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Abstract

X-ray computed tomography (CT) is one of the most widely used imaging

modalities for diagnostic tasks in the clinical application. As X-ray dosage

given to the patient has potential to induce undesirable clinical consequences,

there is a need for reduction in dosage while maintaining good quality in

reconstruction.

This report explores the roles of concept of sparsity and sparsifying trans-

forms via Frames, Wavelets etc and their relevance to low-dose tomogra-

phy. After giving detailed descriptions of basics of Computed Tomography,

Frames/Wavelets and Compressive Sensing Theory, the report proposes a

TV-norm based method for the reconstruction of Tomography. Finally, the

report ends with some discussion on simulation results.
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Chapter 1

Introduction to Computerized

Tomography

1.1 History

In the standard X-ray picture procedure, the X-rays from a source pass

through the patient’s body and leave a trace on the film. Therefore,the

resulting X-ray picture is essentially the overlap of images of all s (parallel

to the film) of body. This makes reading X-ray pictures an art and requires

a lot of training. Even trained professionals might not be able to detect a

small tumor hiding behind a dense bone.Almost a hundred years ago, doc-

tors came up with a smart idea (now called “old” or traditional tomography).

One of its versions involves moving the source with a constant speed parallel

to the film and simultaneously moving the film in the opposite direction with

coordinated constant speed. A simple planner geometry consideration (Fig

1.1) shows that there is single /layer parallel to the film which is projected

on to the same location of the film and thus sharpened, while the images

of all s will move and thus get blurred. Hence, this simple technique sharp-

ens the image of a chosen layer while blurring the rest of them. However,

the blurred remnants of uninteresting layers are still present and still cause

problems while reading X-ray pictures.
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Figure 1.1: Old tomography

1.2 X ray CT

1.2.1 “Standard” X-ray CT:

A very narrow(“pencil”) beam of X-rays is sent through patient’s body. The

original intensity of the beam is known, and a detector finds the outgoing

intensity at beam’s exit. The exit intensity is lower than the original one,

due to photon being absorbed and scattering inside of the body. So, one

collects the two numbers initial and terminal intensities. Then the direction

of beam is changed, and a new a pairs of numbers collected. This procedure

is repeated for large number of rays, which provides a large amount of data.

Since the rate of weakening of the beam depends on the type of tissue it

passes through, there is hope of recovering the internal structure of the body

from the collected data.

1.3 Beer’s law and the X-ray/Radon trans-

forms

Now we are going to develop a mathematical model of data collected by an

X-ray CT scanner.
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1.3.1 Beer’s law

Let a pencil beam l be just a line. Suppose the initial intensity of beam is I0,

terminal intensity is I1 and I(x) is the intensity of the beam l at a location x,

then Beer’s law state -the infinitesimal relative drop of intensity at distance

M x from the location x should be proportional to the distance traveled. i.e.,

M I
I
∝ M x

M I
I

= −µ(x) M x,

where µ(x) is the attenuation coefficient of the tissue at the point x.

Now above equation gives us

d

dx

(
I
)

= −µ(x)I

dI

I
= −µ(x)dx

log(I) =

∫
−µ(x)dx+ C.

Given that, at x=0,I = I0 we have,

log(I0) = C.

Substituting the value of C we get,

log(
I

I0
) =

∫
−µ(x)dx.
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After traversing the line l the intensity at the detector is I1,then∫
l

µ(x)d(x) = log
I0
I1
.

1.3.2 X-ray and Radon transforms

Definition 1.3.1. Let f(X) = f(x, y) be the compactly supported and contin-

uous function on R2.The X-ray(Radon) transform Rf is a function defined

on the space of straight lines (l) in R2 by the line integral along each such line.

Rf(l) =

∫
l

f(X)d(s).

where ds is the arc length measure along the line l.

Remark 1.3.2. Radon transform in 2D is X-ray transform.

1.3.3 Parameterization of X-ray transform

In order to work in the circular geometry of CT scans, it is helpful to

parametrize lines ax + by = c in R2 to a set of oriented lines with radial

parameters ‘t‘ in R× S1 . In medical imaging, these lines are representative

of the trajectories of X-ray beams entering a body. Consider the general line

in R2

ax+ by = c, (a)

where a, b, and c are constants. we have

a√
(a2 + b2)

x+
b√

(a2 + b2)
y =

c√
(a2 + b2)

.
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the first two coefficients,( a√
(a2+b2)

, b√
(a2+b2)

), define a point on the unit cir-

cle. Let θ be the angle corresponding to that point on the unit circle, so

θ = cos−1( a√
a2+b2

) then cos θ = a√
(a2+b2)

and sin θ = b√
(a2+b2)

.

The angle θ can only take on values of [0;π) before repeating previously de-

scribed lines. Let t be the distance from the origin to the line ax+by = c

along the angle θ. Then the line can also be described as the set of solutions

(x, y) to the inner-product

t = 〈(x, y), (cos θ, sin θ)〉 = 〈(x, y), w〉.

Therefore, t is equal to the right side of equation (a). Notice that our defini-

tions of t and θ also give us a point on the line, (t cos θ; t sin θ), where a line

at angle θ intersects ax + by = c. This intersection is a right angle, because

while the slope of the line ax+ by = c is −a
b

, the tangent of θ is

tan θ =
sin θ

cos θ
=
b

a
.

Let the vector ω = 〈cos θ, sin θ〉 perpendicular to the line ax+by = c, and let

the vector ω⊥ = (− sin θ, cos θ) be perpendicular to this line.We can therefore

create a vector equation in terms of t and θ for the line,

lt,θ = tω + sω⊥

lt,θ = t〈cos θ, sin θ〉+ s〈− sin θ, cos θ〉,

where s in R.

Definition 1.3.3. Let f be some function in R2, parametrized over the lines

lt,θ. The Radon transform Rf(t;ω) is defined as

Rf(t;ω) = g(t, ω) =
∫
x.ω=t

fds =
∫∞
−∞ f(tω + sω⊥)ds =

∫∞
−∞ f(t cos θ −

s sin θ, t sin + cos θ)ds.
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Figure 1.2: Parametric representation of line ax+ by = c

1.3.4 Sinograms

A sinogram is the density plot of the X-ray transform of 2D function.

