination mac, changing the VLAN (Virtual Local Area Network) tag. Whenever

a packer matches with the flow rule corresponding counters are updated and corresponding actions

are carried out.

Each flow rules has two timeout values: Idle timeout and Hard timeout, which controls it’s

automatic expiration from the flow table. Flows can also be removed explicitly by the controller.

6

If there is a match on multiple flow rules then the match is defined to be with the highest-priority

matching flow rule, where higher numbers are higher priorities. The cookie field is an opaque data

value that is set by the controller at the time of flow rule installation. It is not used for processing

packets but may be used by the controller to filter flow statistics, flow modification, and flow deletion.

The OpenFlow protocol works on top of TCP and has support for TLS/SSL encryption which allows

secure channel between controller and OpenFlow switches. Currently a few hardware vendors like

Big Switch Networks, HP, and Pronto support OpenFlow in their hardware switches. Some of the

available OpenFlow controllers are Floodlight [6], Ryu [14], Trema [15], NOX/POX [16] etc.

7

Chapter 3

Service Oriented Packet

Forwarding in SDN

Service chain determines the set of services through which a particular flow of packets must pass

before reaching it’s destination. Network policies typically require packets to go through more than

one middleboxes at a time for example, network administrator might want to process HTTP traffic

or web traffic, first through IDS followed by Proxy, because unmodified payload can be inspected at

IDS. SDN can enforce such policies without the need of manually planning middlebox placements

or statically configured routes, but at the same time SDN may lead to inefficient use of the available

switch TCAM (e.g., we might need several thousands of rules)

S4

IDS

NAT

Firewall

S1

S2

S3

S5 S6

User 1

User 2

Figure 3.1: An Example of Service Chaining Problem

In Figure 3.1, there are three middleboxes each one providing a unique service. NAT translates

private ip addresses to public ip addresses. Firewall allows and blocks access to certain destinations

for internal users as well as to protect internal network from external attacks. IDS monitors users

activities in the network for detecting malicious behaviour, it also alerts administrator for policy

violations. Suppose there are two users in the network, network administrator has defined different

policies for User1 and User2. For User1 all the traffic should follow middlebox policy NAT-Firewall

whereas for User2 all the traffic should follow middlebox policy NAT-IDS-Firewall. Unfortunately,

8

the traffic exiting the NAT will have same source ip thus, it is challenging to steer the User2’s traffic

at S5 so that it does not violate policy. Many middleboxes are stateful and require visibility into

both forward & reverse flows for correctness, SDN needs to ensure that, a flow passes through same

stateful middleboxes in both direction. Dynamic modification of the incoming traffic (especially

the packet headers) at the middleboxes is the key issue for installing correct forwarding rules at

the switches to steer the flow as desired. Once the packets belonging to a flow are modified at a

middlebox, then the forwarding rules in downstream switches on the path of the flow must account

previously done modifications e.g. NAT translation as explained in earlier example. So in this case

it is important for the controller to know such translation and thus installs the correct forwarding

rules to direct the traffic to the next middlebox or to the correct destination. But this requirement

makes the controller dependent on the middlebox behavior, and due to the closed and proprietary

nature of the middleboxes it further complicates the problem.

As the complexity and scale of enterprise network increases, it is becoming more difficult to rely

on the manual configurations as it fails to ensure the following highly desirable properties which are

necessary for service chaining.

• Correctness [17]: Right traffic should traverse through right sequence of middleboxes under

all possible conditions, as specified by the network administrator in the form of network policies.

Configuring layer-2 switches and layer-3 routers to enforce service chain involves tweaking large

number of network devices. It is highly complex and error-prone process. For example, physical

topology change such as the failure or addition of a network link may cause the network traffic

getting routed through alternative path instead of the network path containing mandatory

firewall, which violates data center security policy.

• Flexibility [17]: Adding, removing or updating the policy for a particular applications traffic

i.e a flow in the network, should be easily configurable. Doing it manually requires significant

engineering and configuration changes. e.g. adding an SSL offload box facing web traffic needs

identification of a point in the network through which all web traffic passes and then manual

insertion of the SSL offload box at that point.

• Efficiency [17]: Traffic should not travel across unwanted middleboxes. To force the traffic to

pass through middleboxes, on-path deployment is carried out, which causes all traffic passing

through a specific route in the network to traverse the same sequence of middleboxes which

are deployed along the route. However, different applications have different requirements, e.g.

A simple web application may require its traffic to pass through a firewall and then by a

load-balancer, whereas an Enterprise Resource Planning (ERP) application may require all its

traffic must be processed by a dedicated custom firewall followed by an intrusion prevention

system. Since all traffic passes through the same middleboxes, the intrusion prevention box

and the custom firewall will be utilized unnecessarily for the web traffic. This causes wastage

of the valuable network resources.

• Scalability: The number of middleboxes deployed in an enterprise networks are increasing

day by day and hence the system should scale according to hundreds-to-thousands of possible

service chains. At the same time high-speed memory (such as TCAMs) of the SDN enabled

switches is limited. Number of flow rules required for service chaining should be within the

9

limitations of the available resources and system should scale as per the requirements of the

enterprise network for new middleboxes.

Behaviour of various Middleboxes

Middlebox Input Actions Timescale

FlowMon Header No change -
IDS Header, Payload No change -

IP Firewall Header Drop? -
Redundancy eliminator Payload Rewrite payload Per-packet

NAT Flow Rewrite header Per-flow
Load balancer Flow Rewrite headers & reroute Per-flow

Proxy Session Map Sessions Per-session
WAN-Opt Session Rewrite header Per-session

Table 3.1: Taxonomy of the dynamic actions performed by different middleboxes (Source: [4])

Table 3.1 summarizes the various types of middleboxes, commonly used in today’s enterprise

network and their characteristics such as, the kind of input traffic they process, their actions, and

the timescales at which the dynamic traffic transformations are carried out. For example, NAT

rewrites source and destination IP and port fields after checking its state table while firewall checks

packet header and payload information to decide whether to drop the packet or forward it ahead.

