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Abstract

Comfort performance of any vehicle depends on the dynamic characteristics of dampers. In this

thesis, we analyze the influence of semi-active MR(Magnetorheological) damper using the quarter

and half car models, and discuss about the nonlinear characteristics of passive oil damper using half

car model. The vehicle suspension of quarter car model with MR damper is considered while the

vehicle is travelling at constant speed on random road profile. The hysteretic behaviour of the MR

damper is characterized using modified Bouc-Wen model. Using equivalent linearization technique

hysteretic behaviour of MR damper is linearized and used in the state space form. Subsequently,

the rms values of system response characteristics such as sprung mass acceleration, suspension

stroke, road holding and control force verses vehicle velocity are obtained by solving matrix lyapunov

equation in time domain. The system response in term of above parameters are computed for the

parameters related with MR damper at different current which are obtained from the experimental

conducted in our group. It is found that as the current in MR damper increases, the control force

also increases, thus, reducing the suspension stroke and road holding. However, the sprung mass

acceleration is increases, which reduces the comfort. Hence, optimal application of current has to

be used to actuate MR damper for a given disturbance. Similarly, we also analyzed the system

response of front and rear suspension system using the half-car model. We obtain the similar

characteristics as that in quarter car model. To analyze the nonlinear system response of damper,

we take a passive oil damper with cubic nonlinearity in spring and damping characteristics. We use

half car model to study the influence of sinusoidal road excitation under the primary and secondary

excitation for constant speed. The equilibrium analysis is carried out with method of multiple scales.

The amplitude response curves versus frequency at the front and rear wheels are found. Primary

resonance with 1:1 internal resonance between front and rear wheels is first studied. It shows the

presence of the limit cycle over lower range of frequencies. Subsequently, due to the presence of

cubic non-linearity in the system, we also perform nonlinear dynamical studies of half car model

with 1:3 internal resonance condition. We obtain the system under the excitation near primary

and superharmonic resonance and analyze the response at the front and rear wheels. Finally, we

state that the linear and nonlinear study presented in the thesis can be used optimize the comfort

performance of vehicle. The nonlinear analysis presented for passive oil damper can be extended to

semi-active MR damper.
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Chapter 1

Introduction

1.1 Motivation

The suspension system in automobiles is an area of active research in which many studies involving

the control of linear and nonlinear characteristics dampers have been studied [1, 2, 4, 3]. Quarter

car and half car models are widely used for studying the suspension system of automobiles [3, 2, 8].

Another interesting aspect is the application of control force to the suspension system using different

control techniques [1, 2, 4]. In this thesis, we analyze the performance of semi-active and passive

dampers subjected to different controlling and excitation forces, respectively.

1.2 Literature survey

Quarter car and half car models are widely used for studying the vehicle response assuming that

the vehicle mass is acting at one wheel(quartet car) and two wheels(half car). For better pas-

senger comfort the vibration amplitude need to be reduced using the suspension system. The

suspension dampers are classified as passive, semi-active and active dampers. The semi-active and

active dampers use control force to suppress the vibrations. Some of the semi-active dampers use

MR(Magnetorheological) dampers to reduce the the vibrations. The active suspension with full

feedback control and optimization with respect to ride comfort, working space of the suspension,

road holding and control force of the suspension is studied by Hac [4] while the vehicle is traversing

on random road surface. The vehicle performance characteristics are computed by solving Lyapunov

and Riccati equations. The quarter car model with MR dampers is studied by Prabakar et al. [1].

The half car model with MR dampers at the front and rear wheels is studied by Prabakar et al.
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[2] and they presented vehicle response curves. The rms values of state variables for the control

force, suspension length and tyre deflection are computed using spectral decomposition methods by

A.G.Thompson et al. [5]. An automobile is a nonlinear system because of the nonlinear properties

of the components like suspension system, etc there can be chaos and bifurcations and hence half

car model is studied by Zhu et al. [6] where the stiffness and damping are assumed to be nonlinear

with displacement. It is observed by Zhu et al. [6] that the unstable region in frequency response

diagram could lead to chaotic response and from the bifurcation diagram they concluded that the

chaotic motion is sensitive to the damping value of the system. The full car nonlinear model is

studied by Zhu et al. [7] where full vehicle is studied with the nonlinear stiffness and damping and

they concluded that the chaotic vibration of the system could be avoided by having the frequency

of excitation away from the unstable regions of the frequency response diagram.

The semi-active MR damper with the preview distance control is studied by Gopala Rao et

al. [8] using spectral decomposition method and and they concluded that the overall performance

improves with preview distance and has a limit after which the performance saturates. The random

vibration of road vehicle using quarter car and half car models are studied by Bayrakdar [9] for

finding the natural frequencies. Several idealized mechanical models for MR damper is studied

by Spencer et al. [10] where in Bingham and Bouc-wen are studied along with other models and

the proposed modified Bouc-wen is proved to be better than other methods in matching with the

experimental results. So the modified Bouc-wen is followed in this report for characterizing the

MR damper. The equivalent linearization of smooth hysteretic systems under random excitation

is studied by Y.K.Wen [11] where in the hysteretic components satisfying non-linear differential

equation are written in equivalent linear form to satisfy linear differential equation. The simulation

of asymmetric hysteretic behaviour of material under tensile and compressive loading is studied using

Bouc-wen model in Dobson et al. [12]. The shaping filter and sinusoidal approximation methods for

generating random road profiles is discussed in F.Tyan et al. [13]. The skyhook, groundhook and

hybrid configurations for quarter car suspension model are studied by Ahmadian et al. [14] where

they studied the performance by varying the damping and the hybrid semi-active control is shown

giving better performance. The experimental studies on quarter car suspension by Ahmadian et

al. [15] showed that the transmissibility of sprung mass is reduced by skyhook and transmissibility

of unsprung mass is reduced by groundhook control and the experiment is carried out using MR

damper as an adjustable damper. The 2-DOF quarter car model with optimal preview control is

studied by S.Narayanan et al. [16] where the preview of road irregularity is given as feed back to

the active control system and the vehicle performance characteristics are significantly improved.
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The stability and frequency analysis of quarter car model is carried out by Siewe [3] where one

degree of freedom system is studied and they concluded that with the increasing force the periodic

motion of the system becomes chaotic motion. The homoclinic bifurcation in quarter car model using

