
Data Based Modeling of Solid Oxide Fuel Cells

Srikanth Kutla

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

Department of Chemical Engineering

July 2015





iii



iv



Acknowledgements

First, I would like to express my sincere gratitude to my superviser Dr. Phanindra Jampana who

has supported me throughout the project, and helped me in learning the concepts as well as coding.

I am also thankful to the Department of Chemical Engineering, IIT Hyderabad and the supervisory

committee members, Dr. C.S. Sastry, Dr. Parag D. Pawar and Dr. Ketan P. Detroja for giving me

valuable suggestions. I would like thank my research group members Mr. Goutham, Mr. Santhosh

and all other people who helped and supported me during the M.Tech course.

Thankyou All

v



Dedication

To my family

vi



Abstract

Solid oxide fuel cells(SOFC) are energy conversion devices capable of producing clean energy with

higher efficiencies. Here we are interested in mathematical modeling of fuel cells which is an essential

tool in designing control systems. For this we took the input output data from a model which includes

all important physical and chemical processes in a fuel cell. A sinusoidal change in inlet velocity

of the fuel is considered as the input and the dynamic response of the system with this particular

input is considered as output(current density). Because of the complexities involved in the chemical

and electrochemical processes, SOFC is a nonlinear system. To identify this system, we have chosen

a wavelet based Non-linear Autoregressive Moving Average Model with exogeneous input(NARX).

The functional components of the NARX model expanded in wavelet multiresolution expansion.

With this, we obtain a linear-in parameters which can be solved by least squares.

vii



Contents

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Approval Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 SOFC Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Dynamic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature review 4

3 Deterministic Identification 6

3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Orthogonal Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Block hankel matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3.1 Deterministic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Dynamic model for SOFC 14

4.1 Fuel cell stack model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 model assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Exhaust gas Characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Calculation of Partial Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4 Stack Voltage Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

viii



5 Continuous Time Identification From Sampled Data 20

5.0.1 System Identification Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.0.2 Least square based state variable filter method . . . . . . . . . . . . . . . . . 21

5.0.3 Refined Instrumental Variable Method . . . . . . . . . . . . . . . . . . . . . . 23

5.0.4 Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Distributed parameter model for SOFC 26

6.1 Cell geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2 Model assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3 Species transport equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.4 Energy balance equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.6 Response to sine change in inlet velocity . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.7 Wavelet based NARX models for nonlinear system identification . . . . . . . . . . . 29

6.7.1 NARX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.7.2 Multiresolution Signal Decomposition . . . . . . . . . . . . . . . . . . . . . . 31

6.7.3 Multiresolution Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.7.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.7.5 Detail Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.7.6 Multiresolution approximation for two variable case . . . . . . . . . . . . . . 34

6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

References 37

ix



Chapter 1

Introduction

1.1 Introduction

The world’s consumption of energy is increasing tremendously day to day. Inorder

to meet the raising demand, alternatives sources are being explored. Such a source

gaining prime importance is fuel cell owing to it is environmental friendliness. Fuel

cell is a electrochemical device which converts chemical energy into electrical energy.

Principle of fuel cells is same as batteries but here the difference is fuel is supplied

continuosly.

Fuel cells are of different types [1] namely

• Direct methanol fuel cells(DMFC): It operates at 50-120 C using unreformed

liquid methanol as a fuel. Suitable at power ranges between 1-50W.

• Phosphoric acid feul cells(PAFC): It operates at 150-200 C using phosphoric

acid as an electrolyte with platinum catalyst. Suitable at power ranges between

25-250kW

• Alkaline fuel cells(AFC): It operates at 23-250 C using potassium hydroxide

as an electrolyte. Suitable at power ranges between 12kW.

• Solid oxide fuel cells(SOFC): It operates at high temperature of 1000 C with

solid oxide as electrolyte. Suitable at power ranges between 2-100kW.

• Molten carbonate fuel cells(MCFC): It operates at a temperature of 600-750
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C with molten alkali carbonate mixture as an electrolyte. Suitable at power ranges

between 75-250 kW.