It is important to note that middlebox nature may differ from vendor to vendor. For example, the

NAT may assign the source port from the pool of available ports or it may increase it randomly

or sequentially when a new host connects. This depends on the vendor specific implemented logic.

In addition to this we can observe that middlebox processing takes place at different timescales,

modifies content at different layers and operate at various granularity’s e.g. per-packet, per-flows or

per-session. Fig 3.2 shows TCP Segment processing on the today’s Internet (Source: [18, 19]). All

the fields in red color get modified by the middleboxes such as router, NAT and Application Level

Gateways.

Lack of availability of protocols and tools to carry out necessary configuration to steer the traffic

and various existing approaches to solve this problem such as utilizing various fields in the packet

header to store the contextual information for steering [3, 20], heuristic correlation of the flows to

track the flow for further steering, extensions to middleboxes in order to generate and consume

contextual information in the form of tag at the middleboxes, providing separate dedicated headers

for service chaining, fail to satisfy the highly desirable properties as mentioned earlier. Prior work

(e.g. [3,20]) has repurposed the DSCP bits in the IP header for tagging, which then used for correct

steering. However this approach may work in practice but they are based on the assumption that

DSCP bits are not used within the network and middleboxes emit them unmodified. The former

assumption prevents QoS use within the network, and the latter may not be true at all.

This thesis proposes a novel approach to solve the service chaining problem by tagging the

packets at the ingress switches and use this tag for steering. VLAN ID field of 802.1Q header is used

for storing the tags. The proposed system includes Shallow Packet Inspector (SPI) to define and

apply the policies across the network. These policies define the service chain corresponding to a flow

10

IHLVer

SFDPreamble

Preamble

Protocol

Ethernet Type

Source MAC Address

Source MAC Address Destination MAC Address

Destination MAC Address

Identification

TTL

Source IP address

Destination IP address

Checksum

Destination PortSource Port

Sequence number

Acknowledgment Number

FlagsOffset Window

Checksum

Options

Payload

Tos Total length

Flags Fragment Offset

Urgent Pointer

Payload

Source MAC Address

TTL

Identification

TosIHLVer Total length

Source IP address

Destination IP address

Options

Window

SFDPreamble

Preamble

Flags

ChecksumProtocol

Destination PortSource Port

Sequence number

Acknowledgment Number

FlagsOffset

Checksum

Fragment Offset

Ethernet Type

Destination MAC AddressSource MAC Address

Destination MAC Address

Urgent Pointer

Ethernet

IP

TCP

ReservedReserved

Figure 3.2: MAC, IP and TCP Segment processing on the today’s Internet

through which it should traverse. In addition to successfully ensuring service chaining this system

also helps in dropping unnecessary traffic at the edge switches e.g. certain web site is blocked for

some user, then corresponding blocking rule will be installed at the user’s ingress switch.

11

Chapter 4

Related Work

Service chaining or middlebox sequencing is a known problem and is of growing importance. Various

approaches have been proposed to solve it in recent years.

Single box running multiple services: this approach combines multiple services into a single box.

New services can be added by adding new service cards in the existing box, but in case of closed

and proprietary middleboxes this approach makes it difficult for integration. It also suffers from the

scalability issues as a single box can not be expanded beyond the practical limitations e.g. limited

bandwidth capacity. On top of these issues it is vulnerable to single point of failure.

Network Service Header (NSH) [21] also tries to solve the service chaining problem by adding an

additional header to each packet which can be used by middleboxes for traffic steering. However this

approach necessitates the middleboxes to be aware of the additional headers and in turns creates the

need to modify middleboxes. The main drawback is the increased overhead due to the additional

header for each packet.

StEERING [2] utilizes pipeline feature introduced in OpenFlow version 1.1 for service chaining.

OpenFlow version 1.1 supports 64-bit metadata field [8]. It’s design requires one bit for the direction

and remaining 63 bits are used to encode service chain, allowing a maximum of 63 distinct services

in the network. It also talkes about how to select the best locations for placing the services in the

network in order to optimize the performance. However it does not clearly mention how to deal in

case of mangling middleboxes, as well as how to ensure the processing of flow in a given order of

services.

SIMPLE [4] introduces heuristic correlation of the traffic payloads while entering and leaving

middleboxes to correlate flows. It requires multiple packets to be sent to the controller for correlating

and is error-prone, SIMPLE has 19% error rate. Finally, this process has high overhead, as multiple

packets per flow need to be processed at the controller in a stateful manner (e.g., when reassembling

packet payloads). It mainly focuses on balancing the middlebox load, one major contribution of

the paper is an approach to tracking packets when processed by service functions that modify the

header information.

FlowTags [3] proposes simple extensions to middleboxes to add tags, carried in packet headers.

It associates addition contextual information in terms of tags with a traffic flow as it traverses the

network. It has two main drawbacks first one requires middlebox modifications due to tag generation

& consumption at middleboxes. and second one introduces additional overhead due to rewriting of

12

packet headers at every middlebox.

Handles Maintains No Middlebox Minimal
Framework Mangling Affinity Modifications Rules

pLayer [17] 4 5 4 ?
SIMPLE [4] w 5 4 4

Per-Flow Rules 5 4 4 5

FlowTags [3] 4 ? 5 4

StEERING [2] ? 4 4 5

SC Header [21] 4 ? 5 ?

Table 4.1: Comparison of existing approaches for service chaining (Source: [20])

13

Chapter 5

System Design

MB1

End User End User

ControllerSPI

Ingress Switch Egress Switch

S SS2 3 4

MB

MB

MB

MB

2 3 4

5

 H1 H2

Internet

S1

End User

 H3

DPI

Figure 5.1: Expected Network Diagram for Designing System

Figure 5.1 shows expected network diagram for proposed system, which consists of SDN switches,

SPI and a SDN Controller. Controller controls every switch in the network and communicates with

SPI through an API. The forwarding plane can be configured in order to meet the requirement of

flow steering. Controller is responsible for implementing network policies (service chain) through

the tag-based flow rules. Controller installs such flow rules on the switches. Tag is stored in VLAN

ID field of 802.1Q header. Each packet of the flow, is added with an additional 802.1Q header and

forwarded based on VLAN ID stored in it.

