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Abstract

A numerical study of the cohesive zone behavior under static and dynamic loading is conducted

for a Mode III problem. We consider a compact tension specimen for the numerical study and

the crack was modelled with several different cohesive zone models such as triangular and bilinear.

The elements were formatted with the cohesive elements in the element library of the commercially

available software ABAQUS. The crack growth characteristics for different material models i.e. linear

elastic and elasto-plastic are compared for both the static and dynamic crack growth. The J-Integral

values are compared for each of the models. The J integral values for the different CZ models were

found to be almost same for the different cohesive models.
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Chapter 1

Introduction and Literature review

1.1 Motivation

The advances in computational tools and capabilities have made it possible to study crack propaga-

tion in various materials. These advances can help predict the failure of the structures. Among the

advances in fracture mechanics, the cohesive zone model has been used widely for studying crack

propagation. Cohesive zone models are a powerful tool to describe the separation of material ahead

of crack tip. The cohesive zone models are used to describe the failure in various materials like

ceramics, concrete, polymers.

The cohesive zone model (CZM) offers an alternative way to view the failure through materials

and along material interfaces. It is a phenomenological model rather than an exact physical repre-

sentation of the material behaviour of the fracture process zone. The cohesive zone model can be

viewed as an alternative method to model separation [2]. The cohesive zone model describes the

fracture of materials at a physical level. The CZM also eliminates the singularity of the stresses and

limits it to the prescribed cohesive strength of the material. Thus, the cohesive zone model is an

ideal framework to model failure, stiffness and strength in many different materials which makes the

study essential.

1.2 Objective

To conduct a numerical study of the cohesive zone behaviour under static and dynamic loading for

a mode III problem. The study is to be conducted using a numerical model for a compact tension

specimen. The study was conducted for two different cohesive zone models such as triangular and

bilinear models. The crack growth characteristics for different material models i.e linear elastic and

elasto-plastic are to be compared for both static and dynamic crack growth.

1.3 Literature Review

Raman P Singh and Venkitanarayanan Parameswaran [3] studied the dynamic crack propagation

in a brittle material reinforced with a ductile layer. They coupled dynamic photoelasticity with the

help of digital high speed photography and the displacement and load histories were obtained using
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a Hopkinson bar.The used ductile Aluminium between two thick layers of brittle Homalite-100, this

single edge-notched specimen was loaded in three point bending .

Xiangting Su et al. [4] proposed an algorithm for embedding cohesive elements in ABAQUS to

model cracks in a 3D model in quasi brittle material. C Guo and C T [5] Sun studied the dynamic

crack propagation in a composite to study the crack propagation at various speeds. A study on the

cohesive element library in ABAQUS was conducted by Daniel W Spring and Glaucio H Paulino

[6]. C A Sciammarella and Oliver Combel conducted a elasto-plastic analysis on the crack tip fields

in a compact tension (CT) specimen [7]. A crack closure analysis was conducted by Y Lei [8] on

a CT specimen using FE analysis. An experimental and numerical study on the dynamic fracture

of a concrete compact tension specimen was studied by Josko Osbolt et al. [9]. They observed

crack branching at approximately a speed of 800m/s. This can be attributed to the rate dependent

behavior of concrete.

A Turon et al. [10] have proposed a method for determining the size of the cohesive finite element

and length of the cohesive zone for the correct dissipation of energy. The analytical solutions for

cohesive zone models for a few sample probles have been solved by J G Williams and H Hadavinia

[11]. Viggo Tvergaard [12] has used the cohesive zone model to predict the crack growth in ductile

fracture. He has used special interface elements ahead of the crack tip for studying the fracture

behaviour. H Li and N Chandra [13] have studied crack initiation and crack growth resistance in

elastic plastic materials dominated by crack tip plasticity. They have used two different types of

cohesive zone models i.e exponential and bilinear models to represent the mechanical behaviour.

Experimental procedures have been developed by Alfred Cornec et al. [14] for the prediction of

cohesive stress and cohesive energy. They have used these parameters to propose a specific traction

separation law.

I Scheider et al. [15] have compared two different numerical models on their ability to predict

the ductile crack extension in thin aluminium sheets. They used the cohesive model and the R

curve based on the CTOA(crack tip opening angle). They compared the respective models with the

experimental values. An analysis of the crack growth in a thin sheet metal has been conducted by

Weizhou Li and Thomas Siegmund [16] using the cohesive zone model. The cohesive zone model has

also been used by I Scheider and W Brocks [17] for simulating the cup and cone fracture. They have

concluded that the model is able to predict the failure mechanism i.e normal fracture at the center

and the shear fracture at the specimen rim. Viggo Tvergaard [18] has studied the ductile fracture

for mixed mode interface crack growth using the cohesive zone models. He has also done a separate

study on the failure between rigid and elastic solids using a cohesive zone model [19].

W Zhang and X Deng [20] have studied an interfacial crack with a cohesive zone ahead of crack

tip. The used the cohesive zone method to study a linearly elastic isotropic bimaterial to study

the mixed mode asymptotic stress and displacement fields around crack tip under plane deformation

conditions. The same group of scientists have also derived using elliptical coordinates, the asymptotic

stress and displacement fields near the cohesive zone of a Mode III crack that is normal to a bimaterial

interface [21]
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1.4 Outline of the thesis

Chapter 1: The chapter deals with the introduction and the literature survey. It begins with the

motivation as to why the study on cohesive zone models is important. And moves on to the objective

and finally concludes with the present research in the field of cohesive zone modelling.

Chapter 2: The chapter involves a brief study on the basics of fracture mechanics and the major

definitions and terms associated with it, which are necessary for the studies.

Chapter 3: This chapter outlines the procedure followed for studying the different cohesive zone

models. A brief description of cohesive zone models is given and the modelling procedures for the

study is also outlined in the chapter.

Chapter 4 :The chapter describes the progress in the study of the delamination in bimaterial using

spectral methods. A description of the formulation is given in this chapter.

Chapter 5: The final chapter describes the study on ”Quantifying crack tip displacements using

DIC”. It describes the experimental, analytical and numerical procedure followed for studying the

crack propagation in a compact tension specimen using digital image correlation. The values of

J-integral, stress intensity factors and crack tip opening displacements obtained from the different

methods were compared.

6



Chapter 2

Basics of Fracture mechanics

2.1 Introduction

Fracture mechanics deals with the study of propagation of cracks in materials. In fracture mechanics,

our main attention is focused on how cracks grow subject to various external factors. Fracture is

a problem faced by society for as long as structures have been in existence. This chapter describes

the basics of fracture mechanics.

2.1.1 Different types of loading

There are three different modes of loading that are present in cracks. They are based on the various

methods in which the crack grows. Crack initiation and propagation accompany the fracture. The

mode I crack or the opening mode in which a tensile force acts normal to the plane of the crack. The

mode II crack or the sliding mode where a shear stress acts parallel to the plane of the crack and is

perpendicular to the crack front. The mode III crack or the tearing mode where a shear stress acts

parallel to the plane of the crack and parallel to the crack front. The Figures (2.1, 2.2, 2.3) shows

the three different types of loading.

Figure 2.1: Mode I fracture

The three types of loading that are applied to enable a crack to propagate

1.Mode I : A tensile force is applied normal to the plane of the crack (Fig. 2.1)

2.Mode II : A shear stress is applied parallel to the plane of the crack and perpendicular to the crack

front(Fig. 2.2 ).

7



Figure 2.2: Mode II fracture

Figure 2.3: Mode III fracture

3.Mode III: A shear stress acting parallel to the plane of the crack and parallel to the crack front(Fig.

2.3 ).

2.2 A study of crack propagation

2.2.1 Linear elastic fracture mechanics

The domain of linear elastic fracture mechanics (LEFM), whose concepts were derived before 1960,

are applicable to materials which follow Hooke’s law. The LEFM is a basic theory of fracture that

deals with cracks in elastic bodies i.e the material is assumed to be linear elastic and isotropic. The

theory is applied for materials that are elastic except along a small region around the crack tip. It

assumes small scale yielding, where the inelastic deformation is small compared to the size of the

crack. In case of small scale yielding, the stress intensity factor (K) and the J integral characterize

the crack tip condition. The stress distribution is proportional to the 1√
r
. The K dominated zone is

shown in the Fig. 2.4.