Melnikov criterion is studided by Litak et al. [17] where they found critical Melnikov amplitude of

the road surface profile above which the system show chaotic behaviour. The linear time delay

active control in nonlinear quarter car model is studied by Naik et al. [18] where they used Melnikov

technique to study onset of chaos from homoclinic bifurcation and concluded that there is effect of

time-delay on the critical forces which lead to Melnikov chaos. They also concluded that the delayed

feedback prevent the stable and unstable manifolds from tangling. Different methods to study the

nonlinear systems and their stability are avalable [19, 20, 21]. The optimal control techniques are

available in Anderson et al. [22].

The half car model with variable parameters is studied by Gao et al. [23] and they used Monte-

Carlo simulation method to study the mean and standard deviation of vehicle natural frequencies

and rms value of vehicle random response. The damping coefficient and stiffness coefficient effect on

handling and comfort is studied by [24] and found that the damping has different coefficient values

in compression and rebound. The influence of delay and parametric excitation on quarter car is

studied by Koumene et al. [25]. The 1-1 internal resonance in a 2 degree of freedom oscillator was

studied by Alexander [26] where the system is considered having cubic stiffness and linear damping

and frequency response curves are shown having Hamiltonian Pitchfork bifurcation.

1.3 Outline of the thesis

Each chapter has mathematical formulation describing the formulation of the problem, experimental

curve fitting and the vehicle response results. The mathematical model is taken from Prabakar et

al. [1, 2] and the formulae are rederived. The experimental values are taken from Priyank [27] and

curve fitting is performed to arrive at the damper characteristics. MR damper in quarter car model

is dedicated to the quarter car with MR damper where the vehicle response curves are drawn for

different currents. MR damper in half car model is dedicated to half car with MR dampers at the

front and rear and vehicle response curves are shown for different currents at the front and rear.

Nonlinear damper in half car model is dedicated to the half car model having nonlinear damper with

cubic nonlinearity and amplitude response curves at front and rear are shown.
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Chapter 2

MR damper in quarter car model

The MR damper is a semi-active suspension damper which is operated mainly by varying the current

passed to it which in turn will vary the control force. This can be mathematically modeled using

Bingham model, Bouc-Wen model and modified Bouc-Wen model which are compared by Spencer

et al. [10]. Here we are following modified Bouc-Wen model and the nonlinear part is modeled using

equivalent linearization mentioned by Wen [11]. The random road profile is modeled as white noise

velocity satisfying covariance function. The state space equation will have the different states and

the external excitation which will form as basis for the lyapunov equation. We solve the lyapunov

equation by using lyap command in MATLAB control system tool box. We perform this process for

different parameters obtained for different currents in MR damper and the analysis is presented.

2.1 Mathematical model

The standard 2-DOF quarter car model along with the parameters of MR damper is shown in the

Fig. 2.1. In this present case, we characterize the MR damper using the modified Bouc-Wen model

mentioned in Spencer et al. [10]. The equations of motion y1 and y2 corresponding to sprung mass

M and unsprung mass m in the quarter car model can be found from Prabakar et al. [1] as

Mÿ1 +Ks(y1 − y2)− (U)MR = 0, (2.1)

mÿ2 −Ks(y1 − y2) +Kt(y2 − h) + (U)MR = 0. (2.2)
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Figure 2.1: MR damper in quarter car model with modified Bouc-Wen model

where, Ks is stiffness, Kt is wheel stiffness, UMR is control force and h is road height from ground.

The control force UMR can be written based on the modified Bouc-Wen model as

(U)MR = K2(y2 − y1) + C2(ẏ − ẏ1), (2.3)

where, y is the pre-yielding displacement and it is governed by equation ẏ which can can be obtained

by equating the forces in C2 with the combined forces in K1, C1, and αz as

ẏ =
1

C1 + C2
(K1(y2 − y1) + C1ẏ2 + C2ẏ1 − αz). (2.4)

Here, z is the hysteretic displacements of the modified Bouc-Wen model which can be obtained from

the equation given by Spencer et al. [10],

ż = −γ|ẏ − ẏ2|z|z|(n−1) − β(ẏ − ẏ2)|z|n +A1(ẏ − ẏ2) (2.5)

where, α, β, γ and A1 are parameters of the modified Bouc-Wen model, K1, K2 are the stiffness

values, C1, C2 are the damping coefficients and y1, ẏ1 are the displacement and velocity of the MR

damper model, ’n’ is the smoothness of transition from elastic to plastic response.

The equivalent linear form of the hysteretic displacement equation is available in [1] as,

ż = −Ch(ẏ − ẏ2)−Khz, (2.6)
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where, Kh and Ch values are mentioned in Prabakar et al. [28] and obtained by linearization

technique mentioned in Wen [11]. This is calcuated by minimizing the mean square error,

Ch =

√
2

π
[γ
E[(ẏ − ẏ2)z]

σ[(ẏ − ẏ2)]
+ βσ[z]]−A1 (2.7)

Kh =

√
2

π
[β
E[(ẏ − ẏ2)z]

σ[z]
+ γσ[(ẏ − ẏ2)]] (2.8)

σ[z] =
√
E[z2] (2.9)

σ[ẏ − ẏ2] =

√
E[ẏ2]− 2E[ẏẏ2] + E[ẏ2

2] (2.10)

E[ẏ2] =
1

(C1 + C2)2
[K2

1 (E[y2
2 ] + E[y2]− 2E[y2y])

+C2
1E[ẏ2

2] + C2
2E[ẏ1

2] + α2E[z2]

+2K1C1(E[ẏ2y2]− E[ẏ2y]) + 2C1C2E[ẏ1ẏ2]

−2αC1E[ẏ2z] + 2K1C2(E[ẏ1y2]

−E[ẏ1y])− 2αK1(E[y2z]− E[yz])

−2αC2E[ẏ1z]]. (2.11)

Equivalent linearization is used in obtaining the values Ch and Kh. Initial values of Ch and Kh are

assumed and Lyapunov equation is solved to obtain the covariance values of the states and using

these new values Ch and Kh are calculated and verified for convergence with previous Ch and Kh

values and this procedure is repeated till the values converge to a predefined accuracy.