Figure 5.2 shows the flow of messages in SDN controller. Controller receives the information

about a new flow through packet inmessage. Steering module and Learning Switch module processes

packet in message at the controller. Steering module extracts the original packet from the packet in

message and feeds it to SPI. SPI processes original packet based on the admin defined policies.

14

Output generated by SPI contains either the drop action to drop the flow or the meta-information

including middlebox sequence through which the flow should traverse. Steering module then installs

appropriate flow rules on corresponding switches with the help of Tag Generator module. Tag

Generator module is responsible for tag generation depending on the direction of the flow. The Tag

Generator module is decoupled from the rest of modules for augmentation purpose.

Flow rules installed by steering module performs one of the following actions on the input packet,

1. Add VLAN ID and then forward (adding tag for forward direction flow)

2. Forward a packet through an appropriate outgoing port

3. Rewrite destination mac address, VLAN ID and then forward (forwarding to a middlebox)

4. Strip VLAN ID and then forward (done processing by all middleboxes, ready to deliver to

destination)

5. Add VLAN ID, VLAN PCP and then forward (adding tags for reverse direction flow)

Tag Generator

Flow−Mod and Packet−Out messages

Packet−In and Flow−Removed messages

Interface

Learning Switch
Module

Steering
Module

Packet−In
Handler

SDN Controller

Admin−defined Policies

FeedbackSPI

DPI

Figure 5.2: Flow of messages in the system

The basic design components of the system are explained below.

5.1 Shallow Packet Inspector

When new flow comes, packet in message is sent to the controller by an ingress switch. Controller

utilizes SPI to classify the flow and to find related information e.g. middlebox sequence, the flow

15

should traverse through. SPI contains admin defined policies, these policies can be updated dynam-

ically. The policies defined at SPI are lightweight for processing compared to DPI. Controller then

calculates the appropriate tag values based on the middlebox sequence and installs the flow rules on

corresponding switches. This requires only those primitives commonly available within SDN (e.g.

those defined by the OpenFlow 1.0 standard).

5.2 Packet Tagging at Ingress & Egress Switch

The flow rules installed by controller on ingress switch tags the packets of the forward direction

flow whereas the egress switch tags the packets of the reverse direction flow. This tag is used for

forwarding the packet to pass through the middleboxes within the network, as specified by the

policy. Some middleboxes are stateful and requires to process the flow in both direction. In order

to maintain flow affinity controller proactively installs flow rules for the reverse flow. Reverse flow

passes through the same middleboxes in reverse order.

5.3 Flow Rule Compaction

To reduce the number of forwarding entries in larger networks, we leverage the observation that

intermediate switches of each segment of a physical chain of services do not need fine grained flow

rules (e.g. 5-tuple flow rules). The only role they serve is to forward the packet toward the switch that

is connected to the next middlebox in the sequence. In the proposed system intermediate switches

use tag to forward the packet within the network. Tag corresponds to a service chain. Intermediate

switches forward packets based on tag, until it is passed through all the services indicated by tag.

Multiple flows can have same policy (service chain), which results into same tag for multiple flows.

Same tag based flow rules are used for forwarding if these flows. This avoids the need of having flow

specific rules on intermediate switches and results in compact flow table.

5.4 Deep Packet Inspector

Some flows may be classified as suspicious by SPI in the initial stage. DPI has more resource

consuming policies compared to SPI e.g. policies which require application layer detection. Due to

the exclusion of the lightweight policies DPI is fully utilized for the later seven. DPI will monitor

network traffic and analyze it against a rule set defined by the administrator. DPI will then generate

the log based on what has been identified. e.g. torrent traffic. The log generated by DPI after

processing these flows is provided as a feedback to SPI. It is practically possible to generate the

lightweight policies from the log generated by DPI. It leverages DPI’s L4-L7 capability furthermore

reduces processing of such flow in near future and improves DPI’s utilization.

5.5 Policy Specification

Network policies can be viewed as rules. Each policy is a set of policy id, action, matching condi-

tions, meta-information, priority, timestamp. Every policy has its own id i.e. policy id. Matching

conditions includes protocol, source ip & port, destination ip & port and direction. Direction tells

16

which way the signature has to match i.e. single direction or both directions. Meta-information

consists of middlebox sequence that the matching packet should follow. Policies can be prioritized.

Priority is a numeric value which can range from 1 till 255. Policy with a higher priority will be ex-

amined first. The highest priority is 1. Timestamp follows unix time system which is defined as the

number of seconds that have elapsed since 00:00:00 Coordinated Universal Time (UTC), Thursday,

1 January 1970.

An incoming packet to SPI is compared against the conditions of the policies. If a match occurs

between the rule and the incoming packet, the action & meta-information defined in the rule are

provided to controller. Controller takes the necessary actions based on what has been identified. In

order to apply a network policy the incoming packet must match against the conditions mentioned

in the policy.

• Policy-1: allow tcp 10.0.0.1 any → 10.0.0.5 any (msg:“Service Chain:1-2-3”; pri-

ority: 10, timestamp:1434782226, sid:33333)

• Policy-2: drop tcp 192.168.0.10 any ↔ 182.6.45.3 any (msg:“bad-unknown”; pri-

ority: 1, timestamp:1434782226, sid:44444)

17

Chapter 6

System Implementation

6.1 Data Structures

Following data structures is defined and maintained to efficiently store and retrieve the information

about policy match results, middleboxes and their placement in the network. Controller feeds the

actual packet in to SPI and determines the corresponding action as specified by the matched policy.

Then flow rules are installed on the appropriate SDN switches with appropriate match and action

primitive for steering flows.

• RuleIdentifier is a class which has 5 tuple which includes Source IP address, Destination IP

address, Source Port number, Destination Port number and Protocol as a data member.

