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Abstract 

 

 

The number of incremental and iterative steps in the digital IC design & automation 

methodology will decide the non-recurring-engineering (NRE) costs and time-to-market 

(TTM). Since the aforementioned factors are the major driving factors of the IC design 

industry, many algorithms were proposed in the last few decades to minimize/optimize the 

number of design steps in the conventional digital IC design & automation methodology. 

However, the conventional frontend and backend designs have been carried out separately, 

which has limited the further minimization of design steps. Here we propose a novel digital 

IC design & automation methodology, which reduces the NRE costs and TTM by merging 

the frontend and backend designs partially. It maps the input RTL description directly to 

their corresponding physical layouts (derived using the existing CAD tools and stored in a 

pre-computed library) without going through the all the steps in conventional logic and 

physical synthesis process. As part of the proposed methodology, we use a pre-computed 

library which stores all required physical layouts and their Boolean functions. We have 

exploited the functional symmetry and negation-permutation-negation (NPN) class 

representations to decoct the library size and number of comparisons. The functional 

symmetry reduced the number of required pre-computed circuits in our experiments from 

1031 to 222 (464.4% reduction in the memory size) and helps in maintaining the regularity 

in the design, which is a major concern for engineering change order.  

To minimize the number steps further, complexity and memory requirements, we have 

proposed a new graph data structure called Shannon Factor Graph (SFG) and cut-less 

mapping technique for technology dependent mapping. The preliminary findings show the 

effectiveness of the proposed methodology.  
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Chapter 1 
 

Introduction 

 

 

 

1.1 Conventional digital IC design and automation methodology 

The Non-Recurring Engineering (NRE) costs, which is one time investment for Computer-

Aided Design (CAD) tools, design effort, mask generation, and design time (which is part of 

the NRE cost) have been considered as major factors to decide the product cost and 

productivity. With continued technology scaling, the design of current and future 

generations of digital integrated circuits (ICs) is increasingly becoming more complex. Due 

to such complexity, meeting design cost constraints with high productivity at the same time 

is a truly daunting task [1]. According to [2] “cost of design is the greatest challenge to 

continuation of the semiconductor roadmap” and the annual tool costs (part of NRE) per 

designer increase 3.9% per year. Hence if the NRE costs can be cut down, overall price of 

the product will reduce, leading to increased demand for the product. On the other hand, 

when the design time of a product goes up, consequently its demand and revenue earned 

will be reduced. As for example, delay of half of the design time in productivity will lead to 

reduction in demand and revenue by 75% [2]. Therefore significant amount of research is 

going on in the IC design industry and academia to reduce the NRE cost and time-to-

market. 

These two factors are majorly influenced by design & automation methodologies/flows that 

one follow during the design of any system (digital in our case). Therefore, we start our 

discussion with conventional digital IC design and automation methodology [3]. 

Conventional industry-standard IC design methodology includes hierarchical design and 

automated synthesis steps. The design abstraction usually starts from the register transfer-

level (RTL) with an aim to obtain the final IC layout through logic synthesis (frontend 

design) and physical synthesis (backend design). The design methodology follows the 

original Y-chart representation proposed by Gajski and Kuhn [3], also known as the Gajski 

Chart (shown in Fig. 1.1). The basic premise of this methodology is to use separate the 

frontend and backend CAD tools in incremental and iterative steps to achieve the final 
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design layout. Frontend CAD tools convert the RTL description of a design to the gate level 

netlist through translation, optimization and technology mapping [4, 5] and the backend 

converts the netlist into final IC layout through floor planning, placement and routing [1, 3]. 

This whole process is termed as clockwise Gajski chart flow. The clockwise Gajski chart 

flow represents the design in three hierarchical domains, functional/behavioral, structural 

and physical/geometrical, and refinement is conducted in steps as shown in Fig. 1.1.   

Functional representation: At highest level of abstraction, the designer will consider what 

the chip does. For instance, the Boolean expression y=ab + (ab)’ tells us about only its 

function where its output is ‘y’ and inputs are ‘a’ and ‘b’, but does not say anything about its 

implementation and structure of the cell. Functional representation of a design may be 

captured on several levels. 

Structural representation:  It’s a bridge between functional representation and 

geometrical representation. The Boolean function is mapped to the corresponding 

components (ex: NAND) and connections based some objective function (are, 

delay... etc.) however it doesn’t say anything about the physical parameters, like 

positions of the components on the printed circuit board silicon chip. Depending 

upon the design entry structural representation may serve the functional/behavioral 

representation. 

Geometrical representation: The final representation ignores, as much as possible, 

what the design is supposed to do and binds its structure in space (physical design) 

or to silicon (geometrical design).  

Each of the above representations may have several local representations as shown 

in the Fig. 1.2. 

 

Figure 1.1: Gajski-Kuhn chart 
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The conventional design automation methodology, shown in Fig. 2, consists of incremental 

and iterative steps from RTL description to final physical. At each design step a separate 

algorithm should be run by the respective CAD tools to convert the RTL design description 

to corresponding gate level netlist (fig.1). The translated logic is optimized to get best 

performance in terms of area, delay and power. Before mapping the optimized logic to the 

target technology gates, a technology independent mapping is done, later possible logic 

optimizations are done through local transformations. Based on the given specifications this 

process is carried iteratively. Mapped logic (netlist) is fed as the input to the backend tools 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Simplified conventional digital IC design & automation methodology 
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and they mostly carry out the floorplan, placement and routing iteratively. Initial floorplan 

and placement influence the final routing congestion. The routing tool has to route wires 

among the gates of a block (intra routing) and also among the different blocks (inter 

routing). Routing within the block decides the congestion probability. To do all this, 

different algorithms have to be run by the tool at each step iteratively. So we can conclude 

that we need different tools for frontend and backend, and large design time to get a quality 

product. 

Therefore with high productivity and low cost target, there has been growing research 

interest in CAD tools development domain to reduce the NRE costs for complex systems 

design and also to simplify design steps to improve time-to-market. However meeting such 

conflicting design trade-offs among the design complexity, high productivity and low cost 

requirements is highly challenging.  

To address the design complexity various techniques have been proposed so far. A unified 

model of the design representation is proposed in [3] where the design is described in three 

hierarchical domains (behavioral, structural, physical) with different levels of abstraction. 

The circuit-performance including power consumption, area and delay depends on the 

quality of the logic synthesis [6]. Therefore the main research focus has been on the 

optimization of logic synthesis process [4, 5, 7-9], mainly the Graph based logic synthesis 

using Binary Decision Diagrams (BDD) and And-Invert-Graphs (AIG) which have already 

been proven to be an effective way for logic optimization and technology mapping. 

Recently in [10], a shift from the logic synthesis is observed, where the new circuit/netlist 

structure is retrieved from the pre-computed library, instead deriving it each time by 

skipping the optimization phase. Although this is an unconventional attempt, but the number 

of circuits to be stored using this approach is significantly large. Moreover the 

corresponding library has to be loaded with new circuits, when they are not found in the 

existing library. Therefore large memory is required for such design strategy to store all 

industrial benchmark circuits, which increases search space and design time. Therefore, we 

envisage a design automation methodology with reduced number of steps combining these 

two to reduce NRE costs and time-to-market, which is discussed next. 

 

1.2 Proposed Digital IC Design and Automation Methodologies 

We have proposed two methodologies, one is cut-based and another one is cut-less. 

1.2.1 Cut-based methodology 

We propose a novel, unconventional and unified design methodology [12] by merging the 

logic synthesis (frontend) with physical design (backend) partially. Our proposed 
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methodology benefits from reduced number of design steps by creating a direct link from 

the RTL/behavioral description to the physical design in the original Gajski chart [3]. The 

direct physical design step is facilitated through the previously stored and pre-computed 

technology libraries. To minimize the storage requirements only the physical designs of 

negation-permutation-negation (NPN) class functions along with their Boolean expressions 

[11] are stored instead of the extensive industrial benchmarks as proposed in [10]. Thus it 

drastically reduces the iterative loading and re-loading overheads used in the conventional 

design methodology. As for an example, 1478 NPN class functions are needed in [10] to 

represent only the 4-input frequently appearing industrial circuits, whereas our proposed 

methodology reduced this number to 1031 (a reduction of 30%), which can be used to map 

any Boolean expression without any limitation on number of input variables of the function.  

We have also exploited the functional symmetry along with the NPN class representation to 

minimize the library size further and to improve the regularity of the We show that due to 

such unified design methodology with reduced complexity, NRE costs and Time-to-market 

are reduced significantly. The functional symmetry reduced the number of required pre-

computed circuits in our experiments from 1031 to 222 (464.4% reduction in the memory 

size) and helps in maintaining the regularity in the design, which is a major concern for 

engineering change order. 

The aforementioned methodology uses the cut-based technology mapping technique for 

mapping the input RTL/Boolean expressions/truth-tables to the cells of the pre-computed 

library. The following proposed methodology points out the drawbacks of the cut-based 

methodology and shows a possible solution for solving them. 

1.2.2 Cut-less methodology 

The methodology proposed in [11-14] are cut-based methodologies, which require cut-

enumeration, storing of cuts and computation of canonical form for mapping. The cut-

enumeration is computationally complex and requires more memory for storing the cuts. If 

there are n number of nodes and k is the cut size, then the possible number of cuts is O(nk), 

which is exponentially growing with the cut size and number of nodes. Due to this the 

runtime and required memory grows exponentially, thereby it affects the overall design 

cycle for highly complex designs. Here, we propose a cut-less mapping technique and a new 

graph data structure [15], called Shannon Factor Graph (SFG), for mapping the input 

RTL/behavioral description directly to their final physical layouts. The information stored at 

each node of the SFG can be used to map the nodes to the technology dependent cells 

without enumerating the cuts. The embedded intelligence of the SFG takes the advantage of 

the library cell’s size. This feature of the SFG minimizes the graph building time and 
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required memory significantly. The proposed cut-less mapping technique can improve the 

design time and required memory further, which will reduce the time to market and NRE 

costs significantly. 

1.3 Thesis Outline 

The thesis is organized as follows. Chapter 2 describes the AIG and its construction, 

functionally reduced AIG (FRAIG), then proposed Shannon Factor Graph (SFG) for cut-

less mapping. Chapter 3 talks about the cut-based technology mapping and its drawbacks. 

Chapter 4 explains the Negation-Permutation-Negation (NPN) class representation and 

functional symmetry along with the proposed modification. Chapter 5 presents the proposed 

cut-based design and automation methodology. Chapter 6 describes the proposed cut-less 

design and automation methodology. Chapter 7 concludes the discussion with the future 

scope of work. 
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Chapter 2 
 

And-Inverter Graph (AIG) and 

Shannon Factor Graph (SFG) 

   

 

2.1 And-Inverter Graph (AIG) 

AIGs were introduced by Kuehlmann and Krohm for combinational equivalence checking 

[16]. There are several data structures used for representation of the subject graph, which is 

technology independent one used for mapping to the technology dependent standard cells. 