1.2 SOFC Theory

SOFC is an environmental friendly device to generate electricity with high efficiencies.

It has advantages like fuel flexibility, reliability, very low levels of green house gas em-

misons. An SOFC generally consists of two porous electrodes [2], anode composed of

Ni-YSZ cermet and cathode composed of lanthanum strontium manganite. These two

electrodes are seperated by a dense electrolyte made up of Yttria stabilized zirconia.

The operating principle of SOFC is as follows. At the cathode (air electrode), air is

supplied where as at anode (fuel electrode) hydrogen or pre reformed hydrocarbons

are supplied. Oxygen in the air combines with the electrons coming from the external

circuit resulting the formation of oxide ions. The formed oxide ions migrates through

the electrolyte to anode and combines with hydrogen to form water and liberation of

electrons. The flow of electrons through anode, current collectors and the external

circuit constitutes the electricity.

Oxidation of fuel at anode: H2 +O2− −→ H2O + 2e−

Reduction of oxidant at cathode: 1
2
O2 + 2e− −→ O2−

A basic solid oxide fuel cell is as shown in the figure

1.3 Dynamic Modeling

It is essential to understand the dynamic characteristics of the fuel cell for control

and development. Dynamic Modeling describes the dynamic response of fuel cell

as a function of time. Here, our main focus is on mathemtical modeling because

experimentation with the real systems is difficult and dangerous.
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Figure 1.1: Basic Solid Oxide Fuel Cell
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Chapter 2

Literature review

Mathematical modeling is an essential tool in developing fuel cells, because of the

difficulties involved in experimentation due to its high operating temperature. Due

to the complexity involved in the chemical and electrochemical processes, SOFC is

considered as nonlinear system, however it is difficult to model this type of systems.

Several authors have described a stack model in the past. Few of them including

Achenbach [3] presented a computational model on planar SOFC where the temper-

ature and current density distributions were discussed. Zhu [4] developed a physically

based modeling framework for SOFC system by considering elementary heterogeneous

chemistry, which is much needed for SOFC design.

Later on Colclasure [5] developed a transient model for an anode supported SOFC,

where he considered the coupled interactions of fuel flow, electrochemistry, porous

media, hear transfer. In this paper, he used system identification techniques to de-

velop the reduced order models. So that these models can be easily included in the

process control requirements such as Model predictive control (MPC). In the second

part of the colclasure [6] paper continues to use the physically based model, but to

extend the reduced models over a large number of operating conditions, a new method

Linear Parameter Varying (LPV) is developed. Many of these models are besed on

electrochemical kinetics, internal processes such as mass and energy balances. These
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models are essentially used for cell design, however it is difficult to use for the control

design.

To meet the control strategy requirement, black box modeling is one of the

attractive alternatives. This modeling method is based on the input output data

without knowledge of the internal structure. Artificial neural networks model is ex-

plained in Arriagada [7] using experimental data. Jurado [8] presented a method for

the identification of SOFC using a Hammerstein model, comprised of both linear and

nonlinear subsystems, used to study the dynamic response. Later, Wavelet analysis,

a novel approach in black box modeling has been gained attention. Wavelet anal-

ysis can be used in signal processing and system identification and is explained in

Mallat [9].
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Chapter 3

Deterministic Identification

In deterministic identification algorithm we describe a linear, time invariant, discrete

time system in the form of state space models. Where a physical system is represented

as a mathematical model in the form of input, output and state variables related by

first order differential equations.

3.1 Problem Description

Consider a deterministic system [10] which is having input uk ∈ Rm and output

yk ∈ Rl of order n,

xdk+1 = Axdk +Buk (3.1)

yk = Cxdk +Duk. (3.2)

Here the vectors uk ∈ Rm and yk ∈ Rl are the measurements of the m inputs

and l outputs of the process at time instant k . The vector xk ∈ Rn is the state vector

at discrete time instant k of the process, consists the values of n states.

The matrix A ∈ Rn×n is the system matrix , B ∈ Rn×m is the input matrix

which influences the next state, C ∈ Rl×n is the output matrix which describes how
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the states are transformed to output measurements yk and D ∈ Rl×m is the direct

feed through term. Here, our aim is to find out the order n of the system and the

system matrices A,B,C,D. Here we use some tools like orthogonal projections.