• RuleIdentifierAction is a class which contains middlebox sequence and action (allow/drop)

as a data member.

• MBConnect is a class whose data members give middlebox specific information such as

attach point (Switch DPID, port), MAC address and and its sequence number (ID) among

all the available middleboxes in the network. This class can be extended for adding in more

middlebox specific information.

• RuleList is a hash table where RuleIdentifier is used as a hash key to look up Switch DPID.

It is mainly used to maintain flows for which SPI action is to be decided by SPI.

• RuleListAction is a hash table where RuleIdentifier is used as a hash key to look up mid-

dlebox sequence and action.

• SwidMb is a hash table where middlebox identifier (as specified in the sequence) is used as a

hash key to look up the MBConnect which provides middlebox specific information.

It is important to note that either RuleIdentifierAction of RuleListAction will be filled once

we get the response from SPI, RuleIdentifierAction gives the action as per the matched policy

for RuleIdentifier’s 5 tuple. SwidMb provides the middlebox specific information as well as it’s

attachment point in the network. This attachment point is provided by administrator at the time

of it’s introduction in the network.

18

6.2 Proactive Flow Rule Injection

Steering module as shown in 5.1 is responsible for injection of proactive flow rules. Proactive flow

rules allow each switch to know how to process a particular flow in advance, rather than reacting to

each new packet in Proactive flow rules eliminates the latency induced due to controller consultation,

for obtaining the flow rule upon arrival of every new flow. Proposed system installs proactive flow

rules on the intermediate switches along the end-to-end path for both direction flow. This helps in

eliminating the expected delay that a known flow will experience, and all packets are forwarded at

line rate.

6.3 Encoding tag in 802.1Q header

As stated in Section 5.2, packets belonging to a flow are tagged at ingress switches. In order to

preserve tags across various middleboxes, we make use of VLAN ID field in 802.1Q [22] header.

VLAN ID field in 802.1Q header is of 12 bits. We divide these 12 bits in 4 groups, each containing 3

bits. First 3 groups are for storing middlebox sequence and the last group is for storing the count of

middleboxes as shown in Figure6.1. In case of forward direction flow the last group shows count of

middleboxes that the packet has already traversed. In case of reverse flow it shows the (count− 1)

middleboxes that packet has yet to be traversed. Count starts with 0 for forward direction flow and

1 more than the number of middleboxes in the sequence, for the reverse direction flow.

3 bits in a group allow us to support 7 distinct middleboxes (after ignoring 000 combination)

for sequencing, but only 3 can be sequenced at a time, as per the current algorithm. As defined

by IEEE 802.1Q, Priority Code Point (PCP) can be used by QoS disciplines to differentiate traffic.

Its usage is undefined and left to the implementation. We us PCP field to indicate the direction of

the flow. In the current implementation PCP field is utilized only for indicating the direction of the

flow. In case of reverse flow, this field is set with a unique combination out of the seven possible

combinations, currently we are using binary 011 i.e. decimal 3. Both PCP field and VLAN ID are

available in OpenFlow v1.0 to specify as part of the matching field in a flow rule. Using both of

these fields the flow can be steered in the network, no matter how a middlebox may modify the

packet contents, as these fields will be preserved.

1MB MB2 MB3

TPID

16 bits 12 bits
1

3 bits bit

TCI
Vlan ID

Vlan IDPCP
3 bits

Count

D
E
I

3 bits3 bits3 bits

Figure 6.1: 802.1Q Header, utilized for storing tags

6.4 Network Configuration and Traffic Handling for Middle-

boxes

In the proposed system, VLAN ID is used to indicate the service chain through which a packet

has to travel. The following Table 6.1 shows the mapping between a particular VLAN ID and the

19

middlebox sequence indicated by it. Each middlebox can have multiple VLAN IDs, that are used

for serving to the flow in different service chains. Each of the logical interfaces is configured with

VLAN ID which corresponds to the part of service chain, e.g. Table 6.2 shows the conversion of

middlebox sequence 2-1-3/2 to the VLAN ID 1113. MB1 should be configured with VLAN ID 1113.

Refer 8 for how the vlan configuration is carried out on Linux based server. All the packets tagged

with VLAN ID 1113 will be forwarded to MB1. VLAN ID 1113 indicates that packet has to traverse

the service chain of MB2-MB1-MB3, and till now MB2 and MB1 has been traversed and next it

should be forwarded to MB3. Because a logical interface can have multiple IP addresses, each from

different subnets, even a service which, requires packet forwarding over multiple subnets, e.g. NAT

and firewall, can be provided on only one logical interface using one VLAN ID. The following Figure

6.2 shows the configuration of a network interface on a middlebox that is serving as NAT.

Upon the arrival of a new flow, the SDN switch learns how it should tag the matching packets

and forward. The switch refers the input port and VLAN ID of an incoming packet and converts

the VLAN ID to the one which is owned by the corresponding middlebox’s logical interface. The

packet is sent to the middlebox with a proper VLAN ID for processing. Destination MAC address

is rewritten depending on the requirement of the middlebox, as some middleboxes do not require an

incoming packet to have destination mac address to be the same as that of the middlebox’s interface,

e.g. an Intrusion Detection System (IDS) monitors the network traffic, by putting its interface into

promiscuous mode. An interface in promiscuous mode passes all traffic to operating system rather

than passing only the frames that the CPU is intended to receive. All network traffic is passed to

such an interface using port mirroring technique.

No matter how the corresponding packet is modified in IP header or other upper layer headers,

it comes back from the middlebox using the same VLAN ID to the switch. Using the VLAN ID,

the SDN switch can still determine the next middlebox that the incoming packet has to be destined.

The new VLAN ID will remain same till it reaches switch which is connected to next middlebox in

the sequence. After reaching the next switch the same procedure repeats till the egress switch where

the VLAN ID is stripped and packet is forwarded to its destination. In the proposed system, the

VLAN IDs to be assigned to middleboxes need to be carefully managed and configured together with

IP address to be used for the service. In the current system network configuration for middleboxes

is done manually, we plan to automate this procedure in the future work.