The random road profile model with white noise velocity derivation is available in [13] and the

random road profile is satisfying the white noise velocity equation mentioned in [4, 1] as,

˙h(t) + αrV h(t) = w(t) (2.12)

where, w(t) is a white noise process with covariance function E[w(t)wT (τ)] = Qδ(t − τ) and Q is

the spectral intensity given by Q = 2σ2αrV , where σ2 is the variance of the road profile, ω is the

circular frequency and αr is the road roughness coefficient and δ is dirac delta function.

The generated augmented state vector of a 2-DOF vehicle model using the equations of motion
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for the MR suspension system is given by

Ẋ = FqX +Dw(t) (2.13)

The individual matrices for F and D are available in the appendix and is also available in Prabakar

et al. [1]. The state vector is given by XT=[y1 ẏ1 y2 ẏ2 y z h].

The response of the system is obtained by solving matrix Lyapunov equation,

FqPq + PqF
T
q +DQDT = 0, (2.14)

where, P represents the covariance matrix of the states. The performance characteristics are pre-

sented in terms of mean square values of sprung mass acceleration (J1), suspension stroke(J2), road

holding parameter J3 and control force J4. These are calculated by full feedback control law given

by Hac [4] and the control force used here will be for MR damper,

J1 =

k∑
i=1

k∑
j=1

Fq(2, i)F (2, j)Pq(i, j) (2.15)

J2 = Pq(1, 1)− 2Pq(1, 3) + Pq(3, 3) (2.16)

J3 = Pq(3, 3)− 2Pq(3, k) + Pq(k, k) (2.17)

J4 = E[U2
MR] (2.18)

where, number of state variables k = 7 for the modified Bouc-Wen model.

2.2 Experimental curve fitting

To analyze the performance of MR dampers subjected to different current, we use experiment results

obtained by our group [27]. Fig. 2.2 shows typical characteristic graphs for a MR damper excited with

an amplitude of 5 mm at a frequency of 1 Hz subjected to 0.5 A current. Subsequently, we obtain

the parameters associated with the modified Bouc-Wen model by comparing the equations from the

previous section with the experimental curves. Table 2.1 presents the corresponding parameters for

different currents in MR damper.
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Figure 2.2: (a) The Displacement vs time, (b) force versus time, (c) force vs displacement and (d)
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.

Table 2.1: MR damper parameters for different input current

Current Amp K1[N/m] C1[N-s/m] K2[N/m] C2[N-s/m] α[N/m] β [m−2] γ [m−2] A
0 100 800 120 80000 800 10000 3000 150
0.5 100 1000 120 80000 1000 10000 3000 150
1 100 2000 120 80000 2200 10000 3000 150
1.5 100 2200 120 80000 700 10000 3000 150

2.3 Vehicle performance curves

The vehicle performance curves for rms sprung mass acceleration, rms suspension stroke, rms road

holding and rms control force are calculated for different input currents of the MR damper using

the formulae mentioned in section 2.1.

The sprung mass acceleration of the vehicle shown in Fig. 2.3(a) is related to the comfort

experienced by the passengers in the vehicle. If this value is high it means that the passengers will

experience discomfort. So this value should be possible minimal value. When input current in the

MR damper is increased we observed marginal increase in the sprung mass acceleration so it will be

a limiting factor upto which we can increase the current in the MR damper. That means sprung

mass acceleration limits the damping coefficient value that can be used in the suspension system.

The suspension stroke shown in Fig. 2.3(b) is the length of the suspension system that can fit in the

vehicle. If we have high value that means we should have bigger shock absorber. So it is required

to have low suspension stroke to accommodate it in less space. We have observed that when we
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Figure 2.3: (a) Variation of RMS sprung mass acceleration verses vehicle velocity and (b) RMS
suspenion stroke verses vehicle velocity for different currents.

increased the current in the MR damper the suspension stroke is decreasing, so this is desirable

effect.
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Figure 2.4: Rms road holding and Rms control force for different currents

The road holding shown in Fig. 2.4a gives the vehicle handling and safety situation. This the

distance by which the vehicle will be away from the road surface. So we need this value to be as

minimal as possible to give better safety and handling. We have observed that when we increased the

current in the MR damper the road holding is decreasing, so this is desirable effect. The control force

shown in Fig. 2.4b is the force generated in the MR damper which will be used by the suspension

system to negotiate with the road irregularity. We have observed that when we increased the current

in the MR damper the control force is increasing, which is a desirable effect.
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2.4 Summary

The quarter car model traveling on random road profile is modeled and the vehicle performance

curves are drawn. We have obtained different parameters when different currents are passed to the

MR damper in experiments conducted by our group [27]. When the performance curves are drawn

we noticed that we should have a limiting current that be applied to the MR damper. This is

because when we are increasing the current we will have desirable effects on suspension stroke, road

holding and control force but there will be undesirable effect of sprung mass acceleration which is

increasing making the discomfort for the passengers.
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Chapter 3

MR damper in half car model

The MR damper in half car model is studied by Prabakar et al. [2]. There will be two MR dampers

one at the front wheel and another at the rear wheel of the half car. We use similar approach

mentioned in quarter car for the random road profile. We use state space formulation for performing

the covariance analysis and solving the resulting lyapunov equation. We use the same characteristics

mentioned in the previous section for the MR damper parameters for different currents. The two

MR dampers are assumed to be having same characteristics.