3.2 Orthogonal Projections

Orthogonal projections are extensively used in our deterministic algorithm.

Projection of row space of a matrix onto the row space of another matrix B ∈ Rq×j

is denoted by an operator πB .

πB = BT .(BBT )†.B (3.3)

Here “ † “ denotes the Moore-Penrose pseudo-inverse of the matrix. If we want

to project the row space of a matrix A ∈ Rp×j onto the row space of matrix B, the

expression is as follows.

A/B = A.πB (3.4)

= ABT .(BBT )†.B (3.5)

3.2.1 Block hankel matrix

Block hankel matrix plays a vital role in subspace identification. This matrix is con-

stucted from input output data. It is defined as follows,
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U0|2i−1 =



u0 u1 · · · uj−1

u1 u2 · · · uj

· · · · · · · · · · · ·

ui−1 ui · · · ui+j−2

ui ui+1 · · · ui+j−1

ui+ ui+2 · · · ui+j

· · · · · · · · · · · ·

u2i−1 u2i · · · u2i+j−2


=

U0|i−1

Ui|2i−1
= Up

Uf

Here the number of rows (i) of this matrix is user defined. And it should be

greater than the maximum order of the system. Hence this matrix contains a total

of 2mi rows. Because each row contains m (number of inputs) rows. The number of

columns j equals to s-2i+1, which is the number of data samples used. The subscripts

U0|2i−1,U0|i−1,U0|i denotes the first and last elements of the first column of block han-

kel matrix. The subscripts p, f stands for past and future. The matrices Up past

inputs and Uf are defined by dividing U0|2i−1 into two equal parts which consists of

i block rows each. If we shift the border between past and future by one block row

down, we get the matrices U+
p ,U−f .

3.3 Main Theorem

In this theorem, we discuss how to extract the observability matrix and state sequence

from the input output data. The deterministic identification theorem [10] will have

two conclusions, they are

• State sequence Xd
i can be computed from input output data without knowing the

system matrices.
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• The extended observability matrix can be calculated from input-output data.

We will then conclude how to extract these system matrices A,B,C,D from the inter-

mediate results Xd
i and (Γi)

3.3.1 Deterministic algorithm

• Oblique projections can be computed using the formulae

Oi = Yf/UfWp,

Oi−1 = Y −f /UfW
+
p ,

• Order of the system is determined by the Singular Value Decomposition (SVD) of

the weighted oblique projection.

W1OiW2 = USV T

• Here S is the diagonal matrix, by observing singular values in this matrix we can get

the order of the system. And dividing the singular value decomposition, we obtain

U1 and S1.

• Determine the Observability matrix (Γi) and (Γi−1) as

Γi = W−1
1 U1S

1/2
1 ,Γi−1 = Γi

• We can compute the state sequence Xd
i andX

d
i+1 from

Xd
i = Γ†iOi

Xd
i+1 = Γ†i−1Oi−1

• By solving a set of equations to get A,B,C,D.

With this deterministic algorithm, we started with a random A,B,C,D matrices as in-
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put, output, states. And we identified the system matrices we got from the algorithm

are exactly the same matrices which we have chosen randomly.

If we have certain input output data of a particular deterministic system.

Assuming random system matrices A,B,C,D By applying deterministic algorithm, fi-

nally we are able to get back the system matrices. Now we can compare the assumed

system matrices to the matrices which we got through the algorithm. And through

the SVD we can get the order of the system. We have done the simulation part in

matlab. Following 4 tabular columns represent the assumed values of the system

matrices A,B,C,D respectively.