Here the subject graph is represented as AIG for proposed cut-based methodology. 

2.1.1 Definition  

Let (X, A), A≤X×X, be a directed acyclic graph where each node n€X has either no 

incoming arcs or exactly two incoming arc, are called Inputs. Nodes with two incoming arcs 

are called ‘And’ nodes. Let inv be a function from A to the set {0, 1}. The tuple G = (X, A, 

inv) is called an And Inverter Graph (AIG). If inv(a) = 1 then arc a is said to be inverted. 

Inverted arcs indicated with a bubble on solid line, and uninverted arcs with a solid line (see 

Fig. 2.1).  

 

 
Figure 2.1: AIG graph 
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Every node and edge in an AIG corresponds to a Boolean function, called the function of 

the node or edge. Every Input node n of an AIG is associated with a formal Boolean 

variable Xn. The functions of the other nodes and edges are defined in terms of these 

Boolean variables. 

Formally, the semantics of an AIG G is specified by defining a valuation function f that 

maps every node and edge of G to a Boolean function. If e is the edge (n, i), we define 

 
f(n)      if i=0 

f(e)= 

                ~f(n)     if i=1 

 

If n is a node, we define 

 

      0             if n is the zero node 

                          If(n)=         Xn            if n is an input mode 

   f(el).f(er)       otherwise (n is an And node with input edges el and er)    
 
This recursive definition of f is well-formed since the nodes in an AIG can be topologically 

ordered (as it is a directed acyclic graph). An AIG G that has exactly one node n with no 

out-going arcs is called a single output AIG. In this case we often abuse terminology and 

talk of the function of G. This should be understood to be the function of n. 

2.1.2 AIG construction 

AIGs for Boolean functions can be constructed starting from different functional 

representation [17] 

SOP: Given an SOP representation of a function, it can be factored [18] and the factored 

form can be converted into the AIGs. Each two-input OR-gate is converted into a two-input 

AND-gate using the DeMorgan rule. 

Circuit: Given a circuit representation of a (multi-output) Boolean function, the (multi-

output) AIG is constructed in a bottom-up fashion, by calling a recursive construction 

procedure for each PO of the circuit. When called for a PI node, the procedure returns the 

elementary AIG variable. Otherwise, it first calls itself for the fanins of a node and then 

builds the AIG for the node using the factored form of the node. When an AIG is 

constructed from a circuit, the number of AIG nodes does not exceed the number of literals 

in the factored forms.  

When the AIG is constructed from a BDD, the number of AIG nodes does not exceed three 

times the BDD number since each MUX can be represented using three ANDs. It follows 

that the size of the AIG is proportional to the size of the circuit or BDD.  

Quantifications performed on AIGs have an exponential complexity in the number of 

quantified variables because quantifying each variable is done by ORing the cofactors and 
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can potentially duplicate the graph size. Except for quantification, Boolean computation is 

more robust with AIGs than with BDDs. This is because Boolean operations on AIGs lead 

to the resulting graphs whose size is bounded by the sum of the sizes of their arguments, 

while in the case of BDDs the worst case complexity of the result is equal to the product of 

the sizes of the arguments. 

2.2 Functionally Reduced AIGs (FRAIGs) [17] 

FRAIGs are “semi-canonical” because no two nodes in a FRAIG structure have the same 

function in terms of the primary inputs, but the same function may have different FRAIGs 

structures. 

Canonicity: A representation of a Boolean function is canonical if, for any function, the 

representation is unique. 

AIGs are not canonical, that is, the same function can be represented by two functionally 

equivalent AIGs with different structure. Although in general it is computationally 

expensive to remove redundancies in an AIG (detecting if two nodes compute the same 

function is Co-NP Complete), in practical implementations some easily detected 

redundancies are prohibited by enforcing the following conditions: 

Structural Hashing: There is at most only one And node with a given pair of edges as 

inputs (since two nodes with same inputs compute the same function). 

Redundant And Elimination: There is no And node with both inputs the same. 

Constant Zero Elimination: There is no And node with an edge and its complement (since 

it computes the same function as the Zero node). 

Constant Zero Propagation: There is no And node with the Zero edge as an input (since it 

computes the same function as the Zero node). 

Constant One Propagation: There is no And node with the One edge as an input (since it 

computes the same function as the other input). 

We abuse terminology and refer to these conditions collectively as structural hashing 

conditions. An AIG that satisfies these conditions is said to be structurally hashed. We 

generally assume that an AIG is structurally hashed. 

The aforementioned AIG based subject graph can be used for cut-based technology 

mapping, but, when it comes to the cut-less technology mapping the AIGs give inferior 

results [19]. However, there were attempts to minimize the number of cuts [20] to reduce 

the complexity and memory requirement (will be discussed in chapter 4). 

We propose a new graph data structure for representing the subject graph called, Shannon 

Factor Graph (SFG), to facilitate the cut-less technology mapping, which is equally 

applicable to LUT-based and standard cell based mapping. 
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2.3 Shannon Decomposition Theorem [21] 

A Shannon Decomposition is a method to represent any Boolean function as the sum of two 

sub-functions of the original function. A cofactor is a sub element of a Shannon 

decomposition generated by setting the value of a given variable to either “0” or “1”. A 

cofactor, which is generated for a function F by setting a variable xi to 0 is called the 

negative cofactor of the function F with respect to xi, otherwise it is called positive cofactor 

(setting to “1”). A cube-cofactor is obtained by setting more than one variable to “0” and/or 

“1”, i.e a cube-factor is a cofactor from a cofactor. Equation (1) shows the mathematical 

representation of Shannon decomposition theorem. 

F(x0, x1, x2, …, xi) = x0 * F(1, x1, x2…., xi) + x0’ * F(0, x1, x2, ……, xi)-----------------(1) 

Where * and ‘ represent the AND and NOT functions respectively. For an example, the 

negative cofactor of the function F(x0, x1, x2, x3) = x0*(x1+x2) +x3 with respect to x0 is 

x3, whereas the cube-cofactor with respect to x0(= 0) and x3(= 1) is 1. 

2.4 Brief Introduction to Binary Decision (BDD)  

For BDD construction, we can start with the truth-table (2n values) or with more compact 

representations, like Boolean expression. In the case of Boolean expressions, a top-down 

procedure can be used to derive the diagram by repeated applications of the classical 

Shannon decompostion formula (1). 

Consider a 5-variable function, G=x1*(x0’*x2+x2’*x4’) + x4’*(x0’*x1+x1’*x3). 

We begin by setting x0=0 in G (without considering the proper variable ordering for BDD 

size reduction) to obtain the function G0, which must be realized below the x0=0 branch. 

We then do for x0=1 to obtain the function G1. Similarly the procedure should be repeated 

until the Shannon cofactor values are constant “1” or “0”. The size of the BDD and 

construction time increases exponentially with the number of variables and converting them 

to a canonical representation is again an exponential complex problem. The other problem 

with the BDDs is, its structure does not represent the final target graph. So to overcome the 

problems associated with the AIG and BDD representation we come up with a new graph 

representation, whose construction is more like a BDD. More details on BDD can be found 

in [22-26] 

2.5 Proposed Shannon Factor Graph (SFG) [15] 

The nodes of the SFG represent the Cofactors or cube cofactors value and the level, which 

will be used as node ID for finding the appropriate cell in the pre-computed library, and 

edges represent the connecting wires among the nodes. Unlike Binary Decision Diagrams 

(BDD) [22-26] and AIG [6, 27], the structure of the SFG helps in eliminating the cut-
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enumeration and pruning, computation of truth-tables and Negation-permutation-Negation 

(NPN) class representatives [11, 28] for each cut. We propose two different algorithms for 

SFG construction, which can be used for cut-less mapping, to improve the runtime, graph 

size and required memory. Thereby it improves the runtime and reduces the required 

memory drastically. 

We found that, computation of constant zero and one, non-decomposed, and shared nodes 

(explained in next section) is critical in minimizing the runtime and graph size for complex 

circuits. By considering the nature of nodes while constructing the graph makes the SFG 

semi-canonical, because the nodes at each level of the SFG will have uniquely represented 

nodes. The proposed SFG construction algorithm (algorithm 2) computes the constant one 

and zero, non-decomposed and shared nodes on-the-fly, thereby it improves the overall size 

of the graph, which in turn reduces the final area and building time. 

2.5.1 Non-decomposed, constant one, constant zero and shared nodes 

Non-decomposed, constant one and zero, and shared nodes represent the nature of SFG 

nodes. A non-decomposed node is the node which has similar node(s) in the SFG, which 

have the same cofactor or cube cofactor value and level. Non-decomposed nodes improve 

the logic sharing, minimize the graph size and final area. If the building time of a non-

decomposed is tb and the number of non-decomposed nodes in the SFG is L, then the 

building time and graph size will be reduced by a factor (L-1)*tb and L-1 respectively. A 

node which receives two constant zeros (ones) is called constant zero (one) node, i.e. the 

constant zero (one) node will have all zeros (ones) in its corresponding truth-table. If there 

are no constant zeros or ones as input to the node, then the node represents function of a 

typical Shannon cofactor (two AND gates, one inverter and one OR gate), otherwise the 

node represents an AND gate or AND gate followed by an OR gate. If the two primary 

outputs have the nodes, which have the same functionality and level, then those nodes are 

called shared nodes. Shared nodes minimize the size of the SFG. 

2.5.2 Construction of proposed SFG 

The proposed SFG can be built with and without considering the nature of nodes. 

2.5.2.1 SFG construction without considering the nature of nodes 

Algorithm 1 shows the pseudo code for the SFG construction without considering the non-

decomposed, constant one and zero, and shared nodes. The input to the SFG construction 

algorithm is truth-table and input size of the largest cells (MaxCellSize) available in the 

library. Using the equation (1) the Shannon cofactors and cube cofactors of the given truth-

tables will be computed by successively dividing the truth-table. 
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Consider the 4- input truth-table given in the Fig. 2.2 The variables will be selected 

depending the order they appear in the truth-table. For calculating the Shannon cofactors of 

the variable X3, the truth-table will be partitioned into two equal. The first half values in the 

output (F0) represent the negative cofactor F00 and the remaining half represent the positive 

cofactor F01. Now each half (F00 and F01) will be decomposed, which is nothing but 

finding the cofactor of the cofactor (cube cofactor). First half of the F00 is the cube cofactor 

F000 of the function F0, when the variables X3=0 and X2=0. 

 
Figure 2.2: Shannon Cofactor and cube cofactor computation by successively decomposing the 

Truth-table. 