3.1 Mathematical model

The half car model with MR dampers at the front and rear wheels is shown in the Fig. 3.1. The

equation of motion can be derived using Lagrange equations. The equations of motion for the half

car model suspension system with modified Bouc-Wen model are given in Prabakar et al. [2] as,

Mÿc +Kf (yc + aθ − yf )− (Uf )MR +Kr(yc − bθ − yr)− (Ur)MR = 0 (3.1)

Iθ̈ +Kf (yc + aθ − yf )a− a(Uf )MR −Kr(yc − bθ − yr)b+ b(Ur)MR = 0 (3.2)

mf ÿf +Ktf (yf − hf )−Kf (yc + aθ − yf ) + (Uf )MR = 0 (3.3)

mrÿr +Ktr(yr − hr)−Kr(yc − bθ − yr) + (Ur)MR = 0 (3.4)

The control forces in modified Bouc-Wen model at the front wheel and rear wheel are given by,

(Uf )MR = K2f (yf − yc − aθ) + C2f ( ˙y1f − ẏc − aθ̇) (3.5)
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Figure 3.1: MR damper in half car with modified Bouc-Wen model

(Ur)MR = K2r(yr − yc + bθ) + C2r( ˙y1r − ẏc + bθ̇) (3.6)

One can obtain the ˙y1f by equating the forces in C2f with combined forces in K1f , C1f , α1fz1f and

similar calculation for rear MR damper.

˙y1f =
1

C1f + C2f
(K1f (yf − y1f ) + C1f ẏf + C2f ẏc + C2faθ̇ − α1fz1f ) (3.7)

˙y1r =
1

C1r + C2r
(K1r(yr − y1r) + C1rẏr + C2rẏc − C2rbθ̇ − α1rz1r) (3.8)

where y1f , y1r are pre-yielding and z1f , z1r are hysteretic displacements of modified Bouc-Wen

model. The hysteretic displacements are governed by modified Bouc-Wen model given by Spencer

et al. [10],

˙z1f = −γ1f | ˙y1f − ẏf |z1f |z1f |(n−1) − β1f ( ˙y1f − ẏf )|z1f |n +A1f ( ˙y1f − ẏf ) (3.9)

˙z1r = −γ1r| ˙y1r − ẏr|z1r|z1r|(n−1) − β1r( ˙y1r − ẏr)|z1r|n +A1r( ˙y1r − ẏr) (3.10)

where α1f , β1f , γ1f and A1f are parameters of the modified Bouc-Wen model, K1f , K2f are the

stiffness, C1f , C2f are the damping coefficients and y1f , ˙y1f are the displacement and velocity of the

MR damper model, ’n’ is the smoothness of transition from elastic to plastic response. And similar

notations are taken for the suffix with 1r and 2r for the parameters in rear MR damper.
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The equivalent linear form of the hysteretic displacement equations are given by

˙z1f = −Chf ( ˙y1f − ẏf )−Khfz1f (3.11)

˙z1r = −Chr( ˙y1r − ẏr)−Khrz1r (3.12)

Khf , Chf , Khr, Chr are obtained by linearization technique [11] by minimizing the mean square

error,

Chf =

√
2

π
[γ1f

E[( ˙y1f − ẏf )z1f ]

σ[( ˙y1f − ẏf )]
+ β1fσ[z1f ]]−A1f (3.13)

Khf =

√
2

π
[β1f

E[( ˙y1f − ẏf )z1f ]

σ[z1f ]
+ γ1fσ[( ˙y1f − ẏf )]] (3.14)

Chr =

√
2

π
[γ1r

E[( ˙y1r − ẏr)z1r]

σ[( ˙y1r − ẏr)]
+ β1rσ[z1r]]−A1r (3.15)

Khr =

√
2

π
[β1r

E[( ˙y1r − ẏr)z1r]

σ[z1r]
+ γ1rσ[( ˙y1r − ẏr)]] (3.16)

Equivalent linearization is used in obtaining the values of Chf , Khf , Chr and Khr. Similar procedure

mentioned for quarter car model is followed for the evaluation of these values.

The random road profile is taken to be similar to the one mentioned in Prabakar et al. [28] as

˙h1(t) + αrV h1(t) = w(t) (3.17)

˙h2(t) + αrV h2(t) = w(t− t2) (3.18)

where h1, h2 are the road height at the front wheel and rear wheel, V is velocity of the vehicle

and w(t) is the white noise process following covariance function.

The state vector of a half car model using the equations of motion for the MR suspension system

is given by

Ẋa = FhXa +D1w(t) +D2w(t− t2) (3.19)

The individual matrices for Fh, D1 and D2 are available in appendix and also in Prabakar et al. [2]

and XT
a =[yc ẏc θ θ̇ yf ẏf yr ẏr y1f z1f y1r z1r hf hr].

The response of the system is obtained by solving matrix Lyapunov equation,

FhPh + PhF
T
h +D1QD

T
1 +D2QD

T
2 + φ(t, t2)D1QD

T
2 +D2QD

T
1 φ(t, t2)T = 0 (3.20)

13



where Ph represents the covariance matrix of the states. And φ(t, t2) = eFh∗(t−t2) is the state

transition matrix, here the time lag is assumed to be minimal so the state transition matrix can

be identity matrix. The rms values of the vehicle performance characteristics are obtained by tak-

ing the square root of the values of J1h(Sprung mass acceleration), J2h(Front suspension stroke

front), J3h(Road holding front), J4h(Pitch acceleration), J5h(Rear suspension stroke), J6h(Rear

road holding), J7h(Front control force) and J8h(Rear control force).