Stress states for mode I,II and III cracks

The load types are classified into three different modes as Mode I, II and III. Mode I is an opening

tensile mode, mode II is a sliding mode(in-plane shear) and mode III is tearing mode(anti-plane

shear). In mode I loading the principal load is applied normal to the crack plane, tends to open the

crack. Mode II corresponds to in-plane shear loading and tends to slide one crack face with respect

8



Figure 2.4: K dominated zone

to the other. Mode III refers to out-of-plane shear. A cracked body can be loaded in any one of

these modes, or a combination of two or three modes.

The stress intensity factor (SIF) K, is used in fracture mechanics to compute the stress state

near the crack tip. The stress state exists due to an external load(far field). The stress state is also

caused due to residual stresses. The magnitude of SIF distribution depends on the geometry of the

sample, the crack length and also the distribution of loads in the material. Each mode of loading

produces a 1√
r

singularity. The stress field ahead of crack tip is as given in equation

σIij =
KI√
2πr

fij(θ) (2.1)

σIIij =
KII√
2πr

fij(θ) (2.2)

σIIIij =
KIII√

2πr
fij(θ) (2.3)

The Linear Elastic Fracture Mechanics (LEFM) assumptions are not accurate near the crack tip

where the material non-linearities and other effects play an important role. So the true stress-strain

distributions will have 3 general regions. The process zone which is close to the crack tip where the

material has suffered irreversible damage. The second region where the Linear elastic assumption is

accurate. The region is called region is known as region of K dominance.The third region where the

crack does not influence the stress distribution (as in Fig. 2.4). The stress field for different modes

are described in Tab. (2.1, 2.2, 2.3)

Table 2.1: Stress fields ahead of crack tip for mode I and mode II
Quantity Mode I Mode II

σxx
KI√
2πr

cos( θ2 )[1− sin( θ2 ) sin(3θ
2 )] − KII√

2πr
sin( θ2 )[2 + cos( θ2 ) cos( 3θ

2 )]

σyy
KI√
2πr

cos( θ2 )[1 + sin( θ2 ) sin(3θ
2 )] KII√

2πr
sin( θ2 cos( θ2 cos( 3θ

2

τxy
KI√
2πr

cos( θ2 ) sin( θ2 ) cos( 3θ
2 ) KI√

2πr
cos( θ2 )[1− sin( θ2 ) sin(3θ

2 )]

σzz 0 (Plane stress), ν(σxx + σyy)(Plane strain) 0 (Plane stress), ν(σxx + σyy)(Plane strain)

ν is the Poisson’s ratio
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Figure 2.5: Stress distribution for different types of loading

Table 2.2: Crack tip opening displacement fields for Mode I and Mode II
Quantity Mode I Mode II

ux
KI
2µ

√
r
2π cos( θ2 )[κ− 1 + 2 sin2 θ

2 ] KII
µ

√
r
2π cos( θ2 )[κ+ 1 + 2 cos2 θ2 ]

uy
KI
2µ

√
r
2π sin( θ2 )[κ− 1 + 2 cos2 θ2 ] −KII2µ

√
r
2π cos( θ2 )[κ− 1− 2 sin2 θ

2 ]

Where µ is the shear modulus

κ = 3− 4µ(plane strain)

κ = 3−ν
1+ν

Table 2.3: Stress and displacement or mode III
Quantity Mode III

τxz − KIII√
2πr sin θ

2

τyz
KIII√

2πr cos θ2

uz
KIII
µ

√
r
2π sin( θ2 )

2.2.2 Elasto plastic fracture mechanics

As mentioned earlier, the domain of LEFM only extends to small scale yielding. However, these

theories cannot be applied to many of the cases. The elasto plastic fracture mechanics is applied to

materials that exhibit time dependent plastic behavior. The J integral and the CTOD (Crack tip

opening displacement) are used to characterize crack tip plastic conditions.

Linear elastic stress analysis of sharp cracks predicts infinite stresses at the crack tip. In real

materials, however, stresses at the crack tip are finite because the crack-tip radius must be finite.

Inelastic material deformation, such as plasticity in metals and crazing in polymers,leads to further

relaxation of crack-tip stresses.The elastic stress analysis becomes increasingly inaccurate as the

inelastic region at the crack tip grows. Simple corrections to linear elastic fracture mechanics (LEFM)

are available when moderate crack-tip yielding occurs. For more extensive yielding, one must apply

alternative crack tip parameters that take nonlinear material behavior into account.
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J Integral

The domain of LEFM cannot accurately capture the elasto-plastic fracture behaviour. Hence, based

on the small scale yielding , J R Rice [22] in 1968 proposed a new fracture parameter called as

J-integral. The magnitude of J-integral represents the non-linear energy release rate due to crack.

They have also shown that J-integral is path independent. Hence, it can be evaluated for any path

for given loading condition and it functional form is expressed in Eq. 2.4 The schematic in Fig. 2.6

represents a typical edge crack under uniaxial loading with a contour .

J =

∮
τ

(Wdy − Ti
∂ui
∂x

ds) (2.4)

Where, W is the strain energy density, Ti is the component of traction vector, and τ is closed contour.

For estimating J it is separated into elastic and plastic components [1] as shown in Eqn 2.5

J = Jpl + Jel (2.5)

The crack tip energy integral is path independent as the material enclosed by the contour is

homogeneous. For elastic solids, Jel = G contour integral gives the crack tip energy release rate [23]

Jpl =
ηplApl
Bb

, ηpl = 2 + 0.522 ∗ b

W
(2.6)

Here ηpl is the plastic eta factor, B is the specimen thickness,Apl is the area under the Load- CMOD

curve, b is the un-crack length, W is the width of the specimen.

Figure 2.6: J Integral

Jel = G =
K2
I

E′
(2.7)

Where, E is Young’s modulus and µ is Poisson’s ratio

Nonlinear Energy release rate

Griffith proposed an energy balance criterion for the propagation of crack in a plate. A plate with

a crack of length 2a is considered (see Fig. 2.7), for the crack to undergo an extension, sufficient

energy must be provided or available to overcome the surface energy of the material. The energy
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Figure 2.7: Plate with a crack subjected to a tensile stress [1]

balance proposed by Griffith [24] is as follows

dE

dA
=
dΠ

dA
+
dWs

dA
= 0 (2.8)

−dΠ

dA
=
dWs

dA
(2.9)

Where E is the total energy and Π is the potential energy due to the internal strain energy and

external forces and Ws is the work required to create new surfaces. Here, Π is defined as

Π = Π0 −
πσ2a2B

E
(2.10)

Where B is the thickness of the plate and Π0 is the potential energy of an un-cracked plate. The

energy required for the formation of new surface is given as

Ws = 4aBγs (2.11)

−dΠ

dA
=
πσ2a

E
(2.12)

Where γs is the surface energy of the material

dWs

dA
= 2γs (2.13)

Solving for fracture stress.We get

σf =

√
(
2Eγs
πa

) (2.14)

Irwin proposed an energy approach for fracture in which a term called as energy release rate G,

which is essentially the energy available for crack extension as

G = −dΠ

dA
(2.15)

For a wide plate with crack length 2a. The energy release rate is given as

G =
πσ2a

E
(2.16)
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Figure 2.8: Driving force vs. R curve diagram [1]

The Eq. 2.9 gives the energy release rate for linear materials. The definition holds for non-linear

elastic materials

J = −dΠ

dA
(2.17)

Where Π is the potential energy and A is the crack area. The potential energy is given as

Π = U − F (2.18)

U is defined as the strain energy stored in the body and F is the work done by external forces.

For an elastic material, the energy release rate is defined as the potential energy released from

a structure when the crack grows in an elastic material. The strain energy stored in elastic plastic

material is not released when the crack grows. The crack growth in such materials leaves a plastic

deformation. Thus, in elastic plastic materials, the J value in Eq. 2.17 relates the difference in

energy absorbed by specimen with neighboring crack sizes.

