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Abstract

In this work, we do a parametric stability analysis of the turning and milling process. We observe that

the governing equation for these processes is a delay differential motion, and therefore use the quasi

polynomial and the spectral tau method for DDEs to analyze their stability. In quasi polynomial

method, we convert the quasi polynomial into an approximate polynomial expression using Taylor

series expansion. The roots of the polynomial expression are then used to determine the stability of

the system. Next we discuss the spectral tau method based on the Galerkin series approximation

to study the stability of DDEs. Here we first obtain an equivalent PDE representation of the DDE,

and then use spectral approximation techniques to obtain a finite dimensional ODE approximation

of the DDE. The boundary condition is incorporated using the tau method, where the last row of

the system ODE is replaced with the boundary condition. We then use these methods to obtain

the stability diagrams for the single and multi degree of freedom turning and milling process and

compare them with literature. The numerical examples clearly demonstrate that these methods can

be used to determine the stable zones of operation, therefore can be used to demarcate the regions

of parametric space for which the machining process will be stable.
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Chapter 1

Introduction

The application of DDEs is ubiquitous in the field of biology, population dynamics, manufacturing,

controls, traffic flow modeling, fluid structure interaction. They are widely used to model time delay

systems, where the present state is dependent on the previous state. It has been observed that the

governing equation of a wide number of manufacturing processes involves DDEs. For example, the

well known orthogonal turning process, where the feed force contains time delay terms.

As we know that the dynamic unstable interaction of the tool with workpiece causes chatter in

machining process, which results in a bad surface finish. Therefore a major requirement for any

machining operation is that, we operate in the stable operational regime. This ensures a smooth

surface finish and less wear of the tool. Since the governing equation of motion for these processes

is a DDE, therefore we must exploit the existing tools for stability analysis of DDEs to determine

the stable zones of operation.

A popular method for stability analysis of DDEs is the quasi polynomial method, where we first

assume an exponential solution of the governing DDE. The resulting equation is a quasi polynomial

and contains infinite number of roots. Next we expand the exponential term using Taylor series

approximation for a finite number of terms to obtain a polynomial expression. The roots of the

polynomial expression approximate the original roots of the quasi polynomial. The stability is then

determined by analyzing the real parts of the roots. If all the roots have negative real parts, then

the system is stable, otherwise it is unstable.

Another widely used method for stability analysis of DDEs is the spectral tau method. Here we

use Cauchy transformation to obtain an equivalent PDE representation of the DDE along with the

boundary condition. Next we use Galerkin methods to obtain a finite dimensional ODE approxima-

tion of the DDE. The boundary condition is incorporated using the tau method, where we replace

the last row of the system ODE with the boundary condition. If the real part of all the eigenvalues

of the system matrix is less than zero, then the system is stable, otherwise it is unstable.

We also know that the coefficients of a DDE can be constant or periodic. If the coefficients of

a DDE are periodic, then the DDE is known as a time periodic DDE. For example, the governing

equation for the milling process due to the tooth pass excitation effect is time periodic with time

period equal to the delay of the system. Therefore, the ODE approximation of such time periodic

DDEs using the spectral method also contains time periodic terms. We then resort to Floquet theory

to determine the stability of such time periodic ODEs. Here we integrate the ODEs using identity
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initial conditions for time equal to the period of the system. The response obtained after integrating

the ODEs for each independent initial condition forms the columns of the Floquet transition matrix.

If all the eigenvalues of the Floquet transition matrix have magnitude less than or equal to unity,

then the system is stable, otherwise it is unstable.

In this work, we use the quasi polynomial and the spectral tau methods to determine the regions

of parametric stability for the orthogonal and oblique turning and a single-degree-of-freedom milling

model.

1.1 Literature review

The history of machine tool chatter can be traced almost hundred years back. Taylor (1907) [1]

described machine tool chatter as the most obscure problem faced during machining processes.