This process continues till the cofactors/cube cofactors of all variables are calculated. 

Decimal values of the computed Shannon cofactors/ cube cofactors and their levels (number 

of primary input variables that are in the fan-in cone of a node) will be used as the node IDs.  

Table 2.1 helps to classify the nodes and to determine the leaf value (carries the bottom 

node value to the node from which it is decomposed). Column I represents the 

positive/negative cofactor value of the node (leaves), the Column II and III determine the 

leaf value when the number of primary inputs are more than two and equal to two 

respectively. 
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Table 2.1 Determining the Values of the Leaves of the Node 

Cofactor value (binary) Leaf value (n>2) Leaf value (n=2) 

All zeros Constant zero Constant zero 

All ones Constant one Constant one 

01 - a’ (literal) 

10 - a (literal) 

 
Since the size of the truth-table grows exponentially with the number of variables, Boolean 

expressions are taken as input for the large functions (number of variables >16). In case of 

Boolean expressions, cofactors/cube cofactors are computed by substituting 0/1 in place of 

the selected variable (s). Then, Boolean expression of the cofactors and cube cofactors are 

used as the node IDs, which will be used for mapping and finding the nature of nodes 

(whether nodes are receiving constant one or zero, non-decomposed nodes and shared 

nodes) [15]. The SFG has embedded intelligence, it considers the input size of the pre-

computed library cells and constructs the graph till the number of inputs to the bottom nodes 

of the graph is equal to the input size of the pre-computed library cells. Once the whole SFG 

is constructed IDs of the nodes, except for bottom nodes, will be deleted to free up the 

memory (explained in detail in next section). Unlike the Binary Decision Diagrams (BDD), 

the proposed SFG contains fewer nodes (see Table 2.2) and requires less graph building 

time due to its on-the-fly size reduction [15] and its structure reflects the final target graph, 

which is technology dependent. Fig. 2.3 (a) shows the basic structure of the SFG, without 

considering the nature of nodes, for an arbitrary 6-input Boolean function F. 

SFG construction algorithm takes the advantage of the size of the library cells during graph 

construction to improve the graph size and runtime. The SFG is constructed to a level that 

the bottom most nodes of the SFG will have a level of MaxCellSize. This is because of the 

fact that the nodes which receive inputs from MaxCellSize number of primary input 

variables can be mapped with the library cells whose size is not less than MaxCellSize. For 

an instance, if F is a 10-input Boolean function and MaxCellSize is 4, then the bottom most 

nodes of SFG of the Boolean function F will have a level of 4, i.e. only 6-variables are 

considered for the Shannon decomposition. Since bottom most nodes have a level 4, they 

can be mapped directly with the 4-input library cells. In this way, by considering the size of 

the library cells, the SFG construction algorithm reduces the graph size and improves the 

graph building time. The SFG constructed using the algorithm 2.1 is not canonical, because 

it has nodes which are redundant. In order to make the SFG semi-canonical, there should not 
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be any constant one and zero, shared and non-decomposed nodes. The proposed algorithm 

2.2 takes this into consideration and makes the SFG semi-canonical. 

Algorithm 2.1 SFG Construction without considering the non-decomposed, constant 

one and zero, and shared nodes 

1: int Truth2ShannonFactorGraph(truthtable, MaxCellSize) 

2: { 

3: int j,f, numvar, truthlength; 

4: tempTruth=truthtable; 

5: truthlength=length of the tempTruth; 

6: numvar=log2(truthlength); 

7: compute the decimal value of tempTruth save in f; 

8: for j=1 to numvar-MaxCellSize 

9: { 

10: compute the Shannon cofactors and cube cofactors by successively dividing the 

tempTruth; 

11: compute the decimal values of the cofactors and cube-cofactors and save in f; 

12: } 

13: return f; 

14: } 

 

2.5.2.2 SFG construction-considering the nature of nodes 

Algorithm 2.2 shows the pseudo code for the SFG construction and computing the non-

decomposed, constant one and zero, and shared nodes on-the-fly. It considers the size of the 

library cells and nature of nodes to minimize the graph building time and size. Fig. 3.3 (b) 

shows the basic structure of the SFG, with considering the nature of nodes, for an arbitrary 

6-input Boolean function F. At every level, the value of Shannon cofactors or cube cofactors 

are checked to find the non-decomposed, constant one and zero nodes before proceeding to 

the next phase of decomposition. The cofactor or cube cofactor values of the nodes having 

the same level will be compared, then the nodes which are having the same cofactor or cube 

cofactor value in their truth-table (output decimal value) are classified as non-decomposed 

nodes and only one out of all non-decomposed nodes will be considered for the next phase 

of Shannon decomposition. If there are m number of non-decomposed nodes, then only one 

out of ‘m’ will be considered for the decomposition and the remaining ‘m-1’ will be 

implemented from the decomposed node. So, there is no need to spend time to decompose 

all ‘m’ non-decomposed nodes, which is runtime overhead. As the number of non-

decomposed nodes increases, the graph building time and size decrease. 
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Figure 2.3: Basic structure of the Shannon Factor Graph (SFG), assuming that size of the 

largest cells in the pre-computed library is 2 (MaxCellSize) (a) without considering the nature 

of nodes and (b) considering the nature of nodes of a 6-input Boolean function F. 

 

The constant one and zero nodes are found by identifying the nodes whose cofactors have 

all zeros or ones in their truth-table or corresponding decimal value. Once the constant one 

or zero nodes are found, they are no more considered for the Shannon decomposition and 

will be used to simplify their parent nodes. Even if the constant one or zero nodes are 

decomposed, the resulting nodes (children) will also be constant one or zero nodes. So 

considering the constant one or zero nodes for decomposition is redundant, runtime 

overhead and increases the graph size. The shared nodes among the primary outputs are 

determined by comparing the nodes of one primary output with the other primary output. If 

there are any shared nodes, only one of them will be considered for the Shannon 

decomposition and remaining nodes will be implemented from the decomposed node. From 

the Fig. 2.3 it is clear that, the size of the SFG can be minimized significantly even for small 

functions by identifying the nature of nodes on-the-fly (from 31 to 15) and experimental 

results show that, the reduction in SFG size is more prominent for bigger functions. 

2.5.2.3 SFG construction for multiple outputs 

Generally the functionally equivalent nodes (Non-decomposed nodes), Non-Shannon nodes 

in the DAG will be calculated after constructing the graph, which is a runtime overhead. 

However, finding the functionally equivalent/non-decomposed nodes on-the-fly at every 

level of the SFG construction can reduce the graph building time and memory significantly. 

Algorithm 1 & 2 shows the pseudo code for constructing the proposed SFG for single output 

functions and finding the non-decomposed nodes and constant one or zero nodes on-the-fly 

and it is generalized for multi-output functions, which is presented in algorithm 2.3. The  
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Algorithm 2.2 SFG construction and computation of non-decomposed, constant one and zero 

nodes on-the-fly 

1: graphconstruct(int truth_table, int MaxCellSize) 

2: { 

3: num_previousCubecofactor 1 

4: number_of_variables=log2(length(truth_table); 

5: temp_truthtable=truth_table; 

6: temTruth=truth_table; 

7: for i = 2 to num_of_variables-MaxCellSize+1 

8: { 

9: if all Cube_cofactors are constant one/zeros 

10: Break; 

11: for j = 1 to num_previousCubecofactor 

12: { 

13: ShannonCofactor(i,k)=temp truthtable(1:end/2); 

14: k=k+1; 

15: ShannonCofactor(i,k)=temp truthtable((end/2+1):end); 

16: k=k+1; 

17: } 

18: num_previousCubecofactor  number of co-factors in the Shannon Cofactor for i  

19: Compare all the Cubecofactors and remove non-decomposed nodes and Constant one or 

zero Nodes 

20: } 

21:} 

 

nodes which have the same level will be compared to find the non-decomposed nodes. 

Similarly, the constant one and zero node will be computed based on their cofactor value. If 

a node has all zeros (ones) then it will be considered as constant zero (one) node. The 

constant one or zero nodes being found during the SFG construction, will not be 

decomposed further and these nodes will be used for simplifying the functionality of the 

parent node. A node which receives only one constant node represents an OR-gate and a 

node which receive the constant one and constant zero represents the primary input variable. 

Similarly a node receiving only one constant zero represents the AND gate. For common 

cofactors (non-decomposed nodes), which are having the same truth-table (output decimal 

value), only one of them will be decomposed and the remaining nodes will be implemented 

from the cube cofactors of the decomposed node. Computation of non-decomposed nodes 
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Algorithm 2.3 Algorithm for Multi-output functions to find Shared nodes 

1: tnumber of primary outputs 

2: for j=1 to t 

3: { 

4: read truth_table(j); 

5: Temp_truth=truth_truth(j); 

6: graphconstruct(Temp_truth); 

7: Multi_Cofactor(t)=ShannonCofactor; 

8: } 

9: for i=1 to t-1 

10: for k=i + 1 to t   { 

11: out1=Multi_Cofactor(i); 

12: out2=Multi_Cofactor(k); 

13: compare cofactor of out1 and out2 

14: if common nodes are there, keep one and make all NULL 

15: } 

 

will take O(M) time, where M is the number of nodes in the SFG decomposition at a 

particular level. 

For multi-output functions, the Shannon cofactors will be computed for each primary 

output. Then the cofactors and cube cofactors of each primary output will be compared with 

the cofactors and cube cofactors of the remaining primary outputs having the same level 

(lines 9-14 of the algorithm 2.3). If there are any shared nodes, which are having the truth-

table will be grouped and only one from each group will be implemented. This will reduce 

the graph size, memory and improves the final circuit area, but the delay will remain the 

same. Algorithm 2.3 will take O(mn) time to find out the shared nodes, where m and n 

represent the number of primary outputs and the number of cofactors at each level of graph 

for each primary output. 

2.5.2.4 Comparison of the algorithms 2.1 & 2.2 

We extensively verified the proposed algorithms for SFG construction with the standard 

benchmark circuits [29,30]. The proposed algorithms are implemented in MATLAB 

running on a Xeon processor (3.4GHZ, 4GB RAM) operating in Linux-based environment. 

The benchmark circuits taken from [30] (circuits 10-14 in Table I), which are PLA format, 

converted into truth-tables manually and using the Simple-Solver [31]. Benchmark circuits 

taken from [29] (circuits 1-9 in Table I), which are in verilog format, converted into 
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Boolean equations using the ABC tool [32], then truth-tables are harvested from the 

Boolean equations.  

Table 2.2 shows the variation of graph size and runtime (graph building time) of the SFG 

with and without considering the non-decomposed, constant one and zero, and shared nodes. 