Figure 1.3: Sinogram(density plot of the X-ray transform)

1.4 Properties of X-ray(=Radon) transform

in two dimensions

Now we are going to explore some properties of Radon transform [1].
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1.4.1 Shift invariance

Let a ∈ R2 and let Taf(x) := f(x + a) be the corresponding shift operator

acting on the function on the plane. Analogously, Tsg(t, ω) := g(t + s, ω) is

the (axial) shift on the cylinder T.

Proposition 1.4.1. The following commutation relation holds:

R(Taf)(t, ω) = (Ta.ωR)f(t, ω).

Proof- We know that

Rf(l) =

∫
x.ω=t

f(x)ds

so

R(Taf)(t, ω) =

∫
x.ω=t

Ta(f)ds

R(Taf)(t, ω) =

∫
x.ω=t

f(x+ a)dx

put→ y = x+ a, =⇒ dy = dx,

and

y.ω = t+ a.ω

R(Taf)(t, ω) =

∫
y.ω=t+a.ω

f(y)dy

R(Taf)(t, ω) = g(t+ a.ω, ω)
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R(Taf)(t, ω) = Tsg(t, ω)

R(Taf)(t, ω) = (Ta.ωR)f(t, ω).

1.4.2 Rotation invariance

Let A be 2 × 2 rotation matrix, Maf(x) := f(Ax) be the corresponding ro-

tion operator and corresponding rotation operator on T, T : MAg(t, ω) :=

g(t, Aω)

Proposition 1.4.2. The following commuatation relation holds for any ro-

tation matrix A;

RMA = MAR.

This property, has a simple geometric meaning; instead of integrating a func-

tion over a rotated line .we can integrate the appropriately rotated function

along the original line.

1.4.3 Dilation invariance

Let r > 0 be a positive number, and Dr the radial dilation operatorDrf(x) :=

f(rx). An analogous operator acts on functions on the cylinder T : Drg(t, ω) :=

g(rt, ω).

Proposition 1.4.3. The following commutation relation holds:

RDr =
1

r
DrR
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1.4.4 Relation with the Fourier transform: Projection-

theorem

The next statement (called the projection-, Fourier-, or central formula) is

indeed central for studying the X-ray and Radon transforms.

Theorem 1.4.4. Under appropriate conditions on a function f(x) on R2

the following relation holds:

R̂f(σ, ω) = f̃(σω).

Proof.

R̂f(σ, ω) =

∫
g(t, ω)e−iσtdt

=

∫
R

∫ ∞
−∞

f(tω + sω⊥)ds e−iσtdt

=

∫
R2

f(x)e−iσx.ωdx

= f̃(σω).

Fourier- theorem says that taking a 1D Fourier transform of Radon trans-

form Rf of f on the plane, one recovers the 2D Fourier transform of f .

1.4.5 X-ray transform as a mapping between function

spaces

Consider the weighted spaces L2([−1, 1] × S1, (1 − t2)−
1
2 ) that consists of

functions on the finite cylinder [-1,1]×S1 having finite weighted L2 -norm,∫ 1

−1

∫ 1

S

|g(t, ω)|2 dωdt√
1− t2

.

We denote, Ω as unit disk in R2 centered at the origin and assume that the

function is supported inside Ω.
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Theorem 1.4.5. The Radon transform R is a continuous linear operator

from L2

(
(Ω) to L2([−1, 1]× S1, (1− t2)− 1

2

)
.

Proof. Consider a function f ∈ L2(Ω) (ie., it is square integrable and sup-

ported in unit the disk).then

||Rf(t, ω)||2 = ||g(t, ω)||2 =

∫ 1

−1

∫ 1

s

|g(t, ω)|2 dwdt√
1− t2

.

where |g(t, ω)| =

∣∣∣∣∫√(1−t2)

−
√

(1−t2)
f(tω + s ⊥ ω)ds

∣∣∣∣ . Now, we will compute first

|g(t, ω)|2 1√
1−t2 .

Consider the function

χ(s) =

1 when|s| ≤
√

1− t2,

0 otherwise.

then

|
∫ √1−t2
−
√
1−t2 f(tω + sω⊥)ds| =

∫∞
−∞ χ(s)f(tω + sω⊥ds)

thus by Cauchy-Schwarz inequality-

|g(t, ω)|2√
1− t2

≤ 2

∫ ∞
−∞
|f(tω + sω⊥)|2ds,

here, {2
∫∞
−∞ |f(tω + sω⊥)|2ds} is finite.

thus,

||g||2 =

∫ 1

−1

∫ 1

s

|g(t, ω)|2 dwdt√
1− t2

is bounded. So

||g|| is bounded, which implies that g(t, ω) = Rf(t, ω) is continuous.
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1.5 Backprojection

Backprojection is the dual operator R# : L2(T )� L2(R2) to R : L2(R2)�

L2(T ) i.e., such that

(Rf, g)L2(T ) = (f,R#g)L2(R2)). (1.1)

Proof.

(Rf, g)L2(T ) =

∫ 1

S

dω

∫ ∞
−∞

Rf(t, ω)g(t, ω)dt

=

∫
S1

dω

∫ ∞
−∞

(

∫
x.ω=t

f(x)dx)g(t, ω)dt

=

∫
S1

dω

∫
R2

f(x)g(x.ω, ω)dx

=

∫
R2

f(x)(

∫
S1

g(x.ω, ω))dx.

R#g(x) =

∫
S1

g(x.ω, ω)dω.

Geometrically, to get the value of R#g at a point x, choose a line through

x, which implies that the parameter of this line are (x.ω, ω); and then averages

over all lines through x.

As the result, one gets a web of lines, the density of which can be understood

as R#g. In other words, a single point source will produce the overlap of a

bunch of lines passing through it. A calculation shows that this the same as

saying that R#δ = 2
|x| ,

where δ(s) is delta-function.And thus instead of the sharp δ− pick, one gets

its blurred version 2
|x|

1.6 Inversion

An explicit inversion formula can be obtained by using the projection Formula

and Fourier inversion formula. Indeed, passing from Cartesian coordinate to
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the polar ones (σ, ω) (where ξ = σω), we obtain

f(x) =
1

(2π)2

∫
R2

f̃(ξ)eix.ξdξ

=
1

(2π)2

∫
S1

∫ ∞
0

f̃(σω)eiσx.ωσdσdω

=
1

2

1

(2π)2

∫
S1

∫ ∞
−∞

f̃(σω)eiσx.ω|σ|dσdω

where we used f̃((−σ)(ω)) = f̃(σω).