Matrix A:



−1.2660 1.58 −1.9441 2.4839 −0.1987

−0.3102 0.1911 −0.7095 0.9252 −0.1635

−0.3871 0.7741 −1.3036 1.153 −0.3298

−0.6346 1.1786 −1.4315 1.3860 −0.192

−0.4772 0.8550 −1.0574 1.2710 −0.4075



Matrix B:



0.3683 0.2052 0.2036 0.5480 0.4564 0.7424 0.7590 0.5970 0.4510 0.8270

0.6556 0.4391 0.5199 0.5669 0.0478 0.9374 0.9933 0.4306 0.6401 0.3081

0.9382 0.0273 0.0538 0.6804 0.7383 0.5134 0.3567 0.7307 0.1320 0.4024

0.6204 0.8762 0.8622 0.3714 0.0380 0.2409 0.7529 0.2612 0.4528 0.8842

0.2828 0.6101 0.4429 0.0782 0.9542 0.2600 0.1100 0.0948 0.6522 0.7006



Matrix C:
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

0.2419 0.4369 0.3972 0.1837 0.1692

0.7598 0.3043 0.4794 0.8617 0.9522

0.2909 0.2909 0.5650 0.0326 0.5433

0.2774 0.2425 0.4896 0.3320 0.2514

0.0061 0.9367 0.2698 0.7487 0.5786

0.3747 0.8602 0.9887 0.6444 0.9155


Matrix D:



0.8956 0.1319 0.2881 0.9763 0.0018 0.6043 0.1133 0.7981 0.9929 0.8099

0.4825 0.3559 0.2503 0.5932 0.7118 0.5164 0.3546 0.7956 0.1625 0.1868

0.4427 0.3959 0.4884 0.3044 0.8677 0.0075 0.2419 0.7811 0.1136 0.2472

0.3118 0.8855 0.7290 0.9677 0.1183 0.6889 0.5603 0.3511 0.9129 0.0542

0.0533 0.0212 0.2026 0.8960 0.0390 0.9460 0.6127 0.0543 0.4817 0.6090

0.7538 0.8441 0.2163 0.1900 0.5982 0.8735 0.3008 0.7087 0.8518 0.7772


The following 4 matrices represents the result after implementing the de-

terministic algorithm,

Matrix A new :



0.1871 0.7728 0.0581 −0.0839 −0.0039

−0.0080 −0.5472 −0.0836 −0.1458 −0.0063

0.1215 0.04722 −0.3150 −0.1591 −0.0234

0.0355 0.0655 −0.0199 −0.3141 0.0605

−0.0452 −0.0040 −0.0358 0.0497 −0.4108


Matrix B new:
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

−0.4666 −0.5565 −0.5473 −0.3232 −0.1890 −0.4207 −0.6032 −0.2463 −0.4721 −0.4591

0.1107 −1.0995 −1737 0.2163 1.3740 0.0546 −0.8647 0.5569 −0.4526 −0.1853

0.2942 −0.1287 −0.0708 0.2438 0.0529 0.2657 0.1687 0.2341 −0.0019 −0.1179

−0.0081 0.2262 0.1495 −0.1243 0.3069 −0.0298 −0.1267 −0.1356 0.2248 0.0796

−0.0840 −0.0288 −0.0378 −0.0199 0.0576 0.1084 0.0239 −0.0149 0.0915 −0.0184


Matrix C new: 

−1.6504 0.2387 0.4778 −0.3006 0.3507

−4.3212 0.7519 −1.2375 −0.4288 0.0696

−1.9551 0.4726 0.2055 0.1258 0.2638

−1.9369 0.3554 0.0845 −0.2861 −0.3256

−2.8037 0.1133 0.6325 0.333 0.0758

−4.3115 0.6931 0.6206 0.1782 0.2349


From the matrices D and D new, we can observe that both are similar. The matrices

A, B, C which we have chosen initially and the estimated A, B, C are nit same. We

need a transformation for this matrices to get the same result.