Column 1 represents the standard benchmark circuit name. Column 2 shows the number of 

primary inputs and outputs of the benchmark circuit. Column 4 and 5 represent the time 

taken to build the SFG and number of nodes of the SFG (graph size) without considering the 

nature of the nodes (non-decomposed, constant one and zero, and shared) respectively. 

Column 6 and 7 gives the graph size and time taken to build the SFG, considering the nature 

of nodes.  

We considered 3-input library cells, so the SFG is decomposed to a level where the bottom 

most nodes will have a level of 3. The size of the SFG graph increases drastically, when the 

non-decomposed, constant one (zero) and shared nodes are not considered in constructing 

the SFG. This is because, these nodes will also be considered for the Shannon 

decomposition, which augments the graph building time and size of the SFG. Since the non-

decomposed nodes will have a representative node, which will be considered for the 

decomposition, all these nodes can be implemented from the decomposed node assuming 

that there is no fan-out limitation on a node. Thus, by considering only one representative 

for m nodes can improve the runtime and graph size significantly.  

Assume that there are m sets of non-decomposed nodes, each set has n nodes (level and 

decimal values of the cofactors are same) and td is the time required to decompose each 

node. Now each set can be implemented (‘n-1’ nodes) from a single node, which is 

considered for the Shannon decomposition. So the total time taken to decompose the nodes 

will be m*td, which saves O(m*n) ((n-1)*m*td) time and reduces the graph size of similar 

amount. Same is applicable for shared nodes case also. Non-decomposed nodes represent 

the nodes within a primary output, whereas shared nodes represent among the primary 

outputs.  

If any constant one or zero nodes are found during the SFG construction at any level, then 

those nodes will not be considered for the decomposition to minimize the graph building 

time and size of the SFG. The Shannon decomposition of constant one or zero nodes 

(parent) results in constant one or zero (children), which are redundant to consider for the 

further decomposition. Constant one and zero nodes reduce the size and graph building time 

of the SFG drastically compared to the non-decomposed and shared nodes. Column 8 shows 

the runtime ration with and without considering the nature of nodes. At an average non-

decomposed, constant one and zero, and shared nodes minimize the runtime by a factor 5.5 
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(for few circuits it is around 100). But the interesting observation is for few circuits, the 

runtime ratio is 1, this is due to the presence of the constant one or zero and non-

decomposed nodes near the bottom most nodes which increases the runtime. Similarly for 

Table 2.2 Comparison of Runtime and Graph Sizes of the Proposed SFG With and Without 

Considering nature of nodes 

S. 

No 

Circuit 

name 

No. of 

inputs/outputs 

SFG without NCS SFG with NCS Speed 

up 

(R1/R2) 

Reduction 

in Graph 

size (S1/S2) 
Runtime 

(R1) 

Graph 

Size 

(S1) 

Runtime 

(R2) 

Graph 

Size 

(S2) 

1 cm138 6/9 0.013 135 0.005 27 2.6 5 

2 cmb 16/4 0.58 65532 0.039 85 15.2 770 

3 cm163a 16/5 0.72 81915 0.12 131 6.2 625 

4 cm162a 14/5 0.17 20475 0.077 96 106 193 

5 cm152a 11/1 0.007 511 0.006 88 1.2 5.8 

6 alu2 10/6 0.011 1536 0.01 271 1.1 5.7 

7 cm151a 12/2 0.02 2046 0.02 118 1 17 

8 ex4 6/9 0.02 135 0.0083 101 2.2 1.4 

9 ex1 9/19 0.64 2413 0.11 376 5.7 6.4 

10 max46 9/1 0.002 127 0.003 72 0.67 1.8 

11 7-bit 

even 

parity 

7/1 5.7e-4 31 5.2e-4 5 1.12 6.2 

12 mux4 6/1 3.7e-4 15 3.1e-4 9 1.2 1.67 

13 majority 5/1 2.4e-4 7 2e-4 6 1.2 1.2 

14 4gt13 4/1 2.4e-4 3 2.4e-4 3 1 1 

 Total  ~2.2 174881 ~0.4 1388   

 
few circuits the variation in the graph size (circuits 8, 11-14) is minimum, this is because of 

the input size of the benchmark circuits is almost equal to the size of the library cells. At an 

average, considering the constant one and zero, shared, non-decomposed nodes during 

graph construction reduces the size of the SFG by a factor of 126 (for a few circuits it is 

around 700). So, by finding the nature of nodes on-the-fly makes the SFG semi-canonical, 

which in turn minimizes the graph size and runtime. 

2.5.3 Comparison of SFG with AIG and BDD 

To verify the superiority of the proposed SFG, We compared with AIG and BDD using the 

standard benchmark circuits [29], taken from the different publicly available benchmarks. 

First, the Boolean equations of the benchmark circuits were computed using the ABC tool 

[32], then the truth-tables of each Boolean equations were harvested using a simple 
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program. For the sequential circuits, only the combinational part of the logic is taken by 

cutting at the register edges. 

Table 2. 3 shows the comparison of SFG with AIG and BDD in terms of graph size and 

variation of graph size and runtime for different variable sizes of the library circuits . 

Column I represents the benchmark circuit name, column II and column III show the graph 

size for AIG and BDD for different circuits respectively, computed using the ABC tool [32]. 

Column IV represents the SFG size and runtime for different values of  m. In column IV,  m 

represents the input size of the cells stored in the pre-computed library. The value  m=0 

signifies that the construction algorithm does not consider the variable size of the  

Table 2.3 Comparison of the Proposed SFG with AIGI and BDD in Terms of Graph Size and 

Variation of Graph Size and Runtime for Different MaxCellSizes 

Circuit name BDD size 

 

AIG size 

 

Proposed Shannon Factor Graph size 

m=0 Runtime m=3 Runtime m=4 Runtime m=6 Runtime 

alu2 923 547 270 0.001 263 0.89e 3  227 0.79e 3  87 0.32e 3  

alu4 5059 1023 843 0.008 802 0.006 741 0.002 670 0.001 

bigkey 4548 6805 5409 0.06 5020 0.06 4571 0.04 4302 0.03 

b9 204 139 127 0.031 120 0.024 94 0.018 76 0.012 

c8 255 312 291 78e 6  214 71e 6  201 60e 6  180 52e 6  

c499 368 414 320 0.003 301 0.0026 273 0.002 241 0.002 

c880 640 383 263 0.008 241 0.006 210 0.003 185 0.001 

cm150 54 76 61 0.009 53 0.007 47 0.006 43 0.004 

cm151 26 36 27 0.01 23 0.008 18 0.008 13 0.007 

cm162 58 55 60 0.009 43 0.008 28 0.006 22 0.006 

cm163 53 53 61 0.006 58 0.006 38 0.004 - - 

ex1 485 412 491 0.02 436 0.016 421 0.012 383 0.009 

ex2 245 205 92 0.01 76 0.005 55 0.004 - - 

ex3 105 81 72 0.01 55 0.004 37 0.003 - - 

ex4 130 101 92 0.017 83 0.01 42 0.0029 - - 

ex5 104 82 52 0.016 40 0.012 26 0.008 - - 

Cu 83 60 26 0.01 16 0.01 10 - - - 

Total 25343 17644 14070 0.358 12824 0.301 11441 0.203 10104 0.157 
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pre-computed library cells while building the SFG (or assumes that there is no information 

available about the variable size of pre-computed library cells). Even without considering 

the size of the pre-computed library cells, the size of the proposed SFG is significantly less 

than the AIG and BDD. The reduction in the graph size simplifies the mapping problem and 

decreases the runtime and the required memory size. The graph size and runtime can be 

further minimized by considering input variable size of the pre-computed library cells. As 

the value of  ‘m’ increases, then the depth to which the Boolean function to be decomposed 

will be reduced. This is because the cube cofactor(s) which has  ‘m’ variables after 

decomposing the function with respect to ‘n-m’ number of variables (where  n represents 

the number of variables of the function) can be mapped with the  m-input pre-computed 

library cells. The algorithm finds out the common nodes at every level before decomposing 

it further, which helps in improving the graph building time. The average number of nodes 

of the proposed SFG is 74% and 150% less than AIG and BDD respectively.  

In general the size of the AIG is less than the BDD, but for a few circuits (6 out of 22) BDD 

has fewer nodes than the AIG. However, for such cases also size of the proposed SFG is 

smaller than the AIG (except for ex1 circuit), but slightly higher than the BDD. This is due 

to the less number of non-decomposed nodes in the SFG of the circuits and we did not 

consider simplification of nodes while calculating the number of nodes.  

2.6 SFG for Cut-less Technology Mapping 

The unique representation of the nodes of SFG facilitates the cut-less technology mapping. 

The mapping of the SFG to the library cells starts from the bottom most nodes. The decimal 

value and level of the bottom nodes of the SFG will be compared with the output decimal 

value and size of the library cells to find the appropriate match for each node. Once the 

bottom nodes are mapped with the library cells, then the level of the graph will be reordered 

to get the actual level of each node. Now, the nodes above the bottom most nodes are 

selected based on the multiplexers size that are presented in the library. Every node of the 

SFG will have hidden variable which can be used as selection line of the multiplexer. 

Therefore, once the bottom most nodes are mapped with the library cells, the remaining 

nodes are mapped with the appropriate library cells (multiplexers) in a bottom-up fashion. 

Mapping continues till all nodes in the each primary output are covered. The detailed 

discussion is postponed to chapter 6. 
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Chapter 3 
 

Cut-based Technology Mapping 

 

   

 

3.1 Cut-computation 

Given an AIG, the first step of matching is to enumerate cuts of size k or less, called k-

feasible cuts, in G. Intuitively, a k-feasible cut corresponds to a single output subnetwork of 

G (with k inputs) which may be implemented by a gate or a LUT in the mapped network. 

For LUT-based FPGA mapping, cut enumeration is the only step for matching: each k-

feasible cut can be implemented by a k-LUT. For standard cells, more work is needed to 

determine if a cut can be implemented by a library gate. This is discussed in Chapter 5. In 

this chapter, we discuss the complete flow involved in the cut-based technology mapping 

3.1.1 k-feasible cut 

Let n be a node in an AIG. A feasible cut of a node n in the AIG is a set of nodes {xi} in the 

transitive fan-in cone of n such that an arbitrary assignment of values to xi completely 

determines the value of n. A feasible cut is redundant if the value of a node in the cut is 

completely determined by an assignment of values to the other nodes in the cut. A k-feasible 

cut is a feasible cut of size at most k that is not redundant. The cut composed of node n 

alone is always a k-feasible cut of node n (for any k>1) and is called the trivial cut. 

Example 3.1: The Fig. 3.1 illustrates the k-feasible cuts of an AIG. A1-A4 are primary 

input nodes. The 3-feasible cuts for n1 are {n1}, {n2, n3}, {n2, n5, A4}, {n4, n5, n3}, {n4, 

n5, A4}.   