Stable and unstable crack growth

The crack extension occurs when the energy release rate is equal to the fracture energy, but the crack

growth can be both stable and unstable depending on how the energy release rate (G) and fracture

energy (wf ) vary. The fracture energy is the resistance to crack growth and is hereby represented

as R. The driving force vs R curve is shown in Fig. 2.8. The figure illustrates a material with

a flat R-curve, where the resistance offered by the material is constant with crack growth. When

stress is σ1, the crack growth is stable, however, if the stress is σ2 the crack growth is unstable since

the driving force increases with crack growth, but material resistance remains constant. Rice [22]

showed that the value of J integral is equal to the energy release rate in a non-linear elastic body

that contains a crack. In the domain of EPFM, the energy available for crack extension is given as

J =
dΠ

dA
(2.19)

Where Π is the potential energy and A is the crack area. The potential energy is given by

Π = U − F (2.20)
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Where U and F are the strain energy stored and the work done by external forces respectively

Dynamic crack growth

The study of dynamic fracture mechanics includes three main features that are not present in LEFM

and EPFM. They are the inertia force, the rate dependent behaviour of materials and the reflected

stress waves. inertia effects are important when the load value changes or the crack grows rapidly.

In these cases, a portion of the work that is applied is converted to kinetic energy. Most metals are

not sensitive to strain rates at ambient temperatures. The reflecting stress waves influence the local

crack tip and thereby alter the fracture behaviour.

The study of crack growth along interfaces was conducted by A Needleman et al. [25]. The

traction separation law is described by them as

T = − ∂φ
∂∆

(2.21)

The separation process is taken to be elastic so that the traction across the cohesive surface is

function of displacement jump. Here, φ is the cohesive potential.
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Chapter 3

Cohesive zone modelling of cracked

interface

3.1 Cohesive Model

Strip yield model

The strip yield model was proposed by Dugdale and Barenblatt. The model assumes compressive

stresses at each crack tip. The model assumed a plastic zone of length r as described in the Fig.

3.1. where r is the length of the plastic zone with a compressive stress equal to the yield stress

σys applied at each crack tip. Mathematically, the stresses at the crack tip are equal to infinity.

To overcome this drawback, Dugdale(1960) and Barenblatt(1962) introduced cohesive models. The

authors divided the crack into two parts, one part which is stress free and the other is loaded by

cohesive stress. The Fig. 3.2 gives the mathematical and actual crack tip, the compressive yield

stress is applied on the crack tip. The Dugdale model introduced the cohesive stress as equivalent

to yield stress.

Figure 3.1: The strip yield model [1]

The cohesive zone model helps in explaining the singularity at the crack tip and helps us in

representing the crack tip with a physical model. The material separates across the crack and

the cohesive forces resist its growth. The quantifying of this phenomenon is done using the traction

separation law. Cohesive zone models developed in later stages have been successfully able to predict

the fracture behaviors. The model developed by Needleman in 1987 [26] who used a polynomial
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law for describing the void nucleation in metals. Xu and Needleman [27] used the exponential

cohesive model to study the void nucleation at the interface of particle and matrix material, fast

crack growth in brittle materials and the dynamic crack growth along the interface of bimaterials.

Camacho and Ortiz(1996) [28] selected a linearly decreasing cohesive zone fracture model, this was

employed to study multiple cracks along arbitrary cracks during impact damage in brittle materials.

Many cohesive models include an initial rising in the traction with an increasing separation, reach a

peak and then the traction drops downward which is the softening trend in the traction-separation.

Tvergard and Hutchinson (1992) developed a trapezoidal traction separation function to evaluate

crack growth resistance in elasto-plastic materials. Some of the traction separation laws described

above are shown in Fig. 3.3.

Figure 3.2: Crack tip cohesive model

Figure 3.3: Different forms of traction-separation law

Traction Separation Law, TSL

The cohesive law relates the relative motion between the surfaces in contact and is aptly named the

traction separation law. Cohesive zone models are used to overcome the stress singularities in linear

elastic fracture mechanics. The work done in creating a new surface is not singular and corresponds

with the fracture energy and is the area under the traction separation curve.

τ0 =

∫ δ0

0

T (δ)dδ (3.1)
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Material separation is assumed to occur through atomic scale separation i.e cleavage of atomic

layers. The cohesive element is shown in Fig. 3.5. The cohesive force acts when the the separation

begins and the cohesive force does not act in regions that are completely separated from the second

element.

Figure 3.4: Cohesive zone

Figure 3.5: Cohesive element

3.2 Modelling

A compact tension specimen was considered for studying the cohesive zone models. The specimen

was modelled on the general purpose FE code ABAQUS. The study was conducted on two different

sets of cohesive zone models. The linear and the bilinear models. Cohesive elements were embedded

in the fracture process zone . The CT specimen was subjected to a mode III anti plane shear load.

3.2.1 Specimen geometry

The CT specimen that was used in the analysis.The CT specimen was modelled according to the

ASTM E399 standard [29]. The specimen for the CT specimen is specified in Table 3.1.The CT

specimen dimensions are shown in Fig. 3.6.
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Figure 3.6: Subset matching and deformation tracking in DIC

Table 3.1: CT specimen dimensions with edge crack
Quantity Value (kJ/mm2)

Width of specimen,W(mm) 50
Crack length,a (mm) 22.5

Ligament length,b (mm) 27.5
Thickness of specimen, B(mm) 12.5

Diameter of Hole,d(mm) 12.5
Height,H(mm) 60
Length,L(mm) 62.5

Material Properties

The material properties of Al-T6 531 is obtained from uni-axial tensile test on dog-bone specimen

using MTS Landmark servo-hydraulic machine of 100 kN capacity. Fig. 3.8 shows the experimental

stress-strain curve (solid line) obtained from uni-axial tensile test on dog-bone specimen. Here,

ordinate axis represent Cauchy stress in MPa and abscissa represent the strain. The Youngs modulus

(E) is obtained from the slope of initial linear region. Yield strength is obtained by drawing a 0.2

percent offset straight line (broken line) that is parallel to the initial straight line portion of the

stressstrain curve. The stress level at which the offset straight line intersect the experimentally

obtained stress-strain curve is identified as 0.2 percent offset yield strength as shown in Fig. 3.8.

The Youngs modulus (E) and yield strength obtained for Al-T6 531 are 70.90 GPa and 440.22 MPa

respectively.

3.2.2 Finite Element Model

The finite element analysis of the CT specimen was performed on the commercial FE software

ABAQUS 6.9. The CT specimen was modeled according to ASTM E399 [29] standards.The J

integral was computed for the 8 separate sections below. The crack was modeled using the cohesive

zone. The method required the definition of a cohesive interaction which is described in detail in

later sections.
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Figure 3.7: Cohesive interaction specified at the point of contact

Figure 3.8: Expreimental Elasto-Plastic stress strain curve

Finite Element mesh

The CT specimen was modeled using both cohesive elements(COH3D6) and also uses 3D stress

elements(C3D8R). The cohesive elements were specified at the area of contact. The mesh at the

crack tip use single bias that includes more number of nodes at the crack tip and the number of

nodes become lesser as we move away from the crack tip. This was done with a view to capture the

singularity.

3.2.3 Cohesive element

For a CT specimen the top and bottom parts are modeled separately as shown in Fig 3.7. In

the figure, the highlighted region is specified as a cohesive interaction with damage. The cohesive

interaction was defined at the face between the top and bottom parts. The linear and bilinear

cohesive traction separation law was specified for different sets of simulations.

The cohesive crack model considers a fracture process zone (FPZ) which exists in front of the

real crack tip in the FPZ, energy dissipation occurs. Also, in the FPZ, there exists tractions in

the normal (tn) and tangential directions [4] . The traction separation law is shown in the Fig.

3.10. It shows the critical crack opening displacement δnf .When the crack initiates a linear-elastic

ascending phase exists where the traction increases with increasing displacement. This phase is called

the hardening phase. The second phase where the the traction decreases monotonically with the
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Figure 3.9: Mesh used in crack analysis

increasing displacement. This phase is termed strain softening. The area of the traction separation

law for both the linear Fig. 3.11 and bilinear Fig. 3.10 models are the same.