Middlebox-
Sequence/Count Vlan ID

1-2-3/0 664
1-2-3/1 665
1-2-3/2 666
1-2-3/3 667
1-2-3/4 668

Sequence MB1-MB2-MB3

Middlebox-
Sequence/Count Vlan ID

2-1-3/0 1112
2-1-3/1 1113
2-1-3/2 1114
2-1-3/3 1115
2-1-3/4 1116

Sequence MB2-MB1-MB3

Table 6.1: Middlebox-Sequence/Count and corresponding Vlan ID

20

Sequence count Representation
MB2 MB1 MB3 2 2-1-3/2

0 1 0 0 0 1 0 1 1 0 1 0 1113

Table 6.2: Conversion of Middlebox-Sequence/Count (2-1-3/2) to VALN ID (1113)

Middlebox
Sequence/Count Vlan ID PCP Meaning

1-2-3/0 664 0
Forward Direction

Packet has not traversed any middleboxes

1-2-3/1 665 0
Forward Direction

Packet has traversed First middleboxes in the sequence

1-2-3/4 667 3
Reverse Direction

Packet has to traverse (4− 1) i.e. 3 middleboxes
in reverse direction of the sequence

1-2-3/3 666 3
Reverse Direction

Packet has to traverse (3− 1) i.e. 2 middleboxes
in reverse direction of the sequence

Table 6.3: Middlebox Sequence/Count, PCP and its meaning

6.5 Addition of a new Middlebox in the Existing Network

Whenever a new middlebox is added to the network, Administrator needs to update the database

containing middlebox specific information such as attach point (Switch DPID, Port), MAC address

and its sequence number (ID) among all the available middleboxes in the network. Middlebox-

specific information may introduce the requirement of changing the destination MAC address or

copying the packet to the port connected to the middlebox. In addition Administrator also needs to

determine VLAN IDs to be assigned to the middlebox depending on its sequence number (ID). All

possible VLAN IDs together with IP addresses should be carefully configured. This configuration

can be done dynamically using expect script [23], expect scripts can help automate this configuration

procedure. Current implementation of the system requires this configuration to be done manually.

10.0.0.0/24

192.168.0.0/24

GW

NAT

H1

eth0.X

eth0.Y Internet

Figure 6.2: Example Configuration for NAT

21

6.6 Dynamic Policy Change

Administrator can change the network policies dynamically e.g. in Figure 3.1 administrator might

want to change the initially defined policy for User2 which is NAT-IDS-Firewall to IDS-NAT-Firewall.

In case of such policy change the current implementation of system does not reflect the change

immediately, but the modified policy will be applied after the completion of the existing flow. It is

possible to incorporate the immediate reflection of policy change with current system design. We

plan to extend current system implementation to include this feature in future work.

22

Chapter 7

Evaluation

7.1 Proof of Concept

As a proof of concept, service chaining was verified with virtualized topology created with MiniNet

[7], enabling Floodlight 0.90 [6] as SDN controller and Open vSwitch 1.9.0 [12, 13] as SDN Switch

on MiniNet VM.

 1H H5

Switch
 Egress

1230
1230

1231 1231 1233

1233

Switch
 Ingress

MB1

S SS2 3 4

 S5 S
6

S1

(10.0.0.5)
iperf server

(10.0.0.1)
iperf client

1232 1232 1233

1232 1234

1

1 1 1
1

1
2

2 2 2 2 333 2

MB2

MB3

Figure 7.1: Test Scenario

As shown in Figure 7.1 test topology consists of six OpenFlow enabled switches, 3 synthetic

middleboxes and two hosts H1 & H5. Policy as shown below is defined at SPI. We implemented syn-

thetic, libpcap based middleboxes for imposing various types of middlebox behavior on the network

traffic.

• Policy : alert tcp 10.0.0.1 any → 10.0.0.5 any (msg:“1-2-3”; sid:33333)

Policy indicates, tcp traffic for Network Source 10.0.0.1 (H1) and Network Destination 10.0.0.5

(H5) should follow the service chain MB1-MB2-MB3. This policy has the policy id 33333. We used

iperf to generate tcp flow between H1 and H5. Upon arrival of packet in message from the ingress

switch S1, controller proactively installs the flow rules shown in Table 7.1. Installed flow rules also

consider the reverse flow i.e. from H5 to H1. Once the VLAN header is stripped from Ethernet

23

frame, e.g. for a flow from H1 to H5, S5 strips the 802.1Q header from Ethernet frame, packet can

be forwarded toward the destination simply based on its destination mac address. Learning Switch

module in Floodlight [6] can take care of such flows. Since there was no other traffic we examined

per-interface logs including timestamp to verify that packet is following intended path.

7.1.1 Time to Install Flow Rules

The installation of flow rules was performed to all the switches along the path for both forward and

reverse direction flow upon the arrival of a new flow on S1. Time required for installing flow rules on

all the switches was 637 ms i.e. actual time required to process packet in message. Out of the total

time required to process packet in message significant amount of delay was introduced by SPI, it

was 614 ms. Which means 27 ms were required by the steering and tag generator module to install

the flow rules, once we receive response from SPI.

7.2 Overhead : SPI and Additional 802.1Q Header

Controller takes help of SPI to classify the flow and to find the related information, this introduces

delay in the controllers decision making process. Each packet of the flow is added with an additional

802.1Q header, VLAN ID field is used to store tag required for steering. This causes the overhead of

4 Bytes with each packet of the flow. For 1 MB data the overhead incurred due to additional 802.1Q

Header is approximately 3 KB. Efficiency of packet tagging is directly proportional to the packet

size, Use of 802.1Q Header in an enterprise network is very common. does not introduce significant

overhead on the operation of the enterprise network

7.3 Benefits of Our System

No changes are required to the middleboxes to enforce service chaining. The system is friendly

with the existing Layer 2 switches because they also understand VLAN’s and can be configured in

truncated mode to forward the tagged packets. Due to the partitioning of policies between SPI and

DPI the load on DPI is reduced. System exhibits distributed firewall nature due to the drop action

performed by the controller on the ingress switch for the end host. Dropping unnecessary traffic

at ingress switches improves bandwidth utilization and performance of the network. Middlebox

placement does not affect the correctness of the solution, it allows flexibility in middlebox placements.