J1h = c1 ∗ Ph ∗ c1T ,

J2h = c2 ∗ Ph ∗ c2T ,

J3h = c3 ∗ Ph ∗ c3T ,

J4h = c4 ∗ Ph ∗ c4T ,

J5h = c5 ∗ Ph ∗ c5T ,

J6h = c6 ∗ Ph ∗ c6T ,

J7h = c7 ∗ Ph ∗ c7T and

J8h = c8 ∗ Ph ∗ c8T

where

c1 = Fh(2, :),

c2=[1 0 a 0 -1 0 0 0 0 0 0 0 0 0],

c3=[0 0 0 0 1 0 0 0 0 0 0 0 -1 0],

c4 = Fh(4, :),

c5=[1 0 -b 0 0 0 -1 0 0 0 0 0 0 0],

c6=[0 0 0 0 0 0 1 0 0 0 0 0 0 -1],

c7 = [−K2f −C2f+
C2

2f

C1f+C2f
−aK2f −aC2f+

aC2
2f

C1f+C2f
K2f+

K1fC2f

C1f+C2f

C1fC2f

C1f+C2f
0 0

−K1fC2f

C1f+C2f

−α1fC2f

C1f+C2f
0 0 0 0]

c8 = [−K2r −C2r+
C2

2r

C1r+C2r
−aK2r −aC2r+

aC2
2r

C1r+C2r
K2r+

K1rC2r

C1r+C2r

C1rC2r

C1r+C2r
0 0 −K1rC2r

C1r+C2r

−α1rC2r

C1r+C2r
0 0 0 0].

3.2 Experimental curve fitting

The same parameters mentioned in the section 2.2 are used for half car model. The same parameters

are used at the front wheel and rear wheel.

3.3 Vehicle performance curves

The vehicle performance curves for rms sprung mass acceleration, rms pitch acceleration, rms sus-

pension stroke front, rms suspension stroke rear, rms road holding front, rms road holding rear, rms
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control force front and rms control force rear are calculated for different input currents of the MR

damper. The time lag between front and rear wheels is neglected for calculating the vehicle response

curves.
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Figure 3.2: Rms sprung mass and pitch acceleration for different currents

From the above Fig. 3.2(a) we can conclude that the sprung mass acceleration is increasing with

the increasing input current. This is not desirable as this will limit the maximum input current we

can supply to the MR damper. The increase in sprung mass acceleration reduces the comfort for

the passengers in the vehicle. It is observed from above Fig. 3.2(b) that the pitch acceleration is

decreasing with the increasing current in MR damper. This is desirable effect which will improve

the comfort for the passengers in the vehicle.
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Figure 3.3: Rms suspension stroke at front and rear for different currents

From the Fig. 3.3(a) on front suspension stroke it is observed that the front suspension stroke

is decreasing with the increasing current in MR damper. This is desirable effect which will reduce
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suspension space requirements at the front wheel of the vehicle. It is observed from the Fig. 3.3(b)

on rear suspension stroke that the rear suspension stroke is decreasing with the increasing current

in MR damper. This is desirable effect which will reduce suspension space requirements at the rear

wheel of the vehicle.
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Figure 3.4: Rms road holding at front and rear for different currents

We can conclude from the road holding Figs. 3.4(a) and 3.4(b) that the front road holding is

decreasing with the increasing current in MR damper. This is desirable effect which will improve

the safety and handling of the vehicle at the front wheel. It is observed that the rear road holding

is decreasing with the increasing current in MR damper. This is desirable effect which will improve

the safety and handling of the vehicle at the rear wheel.
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Figure 3.5: Rms control force at front and rear for different currents

From the control force Figs. 3.5(a) and 3.5(b) it is observed that the front control force is
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increasing with the increasing current in MR damper. This is desirable effect which will improve

the other parameters of the vehicle at the front wheel. There will be some limit to the control force

after which the sprung mass acceleration can not be increased beyond a certain value. We can also

observe that the rear control force is increasing with the increasing current in MR damper. This is

desirable effect which will improve the other parameters of the vehicle at the rear wheel. There will

be some limit to the control force after which the sprung mass acceleration can not be increased

beyond a certain value.

3.4 Summary

The half car model traveling on random road profile is modeled and the vehicle performance curves

are drawn. We have used same parameters used in previous section which are obtained in experiments

conducted by our group [27]. When the performance curves are drawn we noticed that we have similar

effects at the front wheel and rear wheel. And there is some limiting current that can be applied to

the MR damper. This is because when we are increasing the current we will have desirable effects

on suspension stroke (at front wheel and rear wheel), road holding(at front wheel and rear wheel)

and control force(at front wheel and rear wheel) but there will be undesirable effect of sprung mass

acceleration which is increasing making the discomfort for the passengers.
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Chapter 4

Nonlinear passive damper in half

car model

In this section we consider vehicle having stiffness and damper with cubic nonlinearity and the vehicle

is travelling on sinusoidal road surface with constant velocity. We have 2 scenarios considered for this

model. In the first scenario the effects of oscillations of the front and rear sprung mass are assumed

to have 1-1 internal resonance (a=b in the fig. 4.1). In this scenario we have primary resonance for

the sprung mass at the front and rear part of the vehicle. In the second case we consider a and b are

not equal and we assume that there is 1-3 internal resonance between the masses at front and rear

part of the vehicle. In this case we present the primary and subharmonic resonances. We use method

of multiple scales for arriving at the envelope equations and these equations are used to arrive at the

equilibrium curves. In this thesis the equilibrium curves show the amplitude vs frequency response.

These curves give and indication at what frequency there is resonance amplitude and the force at

which there is steady state solution beyond which there will be onset of unsteady behaviour.

4.1 Mathematical model for 1:1 internal resonance

The schematic diagram of half car suspension is shown in the Fig. 4.1. The half car with sprung

mass M , moment of inertia I and a, b are the distances to the front and rear edge of the sprung mass

from the center of gravity. The vehicle is assumed to travel with a constant velocity V . K1r,K1f

are the stiffness values and Fhr, Fhf are the nonlinear damping forces with cubic nonlinearity for

the stiffness and damping. z1, z2 are the two degrees of freedom and they are calculated from pitch
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angle θ and heave motion yc. The equation of motion for the half car can be derived using Newton’s

Figure 4.1: Halfcar model with periodic excitation

laws.