Hanna and Tobias (1974) [2] showed that chatter frequencies are related to unstable periodic motions

about stationary cutting. Later Shi and Tobias (1984) [3] showed experimentally that unstable

periodic motions about stationary cutting is a case of subcritical Hopf bifurcation. Stepan and

Kalmar-Nagy (1997) [4] proved the same analytically. Seagalmann et al (2000) [5] investigated

turning process where system stiffness was varied periodically. Incorporating the varying stiffness

into equation of motion they formed a DDE. They investigated resulting periodic DDE by harmonic

balance method. Gouskov et al. used a tool head with two multiple tool rows for chatter suppression.

They analyzed mathematical model with two delays and showed influence of technological parameters

on stability. Insperger et al. [6] studied stability of two degree of freedom model of turning process.

Regenerative delay determined by combination of workpiece rotation and tool vibration is state

dependent. An associated linear system corresponding to the state dependent delay equation is

derived and stability analysis of this linear system was examined. Gabor Stepan et al. [7] did

stability analysis of orthogonal turning process. The cutting force was proportional to feed. An

equation of motion was derived using Newton‘s laws of motion. Equation of motion resulted in the

formation of a DDE. The DDE was analyzed to get the stability plots.

1.2 Thesis structure

The entire thesis has been divided in six chapters. The first chapter is the introduction, wherein

we discuss the different machining processes and a general class of equations that are used to model

them. Next we define the problem that we are going to focus on. In the second chapter, we discuss

the quasi-polynomial and the spectral tau methods that can be used to analyse the stability of

DDEs. In the subsequent chapters, we present the mathematical model and the stability analysis

of the orthogonal turning, oblique turning and the single-degree-of-freedom milling process. Finally

conclusions are provided in chapter six.
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Chapter 2

Stability Analysis

In this chapter, we discuss the quasi-polynomial and the spectral approximation technique for the

stability analysis of DDEs. First we present the class of DDEs in which we are interested in. We

then discuss the quasi-polynomial method, in which we expand the solution using the Taylor series

approximation and apply polynomial root finding techniques. Next we discuss the spectral tau

method based on the Galerkin series approximation to study the stability of DDEs.

2.1 Mathematical Model

Consider the following first order DDE:

ẋ+ ax+ bx(t− τ) = 0, τ > 0 (2.1)

Equation (2.1) is a first order DDE, with delay in x(t). Since the delay (τ) is not present in the

highest order derivative, therefore, this class of DDEs is referred to as retarded DDE. We now present

the quasi-polynomial and the spectral tau method for the stability analysis of such DDEs.

2.2 Quasi Polynomial Method

In this method, we assume a solution of the form est and substitute it in (2.1),

s+ a+ be−sτ = 0 (2.2)

Equation (2.2) is a quasi polynomial and has infinite number of roots. Expanding est using Taylor

series approximation as,

e−sτ = 1 + (−sτ) +
(−sτ)2

2!
+

(−sτ)3

3!
+ ............. (2.3)

We now substitute finite number of terms for e−sτ in 2.2, and apply polynomial root finding tech-

niques to obtain approximate solution of 2.2. Thus we can see that the roots of the polynomial

expression are the approximate solution of the DDE. If all the roots have negative real parts, then

the system is stable, otherwise it is unstable.
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2.3 Spectral tau method

Consider the following standard transformation:

y(s, t) = x(t+ s) (2.4)

Using the transformation (2.4), the DDE (2.1) can be transformed as:

∂y

∂t
=

∂y

∂s
, s ∈ [−τ, 0] (2.5)

∂y

∂t

∣∣∣∣
0,t

= −ay(0, t)− by(−τ, t) (2.6)

Equation (2.5–2.6) is the equivalent PDE representation of the DDE (2.1). We now assume a series

solution of the form as:

y(s, t) = φ(s)T η(t) (2.7)

where φ(s) = [φ1(s), φ2(s), .......φN (s)]
T
are the basis functions and η(t) = [η1(t), η2(t), .......ηN (t)]