Figure 3.10: Traction separation law for cohesive elements

The cohesive elements were embedded in the region surrounding the crack plane. These cohesive

elements were tied with a contact constraint to the surrounding 3D stress elements. The cohesive

elements were fitted with the cohesive models to study the response under different conditions.

Figure 3.11: Linear traction separation law
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3.2.4 Loading

The load applied in the analysis of the CT specimen was of a shear traction on the side edges of

the specimen as shown in the Fig. 3.12. The shear traction ensures that there exists a mode III

loading in the CT specimen. The other end of the CT specimen was confined in all directions i.e all

displacements in X, Y and Z directions and all the rotations were also confined.

Figure 3.12: Loading for Mode III

3.2.5 Results

The J integral was computed for the different types of analysis. The results are displayed in the

following figures

Figure 3.13: Stress plots for Mode III-LEFM The computed J-Integral value was 13.69 kJ/mm2

The following results were compiled for the linear cohesive zone model

Table 3.2: J integral values at different conditions for linear cohesive zone model
Condition J integral (kJ/mm2)

LEFM 13.69
EPFM 15.87

LEFM and dynamic 17.38
EPFM and dynamic 21.54
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Figure 3.14: Stress plots for Mode III-EPFM The computed J-Integral value was 17.38 kJ/mm2

Figure 3.15: Stress plots for Mode III-Dynamic The computed J-Integral value was 15.87 kJ/mm2

Table 3.3: J integral values at different conditions for bilinear CZ model
Condition J integral (kJ/mm2)

LEFM 13.91
EPFM 16.08

LEFM and dynamic 18.31
EPFM and dynamic 20.68

3.3 Conclusion and Future Scope

The analysis of Compact tension was performed using ABAQUS. The J integral was computed for

the eight different cases. The J integral values were obtained from the FE code. The J integral for

the EPFM analysis was found to be greater than the one obtained from LEFM. This is due to the

fact that in LEFM analysis, the deformations around the crack tip are considered lesser than the

crack length, however, this is only applicable in cases where the loads applied are small. Therefore,

the J integral values vary in the cases of LEFM and EPFM.

The J integral values were found to be greater in the dynamic case when compared to the EPFM

case. This is due to the fact that, the energy release rate during crack extension ∆a is decrease in

total elastic strain energy and total kinetic energy. The kinetic energy exists because the crack is

extending at a finite velocity. Thus the energy is dissipated due to inertial effects also. Thus the J
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integral values were found to be larger in case of dynamic crack propagation. The values obtained

for the bilinear CZ model were almost similar to the ones obtained form the linear CZ model. This

is because the area under the traction-separation curve is constant for both the models adopted.

The area under the traction separation curve is equal to energy release rate GC .
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Chapter 4

Crack propagation in bimaterial

using spectral methods

4.1 Introduction

The estimates due to failure due to fractures is enormous [30]. Thus the causes and methods to

predict these failures can result in saving both human lives and the cost.Fracture mechanics is an

area developing area of Engineering that aims to study the damage on structures that are caused

by cracks. Dynamic fracture mechanics is the area of fracture mechanics that studies spontaneously

propagating cracks.

S lee and Ravichandran [31] also used Homalite 100 in their experiments. They bonded two

pieces of Homalite-100 except in the center. They used a central inclined crack configuration and

photoelastic fringes were obtained using a high speed camera. They studied the effect of the surface

roughness and lateral confinement on the fringe patterns and came to the conclusion that average

speed of wing crack was higher in higher coefficient of friction surfaces. The experiments conducted

on bimaterial systems by A J Rosakis et al. [32] to study waves generated by the intersonic crack

propagation. J Lambros and Rosakis A J [33] have compiled some of the results conducted on

dynamically propagating interfacial cracks. One point bend type experiments were conducted on

PMMA specimen. P H Geubelle and W G Knauss have taken on the problem of crack growth at

interface between two two linearly elastic solids when the conditions that promote crack growth are

prevalent [34].

The bimaterial which was made of orthotropic-isotropic material was subjected to a far field ten-

sile loading and was analysed using photoelasticity by Kwanh Ho Lee et al. [35]. They used the pho-

toelasticity technique to study interfaceial crack between an isotropic and orthotropic that were sub-

jected to static far-field tensile loading. The fracture parameters for the isotropic-orthotropic bimate-

rial were studied for static and dynamic crack under mode I load. Roasakis AJ citerosakis1979determination

used the elastodynamic crack tip stress field to establish the exact equations of the caustic envelope

formed by the reflection of light rays from the surface of a planar solid near the tip of a propagat-

ing crack. Arun shukla et al. [36] studied the static and dynamic fracture of interfaces between

orthotropic and isotropic materials using photoelasticity. In their study two specimen of different

fiber orientations of an edge cracked bi-material specimen were studied. They obtained SIF values

24



using both experimental methods and also using boundary collocation methods and the results were

in close agreement. Chaitanya K Desai et al. [37] studied the delamination of bimaterial interface

using Digital Image correlation by finding the displacement fields. They studied center and edge

cracked specimen and also four point bend test specimen to find the stress intensity factor using

DIC and compared the results with theoretical and/or Finite element computations.

4.1.1 Bimaterial interface

A strip of infinite length is examined for crack propagation in our present study. The strip consists

of two materials with material constants E1, µ1 and E2 µ2 [38].The bimaterial is essentially two

strips of any material joined together by any means such as adhesives or welding etc.The interfaces

of bimaterials are often the weakest part of the structure and thereby are an area of paramount

interest to Engineers everywhere.

The stress state in homogeneous materials with a crack is quantified using the Stress intensity

factor, P P L Matos et al. have [39] developed a method for quantifying the stress intensities in

bimaterial fracture.

Figure 4.1: Bimaterial subjected to Anti-plane shear

4.1.2 Problem Description

In the present problem, the fracture modes of both the materials were studied separately. The

materials were subjected to an anti-plane shear traction. The shear modulus and the density of the

material are respectively defined for the top and bottom as µ+, ρ+ and µ− ρ− respectively. Where

the superscript represents top and bottom surface respectively.The bimaterial was subjected to an

anti-plane shear traction.

4.2 Formulation

The spectral formulation involves a Fourier representation, the formulation is done for a bi-material

body. A planar crack of arbitrary shape is defined at the interface between two semi-infinite linearly

elastic half spaces. The plane of the interface is defined along x2 = 0. The formulation uses an exact

Fourier representation between Fourier coefficients for tractions and displacement.The stresses and

displacement discontinuities are defined as σij(x1, x2, x3, t) and ui(x1, x2) respectively.
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The histories are of stresses and displacements are related by the two dimensional elastodynamic

expression (Cochard and Madariaga,1994)[40].

τj(x1, x3, t) = τ0(x1, x3, t) + f(x1, x3, t)−
µ

2c
δ(x1, x3, t)(1) (4.1)

The representation in [41] is in the form of a superposition i.e the sum of a stress applied(τ0j ).

The function f(x1, x3, t) are the functions of displacement discontinuities upto the present time.

The displacement and functionals respectively are represented in the following form

δp(x1, x3, t) = Dp(t)e
(kx1+mx3) (4.2)

fq(x1, x3, t) = Fq(t)e
kx1+mx3 (4.3)

The above equation has separated the displacement which was a function of both time t and space

(x1, x3) into a product of terms each, one dependent on time and the other dependent on space.

The Fourier transform was used for exactly this purpose.