7.4 Number of Flow Rules

Total number of flow rules required across all the switches, for steering are directly proportional to

the number of middleboxes. We can find out this number using,

X =
n∑

k=1

n!

k!
(7.1)

where X gives total number of flow rules required, when n number of middleboxes are considered

for the service chaining in the network.

24

T
ab

le
7.
1:

F
lo
w

R
u
le
s
in
st
al
le
d
on

th
e
sw

it
ch
es

fo
r
S
eq
u
en

ce
2-
1-
3

S
w

D
ir

M
a
tc
h

A
c
ti
o
n

S
1

F
tc
p
,n
w

sr
c=

10
.0
.0
.1
,t
p
sr
c=

47
86

,
ac
ti
on

s=
m
o
d
v
la
n
v
id
:1
11

2,
ou

tp
u
t:
2

n
w

d
st
=
10

.0
.0
.5
,t
p
d
st
=
50

01

S
2

F
d
l
v
la
n
=
11

12
ac
ti
on

s=
ou

tp
u
t:
3

F
d
l
v
la
n
=
11

13
ac
ti
on

s=
m
o
d
v
la
n
v
id
:1
11

4,
m
o
d
d
l
d
st
:0
0:
00

:0
0:
00

:0
0:
02

,o
u
tp
u
t:
1

F
d
l
v
la
n
=
11

14
ac
ti
on

s=
ou

tp
u
t:
3

R
d
l
v
la
n
=
11

15
,d
l
v
la
n
p
cp

=
3

ac
ti
on

s=
m
o
d
v
la
n
v
id
:1
11

4,
m
o
d
d
l
d
st
:0
0:
00

:0
0:
00

:0
0:
02

,o
u
tp
u
t:
1

R
d
l
v
la
n
=
11

14
,d
l
v
la
n
p
cp

=
3

ac
ti
on

s=
ou

tp
u
t:
3

S
3

F
d
l
v
la
n
=
11

12
ac
ti
on

s=
m
o
d
v
la
n
v
id
:1
11

3,
m
o
d
d
l
d
st
:0
0:
00

:0
0:
00

:0
0:
03

,o
u
tp
u
t:
1

F
d
l
v
la
n
=
11

13
ac
ti
on

s=
ou

tp
u
t:
2

F
d
l
v
la
n
=
11

14
ac
ti
on

s=
ou

tp
u
t:
3

R
d
l
v
la
n
=
11

15
,d
l
v
la
n
p
cp

=
3

ac
ti
on

s=
ou

tp
u
t:
2

R
d
l
v
la
n
=
11

14
,d
l
v
la
n
p
cp

=
3

ac
ti
on

s=
m
o
d
v
la
n
v
id
:1
11

3,
m
o
d
d
l
d
st
:0
0:
00

:0
0:
00

:0
0:
03

,o
u
tp
u
t:
1

R
d
l
v
la
n
=
11

13
,d
l
v
la
n
p
cp

=
3

ac
ti
on

s=
st
ri
p
v
la
n
,o
u
tp
u
t:
2

S
4

F
d
l
v
la
n
=
11

14
ac
ti
on

s=
ou

tp
u
t:
2

R
d
l
v
la
n
=
11

15
,d
l
v
la
n
p
cp

=
3

ac
ti
on

s=
ou

tp
u
t:
1

S
5

F
d
l
v
la
n
=
11

14
ac
ti
on

s=
m
o
d
v
la
n
v
id
:1
11

5,
m
o
d
d
l
d
st
:0
0:
00

:0
0:
00

:0
0:
04

,o
u
tp
u
t:
1

F
d
l
v
la
n
=
11

15
ac
ti
on

s=
st
ri
p
v
la
n
,o
u
tp
u
t:
3

R
d
l
v
la
n
=
11

16
,d
l
v
la
n
p
cp

=
3

ac
ti
on

s=
m
o
d
v
la
n
v
id
:1
11

5,
m
o
d
d
l
d
st
:0
0:
00

:0
0:
00

:0
0:
04

,o
u
tp
u
t:
1

R
d
l
v
la
n
=
11

15
,d
l
v
la
n
p
cp

=
3

ac
ti
on

s=
ou

tp
u
t:
2

S
6

R
tc
p
,n
w

sr
c=

10
.0
.0
.5
,t
p
sr
c=

50
01

,
ac
ti
on

s=
m
o
d
v
la
n
v
id
:1
11

6,
m
o
d
v
la
n
p
cp

:3
,o
u
tp
u
t:
2

n
w

d
st
=
10

.0
.0
.1
,t
p
d
st
=
47

86

25

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7 8

N
um

be
r

of
 fl

ow
-r

ul
es

Number of Middleboxes

Total Number of flow-rules across 20 switches

Figure 7.2

Graph 7.2 shows the comparison between number of flow rules required in case of flow specific

i.e. 5-tuple flow rules and number of flow rules required by our system to steer the flow. We consider

200 distinct flows and 10 switches in the network. We assume that all the middleboxes are spread

across the network and steering of flows requires to pass through all the switches. It is clear from

the graph that this solution does not scale when we have more than 7 middleboxes in the network.

7.5 Discussion

7.5.1 Double Tagging for Scalable Service Chaining

As discussed in Section 7.4 the proposed system does not scale if number of middleboxes in the

network are more than six. To overcome this, the similar approach can be implemented using IEEE

802.1ad. IEEE 802.1ad is a protocol for carrying VLAN traffic on an Ethernet. It is based upon

802.1Q, but allows for VLANs to be nested by adding two tags to each frame instead of one. The

header is as shown in Figure 7.3. This allows us to use an additional 802.1Q header for the earlier

discussed approach, it can solve the scalability problem.