Finally, we have the following reconstruction formula

f(x) =
1

2

1

(2π)2

∫
S1

∫ ∞
−∞

ĝ(σ, ω)eiσx.ω|σ|dσdω

14



Chapter 2

Compressed Sensing

2.1 Introduction

In signal and image processing, one would like to reconstruct a signal from

measured data. When the information acquisition process is linear, the prob-

lem reduces to solving a linear system of equations. In mathematical terms,

the observed data y ∈ Rm is connected to the signal x ∈ RM of interest via

y = Φx. (2.1)

The matrix Φ ∈ Rm×M models the linear measurement process (referred

conventionally to as dictionary), the vector y ∈ Rm is the measurement vec-

tor. Then one tries to recover the vector x ∈ RM by solving the above linear

system. When the number of measurements m is equal to M , the recovered

x is in general Φ−1y. However, in many applications, it is much more desir-

able to take fewer measurements, provided one can still recover the signal.

In particular, when m < M , the linear system Φx = y is typically under-

determined and in general it has infinitely many solutions. In this case, an

interesting question arises: “ is it still possible to recover x possessing fewer

nonzero components from y through a computationally tractable procedure

?.” The research direction that deals with this problem has become pop-

ular as Compressive Sensing (CS), Compressed Sensing (CS), Compressive

Sampling, or Sparse Representations.
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Denoting Φr
k as the kth row of Φ, one may rewrite the kth component in

y as yk = 〈Φr
k, x〉 , k = 1, 2, . . . ,m. Here 〈Φr

k, x〉 represents the inner-product

between Φr
k and x. That is, the object x to be acquired is correlated with the

waveform Φr
k. This is a standard setup in several applications. For example, if

the sensing waveforms are Dirac delta functions, then y is a vector of sampled

values of x in time or space domain. If the sensing waveforms are indicator

functions of pixels, then y is the image data typically collected by sensors in

a digital camera. If the sensing waveforms are sinusoids, then y is a vector

of Fourier coefficients and this modality is used in the Magnetic Resonance

Imaging (MRI). Nevertheless, if the sensing waveforms have 0 and 1 (or 0

and ±1) as elements, then the associated matrix (referred conventionally

to as a sensing matrix) can have potential applications for multiplier-less

dimensionality reduction.

2.2 Mathematics of Compressed Sensing

A vector x ∈ RM is k−sparse if it has atmost k nonzero coordinates. That

is, ‖x‖0 := |{i | xi 6= 0}| = k < M . One can recover the sparse x from its

linear measurements by solving the following optimization problem:

P0 : min
α
‖α‖0 subject to Φα = y. (2.2)

The l0−minimization problem in (2.2) is in general NP-hard. There are two

classes of methods, namely Greedy and Convex optimization technique used

for solving (2.2)

2.3 Greedy Methods

These methods iteratively approximate the coefficients and the support of the

original signal, which enjoy the advantage of faster implementation. Among

the existing greedy methods, the most popular one is orthogonal matching

pursuit (OMP).

16



2.3.1 Orthogonal Matching Pursuite

One can obtain k sparse approximation in k steps (that is one column per one

step). The j-th test can be done by minimizing ε(j) = ‖φjzj − b‖2, leading

to z∗j =
φTj b

‖φj‖22
.The associated error has the following expression

ε(j) = ‖φjzj − b‖22 = ‖
φTj b

‖φj‖22
φj − b‖22

= ‖b‖22 − 2
(φTj b)

2

‖φj‖22
+

(φTj b)
2

‖φj‖22

= ‖b‖22 −
(φTj b)

2

‖φj‖22
.

If this error is zero, One obtains proper solution. Thus the test to be done

is simply ‖φ‖22‖b‖22 = (φTj b)
2 which indicates that b and aj are parallel.

A greedy strategy abandons exhaustive search in favor of a series of locally

optimal single-term updates. Starting from x0 = 0 it iteratively constructs a

k-term approximant xk by maintaining a set of active columns expanding that

set by one additional column. The column chosen at each stage maximally

reduces the residual l2 error in approximating b from the currently active

columns. After constructing an approximant including the new column, the

residual l2 error is evaluated; if it now falls below a specified threshold, the

algorithm terminates.

Task: Approximate the solution of P0 : minx ‖x‖0 subject to Φx = y.

Input: Φ, b, ε0(error threshold).

Initialization: Initialize k = 0, and set

• The initial solution x0 = 0.

• The initial residual r0 = b− Φx0 = b.

• The initial solution support S0 = Support{x0} = ∅.
Main Iteration: Increment k by 1 and perform the following steps:
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• Sweep: Compute the errors ε(j) = minzj‖φjzj − rk−1‖22 for all j using

the optimal choice z∗j =
φTj r

k−1

‖φj‖22
.

• Update Support: Find a minimizer j0 of ε(j) : ∀j /∈ Sk−1, ε(j0) ≤
ε(j), and update Sk = Sk−1 ∩ {j0}.

• Update Provisional Solution: Compute xk, the minimizer of ‖Φx−
b‖22 subject to support{x} = Sk

• Update Residual: Compute rk = b− Φxk.

• Stopping Rule: If ‖rk‖2 < ε0, stop. Otherwise, apply another itera-

tion.

Output: The proposed solution is xk obtained after k iterations.

2.4 Convex optimization technique:

The second class of methods, called convex optimization methods, consider

the convex relation of ||.||0 -norm in (p0) and reposes the problem as

P1 : min
x
‖x‖1 subject to Φx = y. (2.3)

A sufficient condition for the equivalance of p0 and p1 problems is given by

the Restricted Isometry Property

Definition 2.4.1. An m × M matrix Φ is said to satisfy the Restricted

Isometry Property (RIP) of order k with constant δk (0 < δk < 1) if for all

vectors x ∈ RM with ‖x‖0 ≤ k, we have

(1− δk) ‖x‖22 ≤ ‖Φx‖
2
2 ≤ (1 + δk) ‖x‖22 . (2.4)

To get a better understanding of this property, consider the m × |T | matri-

ces ΦT formed by the columns of Φ with indices from T ⊂ {1, 2, . . . ,M}.
Then (2.4) is equivalent to showing that the Grammian matrices AT :=

Φt
TΦT , |T | ≤ k have their eigenvalues in [1− δk, 1 + δk]. The following propo-

sition relates the RIP constant δk and µ.
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Proposition 2.4.2. Suppose that φ1, . . . , φM are the unit norm columns of

the matrix Φ with coherence µ. Then Φ satisfies RIP of order k with constant

δk = (k − 1)µ.
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Chapter 3

Introduction to frames

Basis is one of the most important concept in a study of vector spaces which

allows us to write each element in the vector space as the linear combination

of the elements in the basis. But we have the extra condition that the

elements of the basis need to be linearly independent. In fact, in the case

of inner- product spaces, we look for those elements which are orthogonal to

each other. This conditions make it harder to find a basis for a space which

is why we look for some more general tools which can relax some conditions

but work similar to that of a basis.