4.2.1 Two-dimensional formulation

The spectral formulation is first established for the two dimensional case where the problem is

independent of x3. The components of the displacement are expressed as

u1(xa, t) = φ,1(xa, t) + ψ,2(xa, t);u2(xa, t) = φ,2(xa, t)− ψ,1(xa, t) (4.4)

where the potentials φ and ψ satisfy

c2dφ,aa = φtt (4.5)

c2sψ,aa = ψtt (4.6)

The potentials are represented as spectral components as

φ(xa, t) = eiqx1φ1(x2, t, q) (4.7)

ψ(xa, t) = eiqx1ψ1(x2, t, q) (4.8)

Ω(xa, t) = eiqx1Ω1(x2, t, q) (4.9)

We introduce the Laplace transform for Eq. 4.9

c2d[−q2φ̂(x2, t, q) + φ̂”(x2, t, q)] = p2φ̂(x2, t, q) (4.10)

Where the hat represents the Laplace transformed variable. From the above equation, we obtain

φ̂”(x2, p, q) = q2α2
dφ̂(x2, p, q) (4.11)

ψ̂”(x2, p, q) = q2α2
sψ̂(x2, p, q) (4.12)

Ω̂”(x2, p, q) = q2α2
dΩ̂(x2, p, q) (4.13)
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Where the differenciation is with respect to x2 Combining the equations and to obtain the laplace

transformed displacement field,

û1(xa, p) = eiqx1 [iqφ̂0(p, q)e−qαdx2 − qαsψ̂0(p, q)e−qαsx2 ] (4.14)

û2(xa, p) = eiqx1 [−qαdφ̂0(p, q)e−qαdx2 − iqψ̂0(p, q)e−qαsx2 ] (4.15)

û3(xa, p) = eiqx2Ω̂0(p, q)e−qαsx2 (4.16)

The tractions and the displacements are required to be found out. The Fourier coefficients Uj(t, q)

are defined by

ûj(x1, x2 = 0+, t) = Uj(t, q)e
iqx1 (4.17)

From the Eq. 4.17 we obtain Û1 and Û2. We find the Laplace transformed potentials φ̂0(p, q) and

ψ̂0(p, q) as

φ̂0(p, q) =
−iqÛ1(p, q) + qαsÛ2(p, q)

q2(1− αsαd)
(4.18)

ψ̂0(p, q) =
iqαdÛ1(p, q) + iqÛ2(p, q)

q2(1− αsαd)
(4.19)

The φ̂0 and ψ̂0 are substituted into Eq. 4.16 to obtain the displacement fields ûi for the upper half

space in terms of the components Ûi along the top half of the fracture plane i.e x2 = 0+.

û1(xα, p) = eiqx1 [Û1(p; q)
e−qαdx2 − αsαde−qαsx2

1− αsαd
+ Û2(p; q)

iqαs
q(1− αsαd)

(e−qαdx2 − e−qαsx2)] (4.20)

û2(xα, p) = eiqx1 [Û1(p; q)
iqαd

q(1− αsαd)
(e−qαdx2 − e−qαsx2) + Û1(p; q)

e−qαsx2 − αsαde−qαdx2

1− αsαd
] (4.21)

The traction components are written in spectral components and obtain expressions for the

tractions are obtained from the above expressions.

4.2.2 Spectral Formulation for Mode III

The spectral formulation described above is used for mode I and II type of fracture. The spectral

formulation described for mode III is described below.The spectral formulation begins from the

linear momentum equation balance. The spectral formulation for mode III crack for a homogeneous

material is described by Perrin et al. [42] and the subsequent formulation for a Functionally graded

material(FGM) is described by Kulkarni et al. [43].

Formulation for Mode III for bimaterial

For the numerical procedure for Mode III rupture across a bimaterial [44],the length of the crack is

chosen as X. The crack propagates along the plane x2 = 0. An anti-plane shear of magnitude τ0 is

applied along the weak plane
∂σ13
∂x1

+
∂σ23
∂x2

= ρü3 (4.22)
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Where σ13 and σ23 describe the stress components and the u3 is the out of plane displacement.The

kinematic relation for the mode III case is as follows.

σ3α = µ(x2)
∂u3
∂xα

(4.23)

The α represents the subscript varies from 1 to 2. Combining the above two equations, we obtain

the elastodynamic equation in the terms of displacement.

u3,11 + u3,22 =
ü3
c2s

(4.24)

Where c2s is the shear wave speed and is obtained as
√

µ
ρ . The variation for µ and ρ are identical

i.e the shear wave speed variation along the length is constant.

The spectral component of Eq. 4.24 and Laplace transform as defined in Eq. 4.25

Û(y, s) =

∫ ∞
0

e−stU(y, t)dt (4.25)

We define the spectral components along the fracture plane as

u3(x1, x2 = 0±, t) = u±3 (x1, t)− U±3 (t, q)eiqx1 (4.26)

σ23(x1, x2 = 0, t) = τ3(x1, t) = T3(t, q)eiqx1 (4.27)

The above equation, back in time domain yields The Fourier coefficients of the elastodynamic

stress and displacement fields are related in the Laplace domain by

T̂3(p, q) = ∓µqα±s Û3
±

(p, q) (4.28)

where αs =
√

1 + p2

q2c2s

4.2.3 Independent Formulation

The elastodynamic response of two half spaces is taken separately.

τ3inst(x1, t) = ∓ µ∓

cmps u̇3(x1, t)
(4.29)

We thus rewrite 4.28 as

T̂3(p; q) = ± µ

c±s
pÛ3

±
(p, q)∓ µ±q(α±s −

p

qc±s
)̂ (4.30)

Which in the time domain is represented as

τ3(x1, t) = τ03 (x1, t)∓
µ±

c±s
u̇3
±(x1, t) + f±3 (x1, t) (4.31)

where the externally applied anti-plane shear traction stress τ03 (x1, t), the f±3 (x1, t) represents
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the convolution term. The convolution is expressed in the Fourier domain as

f±3 (x1, t) = F±3 (t, q)eiqx1 (4.32)

Where the Fourier coefficient, F±3 (t, q) is given as

F±3 (t, q) = ∓µ±q
∫ t

0

CinIII(qc
±
s (t− t′))U±3 (t′, q)qc±s dt

′ (4.33)

The convolution term is given as

CinIII =
JI(T )

T
(4.34)

Where JI is the Bessel function The convolution kernel for mode III is plotted in Fig. 4.2. The

Figure 4.2: Convolution kernel plot for mode III

evolution of each Fourier mode is described by the above elastodynamic relations.We consider an

explicit scheme.

δ(x, t+ ∆t) = δ(x, t) + ∆δ̇(x, t) (4.35)

Where ∆t is the time step. The time step ∆t is chosen to be a fraction of the time needed for the

shear wave to propagate the smallest distance between the grid points defined on the fracture plane

as

∆t = β
∆x

max(c+s , c
−
s )

(4.36)

The parameter β is user defined and plays a critical role in the stability and the precision of

the numerical scheme The scope of our present study uses only the linear traction separation law as

given by

τstr = f(x, t, δ, δ̇) (4.37)

τ = τc(1−
δ

δc
) (4.38)

Where τc is the fracture strength and δc is the critical crack opening displacements, both of which

are material properties.

The algorithm for the numerical simulation, for each iteration is written below

1. Update the displacement distributions using 4.35
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2. Update the externally applied loads τ0j
3. Update the interfacial strength using the cohesive relations 4.38

4. Compute the convolution term for mode III using the relation 4.33

5. Initially, the assumption made is that the interface does not undergo failure and that the half

spaces move together at constant velocity away from each other i.e (u̇j
+ = u̇j

− = u̇j).The velocity

and traction are updated.

6. If failure is detected, the crack propagation is catastrophic, otherwise the iteration is repeated

with updated displacements The

4.3 Numerical procedure

4.3.1 Cohesive model

In the above sections, we have derived the relations between the traction stresses τ and the displace-

ment u that exists along the interface between the two materials and the histories. The solutions

i.e τ and u are related by a cohesive failure model. We assign at the interface, the tractions as

equal due to equilibrium condition at the interface.The separation of the cohesive element is shown

in figure 4.3.The cohesive zone modelling is explained in detail in a later section.

Figure 4.3: Cohesive Element
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Chapter 5

Quantification of crack tip

parameters using DIC

5.1 Introduction

Crack growth path under both the monotonic static loading and cyclic loading is strongly influenced

by the elastic and plastic displacement field at the crack tip. These displacements are governed by

a combination of material deformation behavior, and the geometry of the structure [45]. Ahead of

crack tip extensive plastic deformation takes places, hence one has to consider elastic-plastic fracture

mechanics (EPFM). The crack path is influenced by both elastic and plastic behavior around the

crack tip besides other factors. The Jintegral and crack tip opening displacement,δ parameters are

used to characterize the crack tip under the domain of EPFM.