Mÿc +K1fz1 + Fhf +K1rz2 + Fhr = 0 (4.1)

Iθ̈ + aK1fz1 + aFhf − bK1rz2 − bFhr = 0 (4.2)

where F = AΩ2, yf = A sin(Ωt), yr = A sin(Ωt − φ), z1 = yc + aθ − yf , z2 = yc − bθ − yr,

Fhf = K2fz1
3 +C1f ż1 +C2f ż1

3, Fhr = K2rz2
3 +C1r ż2 +C2r ż2

3. The above equations in ÿc, θ̈ can

be converted into equations in z̈1, z̈2. And we can make the equations in non dimensional form by

dividing the equations with ω1
2 where we substitute ω1t = τ and Ω

′
= Ω

ω1
.

z̈1 + z1 +B1z1
3 +B2ż1 +B3ż1

3 +B4z2 +B5z2
3 +B6ż2 +B7ż2

3 = AΩ
′2

sin(Ω
′
τ) (4.3)

z̈2 +
ω2

2

ω1
2
z2 +B8z1 +B9z1

3 +B10ż1 +B11ż1
3 +B12z2

3 +B13ż2 +B14ż2
3 = AΩ

′2
sin(Ω

′
τ −φ) (4.4)

where, ω1
2 = ( 1

M + a2

I )K1f , B1 = ( 1
M + a2

I )
K2f

ω1
2 , B2 = ( 1

M + a2

I )
C1f

ω1
, B3 = ( 1

M + a2

I )C2fω1,

B4 = ( 1
M −

ab
I )K1r

ω1
2 , B5 = ( 1

M −
ab
I )K2r

ω1
2 , B6 = ( 1

M −
ab
I )C1r

ω1
, B7 = ( 1

M −
ab
I )C2rω1, ω2

2 = ( 1
M + b2

I )K1r,

B8 = ( 1
M −

ab
I )

K1f

ω1
2 , B9 = ( 1

M −
ab
I )

K2f

ω1
2 , B10 = ( 1

M −
ab
I )

C1f

ω1
, B11 = ( 1

M −
ab
I )C2fω1, B12 =

( 1
M + b2

I )K2r

ω1
2 , B13 = ( 1

M + b2

I )C1r

ω1
, B14 = ( 1

M + b2

I )C2rω1. The solution to the equations ( 4.3) and
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( 4.4) can be written in method of multiple scales.

z1 = z10(T0, T1) + εz11(T0, T1) +O(ε2)

z2 = z20(T0, T1) + εz21(T0, T1) +O(ε2) (4.5)

where z10, z11, z20, z21 are functions to be determined, T0 = t, T1 = εt, Tn = εnt. The differential

operators become

d

dt
= D0 + εD1 + ...

d2

dt2
= D0

2 + εD0D1 + ε2(D1
2 + 2D0D2) + ... (4.6)

The primary resonance is studied when the front and rear wheel sprung masses have same natural

frequencies that is when a and b are equal (when the center of gravity of the sprung mass is at

the geometric center). To determine the amplitude of oscillation at primary resonance the force

term and the nonlinear terms are assumed to be smaller so they are ordered with ε. Equating the

coefficients of the like powers of ε gives the following differential equations.

D0
2z10 + ω1

2z10 = 0

D0
2z20 + ω2

2z20 = 0 (4.7)

D0
2z11 + z11 = −2D0D1z10 −B1z10

3 −B2D0z10 −B3(D0z10)3 −B4z20

−B5z20
3 −B6D0z20 −B7D0z20

3 + F sin(Ω
′
τ)

D0
2z21 + (

ω2
2

ω1
2

)z21 = −2D0D1z20 −B8z10 −B9z10
3 −B10D0z10 −B11(D0z10)3

−B12z20
3 −B13D0z20 −B14(D0z20)3 + F sin(Ω

′
τ − φ) (4.8)

The general solution to equation 4.7 gives

z10 = A1(T1)eiω1T0 +
−

A1(T1)e−iω1T0

z20 = A2(T1)eiω2T0 +
−

A2(T1)e−iω2T0 (4.9)

Substituting equation 4.9 into equation 4.8 and collecting the secular terms with the conditions

ω1 = 1, Ω
′

= ω1 + εσ and ω1 = ω2 and equating the real and imaginary parts to zero gives the
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following envelope equations for primary resonance at front wheel with internal resonance at rear

wheel. Here we substitute Am = 1
2ame

iθm . The φ is calculated using the time taken for the vehicle

to travel its length of 2.5m using 10m/s speed.

a
′

1 =
B2a1

2
+

3B3a
3
1ω

2
1

8
+
B4a2 sin(γ2)

2ω1
+

3B5a
3
2 sin(γ2)

8ω1
+ (4.10)

B6a2ω2 cos(γ2)

2ω1
+

3B7a
3
2ω

3
2 cos(γ2)

8ω1
+
F cos(γ1)

2ω1

γ
′

1 = σ − 3B1a1
3

8a1ω1
− B4a2 cos(γ2)

2a1ω1
− 3B5a

3
2 cos(γ2)

8a1ω1
+ (4.11)

B6a2ω2 sin(γ2)

2a1ω1
+

3B7a
3
2ω

3
2 sin(γ2)

8a1ω1
+
F sin(γ1)

2a1ω1

a
′

2 =
B8a1 sin(γ2)

2ω2
+

3B9a
3
1 sin(γ2)

8ω2
− B10a1ω1 cos(γ2)

2ω2
− 3B11a

3
1ω

3
1 cos(γ2)

8ω2
− (4.12)

B13a2ω2

2ω2
− 3B14a

3
2ω

3
2

8ω2
− F cos(γ1 − γ2 − Ωφ)

2ω2

γ
′

2 =
B8a1 cos(γ2)

2a2ω2
+

3B9a
3
1 cos(γ2)

8a2ω2
+
B10a1ω1 sin(γ2)

2a2ω2
+ (4.13)

3B11a
3
1ω

3
1 sin(γ2)

8a2ω2
+

3B12a
3
2

8a2ω2
− F sin(γ1 − γ2 − Ωφ)

2a2ω2
(4.14)

where γ1 = σ − θ1 and γ2 = θ2 − θ1.