3.2 Technology Mapping [6] 

We have used Boolean matching for technology mapping. The input to the mapping 

procedure is an And-Inverter graph (AIG) [27]. An AIG is a DAG whose nodes represent 

either AND gates or primary inputs (PIs). Its edges represent wires. Inverters are 

represented by bubbles on the edges. Given an AIG, the mapping is done in 5 steps. 
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Figure 3.1: Illustration of K-feasible cuts of an AIG graph 

Step 1. Compute k-feasible cuts: A feasible cut of a node N in the AIG is a set of nodes 

{Xi} in the transitive fan-in cone of N such that an arbitrary assignment of values to Xi 

completely determines the value of N. A feasible cut is redundant if the value of a node in 

the cut is completely determined by an assignment of values to the other nodes in the cut. A 

k-feasible cut is a feasible cut of size at most k that is not redundant. The cut {N} is always 

a k-feasible cut of node N (for any k) and is called the trivial cut. Let P(N) denote the set of 

k-feasible cuts of node N. If N is a PI, then P(N) = {{N}}. If N is a AND node with children 

A and B, then  

P(N) = {{N}} U {u U v | u E P(A), v E P(B), |u U v | ≤ k}  

We compute all 5-feasible cuts of every node in the network by the simple bottom-up 

traversal based on the above recursion. Although in general a graph may have O(n5) 5-

feasible cuts, we found that most test-cases have between 20 and 30 5-feasible cuts per 

node. We restrict our attention to 5-feasible cuts since our experiments show that the total 

number of cuts increases very quickly with k. Pruning techniques have to be applied, and 

the mapping results are not significantly better (since the pruning is quite arbitrary). 

Step 2. Compute truth-tables of cuts: The next step is to compute the local function of a 

node in terms of its cut. This is done for every non-trivial k-feasible cut of every node in the 

network. Given a node N, and a cut {Xi} of that node, formal variables are assigned to the 

each cut node (in no particular order). Using these variables, the functionality of the node is 

computed symbolically. Since usually only 5-feasible cuts are considered, this symbolic 

function computation can be performed efficiently using 32-bit integers to represent the 

truth-tables. In what follows we use the words “function” and “truth-table” interchangeably.  
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Step 3. Boolean Matching: For each node in the network, for every cut, an appropriate gate 

(if one exists) is chosen from the library. Each gate thus chosen is called a match for the 

node. Our matching procedure uses the traditional approach, which is based on NPN class 

representation (detailed in Chapter 4) 

Step 4. Compute best arrival time at each node: Starting from the PIs and working in 

topological order towards the outputs, the best arrival time is computed for each node from 

amongst all its matches. 

Step 5. Choose the best cover: In the reverse topological order, the best gate for each 

primary output is chosen. Next, the best gates implementing the inputs of these gates are 

chosen and so on until all primary inputs have been reached. 

3.3 Drawbacks of the Cut-based Technology Mapping 

Computation of all cuts is typically a run-time and memory bottleneck [36]. Even though 

there are efficient algorithms to compute the cuts [36-39], the number of cuts increases 

exponentially with the cut size (number of leaves) and the number of nodes. So, the time to 

compute the cuts and finding the best cut among them increases exponentially with the cut 

size, for example if the size of the cut is k and the number of nodes in the AIG is n, then the 

number of possible cuts will be O(nK). In [19], a new technique has been proposed to reduce 

the number of cuts to be enumerated. However, still the cut computation is required. We 

will address this problem by proposing a cut-less technology mapping technique in chapter 

6. 
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Chapter 4 
 

Negation-Permutation-Negation (NPN) 

Classes and Functional Symmetry 

 

   

 

4.1 Negation-Permutation-Permutation (NPN) Class [11] 

The design of digital circuits involves a deep understanding of the concept of Boolean 

Functions. There are many operations usually applied in the digital circuit synthesis process. 

Many of these operations depend on the search space under consideration. This is the case 

of the matching phase performed during technology mapping [33], where a function (or 

only part of it) to be implemented is matched against cells from a library. NPN class 

representation provides a solution for reducing the search space. 

For a given number of input variables, say n, there are 2^(2^n) well-defined number of 

functions. Each n variable function has 2^n possible minterms, resulting in a truth table with 

2^n lines. This is shown in Table 4.1 for the case of 2-input Boolean functions. The 2^n 

possible minterms, or lines of the truth table, give the number of bits in each column of the 

truth table. This way, the output columns of the truth tables characterize a given Boolean 

function as a binary number of 2^n bits. As there are 2^(2^n) numbers of 2^n bits, there are 

2^(2^n) possible different functions of n inputs. This is also shown in Table 4.1 for the case 

of 2- input functions. 

Table 4.1 All the 16 Different 2-input Functions 

AB f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 

00 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 

01 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

10 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
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Table 4.2 shows the number of n-input functions for n varying from 2 to 4. We can see that 

for the case of 4-input functions the search space is almost intractable if many operations 

need to be repeated. 

Table 4.2 Possible Number of Functions for 2, 3, 4 and n -Inputs 

Number of inputs Number of functions 

2 16 

3 256 

4  65536 

n 2^(2^n) 

 
The n-input functions can be classified into different classes (set of functions) in order to 

reduce the search space. The number of functions is the first number to be considered in the 

classification of the set of n-input functions. Other two numbers that could be used in the 

classification of n-input functions are the numbers of P and NPN equivalence classes. As it 

will be discussed later, P classes group functions that are equivalent under input permutation 

while NPN classes group functions that are equivalent under input negation/permutation as 

well as output negation. 

The functional equivalence can be verified using the Binary Decision Diagrams (BDDs) 

[23] or by manipulating the truth-tables. BDDs are the most used form to represent Boolean 

functions in Electronic Design Automation. There are many specific kinds of BDDs, 

depending on its use. Reduced Ordered Binary Decision Diagrams (ROBDDs) are 

commonly used to compare Boolean functions using the ROBDD strong canonical form 

(unique representation) presented in [24].  

We use the truth-table based verification for checking the functional equivalence. The 

canonical form of the functions will be computed by manipulating the truth-table by using 

the Shannon decomposition theorem [21]. This canonical form is necessary to verify the 

equivalence of the functions and group them into a common equivalence class. 

4.1.1 Implementations of n-input functions 

Table 4.3 shows the gate implementations of all the 2-input functions.  
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Table 4.3 Implementations for All the 16 Different 2-input Functions 

 
 

4.1.2 Concept of P class 

The fact that many different 2-input functions may have the same gate-level 

implementations naturally introduces the concept of P equivalence. P equivalence between 2 

functions is obtained when it is possible to achieve identical values for both truth table 

outputs by permuting the function inputs. Functions that are P equivalent can be grouped 

into P classes Table 4.4 shows all the 12 different P classes of 2-input functions. It is 

important to note that despite the existence of 16 different 2-input functions, there are only 

12 different 2-input P classes. The circuits used to implement each P class are also shown in 

Table 4.4. Four P classes are composed by 2 functions, while eight P classes are composed 

by only one function. The most important property of P equivalent functions is that they can 

always be implemented with the same circuit (or cell from a library). Therefore, it is 
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possible to implement any of the 2-input functions with a single cell from a library 

composed of one gate implementation for each P class. 

Table 4.4 The 12 Different 2-input P Classes  

 

4.1.3 The Concept of NPN class 

From Fig. 4.5, it is possible to see that even P classes may have similar implementations. 

For instance, functions f1, f2, f4, f7, f8, f11, f13 and f14 have gate implementations based on a 

single nand gate plus some inverters. These functions may be grouped into a NPN 

equivalence class. NPN equivalence between 2 functions is obtained when it is possible to 

achieve identical values for both truth table outputs by permutation and/or negation of the 

function inputs and/or negation of the function output. Figure 4 shows all the 4 different 

NPN classes of 2-input functions, one NPN class per line. It is important to note that despite 

the existence of 16 different 2-input functions, there are only 4 different 2-input NPN 

classes. There are 2 NPN classes composed of 2 functions, one NPN class composed of 4 

functions, and one NPN class composed of 8 functions. NPN equivalent functions can be 
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implemented with the same circuit plus some inverters (used in the negation operations for 

the inputs and the output, if necessary). This way, it is possible to use a smaller library 

composed of one representative gate for each NPN class plus one inverter cell. 

Table 4.5 The 4 Different 2-input NPN Classes 

 
This approach is especially useful when the cost of the inverter is very low. The NPN 

classes are also called semi-canonical representation. 

4.1.4 NPN semi-canonical algorithm  

The input to our NPN semi-canonical algorithm is truth-table. The number of 1s in the 

output bit stream of the truth-table is taken into consideration. The output phase is decided 

in such a way that the expression has lesser number of 1’s. In case of a tie, the phase which 

results a lesser value of the decimal equivalent of the truth-table is considered.  

The polarity of each variable is determined by considering the number of 1s in the Shannon 

cofactors of the function with respect to that variable. The negative cofactor is required to 

contain fewer 1s than the positive cofactor to keep the phase intact, otherwise the phase will 

be inverted. In case of a tie, the phase which results a lesser value of the decimal equivalent 

of the truth-table is considered.  

The ordering of variables is determined using the number of 1s in the cofactors with respect 

to each variable. For this, we require that variables were ordered in the increasing order of 

the number of 1s in the negative cofactor. If any two variables have same number of 1s in 

the negative cofactor, then swap is done if swapping results in lower value of decimal 

equivalent of the truth-table. The pseudo code of the implemented algorithm is presented in 

algorithm 4.1.  