Experimentally there are several optical full-field measurement techniques like Photo elasticity,

Interferometry, Scanning Electron Microscope (SEM), thermo-elasticity and digital image correlation

(DIC) that are used effectively to obtain the elastic displacement field[45, 46]. Among all these

methods, DIC technique is more suitable to find out the plastic and anisotropic effects. Further,

DIC is user friendly as compared to others. DIC technique was first introduced by Sutton et al.

[47]. This technique enables non-contact surface strain measurement of the entire specimen during

the test. In this technique, displacement of the subset on the image before and after deformation is

matched for determining displacements.

Takamoto Itoh [48] proposed an equation based on the crack opening displacement (COD) for

computing J-integral for bi-axially stressed mode I cracks for various inelastic materials.They showed

that the J-integral evaluated using their proposed equation is within 25%. Kudari and Kodancha

[49] have related the J-integral and the CTOD for compact tension (CT) and single edge notched

bend (SENB) specimens. They showed that there exists a linear relationship between J-integral and

CTOD. And the proportionality constant was found to depend on the crack length to width ratio

and specimen geometry. La Rosa and Marino Cugno [50] have measured the fracture parameters

using the digital image correlation technique and we follow some of the techniques suggested in this

paper. S Roux et. al. [51] have worked on advanced techniques such as X-DIC (extended DIC) for

estimating the stress intensity factors (SIF) for 2D and 3D cracks.
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5.2 Digital Image Correlation

Digital image correlation is a non-contact optical-numerical full field measurement technique that

facilitates the determination of deformation and strain fields over the specimen surface[52]. The

concept of DIC is based on pattern matching wherein the displacement field is identified by correlat-

ing images of specimen taken in un-deformed state with the series of images taken in deformed state.

5.2.1 Displacement Mapping

A digital image is essentially a 2-dimensional array of intensity values which can be discretized into

small subsets as shown in 5.1.Image correlation works by matching small square subsets of an un-

deformed image (5.1(a)) to locations in the image of the surface after deformation (5.1(b)) by means

of series of mathematical displacement mapping and cross correlation functions. In 2D DIC, a single

camera can be used to provide the in-plane displacement fields. The cross correlation function used

to estimate the displacement functions is given by Eq. 5.1

C(u, v) = 1−

n∑
i=1

n∑
i=1

[f(xi, yi)− F ][g(x′i, y
′
i)−G]√

n∑
i=1

n∑
i=1

[f(xi, yi)− F ]2

√
n∑
i=1

n∑
i=1

[g(x′i, y
′
i −G)]2

(5.1)

Where x′ = (x+u0 + ∂u
∂xdx

∂u
∂y dy) and y′ = (y+v0 + ∂v

∂xdx
∂v
∂ydy) , f(xi, yi) and g(x′i, y

′
i) represent the

grey levels of reference and deformed images, respectively and (xi, yi), (x′i, y
′
i) are the co-ordinates

of a point in the subset before and after deformation respectively. Here,F is mean intensity value of

reference subset and G is the mean intensity of deformed subset.And n is the width of the subset in

pixel and u0, v0 are translations of the centre of the subset in x and y directions respectively. Subset

is the area which contains multiple pixels.

Figure 5.1: Subset matching and deformation tracking in DIC
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Figure 5.2: Speckled image pattern in CT specimen

5.3 Experimental Procedure

Specimen Preparation

In this study, CT specimen are made of Aluminium T6 531 alloy material. The specimen is cut from

12.5 mm thick Al T6531 alloy sheet according to ASTM E399 standard [29] using electronic wire cut

electro discharge machine (EDM). During the machining, pre-crack is done on the CT-specimens

using fatigue loading at 10Hz with crack driving force 8MPa , to simulate the real crack of length

a.The schematic diagram of CT-specimen is shown in 5.3 and the specimen dimensions are tabulated

in Table 5.1.

Table 5.1: CT specimen dimensions with edge crack
Quantity Value (kJ/mm2)

Width of specimen,W(mm) 50
Crack length,a (mm) 22.5

Ligament length,b (mm) 27.5
Thickness of specimen, B(mm) 12.5

Diameter of Hole,d(mm) 12.5
Height,H(mm) 60
Length,L(mm) 62.5

After obtaining the edge cracked CT specimen, surface of the CT specimen is prepared for DIC.

To improve the surface adhesion, dust free specimen surface is obtained by cleaning it with isopropyl

solution. The speckle pattern on the surface of the specimen is generated by initially creating a white

background through spraying acrylic white paint. Followed by random speckle pattern of Carbon

black paint (Golden air brush colour) is applied over the dried white background with an Iwata

CM-B airbrush (Iwata-Media, Inc.) having a nozzle of 0.5 mm diameter

Material Properties

The material properties of Al-T6 531 is obtained from uni-axial tensile test on dog-bone specimen

using MTS Landmark servo-hydraulic machine of 100 kN capacity. Fig. 5.4 shows the experimental

stress-strain curve (solid line) obtained from uni-axial tensile test on dog-bone specimen. Here,

ordinate axis represent Cauchy stress in MPa and abscissa represent the strain. The Youngs modulus

33



Figure 5.3: Subset matching and deformation tracking in DIC

(E) is obtained from the slope of initial linear region. Yield strength is obtained by drawing a 0.2

percent offset straight line (broken line) that is parallel to the initial straight line portion of the

stressstrain curve. The stress level at which the offset straight line intersect the experimentally

obtained stress-strain curve is identified as 0.2 percent offset yield strength as shown in Fig. 5.4.

The Youngs modulus (E) and yield strength obtained for Al-T6 531 are 70.90 GPa and 440.22 MPa

respectively.

Figure 5.4: Expreimental Elasto-Plastic stress strain curve

In plastic region, the power law of Ramberg-Osgood which describes non-linear vs. relationship

for strain hardening solid as in equation 5.2.

ε = K(
σ

σ0
)
n

(5.2)

The plastic strain ε is related to stress as ε ∝ σn in which n is the strain hardening exponent. E

denotes Young’s Modulus,K is material constant and σ0 is the reference state which can be related

to yield stress.The material constantsK and mare obtained from the Ramberg-Osgood model.

Using the power-law form of Ramberg-Osgood model in Eq. 5.2non-linear curve is fitted to

the elasto-plastic stress-strain data obtained experimentally using least square fit. The material

constants and obtained from Ramberg-Osgood model are tabulated in 5.2.
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Table 5.2: Material properties obtained from elasto-plastic stress-strain curve
Material constant Value (kJ/mm2)

Young’s modulus,E(GPa) 70.90
Offset Yield Strength,σ0 (MPa) 440.22

Material constant,K 2.4187e+66
Strain hardening exponent, n 31.3325

Poisson’s ratio,µ 0.33
Material constant,m 1.79

Length,L(mm) 62.5

5.4 Experimental Setup: DIC

The uni-axial tensile test on CT specimen (see component 6 in Fig5.5) with edge crack was conducted

on a computer-controlled MTS Landmark (see component 5 in Fig 5.5) servo-hydraulic machine of

100 kN capacity as shown in Fig. 5.5 The universal testing machine (UTM) is equipped with a

standard set of Compact Tension fixtures (see component 7 in Fig.5.5) to grip the specimen. Knife-

edges are created at the vertical edge of CT specimen to accommodate a standard COD gauge (see

component 8 in Fig.5.5) to measure the crack mouth opening displacement (CMOD).

Figure 5.5: Experimental setup

Figure 5.6: Loaded CT specimen

The experiment is conducted under displacement control mode with displacement rate set to 1
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mm per minute. Two halogen light sources (see components 2 & 3 in Fig.5.5) are provided and

position of halogen lamps are adjusted to get uniform illumination on the specimen surface. High

resolution (2448 x 2048) camera equipped with Tamron lens is used as image capturing system is

mounted on a tripod. Tamron lens is used to focus only the region of interest. The feeds from

camera and the UTM are connected to image grabbing system (see component 1 in Fig.5.5). Here,

laptop is used as the image grabbing system. Vic-Snap commercial software (Correlated Solutions,

Inc.) installed in the laptop is used to grab images at a rate of 10/sec

Fig. 5.5shows the snapshot of DIC experimental setup. Here, the image grabbing system is

interfaced to MTS machine via data acquisition card supplied by National Instruments. Fig5.6

shows the zoomed portion CT specimen attached to the MTS fixtures. Using the pin holes in the

CT specimen as shown in Fig. 5.6.