4.2 Mathematical model for 1:3 internal resonance

In this section we consider that there will be 1:3 internal resonance between the front and rear

portions of the sprung mass. This may happen because of differential stiffness values at the front

and rear wheels. The similar procedure is followed as mentioned earlier but we need to have a

condition that the natural frequency at the rear is 3 times that of the front portion of the mass.

4.2.1 Primary resonance

Substituting equation (4.9) into equation (4.8) and collecting the secular terms with the conditions

ω1 = 1, Ω
′

= ω1 + εσ1 and 3ω1 = ω2 − εσ2 and equating the real and imaginary parts to zero gives

the following envelope equations for primary resonance at front wheel with internal resonance at

rear wheel. Here we substitute Am = 1
2ame

iθm . The φ is calculated using the time taken for the
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vehicle to travel its length of 2.5m using 10m/s speed.

a
′

1 = −B2a1

2
− 3B3a

3
1

8
− F cos(γ1)

2

γ
′

1 = σ1 −
3B1a1

2

8
+
F sin(γ1)

a1

a
′

2 = −B9a
3
1 sin(γ2)

24
− B11a

3
1 cos(γ2)

24
− B13a2

2
− 27B14a

3
2

8

γ
′

2 = −σ2 +
9B1a1

2

8
− F sin(γ1)

2a1
− B9a

3
1 cos(γ2)

24a2
+
B11a

3
1 sin(γ2)

24a2
− 3B12a

3
2

24a2
(4.15)

where γ1 = σ1T1 − θ1 and γ2 = −σ2T1 + 3θ1 − θ2.

4.2.2 Superharmonic resonance

Now including the forcing term in the equation ( 4.9) gives the below equations,

D0
2z10 + ω1

2z10 = F sin(Ω
′
τ)

D0
2z20 + ω2

2z20 = F sin(Ω
′
τ − φ) (4.16)

D0
2z11 + z11 = −2D0D1z10 −B1z10

3 −B2D0z10 −B3(D0z10)3 −B4z20

−B5z20
3 −B6D0z20 −B7D0z20

3

D0
2z21 + (

ω2
2

ω1
2

)z21 = −2D0D1z20 −B8z10 −B9z10
3 −B10D0z10 −B11(D0z10)3

−B12z20
3 −B13D0z20 −B14(D0z20)3 (4.17)

The general solution to equation (4.16) gives,

z10 = A1(T1)eiω1T0 +
−

A1(T1)e−iω1T0 +
Fei(ΩT0−π

2 )

2(ω1
2 − Ω′2)

− Fe−i(ΩT0+π
2 )

2(ω1
2 − Ω′2)

z20 = A2(T1)eiω2T0 +
−

A2(T1)e−iω2T0 +
Fei(ΩT0−φ−π

2 )

2(ω2
2 − Ω′2)

− Fe−i(ΩT0−φ+π
2 )

2(ω2
2 − Ω′2)

(4.18)

Substituting equation (4.18) into equation (4.17) and collecting the secular terms with the conditions

ω1 = 1,3Ω
′

= ω1 + εσ1 and 3ω1 = ω2 + εσ2 and equating the real and imaginary parts to zero gives

the following envelope equations for superharmonic resonance at front wheel with internal resonance
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at rear wheel.

a
′

1 = −B1B
3
111 cos(γ1)− B2a1

2
− 3B3a

3
1

8
− 3B3B

2
111Ω

′2
a1 −B3B

3
111Ω

′3
sin(γ1)

−B5B
3
111 cos(γ1 − 3φ)−B7B

3
111Ω

′3
sin(γ1 − 3φ)

γ
′

1 = σ1 −
3B1a

2
1

8
− 3B1B

2
111 +

B1B
3
111 sin(γ1)

a1
− B3B

3
111Ω

′3
cos(γ1)

a1

+
B5B

3
111 sin(γ1 − 3φ)

a1
− B7B

3
111Ω

′3
cos(γ1 − 3φ)

a1

a
′

2 =
−B9a

3
1 sin(γ2)

24
+
B11a

3
1 cos(γ2)

24
− B13a2

2
− 27B14a

3
2

8
− 3B14B

2
222Ω

′2
a2

γ
′

2 = σ2 +
9B1a

2
1

8
+ 9B1B

2
111 −

3B1B
3
111 sin(γ1)

a1
+

3B3B
3
111Ω

′3
cos(γ1)

a1

−3B5B
3
111 sin(γ1 − 3φ)

a1
+

3B7B
3
111Ω

′3
cos(γ1 − 3φ)

a1
− −B9a

3
1 cos(γ2)

24a2

−B11a
3
1 sin(γ2)

24
− B12a
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where γ1 = σ1T1 − θ1, γ2 = σ2T1 + 3θ1 − θ2, B111 = F
2(ω2

1−Ω2)
and B222 = F

2(ω2
2−Ω2)

.

4.3 Experimental curve fitting

Using the experimental values from the experiment conducted by our group [27], the curve fitting is

performed and the fig. 4.2 shows the corresponding curves. The following values are found from the
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Figure 4.2: (a) Force versus displacement (b) Force versus velocity

curve fitting and these are appropriate for further analysis by using them in the envelope equations.
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The parameters for the oil damper are found as K1 = 9000 N/m, K2 = −5000 kN/m3, C1 = 12000

Ns/m, C2 = −4000 Ns3/m3.