Frame for a vector space equipped with an inner-product also allows each

element in the space to be written as a linear combination of the elements

in the frame, In the thesis, we study mainly frames in finite dimensional

inner-product spaces.

3.1 Some basic facts about frames

Let V be a finite dimensional vector space, equipped with an inner-product

space 〈., .〉, which we choose to be linear in the first entry. Recall that a

sequence {ek}mk=1 in V is a basis for V if the following two conditions are

satisfied:

(i) V = span {ek}mk=1;
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(ii) {ek}mk=1 is linearly independent; i.e., if
m∑
k=1

ckek = 0 or some scalar

coefficients {ck}mk=1, then ck = 0, ∀ k = 1, 2, ...,m;

As a result, every f ∈ V has a unique representation in terms of the elements

of the basis, i.e., there exists unique set of scalars {ck}mk=1 such that

f =
m∑
k=1

ckek. (3.1)

If {ek}mk=1 is an orthonormal basis, i.e., a basis for which

〈ek, ej〉 = δx,y =

1, if k = j

0, if k 6= j,

then the coefficients {ck}mk=1 are easy to find. Taking the inner-product of f

in (1.1) with an arbitrary ej gives

〈f, ej〉 = 〈
m∑
k=1

ckek, ej〉 =
m∑
k=1

ck〈ek, ej〉 = cj

or

f =
m∑
k=1

〈f, ek〉ek. (3.2)

We in this chapter, introduce the concept of frames which also allows a

representation of vectors like (1.1) which we will prove.

Definition 3.1.1. A countable family of elements {fk}k∈I in V is a frame

for V if there exist constants A, B > 0 such that

A‖f‖2 ≤
∑
k∈I

| 〈f, fk〉 |2≤ B‖f‖2, ∀f ∈ V. (3.3)

[2]

The numbers A, B are called frame bounds. They are not unique. The

optimal lower frame bound is the supremum over all lower frame bounds,
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and the optimal upper frame bound is the infimum over all upper frame

bounds. Note that the optimal frame bounds are actually frame bounds.

The frame is normalized if ‖fk‖ = 1, ∀k ∈ I. In a finite-dimensional vector

space it is somehow artificial (though possible) to consider families {fk}k∈I
having infinitely many elements. In this project we consider finite families

{fk}mk=1, m ∈ N. With this restriction, Cauchy-Schwarz’ inequality shows

that
m∑
k=1

| 〈f, fk〉 |2≤
m∑
k=1

‖fk‖2‖f‖2, ∀f ∈ V,

i.e. the upper frame condition is automatically satisfied. However, one can

often find a better upper frame bound than
m∑
k=1

‖fk‖2

In order for the lower condition in (1.3) to be satisfied, it is necessary that

span{fk}mk=1 = V. This condition turns out to be sufficient; in fact, every

finite sequence is a frame for its span.

Proposition 3.1.2. Let {fk}mk=1 be a sequence in V. Then {fk}mk=1 is a frame

for span {fk}mk=1.

Proof. Assume that not all {fk} are zero.

The upper frame condition is automatically satisfied with B =
m∑
k=1

‖fk‖2. We

have to find the lower bound A. Now Let

W = span{fk}mk=1, W ′ = {f ∈ W : ‖f‖ = 1}

and consider the mapping

φ : W → R, φ(f) =
m∑
k=1

| 〈f, fk〉 |2 .

φ is a continuous function because it is the composition of continuous func-

tions. Now, since W ′ is a compact set and φ is continuous function on it,

φ attains its maximum and minimum on W ′. i.e., we can find g ∈ W with

‖g‖ = 1 such that

A =
m∑
k=1

| 〈g, fk〉 |2= inf{
m∑
k=1

| 〈f, fk〉 |2: f ∈ W, ‖f‖ = 1}
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Clearly A > 0 as it is sum of squares. Now, given f ∈ W, f 6= 0, we

have
m∑
k=1

| 〈f, fk〉 |2=
m∑
k=1

| 〈 f
‖f‖

, fk〉 |2 ‖f‖2 ≥ A‖f‖2.

Corollary 3.1.3. A family of elements {fk}mk=1 in V is a frame for V if and

only if span {fk}mk=1 = V.

In particular, if {fk}mk=1 is a frame for V and {gk}nk=1 is an arbitrary finite

collection of vectors in V, then {fk}mk=1

⋃
{gk}nk=1 is also a frame for V. A

frame which is not a basis is said to be overcomplete or redundant.

Now consider a vector space V equipped with a frame {fk}mk=1 and define a

linear mapping

T : Cm → V, T{ck}mk=1 =
m∑
k=1

ckfk. (3.4)

T is usually called the pre-frame operator, or the synthesis operator. The

adjoint operator is given by

T ∗ : V → Cm, T ∗{f} = {〈f, fk〉mk=1, } (3.5)

and is called the analysis operator.By composing T with its adjoint T ∗, we

obtain the frame operator.

S : V → V, Sf = TT ∗f =
m∑
k=1

〈f, fk〉fk. (3.6)

Now, in terms of the frame operator,

〈Sf, f〉 =
m∑
k=1

| 〈f, fk〉 |2, ∀f ∈ V. (3.7)

the lower frame condition can thus be considered as some kind of ”lower

bound” on the frame operator.

A frame {fk}mk=1 is called a tight frame if A = B., i.e., if

m∑
k=1

| 〈f, fk〉 |2= A‖f‖2, ∀f ∈ V. (3.8)
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For a tight frame, the exact value A in (1.8) is simply called the frame

bound.