5.5 Fracture Parameters Estimation using Analytical and

Numerical Modelling

In this section the fracture parameters of the CT specimen with edge crack is discussed analytically

and using XFEM in sections later sections.

5.5.1 Analytical Approach

Stress Intensity Factor (SIF)

The mode-I stress intensity factor KI is used to predict the stress and displacement field near the

crack tip. The magnitude of SIF depends on the sample geometry, the size and location of crack and

the applied load. Stress intensity factor for an edge crack in compact tension specimen is obtained

from Handbook of Experimental mechanics [53] is shown below in Eq

KI =
P

BW 0.5
P (α)for 0.2 6

a

W
6 1.0 (5.3)

where α = a
W , P is the applied load, B is thickness and W is the width of the specimen and,

f(α) =
(2 + α)(0.886 + 4.64α− 13.32α2 + 14.72α3 − 5.6α4)

1− α

1.5

(5.4)

5.5.2 J-Integral

The domain of LEFM cannot accurately capture the elasto-plastic fracture behaviour. Hence, based

on the small scale yielding, JR Rice [22]in 1968 proposed a new fracture parameter called as J-

integral. The magnitude of J-integral represents the non-linear energy release rate due to crack.

They have also shown that J-integral is path independent. Hence, it can be evaluated for any path

for given loading condition and it functional form is expressed in Eq. 5.5 The schematic in Fig.5.7

represents a typical edge crack under uniaxial loading with a contour .

J =

∮
τ

(Wdy − Ti
∂ui
∂x

ds) (5.5)
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Where, W is the strain energy density, Ti is the component of traction vector, and τ is closed contour.

For estimating J it is separated into elastic and plastic components [1] as shown in Eqn 5.6

J = Jpl + Jel (5.6)

The crack tip energy integral is path independent as the material enclosed by the contour is

homogeneous. For elastic solids, Jel = G contour integral gives the crack tip energy release rate [23]

Jpl =
ηplApl
Bb

, ηpl = 2 + 0.522 ∗ b

W
(5.7)

Here ηpl is the plastic eta factor, B is the specimen thickness,Apl is the area under the Load-CMOD

curve, b is the uncrack length, W is the width of the specimen.

Figure 5.7: J Integral

Jel = G =
K2
I

E′
(5.8)

Where, E is Young’s modulus and µ is Poisson’s ratio

Jpl =
ηplApl
Bb

ηpl = 2 + 0.355 ∗ b

W
(5.9)

Where,ηpl is the plastic eta factor, B is the specimen thickness Apl is the area under the load

CMODpl the uncracked length, W is the width of specimen

5.5.3 Crack Tip Opening Displacement(δ)

In addition to J-integral described above, another important fracture parameter in EPFM is the

crack-tip opening displacement (CTOD,δ). The general relation between J-integral and δ is defined

by Shih [54] as shown below in 5.10

J = mσyδ and m = 2.685
1

n
+ 1.705 (5.10)

Where σy is the yield stress of the material, m is the material constant obtained from [55, 56] and

n is the strain hardening coefficient(see Table 5.2) Shih [54] haas obtained a relationship between J
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and δ 5.11 theoretically by using Hutchinson Rice and Rosengren(HRR) stress fields [23]

δ = dn
1

σy
and dn =

1

n
(5.11)

Where dn is the constant which depends on Ramberg-Osgood(R-O) material constant m

Further, the CTOD is split into elastic and plastic part [1]. The elastic portion of crack tip

opening displacement is related to linear elastic SIF, K [56] and it is given by Eqn 5.12

CTODel =
K2
I (1− µ2)

mEσy
(5.12)

Where m is the material constant, σy is the Yield strength, E is the Young’s Modulus and

mu is the Poisson’s ratio. The above mentioned parameters are obtained from Table 5.2. Kirk and

Dodds[55] and Panontin [56] have obtained the CTODpl using Jpl as given in Eq. 5.13. Using this

approach the crack tip opening due to plasticity is computed using the present work.

CTODpl =
ηplApl

Bbmσflow
(5.13)

Where σflow is flow stress for Ramberg-Osgood model is found out using [55][56] as shown below

5.14

σflow =
σ0

2(X(n) + 1)
and X(n) =

E
σ0n

1
n

e
1
n

(5.14)

5.6 Numerical analysis

The numerical analysis is done using the general purpose commercial FEM software, ABAQUS 6.9.

Figure 5.8 shows CT-specimen modelled as per the ASTM E399 standard with dimensions listed in

Table 5.3. Extended finite element method is used to model the crack, hexahedral C3D8R element

type is used to create a mapped mesh. Full integration in used with C3D8R element type. The finite

element mesh shown in Fig.5.8 has 89321 elements and 186269 nodes. The model is loaded using pin

holes. To simulate pin loading, two rigid pins are modelled tied to the pin holes of the CT specimen .

A vertical load of 13.69kN is applied on the top pin. While the bottom pins is constrained for all the

displacements. Further, x-displacement is constrained along the vertical edge of the left end of the

specimen to simulate the constraints due to MTS fixture. And y and z displacement is constrained

along the bottom edge to arrest the rigid body displacements.

5.7 Results

5.7.1 Analytical Results

Figure 5.9 shows the load versus CMOD curve obtained experimentally through the COD gauge

mounted to the knife edges of CT specimen, which is fed to UTM. In Fig 5.9y-axis represents

the load obtained from load cells and x-axis represents the CMOD obtained from the COD gauges

mounted to the knife edges of CT specimen as discussed in earlier section.The load vs CMOD in Fig.
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Figure 5.8: Meshed CT specimen

5.9 classified in to Type-1 [1] behaviour and shows slight deviation from linearity before reaching the

ultimate failure loadPMax. A 5% Secant Line is drawn to determine P5. Since the curve represents

the Type-I, the critical load PQ = P5. This deviation in linearity is caused due to the plasticity

subcritical crack growth and/or both. Using the area under the load vs CMOD PQ PMax givesApl

which is later used to obtain the Jpl and CTODpl using the Eqs (5.9,5.13 )

Figure 5.9: Load vs. CMOD

5.7.2 Experimental results

Using the procedure described in earlier sections displacements and strain fields are obtained for

Al-T6 531 CT specimen with edge crack using 2D-DIC technique. Figures 5.10 and 5.11 shows the

strain εyy at a load level of 13.69 kN (at critical load PQ, see ). The contour plot obtained by

post processing the acquired speckle pattern images through VIC-2D 2010 commercial software by

Correlated Systems using subset size of 29x29 pixels and a step size of 7. The fracture parameters

CTOD and SIF are found from displacements contours ahead of the crack tip using the COD tool

featured in VIC-2D 2010 software at various load levels. Figure 5.11 contour plot represents negative

εxx ahead of crack tip would assist the crack blunting. The contour shape of the Figures 5.11 and

5.10 represents a typical plane strain plastic zone shape.
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Figure 5.10: Strain plot obtained form FE software

Figure 5.11: Strain plots from DIC

5.7.3 Numerical analysis results

Using FE-model discussed in the earlier section, J-integral is obtained for CT specimen (see Fig.5.8)

with different ligament length numerically using XFEM simulation in ABAQUS and plotted J-

integral vs ligament length in the Fig. 10(a). Ligament size is the uncrack length of the specimen.

It is observed that with the increase in ligament size (i.e. increase in crack length a) J-integral

drops in a bilinear fashion. The J-integral near to the crack tip is more dominant because of plastic

region ahead of crack tip and further elastic region started in which is dominant. By comparing

Load versus CTOD plot as shown in Fig. 10(b), it is come to know that results obtained from both

the methods are identical up to the yield. As crack is dependent on load, and when load increases,

crack grows faster and further crack opening displacement increases. From both the methods, DIC

gives the efficient results.