4.2 Canonical Representation-Functional Symmetry 

The NPN classes are not completely canonical representations as they can be further 

reduced. To make the representation canonical we exploit the functional symmetry along 

with the NPN classes 

 

 

 



30 

Algorithm 4.1 Pseudo code for semi-canonizing 

truth table SemiCanonicize( truth table F, unsigned uCanonPhase, char * pCanonPerm ) 

{ 

 // output phase  

count the number of 0s and 1s in the truth table of F;  

if ( number of 1s is more than number of 0s in F ) 

 {  

complement F;  

record negation of the output in uCanonPhase;  

}  

if(number of 1s is equal to number of 0s in F) 

{  

F’=complement F;  

if(decimal equivalent of F’ < decimal equivalent of F) 

{  

F=F’; 

record negation of the output in uCanonPhase;  

} } 

// variable phase  

count the number of 1s in the cofactors of F w.r.t. each variable;  

for each input variable of F  

if ( more 1s in negative cofactor than in positive cofactor ) 

{  

change the variable’s phase in F;  

record the change of variable’s phase in uCanonPhase;  

}  

if ( equal 1s in negative cofactor than in positive cofactor ) 

{  

F’=change the variable’s phase in F;  

if(decimal equivalent of F’ < decimal equivalent of F) 

{ 

 F=F’;  

record the change of variable’s phase in uCanonPhase;  

} } 

// variable permutation  

sort input variables by the number of 1s in their negative cofactors;  

permute inputs variables in F accordingly and record the resulting permutation in 

pCanonPerm;  

return F; 

 if(equal 1s in cofactors of two variable)  

swap the two variables in F accordingly  

if(decimal equivalent of swapped F < decimal equivalent of F) 

{  

record the resulting permutation in pCanonPerm;  

return F; 

}}  
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4.2.1 Functional Symmetry along with the proposed modification 

Concepts of Boolean matching and symmetry are closely related. Functional symmetries 

provide significant benefits for multiple tasks in synthesis and verification. For a function 

f(X) where X = (x1, x2,…,xn), two variables xi and xj are said to be symmetric, denoted as 

xi ≡ xj, if f(X) is invariant under an exchange of xi and xj.  The number of transformations 

to be carried to convert an n-input variable function to an NPN class function is 2n+1.n!, and 

the number of symmetric functions is 2n+1. Detection of the symmetric variables of the semi-

canonical NPN class functions and modifying their phase make the semi-canonical NPN 

representations to canonical [28, 34]. 

The functional symmetry of a Boolean function can be computed with a small modification 

to the algorithm 4.1. During the variable permutation computation, Variables, which are 

having equal number of ones in their negative co-factor, are grouped together and this group 

(argument ‘grouped_variblelist’ in algorithm 4.2) will be given as input to the algorithm 4.2, 

which finds symmetric variable to the first order and their optimal phase as follows. Based 

on the grouped variable list, variables are swapped with another variable, which is having 

the same number of 1’s in the negative cofactor. If the truth-table value is same then these 

variables are placed in the symmetric group. To uniquely determine the phase of the 

variables in the symmetric group, we have to consider the eight different configurations (ab, 

a’b, ab’, a’b’, ba, b’a, ba’, b’a’) for each symmetric group, instead of only two (ab,ba) as 

given in [33]. But we have observed that for a symmetric group only four configuration (ba, 

b’a, ba’, b’a’) are sufficient to determine the phase of the variables. We considered the 

configuration which will give the smallest possible value in its truth-table. 

Algorithm 4.2 determining the symmetric variables and their phase 

find_symmetry (semicanonizedTT F, grouped_variablelist) 

{ 

int sym_out; 

for each group in the list 

{ 

swap the position of the variables, save in F1; 

if (F=F1) 

{ 

then apply all four configurations (ba,b’a,ba’,b’a’) and consider the configuration with 

smallest F output value 

} 

Consider the pair with smallest value among;  

save in sym_out; 

Change F accordingly; 

}} 
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Table 4.6 Comparison of Number of Functions for different classes 

No. of inputs No. of functions No. of NPN classes  NPN class + symmetry 

2 16 4 - 

3 256 14 - 

4 65536 1031 222 

6 * 34225 2103 

8 * 271646 13932 

*a very big number 

Table 4.6 shows the reduction in the number of functions when they are classified as NPN 

classes and NPN classes along with Functional symmetry. The advantage of the 

aforementioned classifying will be clear in chapter 5. 
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Chapter 5 
 

Proposed Cut-based Digital IC Design 

and Automation Methodology 

 

   

 

In proposed cut-based design and automation methodology, shown in Fig. 5.1, the input 

truth-table/ Boolean expression is mapped to its physical design circuits through 

canonization and Boolean matching (based on input size of the function, truth-table to graph 

conversion, k-feasible cuts enumeration, and graph cuts to truth-table conversion are done). 

We consider only pure combinational networks. Sequential networks are handled as 

combinational networks by cutting at the register boundary, so the final network is a pure 

combinational circuits and registers. Here we are not considering the mapping of registers to 

their physical designs, because direct mapping will not reduce states, so area and timing 

can’t be optimized. 

5.1 Pre-Computed Library 

To demonstrate the advantage of the functional symmetry, we maintained two pre-computed 

libraries one with semi-canonical forms of all the n-input Boolean functions computed using 

the NPN classes [12] and another one with NPN along with the functional symmetry classes 

[35]. Then these functions will be optimized, placed and routed using the existing CAD 

tools and stored in the precomputed library along with their output decimal value. 

Functional symmetry reduced the library size and the number of worst case comparisons 

required to find a match drastically. For an example, 1031 circuits and comparisons can be 

reduced to 222. Using the proposed methodology, pre-stored circuits can be used to map 

any combinational circuit without any limitation on the number of input variables and unlike 

[10], there is no need to update the library. 

The library poses a limitation to the number of circuits that can be matched, i.e. the cases 

when the input expression is not in any of the Library circuit’s NPN class. For such cases, 

an alternate procedure is suggested, which is not a method of reloading the library again. 

The Library is developed in such a way that for some number say ‘m’, if the number of 
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input variables is less than or equal to m, then the library can match the input expression. 

That is, all representatives with number of variables less than or equal to ‘m’ are stored in 

the library. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1: Detailed design flow of the proposed cut-based design and automation 

methodology. The underlined text represents two different representations (semi-

canonical and canonical) 

5.2 Boolean Matching 

Boolean matching is a powerful technique that has been used in technology mapping to 

overcome the limitations of structural pattern matching [28]. Let g be the Boolean function 

computed by some element of a technology library. Let f be another Boolean function, 

called the target function. Boolean matching is the problem of determining whether g can be 

used to implement f through negation/permutation of the inputs and negation of output of g. 

Concepts of Boolean matching and symmetry are closely related. Since the functional 

symmetry was already discussed in chapter 4, we will not present the algorithm for Boolean 

matching in this chapter. 

5.3 Mapping Without Considering the Functional Symmetry  

The basic design steps in the proposed design & automation methodology [12] is as follows  

1. If the input Boolean function has same or less number of inputs than the pre-

computed library, then  

No 

n= number of inputs of the 
given Boolean function 

m= number of inputs of 

large cell in the pre-
computed library 

RTL Description verified/Truth-
table/Boolean function 

1. Truth-table to AIG 

2. K-feasible cuts  

3. Cuts to truth-table 

4.  (Semi) canonization 

5. Boolean matching 

 

 

 

 

 

     Layout 

 

n>m 

1. (Semi) canonization 
2.Boolean Matching 

     Layout 

 

Pre-computed 
Library 

Yes 
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a. Algorithm 5.1 generates NPN semi-canonical form from the input Boolean 

expression/truth-table  

b. Boolean matching algorithm maps it to the pre-computed library cell. In 

this case, there is need of doing placement and routing as the cells are pre-

placed and routed. 

2. Otherwise,  

a. Input truth-table/Boolean expression is converted to AIG graph 

b. K-feasible cuts are enumerated for each node in the AIG  

c. K-feasible cuts are converted to truth table  

d. Each cut is matched to the pre-computed library cells. 

In this case there is need of doing the placement and routing of the mapped cells. 

Each step in the proposed methodology is explained below.  

Case 1: Input Boolean function/truth-table with less than or equal to number of input 

variables of pre-computed library cells 

The input truth-table/Boolean expression is converted to its corresponding NPN semi-

canonical form using the algorithm 4.1 (refer to chapter 4 for details). The NPN semi-

canonical form of the input is matched to the corresponding cell in the pre-computed library 

and the design is then modified by adding appropriate inverters to generate the complete 

design of the input Boolean expression. 

Case 2: Input Boolean function/truth-table with more number of input variables than pre-

computed library cells 

In this case the input expression cannot be covered directly by the circuits in the library. 

Rather a combination of circuits from the library will be able to generate the circuit diagram 

for the input expression. The input needs to be broken into smaller components which the 

library can match. We have used a graph based approach for that. Following steps explains 

the case 2.  

Step1: Given the truth-table/Boolean expression, construct an And-Invert-Graph. There are 

many ways to construct an AIG from a truth-table/Boolean expression and we have used co-

factors based. The AIG is constructed recursively as we go from the first input variable to 

the last with Shannon co-factors as shown in algorithm 5.1. This algorithm reduces the size 

of the graph on-the-fly for better results and reducing the required memory size, by handling 

the nodes which have function “always true (1)” or “always false (0)”. By using Boolean 

properties, these nodes can be removed to give a more compact graph.  

Step2: After the graph is constructed, it is portioned into k-exhaustive cuts, where the value 

of k is ‘L’ defined in Library Creation. The graph is cut using a graph-k-cut algorithm [8, 9], 
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pseudo code for which is mentioned in algorithm 5.2.Using these cuts, the function AIG 

graph is broken into smaller sub-graphs with maximum ‘k’ inputs which are individually 

covered by the library elements. Out of all the possible cuts for a node, the best cut is 

chosen heuristically. The cut is chosen in such a way that it is as much closer to the inputs 

as possible and contains most number of common nodes with already calculated nodes. 

Algorithm 5.1 Pseudo code for an AIG-graph construction 

Aigmakegraph( truth table F,  it input_variables) 

{ 

//Calculate the positive cofactor (F1) and negative cofactor (F2) of F with respect to each 

//input_variable. 

aig1=makegraph(F1, next input variable);  

aig2= makegraph(F2, next input variable);  

aig= input_variable.F1 + input_variable’.F0; 

} 

 

Step3: All the sub-graphs generated by the previous step are converted into individual truth-

tables. Pseudo code for converting cut to truth-table is presented in algorithm 5.3.  
 

Algorithm 5.2 Pseudo code for k-feasible cuts 

Void NetworkKFeasibleCuts( Graph g, int k ) 

 {  

for each primary output node n of g  

NodeKFeasibleCuts( n, k )  

}  

Cutset NodeKFeasibleCuts( Node n, int k ) 

{  

if ( n is primary input )  

return { { n } }  

if ( n is visited )  

return NodeReadCutSet( n ) ; 

//mark n as visited  

cutset Set1 = NodeKFeasibleCuts( NodeReadChild1( n ), k);  

cutset Set2 = NodeKFeasibleCuts( NodeReadChild2( n ), k) ; 

cutset Result = MergeCutSets( Set1, Set2, k ) ∪ { n } ; 

NodeWriteCutSet( n, Result ); 

return Result;  

}  

cutsetMergeCutSets ( cutset Set1, cutset Set2, int k ) 

 {  

cutset Result = { }  

for each cut Cut1 in Set1 

for each cut Cut2 in Set2  

if ( | Cut1 ∪ Cut2 | ≤ k ) then Result = Result∪ { Cut1∪ Cut2 } 
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Step4: All the individual truth-tables are then converted into corresponding circuit designs, 

by mapping to the pre-computed library cells (Case 1 mentioned above). These designs are 

then routed together to generate the complete circuit design for the input expression. 