Proposition 3.1.4. Assume that {fk}mk=1 is a tight frame for V with frame

bound A. Then S=AI (here I is the identity operator on V), and

f =
1

A

m∑
k=1

〈f, fk〉fk, ∀f ∈ V. (3.9)

For general frames, we now prove that we still have a representation of

each f ∈ V of the form f =
m∑
k=1

〈f, gk〉fk for an appropriate choice of {gk}mk=1.

The second part of the following theorem, which is one of the important

results in frames, is called the frame decomposition.

Theorem 3.1.5. Let {fk}mk=1 be a frame for V with frame operator S. Then

(i) S is invertible and self-adjoint.

(ii) Every f ∈ V can be represented as

f =
m∑
k=1

〈f, S−1fk〉fk =
m∑
k=1

〈f, fk〉S−1fk. (3.10)

(iii) If f ∈ V also has the representation f =
m∑
k=1

ckfk for some scalar co-

efficients {ck}mk=1, then

m∑
k=1

| ck |2=
m∑
k=1

| 〈f, S−1fk〉 |2 +
m∑
k=1

| ck − 〈f, S−1fk〉 |2 .

Proof. Since S = TT ∗, S = S∗ which means that S is self-adjoint. We will

now prove that S is injective. Let f ∈ V , and assume that Sf = 0. Then

0 = 〈Sf, f〉 =
m∑
k=1

| 〈f, fk〉 |2,

which implies that f = 0. Now we prove that S is surjective. Since {fk}mk=1

is a frame for V, by corollary 1.1.3, we can say that span{fk}mk=1 = V . So
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the pre-frame operator T is surjective.

That is, given any f ∈ V , we can find a g∈ V such that Tg = f and in

specific we can choose g ∈ N⊥T = RT ∗ and it follows that RS = RTT ∗ = V.

Thus S is surjective. Therefore S is invertible.

Now each f ∈ V has the representation

f = SS−1f

= TT ∗S−1f

=
m∑
k=1

〈S−1f, fk〉fk.

Since S is self-adjoint, we have

f =
m∑
k=1

〈f, S−1fk〉fk.

The second representation is obtained in a similar way by using f = S−1Sf .

Now to prove the third result, suppose that f =
m∑
k=1

ckfk. We can write

{ck}mk=1 = {ck}mk=1 − {〈f, S−1fk〉}mk=1 + {〈f, S−1fk〉}mk=1.

By the choice of {ck}mk=1, we have

m∑
k=1

(ck − 〈f, S−1fk〉)fk = 0,

i.e, {ck}mk=1−{〈f, S−1fk〉}mk=1 ∈ NT = R⊥T ∗ ; and {〈f, S−1fk〉}mk=1 = {〈S−1f, fk〉}mk=1 ∈
RT ∗ . Since they belong to two mutually orthogonal sets, we obtain (iii).

Note 3.1.6. The numbers 〈f, S−1fk〉, k = 1, 2, ...,m are called frame co-

efficients.

Since S : V → V is bijective, the sequence {S−1fk}mk=1 is also a frame by

Corollary 1.1.3, called the canonical dual of {fk}mk=1.
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Corollary 3.1.7. Assume that {fk}mk=1 is a basis for V. Then there exists a

unique family {gk}mk=1 in V such that

f =
m∑
k=1

〈f, gk〉fk, ∀f ∈ V. (3.11)

In terms of the frame operator, {gk}mk=1 = {S−1fk}mk=1. Furthermore, 〈fj, gk〉 =

δj,k.

Theorem 3.1.8. Let {fk}mk=1 be a frame for finite dimensional vector space

V. Given f ∈ V , there exist co-efficients {dk}mk=1 ∈ Cm such that f =
m∑
k=1

dkfk, and

m∑
k=1

| dk |= inf

{ m∑
k=1

| ck | : f =
m∑
k=1

ckfk

}
. (3.12)

Proof. Fix f ∈ V. There exists a set of co-efficients {ck}mk=1 such that f =
m∑
k=1

ckfk. Let
m∑
k=1

| ck |= r. We need to minimize the l1 norm of the co-

efficients.

Let us define two sets M and M ′ in the following manner:

M :=
{
{dk}mk=1 ∈ Cm : | dk |≤ r, k = 1, ...m

}
,

M ′ :=

{
{dk}mk=1 ∈M : f =

m∑
k=1

dkfk

}
.

The function φ : M ′ → R, defined by φ{dk}mk=1 =
m∑
k=1

| dk | is continuous

by its definition. Since M ′ is compact and φ is continuous on a compact set,

it attains its minimum and hence our result.

There are some important differences between Theorem 1.1.5 and Theo-

rem 1.1.8. In Theorem 1.1.5 we find the sequence minimizing the l2-norm of

the coefficients in the expansion of f explicitly. It is unique. On the other
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hand, Theorem 1.1.8 only gives the existence of an l1-minimizer, and it might

not be unique.

Theorem 3.1.9. Let {fk}mk=1 be a frame for a subspace W of a vector space

V. Then the orthogonal projection of V onto W is given by

Pf =
m∑
k=1

〈f, S−1fk〉fk. (3.13)

Proof. Define P as given in (1.13). If f ∈ W, then by theorem 1.1.5,

m∑
k=1

〈f, S−1fk〉fk = f,

i.e, Pf = f forf ∈ W.

Now since S is a bijection on W, range of S−1 is W.

i.e, Pf = 0 forf ∈ W⊥.

Hence the result.

3.2 Pseudo inverses

We know that all matrices do not have an inverse and the matrix which

has an inverse is that which is nonsingular. In case no inverse exists, it

is convenient to search for ”generalized inverses” which can satisfy some of

the nice properties of inverses. The right definition of a generalized inverse

depends upon the properties we are interested in.

Given an m × n matrix E, we consider it as a linear mapping of Cn into

Cm. E is not necessarily injective, but by restricting E to the orthogonal

complement of the kernel NE, we obtain the injective linear mapping,

Ẽ : N⊥E → Cm.
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Clearly E and Ẽ have same range, i.e, RE = RẼ. So Ẽ can be considered

as a mapping from N⊥E to RE, which is injective and has an inverse,

˜(E)
−1

: RE → N⊥E .

Consider Cm as the direct sum of range of E and its orthogonal comple-

ment, i.e, Cm = RE

⊕
R⊥E .