The idea is, we can represent 4094 distinct service chains with outer VLAN ID, inner VLAN ID

can be used to store the next middlebox in the sequence represented by outer VLAN ID. Lets consider

a middlebox is providing service on an interface eth0.b.x. When the packet is tagged with double tag

containing outer tag x and inner tag b, x represents the middlebox sequence MBa-MBb-MBc-MBd

and b represents that the packet has already traversed MBa, next it should be forwarded to MBb.

Match and Set double-tagged VLANs (QinQ) is currently not supported in Open vSwitch [24].

As of linux kernel version 3.10 (released in June 2013) includes support for 802.1ad. Both inner

and outer VLANs are handled by the attached machine (which sees double-tagged 802.1ad VLAN

frames).

26

1 2 3 4 5 6

Destination MAC

1 2 3 4 5 6

Source MAC

1 2 3 4

802.1Q Header

TPID=0x8100 PCP/DEI/VID

1 . . . n

Payload

1 2

EtherType/

Size

1 2 3 4

CRC / FCS

1 2 3 4 5 6

Inter Frame Gap

7 8 9 10 11 12

1 2 3 4 5 6

Destination MAC

1 2 3 4 5 6

Source MAC

1 . . . n

Payload

1 2

EtherType/

Size

1 2 3 4

CRC / FCS

1 2 3 4 5 6

Inter Frame Gap

7 8 9 10 11 12

n = 42–1500

n = 46–1500

1 2 3 4 5 6

Preamble

7 8
SFD

1 2 3 4 5 6

Preamble

7 8
SFD

1 2 3 4 5 6

Destination MAC

1 2 3 4 5 6

Source MAC

1 2 3 4

802.1Q Header

TPID=0x9100 PCP/DEI/VID

1 . . . n

Payload

1 2

EtherType/

Size

1 2 3 4

CRC / FCS

1 2 3 4 5 6

Inter Frame Gap

7 8 9 10 11 12
n = 38–1500

1 2 3 4 5 6

Preamble

7 8
SFD

1 2 3 4

802.1Q Header

TPID=0x8100 PCP/DEI/VID

Figure 7.3: Insertion of 802.1ad double tag in an Ethernet frame [25]

7.5.2 Middlebox Placement Problem

Middlebox placement problem as explained in [2] clearly has an impact on network performance.

Though the middlebox placement is not bounded by any constraints, certain placement strategies are

better and affects end user experience. For example in Figure 3.1, lets consider that it is mandatory

for all the traffic to pass through IDS, then placing IDS at S5 will avoid the delay introduced for

steering between S5 and S3.

7.5.3 SPI Interface

The delay introduced due to external entity (Suricata) can be reduced further by modifying the

existing source code, this requires source code study. The goal is to have one single CPU to treat

the packet from the start to the end. Suricata has different running modes which define how the

different parts of the engine (decoding, streaming, signature, output) are chained.

As explained in [26], One of the mode is the workers mode where all the treatment for a packet

is made on a single thread. This mode can be modified and adopted in our system. it permits to

keep the work from start to end on a single thread. By using the CPU affinity system available in

Suricata, we can assign each thread to a single CPU. By doing this the treatment of each packet

can be done on a single CPU. Finally we need to consider the link between the CPU receiving the

packet and the one used in Suricata. To do so we have to ensure that when a packet is received on

a queue, the CPU that will handle the packet will be the same as the one treating the packet in

Suricata, this can be done by tweaking the fanout mode of AF PACKET.

27

Chapter 8

Conclusions and Future Work

Service chaining or Middlebox sequencing is a challenge because middleboxes modify the packet

headers and makes it difficult to ensure service chaining. Existing approaches fail in the presence of

mangling middleboxes or they require middlebox modifications. We have designed and implemented

a system that can guarantee correct middlebox traversal, without any modifications required to

the middlebox software. We make us of VLAN ID field of 802.1Q header for storing the contextual

information (tag) for service chaining. Our specific contribution in this research is to exploit existing

technology with carefully managed and configured middleboxes to solve the service chaining problem.

Our approach is lightweight and works for any type of middleboxes. Evaluation was done using

virtualized topology created with MiniNet, enabling Floodlight 0.90 as SDN controller, Open vSwitch

1.9.0 as SDN Switch and synthetic, libpcap based middleboxes. Evaluation shows that we can achieve

service chaining even in the presence of mangling middleboxes. We found performance issues, SPI

introduces significant delay and scalability issues, system does not scale in case number of more than

six number of middleboxes. Performance and scalability issues can be improved in the future work.

As future work, performance and scalability issues will be solved by improving SPI interface and

using IEEE 802.1ad respectively. Usage of IEEE 802.1ad are discussed in Section 7.5.1. We will

further analyze the impact of using IEEE 802.1ad in real network. Implementation of kernel module

to preserve PCP bits for incoming and outgoing packets, which gives the direction of flow. We will

perform field trial of the system in live environment. Our system shows feasibility for integration of

DPI, it will be worthwhile to implement an interface between DPI and SPI which supports L4-L7

capability. Currently network configuration for middleboxes is done manually, we will integrate the

expect script based module with the existing system for dynamically adding middleboxes in the

network.

28

References

[1] Configure an Ethernet interface as a 802.1ad (QinQ) VLAN trunk. http://www.microhowto.

info/howto/configure_an_ethernet_interface_as_a_qinq_vlan_trunk.html.

[2] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani, R. Mishra, R. Patneyt,

M. Shirazipour, R. Subrahmaniam, C. Truchan et al. StEERING: A software-defined network-

ing for inline service chaining. In Network Protocols (ICNP), 2013 21st IEEE International

Conference on. IEEE, 2013 1–10.

[3] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul. Enforcing network-wide

policies in the presence of dynamic middlebox actions using FlowTags. In Proc. USENIX

NSDI. 2014 .

[4] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. SIMPLE-fying middlebox policy

enforcement using SDN. In ACM SIGCOMM Computer Communication Review, volume 43.