T

are the time dependent coefficients. We use Shifted Legendre polynomials as the basis functions

which are given as:

φ1(s) = 1 (2.8a)

φ2(s) = 1 +
2s

τ
(2.8b)

φi(s) =
(2i− 3)φ2(s)φi−1(s)− (i− 2)φi−2(s)

i− 1
, i = 3, 4, . . . , N. (2.8c)

Now we substitute the series solution (2.7) in (2.5),

φ(s)T η̇(t) = φ
′

(s)T η(t) (2.9)

Now we pre-multiply both sides of (2.9) and integrate over the domain sǫ [−τ, 0] to obtain the

following system of ODEs,

Mη̇ = Kη (2.10)

where M and K are given as:

M =

∫ 0

−τ

φ(s)φ(s) d s (2.11a)

K =

∫ 0

−τ

φ(s)φ′(s) d s. (2.11b)
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The entries of matrices M and K are defined as follows:

Mcd =
τ

2c− 1
δcd c = 1, 2, . . . , N ; d = 1, 2, . . . , N (2.12a)

Kcd =




2, if c < d and c+ d is odd

0, otherwise
c = 1, 2, . . . , N ; d = 1, 2, . . . , N. (2.12b)

Next we substitute the series solution (2.7) into the boundary condition (2.6):

φ(0)T η̇(t) = −aφ(0)T η(t)− bφ(−τ)T η(t) (2.13)

We now use the tau method to incorporate the ODE corresponding to the boundary condition (2.13)

into the system ODE (2.10). In this method, we replace the last row of matrices M and K with the

boundary condition. Thus, we finally arrive at the following system of ODEs:

MTauη̇ = KTauη (2.14)

where MTau and KTau are defined as follows:

MTau =

[
M̄

φ(0)T

]
and KTau =

[
K̄

−aφ(0)T − bφ(−τ)T

]
(2.15)

Here M̄ and K̄ are obtained by removing the last row of matrices M and K in (2.12a) and (2.12b)

respectively.

η̇ = Aη (2.16)

where A = M−1
TauKTau. For constant coefficient matrix, if the real part of all the eigenvalues of

matrix (A) is less than 0, then the system is stable, otherwise it is unstable.

In summary we have discussed the quasi polynomial and the spectral tau method for stability

analysis of DDEs. We now use the theory discussed to determine the stability of machining processes

governed by these DDEs.
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Chapter 3

Orthogonal Turning

In this chapter, we study the mathematical modeling of the orthogonal turning process. First we

present the governing equation of motion and then reduce it to a simpler form using standard

substitution techniques. Next we study the stability characteristics of the resulting expression using

the quasi polynomial and spectral tau methods.

3.1 Mathematical Model

The mechanical model of the one-degree-of-freedom turning process shown in Figure (3.1) is given

as:

mẍ(t) + cẋ(t) + kx(t) = −kω (x(t)− x(t− τ))
γ
+ kvt+ cv + kl (3.1)

where m is the mass of the tool, c is the damping coefficient and ω is the depth of cut. The parameters

k and l are the spring stiffness and natural length respectively. The expression−kω (x(t)− x(t− τ))
γ

contains time delay terms and represents the feed force and the constant γ is determined experi-

mentally.