Table 5.3 summarises the fracture parameters obtained from analytical, experimental and nu-

merical methods for the edge cracked CT specimen made up of Al-T6 531 material. Reasonable

match is observed in both elastic parameter (error within 4%) and the plastic parameters J-integral

and CTOD ( error 5.3% and 17% respectively) between the values obtained through DIC experiment

and the XFEM simulation. However, the analytical estimates are far off from both experiments and

numerical approach as the constraint from the fixtures are not accounted while making the estimates

in the analytical approach.
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Figure 5.12: J Integral vs Ligament length

Figure 5.13: Load vs COD

5.8 Conclusion

Fracture parameters such as stress intensity factor (SIF) J-integral and CTOD are obtained for CT

specimen using DIC technique. DIC technique is made up Al-T6 531 containing an edge crack.by

experimentally, analytically and numerically were found to be closure. The relation between J-

integral and the crack opening displacement was found to depend upon the method of estimation,

specimen geometry and also the aspect ratio. The variation of the J-integral with the ligament

length was also obtained using XFEM and the J-integral value in elastic region is found to be linearly

decreasing with increase in ligament length. It was observed that value of J-integral is dependent

on crack length. Ramberg-Osgood model is fitted for getting non-linear stress-strain relationship

and material constants are estimated. DIC technique is more efficient than conventional methods

because it is sophisticated technique and simply gives the value of crack tip opening displacement

at corresponding load. The J-integral and the CTOD values estimated from the analytical and

numerical method were found to be close to the experimental values.
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Table 5.3: Fracture parameters for Al T6 531 edge cracked CT specimen
Fracture Parameters Analytical DIC Numerical

SIF KIMPa
√
m 40.84 67.48 32.56

JIC(kJ/mm2) 196.46 230.19 17.256
CTOD(mm) 0.928 0.961 1.022
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[15] I. Scheider, M. Schödel, W. Brocks, and W. Schönfeld. Crack propagation analyses with CTOA

and cohesive model: Comparison and experimental validation. Engineering Fracture Mechanics

73, (2006) 252–263.

[16] W. Li and T. Siegmund. An analysis of crack growth in thin-sheet metal via a cohesive zone

model. Engineering Fracture Mechanics 69, (2002) 2073–2093.

[17] I. Scheider and W. Brocks. Simulation of cup–cone fracture using the cohesive model. Engi-

neering Fracture Mechanics 70, (2003) 1943–1961.

[18] V. Tvergaard. Predictions of mixed mode interface crack growth using a cohesive zone model

for ductile fracture. Journal of the Mechanics and Physics of Solids 52, (2004) 925–940.

[19] V. Tvergaard. Cohesive zone representations of failure between elastic or rigid solids and ductile

solids. Engineering Fracture Mechanics 70, (2003) 1859–1868.

[20] W. Zhang and X. Deng. Asymptotic fields around an interfacial crack with a cohesive zone

ahead of the crack tip. International journal of solids and structures 43, (2006) 2989–3005.

[21] W. Zhang and X. Deng. Elastic fields around the cohesive zone of a mode III crack perpendicular

to a bimaterial interface. Journal of Applied Mechanics 74, (2007) 1049–1052.

[22] J. R. Rice. A path independent integral and the approximate analysis of strain concentration

by notches and cracks. Journal of applied mechanics 35, (1968) 379–386.

[23] J. Rice and G. Rosengren. Plane strain deformation near a crack tip in a power-law hardening

material. Journal of the Mechanics and Physics of Solids 16, (1968) 1–12.

[24] A. A. Griffith. The phenomena of rupture and flow in solids. Philosophical transactions of the

royal society of london. Series A, containing papers of a mathematical or physical character

163–198.

[25] A. Needlemana, D. Cokerb, and A. Rosakisc. Fast crack growth along interfaces. Latin American

Journal of Solids and Structures 2, (2005) 5–15.

[26] A. Needleman. A continuum model for void nucleation by inclusion debonding. Journal of

applied mechanics 54, (1987) 525–531.

[27] X.-P. Xu and A. Needleman. Numerical simulations of fast crack growth in brittle solids. J

Mech Phys Solids 1, (1992) 37.

[28] G. T. Camacho and M. Ortiz. Computational modelling of impact damage in brittle materials.

International Journal of solids and structures 33, (1996) 2899–2938.

[29] A. E399-06. Standard Test Method for Linear-Elastic Plane-strain Fracture Toughness of Metal-

lic Materials. Annual Book of ASTM Standards, Section 3, Volume 03.01 520–551.

44



[30] D. Roylance. Introduction to fracture mechanics. Department of Materials Science and Engi-

neering, Massachusetts Institute of Technology .

[31] S. Lee and G. Ravichandran. An investigation of cracking in brittle solids under dynamic

compression using photoelasticity. Optics and lasers in engineering 40, (2003) 341–352.

[32] A. J. Rosakis, O. Samudrala, R. P. Singh, and A. Shukla. Intersonic crack propagation in

bimaterial systems. Journal of the Mechanics and Physics of Solids 46, (1998) 1789–1814.

[33] J. Lambros and A. Rosakis. Dynamic decohesion of bimaterials: experimental observations and

failure criteria. International Journal of solids and Structures 32, (1995) 2677–2702.

[34] P. Geubelle and W. Knauss. Crack propagation at and near bimaterial interfaces: linear anal-

ysis. Journal of applied mechanics 61, (1994) 560–566.

[35] K. H. Lee, A. Shukla, V. Parameswaran, V. Chalivendra, and J. S. Hawong. Static and dynamic

fracture analysis for the interface crack of isotropic-orthotropic bimaterial. KSME international

journal 16, (2002) 165–174.

[36] A. Shukla, V. B. Chalivendra, V. Parameswaran, and K. H. Lee. Photoelastic investigation of

interfacial fracture between orthotropic and isotropic materials. Optics and lasers in engineering

40, (2003) 307–324.

[37] C. K. Desai, S. Basu, and V. Parameswaran. Determination of complex stress intensity factor

for a crack in a bimaterial interface using digital image correlation. Optics and Lasers in

Engineering 50, (2012) 1423–1430.

[38] S. Boere and P. Schreurs. Bimaterial Interface Cracks .

[39] P. Matos, R. McMeeking, P. Charalambides, and M. Drory. A method for calculating stress

intensities in bimaterial fracture. International Journal of Fracture 40, (1989) 235–254.

[40] A. Cochard and R. Madariaga. Dynamic faulting under rate-dependent friction. Pure and

Applied Geophysics 142, (1994) 419–445.

[41] P. H. Geubelle and J. R. Rice. A spectral method for three-dimensional elastodynamic fracture

problems. Journal of the Mechanics and Physics of Solids 43, (1995) 1791–1824.

[42] G. Perrin, J. R. Rice, and G. Zheng. Self-healing slip pulse on a frictional surface. Journal of

the Mechanics and Physics of Solids 43, (1995) 1461–1495.

[43] M. Kulkarni, S. Pal, and D. Kubair. Mode-3 spontaneous crack propagation in unsymmetric

functionally graded materials. International journal of solids and structures 44, (2007) 229–241.

[44] P. H. Geubelle and M. S. Breitenfeld. Numerical analysis of dynamic debonding under anti-plane

shear loading. International Journal of Fracture 85, (1997) 265–282.

[45] J. Yates, M. Zanganeh, and Y. Tai. Quantifying crack tip displacement fields with DIC. Engi-

neering Fracture Mechanics 77, (2010) 2063–2076.

[46] T. Keating, P. Wolf, and F. Scarpace. An improved method of digital image correlation.

Photogrammetric Engineering and Remote Sensing 41.

45



[47] M. Sutton, W. Wolters, W. Peters, W. Ranson, and S. McNeill. Determination of displacements

using an improved digital correlation method. Image and vision computing 1, (1983) 133–139.

[48] T. Itoh. J-integral estimate for biaxially stressed Mode I cracks based on COD strain. Inter-

national journal of fatigue 21, (1999) 1087–1097.

[49] S. Kudari and K. Kodancha. On the relationship between J-integral and CTOD for CT and

SENB specimens. Fracture and Structural Integrity pages–3.

[50] G. La Rosa, A. Marino, and C. Garrano. Fracture mechanics parameters evaluation using the

digital image correlation technique: a first approach. In CONVEGNO IGF XXII ROMA 2013.

2013 .
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