4.4 Frequency response results for 1:1 internal resonance

The parameter values used in evaluation of the above envelope equations are K1f = 9000N/m, K1r =

9000N/m, K2f = −5000kN/m3, K2r = −5000kN/m3, C1f = 12000Ns/m, C1r = 12000Ns/m,

C2f = −4000Ns3/m3, C2r = −4000Ns3/m3, F = 0.008 and ε << 1. The vehicle is assumed to

travel at a speed of 10m/s to evaluate the time delay between front and rear wheel this will give a

delay of .25Ω
′
rad.
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Figure 4.3: Frequency response curves (a) a1 vs σ and (b) a2 vs σ

We have plotted the envelope equations using the MATCONT tool. The equilibrium curve from

converged solution of the envelope equations is plotted for amplitude versus frequency of excitation.

We have an isolated limit cycles formed as amplitude vs frequency response curves. The limit points

are the points where the vertical line will be tangent to the equilibrium curve. The limit points in

Fig. 4.3(a) for a1 vs σ are observed at the coordinates (-58.74,0.531) and (-58.39,0.5294). And in

Fig. 4.3(b) for a2 vs σ the limit points are observed at (-58.39,0.00623) and (-58.74,0.006226).

4.5 Frequency response results for 1:3 internal resonance

When we consider the 1:3 internal resonance it is clear from the below Figs. that there exists a

coupling effect of front wheel amplitude on the rear wheel amplitude.
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4.5.1 Primary resonance

The primary resonance is observed when the excitation frequency is same as the natural frequency

of the front wheel. While the rear wheel is assumed to have 3 times the natural frequency of the

front wheel. In the case of primary resonance the maximum amplitude vs frequency observed on

the equilibrium curve (a1 vs σ1) at the front wheel in the Fig. 4.4(a) is (-15.15,0.2701). When

we consider the coupling effect of front wheel on rear wheel the maximum amplitude vs frequency

observed on the equilibrium curve (a2 vs σ1) at the rear wheel in the Fig. 4.4 is (-0.2388,0.0002289).

The maximum amplitude vs frequency observed on the equilibrium curve (a2 vs σ2) at the rear

wheel in the Fig. 4.4 is (-0.3979,0.00022).
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Figure 4.4: Frequency response curves Ω
′

= ω1 + εσ1, 3ω1 = ω2− εσ2 and F = 1N . (a) a1 vs σ1 (b)
a2 vs σ1 (c) a2 vs σ2

4.5.2 Superharmonic resonance

The superharmonic resonance is observed when the natural frequency at the front wheel is 3 times

the excitation frequency. We also consider 1:3 internal resonance between the front and rear wheels

i.e. rear wheel has natural frequency which is 3 times the natural frequency of the front wheel. In the

case of superharmonic resonance the maximum amplitude vs frequency observed on the equilibrium

curve (a1 vs σ1) at the front wheel in the Fig. 4.5(a) is (-21.42,0.1936). When we consider the

coupling effect of front wheel on rear wheel the maximum amplitude vs frequency observed on

the equilibrium curve (a2 vs σ1) at the rear wheel in the Fig. 4.5(b) is (-21.24,0.00003481). The

maximum amplitude vs frequency observed on the equilibrium curve at rear wheel (a2 vs σ2) in the

Fig. 4.5(c) is (0.2579,0.000002807).
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4.6 Summary

The system is in a 1-1 internal resonance means it has equal natural frequencies at the front and rear

portions of the masses i.e. it possesses nonlinear normal modes. We have observed isolated limit

cycles for the amplitude frequency curves. In the case of 1:3 internal resonance we have observed

clear resonance amplitude on the curves at the frequency of excitation. The peak values on the

equilibrium curves are obtained at a particular force at which the system is in equilibrium. The

frequency analysis gives an idea about the external force beyond which the system goes to unsteady

state and hence to chaotic state.
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Chapter 5

Conclusions and Future work

In this thesis, we present the comfort analysis of semi-active and passive dampers using quarter and

half car models. To do the analysis, we first described the system response in terms of sprung mass

acceleration, suspension stroke, road holding and control force versus vehicle velocity using quarter

and half car models with semi-active MR damper. The nonlinear characteristics of MR damper

subjected to different current are modeled using the modified Bouc-Wen model. However, we use

linearized form of the model to do comfort analysis. On comparing the system response in terms

of above parameters at different current, we found that with increasing current, the control force is

increased, and the suspension stroke and road holding at front and rear are reduced which in turn

give better handling. Adversely, we also found that the sprung mass acceleration increases with

increasing current there by reducing the comfort for the passengers in the vehicle. Therefore, it is

concluded that there should be limit on he control force as it may increase sprung mass acceleration

out-of-bound. To do the nonlinear analysis, we take oil passive with cubic nonlinearity in the half

car model. Subsequently, we present two different cases, namely, first, a system with same dampers

at front and rare wheels, second, a system with different dampers at front wheel, ω1, and rear wheel,

ω2, which are having a frequency ratio of three, i.e., ω2 = 3ω1. Finally, we found the nonlinear

response for the system subjected to excitation at primary resonance and superharmonic resonance,

respectively. It is found that when the same dampers are used, the system gives stable limit cycle

over a fixed range of frequencies. For the case of different dampers at front and rare wheels, we get

nonlinear coupled response at the rear wheel if front and rare wheels are excited externally with a

time delay at ω1 under primary excitation. Under superharmonic excitation, we excite the system

at ω1/3. In this also we get coupled response at the rear wheel. Moreover, the extent of nonlinearity
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increases by increasing the amplitude of excitation. Therefore, the response under large excitation

at primary and secondary resonances should be controlled to avoid discomfort to the passenger. MR

damper based half car model can be analyzed to control such effects at large excitation amplitude,

which forms the basis of the future work.
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