We now introduce the following substitution for x(t):

x(t) = ξ(t) + vt+ C (3.2)

On substituting (3.2) in (3.1) we obtain:

mξ̈(t) + cξ̇(t) + kξ(t) + kC + kvt+ cv = −kcω(vτ + ξ(t)− ξ(t− τ))γ + kvt+ cv + kl (3.3)

Next we expand (vτ + ξ(t)− ξ(t− τ))γ using Taylor series expansion and obtain:

mξ̈(t) + cξ̇(t) + kξ(t) + kC = −kcω(vτ)
γ
− kω(vτ)γ−1(ξ(t)− ξ(t− τ)) + kl (3.4)

Assuming the constant C in Eq. (3.4) as kC = −kcω(vτ)
γ + kl, we obtain the following simplified

expression:

mξ̈(t) + cξ̇(t) + kξ(t) = −kω(vτ)γ−1(ξ(t)− ξ(t− τ)) (3.5)

6



Figure 3.1: Mechanical model of the turning process

We now divide both sides of Eq. (3.5) by m and introduce the following notations ζ = c
2mωn

,

ωn =
√

k
m

to obtain:

ξ̈(t) + 2ζωnξ̇(t) + ω2
nξ(t) = −kω(vτ)γ−1(ξ(t)− ξ(t− τ)) (3.6)

Now we substitute t = t̃ωn, and by abuse of notation set t = t̃:

ξ̈(t) + 2ζξ̇(t) + ξ(t) = −kω(vτ)γ−1

ω2
n

(ξ(t)− ξ(t− τ)) (3.7)

We now define p = kω(vτ)γ−1

ω2
n

to reduce (3.7) as,

ξ̈(t) + 2ζξ̇(t) + (1 + p)ξ(t)− pξ(t− τ) = 0 (3.8)

Thus (3.8) is the simplified form of (3.1), the stability analysis of which determines the stability of

the system.

3.2 Numerical Studies

In this section, we present the stability diagrams of (3.8) using the quasi polynomial and the spectral

tau method. The simulations were performed using Matlab R© R2012b on a 2.60-GHz Intel R© Xeon R©

E5-2670 processor.

Figure (3.2) shows the stability diagram for the orthogonal turning model (3.8) using the quasi

polynomial method (2.2). The red lines indicate the boundary from literature, whereas the blue

dots are the stable points obtained using quasi polynomial technique. From Fig. (3.2)(b), we can

see that N = 59 terms are required in the Taylor series approximation 2.3 for convergence.

Next we plot the stability diagrams of (3.8) using the spectral tau method (2.3) in Figure (3.3).

We generate the stability diagrams for N equal to 6 and 12 terms in the Galerkin series approxima-
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Figure 3.2: Stability diagrams for orthogonal turning model (3.8) using the quasi polynomial method.
Dots indicate the point at which the system is stable and the red line is from literature.
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(a) N = 6
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(b) N = 12

Figure 3.3: Stability diagrams for orthogonal turning model (3.8) using the spectral tau method.
Dots indicate the point at which the system is stable and the red line is from literature.

tion (2.7). From Fig. (3.2)(b), we can see that the stability diagrams are in very good agreement

with literature for N = 12 terms in the Galerkin series approximation.
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Chapter 4

Oblique Turning

In this chapter, we first discuss the governing equation of motion for the oblique turning process.

We then apply the spectral tau method to convert the DDEs into a system of ODEs. Finally we

present the stability diagrams obtained using this method.

4.1 Mathematical Model

The governing equation of motion for a tool modeled as a 2 degree-of-freedom oscillator in oblique

turning is given by:

mẍ(t) + cxẋ(t) + kxx(t) = pω(y(t)− y(t− τ)q (4.1)

m(ÿ(t)− (v̈t)) + cy(ẏ(t)− ˙(vt)) + ky(yt− vt) = −uω(y(t)− y(t− τ))q (4.2)

where (4.1) and (4.2) represents the equation of motion along depth of cut (x) and feed (y) direc-

tion respectively. Here the coefficients m represents mass of the tool, cx and cy are the damping

coefficients along x and y direction respectively. Similarly kx and ky represents the stiffness along

the x and y direction respectively. The parameters p and u indicate the cutting force coefficients

along the x and y direction respectively. We now simplify the equations of motion as follows:

4.1.1 Along y direction

m(ÿ(t)− (v̈t)) + cy(ẏ(t)− ˙(vt)) + ky(yt− vt) = −uω(y(t)− y(t− τ))q (4.3)

We now introduce the transformation y(t) = η(t) + vt+ C in (4.2) and obtain,

mη̈(t) + cyη(t) + kyη(t)− cyv + kyC = −uω(vτ + η(t)− η(t− τ))q (4.4)

Next we expand (vτ + η(t)− η(t− τ))q using Taylor series approximation to obtain:

mη̈(t) + cyη(t) + kyη(t)− cyv + kyC = −uω(vτ)q − uωq(vτ)q−1(η(t)− η(t− τ))− cyv + kyC (4.5)

9



We now choose a constant C such that −cyv + kyC = −uω(vτ)q, to finally obtain

mη̈(t) + cy η̇(t) + kyη(t) = −uωq(vτ)q−1(η(t)− η(t− τ)) (4.6)

4.1.2 Along x direction

mẍ(t) + cxẋ(t) + kxx(t) = pω(y(t)− y(t− τ)q

Here p is the cutting coefficient along x direction. Now introducing the transformation x = ξ(t)+C1

in (4.2), we have:

mξ̈(t) + cxξ̇(t) + kxξ(t) + kxC1 = pω(vτ + η(t)− η(t− τ))q (4.7)

Expanding (vτ + η(t)− η(t− τ))q using Taylor series approximation, we obtain

mξ̈(t) + cxξ̇(t) + kxξ(t) + kxC1 = pω(vτ)q + pωq(vτ)q−1(η(t)− η(t− τ)) (4.8)

We now set the constant C1 such that kxC1 = pω(vτ)q to further simplify (4.8) as follows:

mξ̈(t) + cxξ̇(t) + kxξ(t) = pωq(vτ)q−1(η(t)− η(t− τ)) (4.9)

Thus, we arrive at the following simplified equations of motion:

Along X : mξ̈(t) + cxξ̇(t) + kxξ(t) = pωq(vτ)q−1(η(t)− η(t− τ)) (4.10a)

Along Y : mη̈(t) + cy η̇(t) + kyη(t) = −uωq(vτ)q−1(η(t)− η(t− τ)) (4.10b)

Assuming equal damping coefficients along x and y direction, that is cx = cy and introducing

the notations ζ = c
2mωn

, kr =
ky

kx

and ρ = vτ in (4.10a) and (4.10b), we have:

ξ̈(t) + 2ωnζξ̇(t) + ω2
nξ(t) = k1/kr(ρ)

q−1(η(t)− η(t− τ)) (4.11a)

η̈(t) + 2ωnζη̇(t) + ω2
nη(t) = −k1(ρ)

q−1(η(t)− η(t− τ)) (4.11b)

Now we set t = t̃ωn, and drop the tilde for simplicity, to finally arrive at the following DDEs:

ξ̈(t) + 2ζξ̇(t) + ξ(t) = k1/kr(ρ)
q−1(η(t)− η(t− ωnτ)) (4.12a)

η̈(t) + 2ζη̇(t) + η(t) = −k1(ρ)
q−1(η(t)− η(t− ωnτ)) (4.12b)

where k1 = pωq
ω2

n

.

4.2 Numerical Studies

In this section, we plot the stability diagrams of the oblique turning model (4.12) using the spectral

tau method (2.3). We can see that Eq. (4.12) is a system of coupled second order DDEs. Therefore,

we first convert the DDEs into a system of first order DDEs and then use the spectral tau method

to determine the stability of the system.
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Figure 4.1: Stability diagrams for the oblique turning model (4.12) using the spectral tau method.
Dots indicate the point at which the system is stable and the red line is from literature.