Now we can extend ˜(E)
−1

to an operator E† : Cm → Cn by defining

E†(y + z) = ˜(E)
−1
y if y ∈ RE, z ∈ R⊥E (3.14)

With this definition,

EE†x = x, ∀x ∈ RE. (3.15)

The operator E† is called the pseudo-inverse of E. From the definition,

we have the following equalities:

NE† = R⊥E = NE∗ , RE† = N⊥E = RE∗ (3.16)

Following are the two characterizations of the pseudo-inverse:

Proposition 3.2.1. Let E be an m × n matrix. Then

(i) E† is the unique n × m matrix for which EE† is the orthogonal pro-

jection onto RE and E†E is the orthogonal projection onto RE†

(ii) E† is the unique n × m matrix for which EE† and E†E are self-adjoint

and

EE†E = E, E†EE† = E†.

Proof. We will prove the proposition in two steps. In first step, we will prove

the equivalence between the statements in the proposition. In the next step,

we will prove the equivalence between the properties in Proposition and the

definition of pseudo-inverse.

Step 1:
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Suppose the matrix E† satisfies (i). i.e, EE† is the orthogonal projection

onto RE. Then, if y ∈ RE, z ∈ R⊥E

EE†(y + z) = y

i.e, E†EE†(y + z) = E†y

= ˜(E)
−1
y

= E†(y + z).

Similarly we can do the same for the other part. i.e, EE†E = E.

Now suppose the condition (ii) is satisfied.

Step 2: By the definition of pseudo-inverse, we know that,

If y ∈ RE, then EE†y = y;

If y ∈ R⊥E = NE† , then EE†y = 0.

This proves that EE† is the orthogonal projection onto RE. Now

If y ∈ R⊥E† = NE, then E†Ey = y;

If y ∈ RE† , y = E†x for some x.

Then,EE†y = E†EE†x = E†x− E†(I − EE†)x = E†x = y.

This proves that E†E is the orthogonal projection onto RE† .

We are only left with the proof that if a matrix E† satisfies conditions (i)

and (ii) of the proposition, then it fulfills the requirements in the definition

of pseudo-inverse. Note that condition (ii) implies that

E∗ = (EE†E)∗ = (E†E)∗E∗ = E†EE∗

This in fact shows that,

N⊥E = RE∗ ⊆ RE† .

Now, if y ∈ RE, then we can find x ∈ N⊥E ⊆ RE† such that y = Ex; thus

E†y = E†Ex = x = ˜(E)
−1
Ex = ˜(E)

−1
y.
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Finally, if y ∈ R⊥E = NE∗ , then by (i), EE†z = 0; using (ii),

E†z = E†EE†z = 0.

Following theorem talks about important minimization problem:

Theorem 3.2.2. Let E be an m × n matrix. Given y ∈ RE, the equation

Ex = y has a unique solution of minimal norm, namely x = E†y.

Proof. We know, by the definition of pseudo-inverse, that x = E†y is a

solution to the equation Ex = y. All solutions have the form x = E†y + z,

where z ∈ NE. Since E†y ∈ N⊥E , the norm of the general solution is given by

‖f‖2 = ‖E†y + z‖2 = ‖E†y‖2 + ‖z‖2,

which is minimal when z = 0.

3.3 Singular value decomposition

For computational purposes it is important to notice that the pseudo-inverse

can be found using the singular value decomposition of E which will be

discussed in this section.

Lemma 3.3.1. Let E be an m × n matrix with rank r ≥ 1. Then there

exist constants σ1, σ2, ..., σr > 0 and orthonormal bases {uk}rk=1 for RE and

{vk}rk=1 for RE∗ such that

Evk = σkuk, k = 1, 2, . . . , r. (3.17)

Proof. Observe that Cn is a complex vector space and E∗E is a self-adjoint

operator which implies that it is a normal operator. Spectral Theorem says

that Cn has an orthonormal basis consisting of eigenvectors of E∗E if and

only if E∗E is normal.

Let {vk}nk=1 be the orthonormal basis for Cn consisting of the eigenvectors
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for E∗E. Let {λk}nk=1 denote the corresponding eigenvalues. Note that for

each k,

λk = λk‖vk‖2 = 〈E∗Evk, vk〉 = ‖Evk‖2 ≥ 0.

The rank of E is given by

r = dimRE = dimRE∗ .
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Chapter 4

Wavelet Analysis

Definition 4.0.2 (Continuous Wavelet Transform). A function ψ ∈
L2(R) with

∫
R ψ(x) = 0 is called a wavelet. For every f ∈ L2(R), the con-

tinuous wavelet transform of it is defined as [3]

Tψf(a, b) = 〈f, ψa,b〉 =

∫
R
f(x)ψ̄a,b(x)dx, ∀ a ∈ R+, b ∈ R, (4.1)

where ψa,b(x) = 1√
a
ψ(x−b

a
). The function ψ is the so called mother wavelet.

The resolution of identity ensures that the reconstruction of f can be

made from 〈f, ψa,b〉 as follows:

f(x) =

∫
R

∫
R
(Tψf)(a, b))ψ̄a,b(x)

dbda

a2
. (4.2)

4.1 Discrete Wavelet Transform

Under certain restrictions on the mother wavelet ψ, all information about

the transformed signal is preserved when the wavelet transform is sampled

on certain discrete subsets of the time-frequency plane. More precisely, the

values of the continuous transform at these points are the coefficients of a

corresponding wavelet basis series expansion.
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Now, return to the CWT and consider the case a = 2−j , b = 2−jk, where

j, k ∈ Z. Then we get

ψ2−j ,2−jk =
1√
2−j

ψ

(
x− 2−jk

2−j

)
= 2

j
2ψ(2−jx− k). (4.3)

Let wj,k represent the values of the CWT, the wavelet coefficients, at the co-

ordinates (2−jk, 2−j) representing a dyadic grid in the time-scale plane. The

values correspond to the correlation between f and ψa,b at specific points (a,

b). This sampling keeps enough information to make a perfect reconstruction

of the signal possible if some special conditions on the wavelet function are

fulfilled. If, in addition, even more conditions on ψ are fulfilled, then it turns

out that it is possible to construct a function ψ such that (ψj,k)j,k forms an

orthonormal basis. This concept leads to what is called the Discrete Wavelet

Transform, (DWT). The reconstruction of f from its coefficient given by an

orthonormal wavelet basis is

f =
∑
j,k

wj,kψj,k, (4.4)

where

wj,k = 〈f, ψj,k〉. (4.5)

This is a doubly infinite sum over both the time index k and the scale index

j. However, the sum can be made finite with little or no error. The case with

finitely supported wavelets is clear and for infinitely supported wavelets the

main energy should still be concentrated within a certain interval, thus finite

summation over k is valid with some approximation. To understand why

finite summation over j is valid, with some approximation, we introduce the

concept Multiresolution Analysis, (MRA). The MRA, developed by Mallat

and Meyer gives the theoretical ground for construction of most wavelets.