ACM, 2013 27–38.

[5] ONF Specifications OpenFlow Switch Specification Version 1.0.0. http://archive.openflow.

org/documents/openflow-spec-v1.0.0.pdf 2009.

[6] Project Floodlight. http://www.projectfloodlight.org/floodlight/.

[7] MiniNet. http://mininet.org/.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner. OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Computer

Communication Review 38, (2008) 69–74.

[9] O. M. E. Committee et al. Software-Defined Networking: The New Norm for Networks. ONF

White Paper. Palo Alto, US: Open Networking Foundation .

[10] N. Feamster, J. Rexford, and E. Zegura. The Road to SDN. Queue 11, (2013) 20.

[11] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti. A Survey of

Software-Defined Networking: Past, Present, and Future of Programmable Networks. IEEE

Communications Surveys and Tutorials (Under Review) .

[12] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker. Extending Networking

into the Virtualization Layer. In Hotnets. 2009 .

[13] Open vSwitch. http://openvswitch.org/ 2014.

29

[14] Ryu. http://osrg.github.io/ryu/.

[15] Trema. an open source modular framework for developing openflow controllers in ruby/c. https:

//github.com/trema/trema 2013.

[16] POX. http://www.noxrepo.org/pox/about-pox/.

[17] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switching layer for data centers. ACM

SIGCOMM Computer Communication Review 38, (2008) 51–62.

[18] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet. Revealing middlebox

interference with tracebox. In Proceedings of the 2013 conference on Internet measurement

conference. ACM, 2013 1–8.

[19] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and H. Tokuda. Is it still

possible to extend TCP? In Proceedings of the 2011 ACM SIGCOMM conference on Internet

measurement conference. ACM, 2011 181–194.

[20] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand, T. Benson, A. Akella,

and V. Sekar. Stratos: A Network-Aware Orchestration Layer for Middleboxes in the Cloud.

CoRR abs/1305.0209.

[21] P. Quinn, R. Fernando, J. Guichard, S. Kumar, P. Agarwal, R. Manur, A. Chauhan, M. Smith,

N. Yadav, B. McConnell, and C. Wright. Network Service Header. Internet-Draft draft-quinn-

nsh-03, IETF Secre-tariat .

[22] N. Ek. Ieee 802.1 p, q-qos on the mac level. Apr 24, (1999) 0003–0006.

[23] D. Libes. Exploring Expect: a Tcl-based toolkit for automating interactive programs. ” O’Reilly

Media, Inc.”, 1995.

[24] OpenFlow 1.1+ support in Open vSwitch. https://github.com/openvswitch/ovs/blob/

master/OPENFLOW-1.1+.md.

[25] IEEE 802.1ad. https://en.wikipedia.org/wiki/IEEE_802.1ad.

[26] Possible Suricata Improvements. https://home.regit.org/2012/07/

suricata-to-10gbps-and-beyond/.

[27] J. Blendin, J. Rückert, N. Leymann, G. Schyguda, and D. Hausheer. Position Paper: Software-

Defined Network Service Chaining .

[28] S. S. John and A. Akella. Active Switching: Packet Steering Flow Annotations. arXiv preprint

arXiv:1403.7115 .

[29] M. Boucadair, C. Jacquenet, R. Parker, D. Lopez, P. Yegani, J. Guichard, and P. Quinn.

Differentiated Network-Located Function Chaining Framework. Internet-Draft draft-boucadair-

network-function-chaining-02, IETF Secre-tariat .

[30] Z. Qazi, C.-C. Tu, R. Miao, L. Chiang, V. Sekar, and M. Yu. Practical and incremental

convergence between sdn and middleboxes. Open Network Summit, Santa Clara, CA .

30

[31] A. A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella. ElastiCon: an elastic

distributed sdn controller. In Proceedings of the tenth ACM/IEEE symposium on Architectures

for networking and communications systems. ACM, 2014 17–28.

[32] Open vSwitch. http://www.openvswitch.org/.

[33] Open Networking Foundation. OpenFlow switch specification version 1.3 2013.

[34] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs. Iperf: The TCP/UDP bandwidth

measurement tool. htt p://dast. nlanr. net/Projects .

[35] V. Jacobson, C. Leres, and S. McCanne. The tcpdump manual page. Lawrence Berkeley

Laboratory, Berkeley, CA .

31

Appendix A

VLAN Configuration

A.1 IEEE 802.1Q

1. Install the vlan package if it is not already installed:

sudo apt-get install vlan

2. Load the 8021q module into the kernel

sudo modprobe 8021q

3. To add vlan interface with vlan id 10 to the physical interface eth0

sudo vconfig add eth0 10

4. Assign an address to the new interface

sudo ip addr add 10.0.0.1/24 dev eth0.10

A static configuration can be added to /etc/network/interfaces file in Linux based server.

A.2 IEEE 802.1ad (QinQ) [1]

To configure an Ethernet interface as an IEEE 802.1ad (QinQ) VLAN trunk we need to use ip link

command, which supports both 802.1Q and 802.1ad instead of vconfig.

1. Select the required service VLAN from the service VLAN trunk

Let say we want to select VLAN 24 from interface eth0 and present it as eth0.24. This can be

achieved using the following command:

ip link add link eth0 eth0.24 type vlan proto 802.1ad id 24

By default, the type vlan argument would create an 802.1Q VLAN tagged using an EtherType

of 0x8100. The proto 802.1ad argument overrides this, causing the VLAN to be tagged using

an EtherType of 0x88a8

2. Select the required customer VLAN from the service VLAN trunk.

32

Let say we want to select VLAN 371 from interface eth0.24 and present it as eth0.24.371. This

can be achieved using the following command:

ip link add link eth0.24 eth0.24.371 type vlan proto 802.1Q id 371

The proto 802.1Q argument can be omitted, since this type of VLAN is the default, but it

has been included here in the interests of clarity. The resulting VLAN will be tagged using an

EtherType of 0x8100 (which is correct for a customer VLAN).

33