In Figure (4.1), we show the stability diagram of (4.12) using the parameter values ζ = 0.01,

τ = 5, and k = 2. The red line is the stability boundary from literature, whereas the blue dots

are the stable points obtained using the spectral tau technique. We can see that N = 21 terms

are sufficient in the Galerkin series approximation (2.7) to achieve convergence. Thus, using this

method we can successfully demarcate the stable and unstable operating regimes for the oblique

turning process.
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Chapter 5

Single-degree-of-freedom Milling

In this chapter, we first discuss the mathematical model for the single-degree-of-freedom milling

process. We then convert the DDEs into a set of ODEs using the spectral tau method. Finally we

present the stability and bifurcation diagrams using this method.

5.1 Mathematical Model

The mathematical model for the single-degree-of-freedom milling process is given as:

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = −

wh(t)

mt

(x(t)− x(t− τ)) (5.1)

where ζ is the damping coefficient, ωn is the angular natural frequency, w is the depth of cut, and

mt is the modal mass of the tool. The function h(t) is given by,

h(t) =
∑

g(φj(t))sin(φj(t))(Ktcos(φj(t)) +Knsin(φj(t))) (5.2)

Here Kt and Kn are the tangential and normal linearized cutting force coefficients, and Nt is the

number of teeth in the tool. The angular position (φj(t)) of the tool is calculated as:

φj(t) = (2πΩ/60)t+ j2π/Nt (5.3)

where Ω is the spindle speed in rpm. The function g(φj(t)) is a screen function and is defined as:

g(φj(t)) =

{
1 if φst(t) < φj(t) < φex(t)

0 otherwise

Therefore, when the tooth j is in cut g(φj(t)) = 1 and when out of cut g(φj(t)) = 0. The variables

φst(t) and φex(t) denotes the start and exit angles of the tooth respectively. When up-milling,

φst = π, φex = arccos(1− 2a/D). When down-milling, φst = arccos(2a/D− 1) and φex = π and the

ratio a/D is the radial depth of cut ratio.

The function h(t) because of the tooth pass excitation effect is time periodic, with time period

equal to the time delay of the system. The time delay (τ) is given as,

τ = T = 60/(NtΩ) (5.4)
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We now employ the spectral approximation technique (2.3) to convert the time-periodic DDE (5.1)

into the following ODE form:

η̇ = A(t)η (5.5)

where A(t) is periodic with period T, that is A(t + T ) = A(t). The stability of such time-periodic

ODEs (5.5) can be determined through Floquet theory. Let Φ denote the Floquet transition matrix,

which is obtained by integrating the following matrix differential equation,

Φ̇ = A(t)Φ (5.6)

We now integrate (5.6) with initial conditions Φ(0) =I for time period T , to obtain the Floquet

transition matrix. The system is stable, if the magnitude of all the eigenvalues of Φ is less than or

equal to 1, and is unstable if the magnitude is greater than 1.

5.2 Stability Diagrams

In this section, we present the stability and bifurcation diagrams of the single-degree-of-freedom

milling model (5.1). The time response of the ODEs was obtained using ode15s solver in Matlab

with default absolute and relative integration tolerances of 1e−3 and 1e−6 respectively.

In Fig. (5.1), we show the stability diagrams of (5.1) for four different values of radial depth of

cut ratio (a/D). The parameter values used are ζ = 0.011, ωn = 5793 rad/s, mt = 0.03993 kg,

Kt = 6x 108 N/m2 and Kn = 2x 108 N/m2. The red dots indicate the stable points, where the

magnitude of the dominant eigenvalue of the Floquet transition matrix (Φ) is less than 1 and the blue

solid line is the stability boundary reported by Insperger and Stépán ([8]). The convergence analysis

reveals that N = 25 terms are sufficient in the galerkin series approximation (2.7) to accurately

capture the stability diagrams. From Fig. (5.1) we can see that the stability diagrams are in very

good agreement with literature.