Definition 4.1.1 (Multiresolution Analysis). A multiresolution analysis is

a family of closed subspaces Vj ⊂ L2(R) with the following properties:

1. Vj ⊂ Vj+1,∀j ∈ Z
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2. f ∈ Vj ⇐⇒ f(2·) ∈ Vj+1, ∀j ∈ Z

3. ∪j∈ZVj = L2(R)

4. ∩j∈ZVj = {0}

5. ∃φ ∈ V0 such that (φ(x− k))k∈Z is an orthonormal basis for V0.

The function φ in (5) is the so called scaling function (or sometimes the

approximation function). Note that V0 = Spankφk, k ∈ Z, where φ0,k(x) =

φ(x − k). Except for the assumptions on φ due to the MRA, it is usually

required that the scaling function should be localized in time. Also, it is

common to normalize φ and demand
∫
R φ(x)dx = 1. Now, the definition of

MRA implies

φ(x) = 2
∑
k

hkφ(2x− k), (4.6)

which is known as the scaling equation. Now, we investigate the detail spaces

Wj, where Vj+1 = Vj ⊕Wj . One can prove that there is a function ψ such

that (ψj,k)k is an orthonormal basis of Wj . For instance, (ψ(. − k))k is an

orthonormal basis of W0. It also follows that (ψj,k)j,k is an orthonormal basis

for L2(R).

4.2 Wavelet tight frame in 1D

Recall that an orthogonal basis {fk}nk=1 in Rn satisfies
∑n

k=1 |〈f, fk〉|2 = ‖fk‖2

for all f ∈ Rn and that {fk}, k = 1, ..., n is linearly independent.The tight

frame is a generalization of orthogonal basis, where the linear independence

in the latter is discarded for better flexibility. In particular, a tight frame in

Rn is a set of vectors {fk}mk=1 with m ≥ n satisfying

[4]

m∑
k=1

|〈f, fk〉|2 = ‖fk‖2. (4.7)
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The tight frame analysis operator is defined as

W = [f1, f2, ..., fm]T ,

and the synthesis operator is W T . In other words, Wf = {〈f, fk〉}mk=1 is

a vector of the coefficients that are the inner-products of f and fk, and

W T c =
∑m

k=1 c(i)fk is the synthesis of the coefficients to a signal. The

identity (4.7) is equivalent to

W TW = In,

where In is the identity operator from Rn to Rn. We call it the perfect re-

construction property.

The wavelet tight frame is a tight frame with the structure deriving

from discrete wavelet transform. More precisely, let h = {hi}r−1i=0 be a

family of filters, where h0 (lowpass filter), satisfies
∑

j h0(j) = 1, and hi,

i = 1, . . . , (r−1), the so-called high-pass filters, satisfy
∑

j hi(j) = 0. The dis-

crete wavelet transform associated with filters h is defined as follows. Given

a signal x ∈ Rn, we pass it through the filters hi, i=0,...,r-1, respectively.

Define

W (h) : f ∈ Rn →



h0 ∗ f
h1 ∗ f
.

.

hr − 1


∈ Rrn. (4.8)

where ∗ is the filtering procedure. Then W (h) corresponds to the one-

level wavelet transform. To get a multi-level wavelet transform, we need

to apply W(h) recursively to the low-pass coefficients that correspond to

the low-pass filter h0, until a desired level is reached. In order to make the

wavelet transform W(h) form a tight frame, the perfect reconstruction prop-

erty W (h)TW (h) = In should be satisfied, which is finally reduced to certain

conditions on the filters h.It is shown that the perfect reconstruction property

is equivalent to the following condition:
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r−1∑
i=0

∑
n∈Z

hi(k + n)hi(n) = δk, ∀k ∈ Z, (4.9)

where δk = 1 if k = 0 and δk = 0 otherwise.

An example of wavelet tight frame is the so-called piecewise linear B-

spline framelet.The associated filters are

h0 =
1

4
[1, 2, 1], h1 =

√
2

4
[1, 0, 1], h2 =

1

4
[1, 2, 1]. (4.10)

It can be easily checked that the filter h = {hi}2i=0 satisfies (4.7). Conse-

quently, W (h) forms a tight frame. This tight frame has been successfully

used in many image reconstruction tasks.
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Chapter 5

Computed Tomography in

Compressive Sensing

Framework

Two major categories of methods exist, analytical reconstruction and iter-

ative reconstruction. Methods based on filtered back projection (FBP) are

one type of analytical reconstruction that is currently widely used on clinical

CT scanners because of their computational efficiency and numerical stabil-

ity. Many FBP-based methods have been developed for different generations

of CT data-acquisition geometries, from axial parallel- and fan-beam CT in

the 1970s and 1980s to current multi- helical CT and cone-beam CT with

large area detectors.[?]

5.1 Algebraic Reconstruction Technique (ART)

An entirely different approach for tomographic imaging consists of assuming

that the cross section consists of an array of unknowns, and then setting up

algebraic equations for the unknowns in terms of the measured projection

data which makes the following algebraic system of equations:
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N∑
j=1

wijfj = pi, i = 1, 2, ...,M.

,

Figure 5.1: ART description.

where M is the total number of rays(in all projections) and wij is the weigh-

ing factor that represents the contribution of the jth cell to the ithray integral.

The factor wij is equal to the fractional area of the jthimage cell intercepted

by the ith ray as shown for one of the cells in figure 2. It may be empha-

sized here that most of the wij’s are zero since only a small number of cells

contribute to any given ray-sum. When put in matrix form above system of

equations becomes:

p = Af. (5.1)

If M and N are small, we may use conventional methods from matrix

theory to invert the system of equations. However, in practice N may be

as large as 65,000 (for 256 x 256 images), and, in most cases for images of
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this size, M will also have the same magnitude. For these values of M and

N , the size of the matrix A becomes 65,000 X 65,000, which precludes any

possibility of direct matrix inversion. This is precisely the case where CS

based methods offer some advantages.