 

Algorithm 5.3 Pseudo code for graph to truth-table conversion 

truthkcuttable(aig_graph G,cut C, node n)  

//enumerate all the interconnecting nodes between node //‘n’ and cut C  

Nodeset={n} U enumerate(n)  

//generate the entire truth-table of node ‘n’ by calculating //the truth-table of all nodes in 

“Nodeset” by  

//taking the nodes in cut ‘C’ as primary inputs  

set enumerate(node m)  

{ 

 if(m is not in cut ‘C’)  

Nodest=enumerate(m-child1);  

Nodest=enumerate(m-child2); 

} 

 

5.4 Results and Discussion 

To validate the effectiveness and advantages of our proposed methodology, number of 

experiments has been carried out using the benchmark circuits from revlib.org [30]. The 

methodology is implemented in MATLAB running on a Xeon processor (3.4GHZ, 4GB 

RAM) operating in Linux-based environment. Table 5.1 shows the runtime for different 

functions with different number of inputs, where column 2, column 3, column 4 and column 

5 represent the number of inputs of the input Boolean function, the name of standard 

benchmark circuit, runtime for deriving physical design of the input function and represents 

number of circuits taken from the pre-computed technology library for matching the input 

Boolean function respectively.  

As can be seen, the input Boolean equations are matched directly to the pre-computed 

physical library circuits. The proposed algorithm for converting truth table to AIG graph 

reduces the graph size on-the-fly by finding the nodes with constant ones or zeros. Due to 

limitations of used software platform, existing CAD tool are proprietary, encrypted, while 

presenting our preliminary research results we are unable to compare proposed methodology 

with that obtained from proprietary CAD tools quantitatively. However we provide the 

qualitative analysis of the proposed methodology in comparison with conventional digital 

IC design and automation methodology below. For conventional digital IC design and 

automation methodology, the runtime can be represented as, 

      Trt = Tbe + Tfe 

Tfe = Trt + To + Titm + Ttd 
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 Tbe = Tfp + Tpl + Tr 

   Tr = Tintra + Tinter 

Where, Tbe, Tfe, To, Tfp, Tpl , Tr, Tintra, Tinter, Titm, Ttd are runtimes for backend 

design, frontend design, optimization, floorplanning, placement, routing, intra block routing, 

inter block routing, technology independent and technology dependent mapping. 

Table 5.1 Runtime for Different Functions with Different Number of Inputs 

S. No No. of inputs Circuit name Runtime No .of functions used from library 

1 4 4gt5 0.028 1 

2 4 4gt4 0.035 1 

3 4 4gt13 0.017 1 

4 4 4gt12 0.016 1 

5 4 4gt11 0.016 1 

6 4 4gt10 0.015 1 

7 4 4mod5 0.017 1 

8 4 sf 0.046 1 

9 5 alu 0.212 4 

10 5 majority 0.261 4 

11 5 xor5 0.18 2 

12 5 ex3 0.253 4 

13 5 ex2 0.255 4 

14 5 ex1 0.258 3 

15 5 2of5 0.273 4 

16 5 5mod5 0.285 4 

17 6 sym6 0.773 11 

18 7 7bitevenparity 2.762 2 

19 6 mux4 0.504 4 

20 8 8mod5 17.27 37 

21 9 max4 156.5 69 

 

Whereas for the proposed methodology (Fig. 5.1 ) the run time can be computed for two 

different cases as follows, If the input Boolean expression has number of inputs less than or 

equal to pre-computed library functions inputs, the runtime is given by 
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Trt = Tm 

Where, Tm is the runtime for finding a match. On the other hand, if the input Boolean 

expression has number of inputs more than or equal to pre-computed library functions input, 

the runtime can be computed as 

Trt = Tm  + Tfp + Tpl + Tinter 

Where Tm, Tfp, Tpl and Tinter are same as defined before. 

5.5  Mapping with Functional Symmetry 

The NPN class representative of an n- input Boolean function/truth-table is semi-canonical, 

as it has possibility to apply to apply some other transformations. The number of 

transformations to be carried to convert an n-input variable function to an NPN class 

function is 2n+1.n!, and the number of symmetric functions is 2n+1. Detection of the 

symmetric variables of the semi-canonical NPN class functions and modifying their phase 

make the semi-canonical NPN representations to canonical [28, 34]. The canonical 

representation of any Boolean function can be computed using the algorithms 4. 1 & 4.2 

(see chapter 4 for details). The advantages of the application of functional symmetry in the 

proposed methodology are demonstrated in the following experimental reseuls. 

5.6 Results and Discussion 

The algorithm was implemented in MATLAB running on a Xeon processor (3.4GHZ, 4GB 

RAM) operating in Linux-based environment, then integrated with the aforementioned 

algorithms to demonstrate the advantages of the functional symmetry. Table 5.2 (column 1 

to 3) shows the average runtime (all in seconds) to compute the canonical form and finding 

its equivalent circuit from the library (column 2) and number of circuits required to map the 

each input function (column 3) with and without considering the functional symmetry. It 

shows that the run time and number of circuits required to map, increase with the number of 

variables of the input function. This is because of the constraint imposed by the library size. 

Since the considered input variables’ size of the pre-computed library circuits is four, all 4-

input functions can be mapped to their corresponding circuits directly. But as the input size 

increases, it has to construct the graph and enumerate the cuts, and then map the each cut, 

which will increase the runtime. Table 5.2 (column 4 and 5) shows the effect of functional 

symmetry on the library size for different variable sizes and runtime. Due to the symmetry 

the number of distinctive NPN equivalent functions to be stored in the pre-computed library 

will be less. As a result of small library size, the memory size will be reduced, and the 

number of comparisons required to find the match will also be cut down. It reduced the 

number of required pre-computed circuits in our experiments from 1031 to 222 (464.4% 

reduction in the required memory size for pre-computed library). Even though the symmetry 
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is computationally expensive, the runtime will not be affected shown in column 5, where the 

ratio of runtimes of ‘without symmetry detection’ and ‘with symmetry’ is almost unity. This 

is because of the time saved in finding a match has been spent in computing the symmetric 

variables’ phase.  

Table 5.2 Average Runtime Taken to Find a Match Without Symmetry and With Symmetry and 

Effect of Symmetry on Library Size and Runtime 

No. of 

inputs(no. of 

experiments) 

Average runtime: 

with symmetry(w/o 

symmetry) 

No. of pre-

computed 

circuits 

required  

Library size  

Runtime 

ratio * 
With 

symmetry 

W/o 

symmetry 

4 (30) 0.04 (0.039) 1 222 1031 0.999 

5 (30) 0.24 (0.239) 2-4 - - 0.996 

6 (16) 0.71 (0.708) 4-11 2103 34225 0.998 

7 (16) 2.34 (2.32) 5-13 - - 0.995 

8 (17) 16.3 (16.25) 10-40 13932 271646 0.997 

9 (15) 150 (149.2) 50-74 - - 0.995 

*runtime= Time to find a match when symmetry is not considered/Time taken to find a match when symmetry is considered  

A comparative study of conventional and proposed IC designs on NRE costs contributors is 

presented in Table 5.3. It shows that the backend design is needed for the functions with 

more number of variables than the precomputed library functions. To check the proposed 

methodology performance in terms of average runtime we have taken random functions 

with different inputs. As we can see from Fig. 5. 2 (a) and (b), when the number of inputs 

increases average runtime also increases. For an example, when the number of inputs 

increases from 5 to 6, the runtime increases by 158%. This is because, the number of 

circuits required for mapping the input functions increases with the number of inputs. 

However, increased runtime for higher number of input functions can be overcome by 

increasing the library size. The correctness of the final design has been verified by 

comparing the truth-tables of the RTL description and the corresponding final layout 

Table 5.3 Comparisons of NRE Cost Contributors between the Conventional and Proposed Design 

Automation Methodology 

Methodology Frontend RTL simulation Logic Synthesis Backend design 

Conventional Yes Yes Yes 

Proposed Yes No No (for *)/Yes (for **) 
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Figure. 5.2: (a) and (b) show the variation of average runtime with number of input 

variables of 4-7 and 8-9 for different functions respectively. 

The inherent advantage of the symmetry is that the number of distinctive circuits required to 

map the input function will be reduced. There by it will maintain the regularity in the 

design, which will help the engineering change order (ECO) to get the better quality of 

results. Proposed symmetry detection algorithm finds the probability that the function has 

symmetric variables or not beforehand based on the number of 1’s in their cofactors, thereby 

it reduces complexity and runtime. Table 5.4 shows the advantages of the proposed 

methodology over the conventional methodology in terms of NRE costs, time-to-market, 

regularity and routing congestion. It maintains the regularity independent of the design 

strategy whereas in the conventional methodology, it depends on the design strategy. 

Table 5.4 Advantages of the Proposed Methodology 

Methodology 
Tool cost as a part 

of NRE costs  
TTM 

Regularity in the  

design 

Intra-block routing 

congestion Probability 

Conventional High High 
Designer 

dependent 
High 

Proposed less less Inherent property less 

 

Due to the small design cycle (mapping directly to physical designs) and elimination of 

frontend design tool, the TTM and has to be done to connect different blocks (cuts). The 

following theoretical analysis explains the advantage of the proposed methodology in 

reducing the routing congestion.  

Assuming the NRE costs will be cut down drastically. Once the input function is mapped to 

its physical design(s), only the inter-block routing intra-block routing congestion probability 

is Pinbr and inter-block routing congestion is Pibr,  

Then, in the conventional methodology: 

Total congestion probability = Pinbr + Pibr 
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Where Pinbr and Pibr include both global and detailed routing congestion probability.  

Similarly, in the proposed methodology: 

Total congestion probability = Pibr (∵Pinbr = 0) 

Since the each block is already placed and routed, the probability of intra-block routing 

congestions is reduced (~0) and it in turn reduces the number of iterative cycles required to 

get proper placement and routing. 
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Chapter 6 
 

Proposed Cut-less Digital IC Design 

and Automation methodology  

 

 

The methodologies proposed in [12-15], to minimize the NRE costs and TTM, have been 

proved as a potential candidates for minimizing the number of incremental and iterative 

design steps. The aforementioned methodologies are cut-based methodologies, which 

require cut-enumeration, storing of cuts, computation of truth-tables and canonical form for 

mapping. The cut enumeration is computationally complex and requires more memory for 

storing the cuts. If there are n number of nodes in the subject graph and k is the cut size, 

then the possible number of cuts is O(nk), which is exponentially growing with the cut size 

and number of nodes. Due to this exponential complexity, the runtime and required memory 

grows exponentially and finally affects the overall design cycle. Therefore, as a solution 

here we propose a cut-less design & automation methodology. 