Therefore, we see that the spectral tau method gives satisfactory results for milling and can be

used to determine the regions of parametric space for which the system is stable. If we operate in

the stable region, where the magnitude of the dominant eigenvalues of the Floquet transition matrix

(Φ) is less than 1, the system is stable and it will result in a smooth surface finish.

5.3 Bifurcation diagrams

We now discuss the bifurcation analysis which can be carried out using the eigenvalues of the Floquet

transition matrix (Φ). Recalling the fact that in stable regions, the magnitude of the dominant

eigenvalues of Φ is no greater than 1, whereas in unstable regions it is greater than 1. However at

the stability boundary, the magnitude of the most dominant eigenvalue of Φ is exactly equal to 1.

We denote these dominant eigenvalues at the boundary as λbound. The location where λbound lies

on the unit circle in the complex plane gives rise to different types of bifurcations as follows:
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Figure 5.1: Stability diagrams for the single-degree-of-freedom milling model (5.1) using the spectral
tau method. Dots indicate the points at which the system is stable and the solid blue line is from
literature [8].
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Figure 5.2: Possible bifurcation diagrams for time periodic systems: (a) Secondary Hopf (b) Period-
doubling (c) Period one
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Figure 5.3: Bifurcation diagrams for the single-degree-of-freedom milling model (5.1).

• As shown in Fig. (5.2)(a), when the eigenvalues escape the unit circle as a complex pair, the

resulting bifurcation is known as secondary hopf bifurcation

• As shown in Fig. (5.2)(b), the eigenvalues escape the unit circle through -1, which gives rise

to period doubling bifurcation

• As shown in Fig. (5.2)(c), the eigenvalues escape the unit circle through 1, resulting in period

doubling bifurcation

The bifurcation analysis therefore gives an idea about the path through which the system loses

its stability. We now plot the bifurcation diagrams for two different values of Ω in Eq. (5.1). In

fig. (5.2)(a) and fig. (5.2)(b), we can see that the eigenvalues at the boundary have non-zero imaginary

parts. This situation is known as secondary hopf bifurcation.

Thus, we see that the spectral tau can also be used to generate the bifurcation diagrams for

the single-degree-of-freedom milling process. The bifurcation analysis not only gives an idea about

the path through which the system loses its stability, but also helps to calculate the arising chatter

frequencies in case of unstable cutting process [9].
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Chapter 6

Conclusions

In this work, we have studied the mathematical models of turning and milling process. We observed

that the governing equation of motion for these processes is a delay differential equation and therefore

exploited the existing tools for DDEs to carry out the stability analysis. First we study the stability

of a single-degree-of-freedom orthogonal turning model using the quasi polynomial method, where we

expand the exponential terms using the Taylor series expansion. We also study the stability analysis

of this system using the spectral tau method based on the galerkin projections of the DDE. Here we

first convert the DDE into an equivalent system of PDE and then use galerkin series approximation

to obtain a finite dimensional ODE approximation of the DDE. The boundary condition is coupled

using the tau method, in which we replace the last row of the system ODE with the boundary

condition.

Next we study the stability analysis of a two-degree-of-freedom oblique turning model using the

spectral tau method. We observed that the governing equation for this process is a coupled second

order DDE. The convergence study reveals that the spectral tau method requires very few terms to

accurately capture the stable zones of operation.

Finally, we generate the stability diagrams of a single-degree-of-freedom milling model using the

spectral tau method. The governing equation for this process is a time-periodic DDE, and therefore

the ODE approximation of the DDE also contains time-periodic terms. We then resort to Floquet

theory and construct the Floquet transition matrix by integrating the system ODEs for independent

initial conditions. We observed that again the spectral method works really well and accurately

captures the stability and bifurcation diagrams. These diagrams are in very good agreement when

compared with literature.

In summary, we have generated the stability diagrams for different machining processes. These

stability diagrams help us to determine the regions of parametric space for which the system is stable.

When the process is modeled using these stable set of parameters, it results in smooth surface finish,

less wear and higher tool life.
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