For large values of M and N there exist very attractive iterative methods

for solving (1). These are based on the ”projection method” as first proposed

by Kaczmarz and later eluciated further by Tanabe.

For the computer implementation of this method, we first make an initial

guess at the solution. This guess, denoted by (f
(0)
1 , f

(0)
2 , ..., f

(0)
N ), is repre-

sented vectorially by ~f (0) in the N -dimensional space. In most cases, we

simply assign a value of zero to all the fi’s. This initial guess is projected on

to the hyperplane represented by the first equation in (1) giving ~f (1). ~f (1)

is projected on the hyperplane represented by the second equation in (1)

to yield ~f (2) and so on. When ~f (i−1) is projected on the hyperplane repre-

sented by the ith equation to yield ~f (i). The process can be mathematically

described by

~f (i) = ~f (i−1) − (~f (i−1). ~wi − pi)
~wi. ~wi

~wi,

where ~wi = (wi1, wi2, ..., wiN), and ~wi. ~wi is the dot product of ~wi with

itself.

5.2 1D TV Optimization

Of late, the inherent sparsity present in CT images started attracting the

attention of many researchers. In 2006, a compressed sensing (CS) recon-

struction algorithm was proposed by Candes et al. They indicated that

medical images could be sparsified by taking the gradient transform, and

the reconstruction could be improved by solving a constrained minimization

problem,

min
f
||f ||TV , s.t. Rf = p (5.2)
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where R is the Radon transform, p is the projection data and f is the im-

age to be reconstructed. In this section, we first provide general terms and

descriptions of TV norm based method in detail. The TV of an image is

defined as the l1 norm of its gradient. For an image f , let fx,y be a pixel

value at (x, y). Then, let the local gradient operator ∇

∇fx,y = (Dxfx,y, Dyfx,y), (5.3)

where Dx and Dy are the discrete differential operators along the x- and

y-axes, which are, respectively

Dxfx,y = fx,y − fx−1,y, Dyfx,y = fx,y − fx,y−1, (5.4)

The position relationship between fx,y and its neighboring pixels is shown in

figure (7.1). Then problem equation (5.2) can be rewritten as

min
f
||~∇f ||TV , s.t. Rf = p, (5.5)

where ~∇f stands for the local gradient operation on every pixel of f and

for convenience, we arrange all the results in a single vector. In our-work to

solve problem (5.2) (or problem (5.5)) a hybrid SART and TV reconstruction

algorithm is used. A steepest descent method is applied to minimize ||∇f ||1
and the SART is applied to guarantee the data fidelity.

Let us further expand the calculation of the TV norm of f as

||f ||TV = ||~∇f ||1 =
∑
x,y

||∇fx,y||, (5.6)

and usually an L2 norm will be considered for ||∇fx,y||,

||∇fx,y|| = ||∇fx,y||2 =
√

(Dxfx,y)2 + (Dyfx,y)2. (5.7)

It is easy to find out that ||f ||TV is an isotropic expression. Therefore the

following conclusion can be derived: an image that is gradient-sparse is also

sparse if one calculates a 1D gradient along a certain direction on the image

plane. Thus it is possible to deduct a 1D TV minimization problem for CT
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Figure 5.2: Position relationship between fx,y and its neighboring pixels.

reconstruction. Considering the 1D gradient along a radical direction, given

a unit vector ~eα in the plane. one has

∇αfx,y = (∇fx,y. ~eα) ~eα. (5.8)

Then the 1D TV minimization problem can be written as

min
f
|| ~∇αf ||1, s.t. Rf = p, (5.9)

where the vector sign in ~∇αf is similar as in ~∇f . The position relationship is

shown in figure (7.3). As can be seen from equation (5.9), the minimization

objective is no longer the TV norm of image, but the summation of 1D TV of

a series of parallel lines. However, such minimization only utilizes the image

sparsity along one direction; hence solving such a problem is less effective

than the standard 2D TV minimization. To achieve a high performance,

more than one direction [?] can be chosen simultaneously. This forms a

multi-1D minimization problem.
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Figure 5.3: Projection geometry.

Figure 5.4: Illustration of the calculation of 1D TV.. (Courtesy: Zhiqiang

Chen et al. (2013) )
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Chapter 6

Experimental Result

Error computation by wavelet based OMP for phantom image (64x64)

Threshold Row-size Error

10 m 2.4294

m/2 3.3898

m/4 5.4835

m/8 6.4197

7 m 1.9131

m/2 3.7168

m/4 5.5573

m/8 6.9788

0.1 m 0.1052

m/2 1.5892

m/4 5.1837

m/8 7.5819
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Error computation by wavelet based OMP for phantom image (32x32)

Threshold Row-size Error

7 m 2.2439

m/2 2.7996

m/4 3.9630

m/8 4.0167

0.1 m 0.4865

m/2 2.5378

m/4 3.3686

m/8 4.2105

0.01 m 0.1671

m/2 2.1974

m/4 4.6782

m/8 6.5679

Error computation by wavelet OMP for phantom image (64x64)

Threshold Row-size Error

7 m 3.8150

m/2 5.7114

m/4 8.4808

m/8 10.6276
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(a) Original Phantom Image(32x32)

(b) Rows=m (c) Rows=m/2

(d) Rows=m/4 (e) Rows =m/8

Figure 6.1: Reconstruction Phantom Image(32x32) at Threshold=0.1 by

Wavelet based OMP
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(a) Original Phantom Image(32x32)

(b) Rows=m (c) Rows=m/2

(d) Rows=m/4 (e) Rows =m/8

Figure 6.2: Reconstruction Phantom Image(32x32) at Threshold=7 by

Wavelet based OMP

46



(a) Original Phantom Image(64x64)

(b) Rows=m (c) Rows=m/2

(d) Rows=m/4 (e) Rows =m/8

Figure 6.3: Reconstruction Phantom Image(64x64) at Threshold=7 by

Wavelet based OMP
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(a) Original Phantom Image(64x64)

(b) Rows=m (c) Rows=m/2

(d) Rows=m/4 (e) Rows =m/8

Figure 6.4: Reconstruction Phantom Image(64x64) at Threshold=10 by

Wavelet based OMP
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(a) Original Phantom Image(32x32)

(b) Rows=m

(c) Rows=m/4

(d) Rows=m/8
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