 

Lemma1: Considering the maximum input size of the cells in the pre-computed library is ‘L’ 

and the input Boolean function has ‘M’ (M>2L) variables, the minimum and maximum 

number of primary inputs that a node receives in the SFG will be L (bottom nodes) and M-

L+1 (primary output node) respectively. 

Proof: Assuming that there are all L-input cells in the pre-computed library. Using the 

Boolean matching techniques these gates can be used to map all input Boolean functions, 

whose size is not more than L. Therefore, the SFG constructed to a level, whose nodes at the 

bottom will have at most L inputs, is enough. Initially the primary output node will have M-

inputs, but after decomposing it to a level L, its level becomes M-L+1. The bottom nodes 

can be mapped directly to their pre-computed library cells by using their truth-table or 

decimal value. In this way, the size of the SFG and building time can be minimized by 

maintaining a set of large input size cells in the pre-computed library.  
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6.1 Cut-less Technology Mapping 

Input to the proposed cut-less technology mapping is SFG. Here we consider a pre-

computed library which is having at most 3-input cells, so the SFG is constructed to a level 

where the bottom nodes will at most receive three primary inputs (see lemma 1). First, the 

bottom nodes are mapped using the 3- input cells. The correct match for each bottom node 

is found by comparing the decimal value/Boolean expression of the cube cofactor and its 

level with the pre-computed library cells. Then the nodes above the bottom nodes will be 

selected for mapping. The topology of SFG, which has inherent regularity in its structure, 

helps in cut-less technology mapping. This feature of SFG facilitates the mapping of a node 

to its technology dependent cells without computing the node’s local functionality.  

Therefore, IDs of the nodes are deleted after SFG is constructed to free up the memory used 

for storing IDs.  

Multiplexers are used for mapping the nodes other than the bottom nodes. The multiplexers 

were optimized against the area by considering the nature of the nodes [13]. The multiplexer 

cells and their size will be selected from the pre-computed library depending upon the 

number of levels in SFG. The size of Multiplexer is used for selecting the nodes of SFG for 

mapping. For an example, if the size of multiplexer is 4X1, then a node which is at two 

levels above than previously mapped node is selected for mapping. The process of selection 

of nodes and mapping them to the pre-computed library cells continues till all the nodes in 

the SFG are covered. 

 

 
Figure 6.1: Illustration of proposed cut-less technology mapping technique.  
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The Fig. 6.1 describes the mapping of SFG of a 6-input Boolean function. Here we 

considered pre-computed library with all 3-input cells and multiplexers of size 4X1 and 

2X1. Since the pre-computed library cells can be used to map the nodes, which receive 3 

primary inputs, the 6-input function is decomposed till the bottom most nodes receive three 

primary inputs. Once the bottom nodes are mapped, nodes having a level 2 higher than the 

bottom nodes are selected for mapping. The selection lines for multiplexer are the hidden 

variables of the nodes. In Fig. 1, nodes labeled with 1 are selected and mapped with the 4x1 

Multiplexers. The primary output, labeled 2, is mapped with the 2x1 multiplexer. 

6.2      Modified Digital IC Design and Automation Methodology using Cut-less 

Technology Mapping 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.2: Modified design and automation methodology. The dotted box represents the 
proposed modification. 

The cut-less design and automation methodology is shown in Fig. 6.2. It has a few steps 

than the cut-based design and automation methodology proposed in chapter 5. The 

algorithms used in the aforementioned modification are already explained in the previous 

sections (see chapter 6.1 & 3 for details). 

6.3    Results and Discussion 

The proposed cut-less technology mapping technique is implemented in MATLAB running 

on a Xeon processor (3.4GHZ, 4GB RAM) operating in Linux-based environment. We 

validated our algorithms extensively with standard benchmark circuits [29, 30]. The circuits 
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given in the Table 6.1 are taken from the revlib [30], which are in PLA format, and they are 

converted into truth-tables using the SimpleSolver [31]. The circuits given in the Table 6.2 

are taken from [29]. First, the Boolean equations of the benchmark circuits given in Table 

6.2 are computed using the ABC tool [32], then the truth-tables of each Boolean equations 

are harvested using a simple program. The combinatorial part of the sequential circuits is 

harvested by cutting at the register edges.  

The conventional technology mapping that was used in [12-15], requires the computation of 

cuts for all nodes, pruning the cuts, computing the local function of each cut in terms of 

formal variables assigned to its fan-in cone nodes, converting the local function into 

canonical form and finally finding a match for each cut using its canonical representation. 

Whereas the proposed cut-less technology mapping technique directly maps the SFG nodes 

to pre-computed library cells by using the node IDs and exploiting inherent regularity in the 

structure. The theoretical analysis given below will explain the advantage of the proposed 

cut-less technology mapping technique compared to the conventional cut-based technology 

mapping technique used in [12-15]. 

Assume that the number of nodes in the graph is n, cut size is k, the pruning is tp, the time 

required for computing the local function of each node in terms of its cut is tf , the time 

required for finding the match for each node is tm and time for computing the canonical 

form is tc. The time required for mapping using the conventional cut-based technology 

mapping TCon and for the proposed cut-less technology mapping TPro can be given as, 

 

                                       TCon = O(nK) + tp + tf + tm + tc                                         (1) 

       Pro = tm                                                                            (2) 

      Amount of time saved (tS) = O(nK) + tp + tf + tc                                   (3) 

 

Theoretically, it is clear from the equation (3) that the proposed cut-less technology 

mapping technique will improve the runtime significantly. The experimental results given in 

Table 6.1 and Table 6.2 will substantiate the aforementioned theoretical analysis. 

All the runtime values given in the Table 6.1 and Table 6.2 are in seconds. Table I compares 

the proposed cut-less technology mapping technique with the cut-based methodology used 

in [10-13] in terms of runtime. Column 2 gives the runtime taken to map the input Boolean 

function to the pre-computed library cells using the cut-based technology mapping 

technique. The runtime includes time taken for building the AIG graph, cut-enumeration, 

calculating the local function of cut, converting the local function into canonical form and 

finding the match. Column 3 describes the runtime taken to map the input Boolean function 

to the pre-computed library cells using the proposed cut-less technology mapping technique. 

Column 4 represents the runtime ratio of cut-based to proposed cut-less technology mapping 
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technique. The proposed mapping technique is at an average ~62X faster than the previous 

techniques [12-15].    

Table 6.1 Runtime Comparison of Cut-based Technology Mapping Technique used in  [12-15] with 

the Proposed Cut-less technology Mapping Technique for Pre-computed Library with all 3-input cell 

and 4X1 Multiplexers 

Circuit name Cut-based(r1) Cut-less(r2) Runtime Ratio(r1/r2) 

gt5 0.028 0.0039 7.17 

gt4 0.035 0.004 8.75 

gt13 0.017 0.0041 4.146 

gt12 0.016 0.004 4 

gt11 0.016 0.0039 4.1 

gt10 0.015 0.004 3.75 

mod5 0.017 0.004 4.25 

alu 0.046 0.005 9.2 

majority 0.212 0.006 35.3 

xor5 0.261 0.006 43.5 

ex3 0.18 0.004 45 

ex2 0.253 0.0062 40.8 

ex1 0.258 0.006 43 

2of5 0.273 0.005 54.6 

mod5 0.285 0.0061 46.7 

sym6 0.773 0.01 77.3 

7-bitevenparity 2.762 0.08 34.5 

mux4 0.504 0.0097 51.9 

Average 5.9515 0.0955 (5.9515/0.0955)=62.3 

 

Table 6.2 describes the performance of the proposed cut-less technology mapping 

technology on standard benchmark circuits, variation of runtime with multiplexers’ size and 

reduction in memory size compared to the cut-based methodology [12-15]. Column 2, 3 and 

4 represent the time taken to map the input Boolean function when the size of the 

multiplexer is 2x1, 4x1 and 6x1. As the size of the multiplexer cell increases, more number 

of nodes can be covered and cells in the pre-computed library, we can reduce the runtime 

significantly. The other advantage of the proposed cut-less technology mapping technique is 
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reduction in memory size (Column 5). The average reduction in the required memory size is 

~400 due to the elimination of cut-enumeration and storing of cuts. 

Table 6.2 Validation of the Proposed Cut-less Technology Mapping Technique Using Standard 

Benchmark Circuits, Variation of Runtime with the Size of the Multiplexer and Reduction in the 

Memory size Compared Cut-based technology mapping 

Circuit name 2x1 Mux 4x1 Mux 6x1 Mux Reduction in memory size 

cm138 0.04 0.034 0.03 647 

cmb 12.64 11.12 10.2 253 

cm163a 15.94 13.43 12.01 146 

cm162 3.86 3.04 2.84 134 

cm162a 0.19 0.13 0.089 85 

alu2 0.33 0.3 0.24 475 

cm151a 0.41 0.37 0.31 769 

ex4 0.37 0.29 0.26 848 

ex1 15.36 13.03 11.32 349 

Total 49.2 41.8 37.3  
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Chapter 7     

 

Conclusion and Future Scope of Work 

 

 

 

7.1  Conclusion 

A novel and unified digital IC design and automation methodology [12-15] is proposed. Our 

proposed methodology is compact and simplified compared to the conventional digital IC 

design and automation methodology. Logic synthesis step, which is a major task in IC 

design, is eliminated by merging logic synthesis step with backend design step. Therefore, 

the input RTL description is directly mapped to its physical design by retrieving the cells 

from the pre-computed library, which contains the already placed and routed circuits. Due to 

elimination of design steps with CAD tools, our methodology shows significantly reduced 

NRE costs. Moreover, due to shortened design time, the time-to-market is drastically 

reduced. We have also exploited the functional symmetry of the Boolean functions which 

has major impact on the library size, the number of comparisons and it helps the ECO by 

maintain the regularity in the design.  

The proposed cut-less technology mapping technique benefits the digital IC design and 

automation methodology proposed in [12-15] in terms of runtime and memory, which 

improve the TTM and the NRE costs. Since the computational complexity of the proposed 

cut-less technology mapping technique is significantly less compared to the cut-based 

technology mapping techniques, inherently the scalability will be improved, which will help 

in handling the today’s highly complex designs. The modified SFG construction algorithm 

can take input as truth-table (for faster computation of Shannon cube cofactors for smaller 

function) or Boolean expression (to handle large functions), depending upon the number of 

variables. We validated our methodology using a number of different benchmark 

7.2  Future Scope of Work.  

We presented here the preliminary research results. Creating a pre-computed library with 

placed and routed circuits, optimization and validation using larger designs form part of the 

future research.  
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Besides this, area and delay efficient mapping techniques, and scalable SFG data structure 

can be considered for the future research to improve the results further. 
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