Matrix D new:



0.8956 0.1319 0.2881 0.9763 0.0018 0.6043 0.1133 0.7981 0.9929 0.8099

0.4825 0.3559 0.2503 0.5932 0.7118 0.5164 0.3546 0.7956 0.1625 0.1868

0.4427 0.3959 0.4884 0.3044 0.8677 0.0075 0.2419 0.7811 0.1136 0.2472

0.3118 0.8855 0.7290 0.9677 0.1183 0.6889 0.5603 0.3511 0.9129 0.0542

0.0533 0.0212 0.2026 0.8960 0.0390 0.9460 0.6127 0.0543 0.4817 0.6090

0.7538 0.8441 0.2163 0.1900 0.5982 0.8735 0.3008 0.7087 0.8518 0.7772


Matrix D:
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

0.8956 0.1319 0.2881 0.9763 0.0018 0.6043 0.1133 0.7981 0.9929 0.8099

0.4825 0.3559 0.2503 0.5932 0.7118 0.5164 0.3546 0.7956 0.1625 0.1868

0.4427 0.3959 0.4884 0.3044 0.8677 0.0075 0.2419 0.7811 0.1136 0.2472

0.3118 0.8855 0.7290 0.9677 0.1183 0.6889 0.5603 0.3511 0.9129 0.0542

0.0533 0.0212 0.2026 0.8960 0.0390 0.9460 0.6127 0.0543 0.4817 0.6090

0.7538 0.8441 0.2163 0.1900 0.5982 0.8735 0.3008 0.7087 0.8518 0.7772


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Chapter 4

Dynamic model for SOFC

Modelling of Solid oxide fuel cells is important in steady state cell operation in most

of the cases. It is also essential to understand the dynamic behaviour to predict the

performance of the system. Padulles [11] developed a dynamic model of SOFC which

can maitain output voltage. The dynamic model is subjected to varying load current

to get steady state output voltage.

4.1 Fuel cell stack model

The following model assumptions are taken from padulles [11] .

4.1.1 model assumptions

• The gases which we will use in this model are considered to be ideal.

• Hydrogen and air are fed to the fuel cell stack. The fuel that we use here is

hydrogen.

• Instead of hydrogen if we use natural gas as fuel, the dynamics of the fuel pro-

cessor should be included.
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Figure 4.1: Fuel Cell stack

• The gases are transported throgh the channels along the electrodes. The vol-

ume of the gas channels are fixed however they are small in length.

• In each channel the exhaust gases are sent through a single orifice. The ratio

of the interior and exterior presuure of the channel is large. Hence we assume it as

choked orifice.

• The temperature is stable at all the times.

• Only ohmic losses are considered.

• Nernst equation can be applied.
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4.2 Exhaust gas Characterisation

A gaseous mixture of average molar mass M (kg/kmol) and similar specific heat ratios

are fed to a choked orifice. At constant temperature the following characteristics are

observed.

W

Pu
= K
√
M (4.1)

Here W refers to mass flow rate [kg/s], K is the valve constant which depends on

the area of the orifice [
√
kmol kg/(atm s)], Pu is the pressure upstream inside the

channel (atm).

Consider particular case for the anode, here we introduce fuel utilisation Uf concept.

It states that the ratio of the fuel that is reacted to the fuel flow injected to the stack.

We can also express Uf as the water molar fraction at the exhaust. According to the

definition,

Wan

Pan
= Kan

√
(1− Uf ) MH2 + Uf MH2o (4.2)

where Wan is the mass flow through the anode valve (kg/s); MH2,MH2o are the

molecular masses of hydrrogen and water respectively (kg/ kmol).

Here the molar flow of any gas through the valve is proportional to its partial pressure

inside the channel,

qH2

pH2

=
Kan

MH2

= KH2 (4.3)

and

qH2o

pH2o
=

Kan

MH2o
= KH2o (4.4)

where qH2, qH2o are the molar flows of the hydrogen and water respectively. pH2, pH2o

are the partial pressures of hydrogen and water respectively.
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The following expression is deduced,

W

Pu
= Kan [(1− Uf )

√
MH2 + Uf

√
MH2o] (4.5)

4.3 Calculation of Partial Pressure

The gases we are using are assumed to be ideal. We can apply ideal gas equation, for

the case of hydrogen

pH2 Van = nH2 RT (4.6)

Here Van is the volume of the anode, nH2 is the number of moles of the hydrogen in

the anode channel, R is the universal gas constant [atm/kmol T ], T is the absolute

temperature [K]. From the above equation if we write the expression for partial pres-

sure and its derivative is as follows.

d

dt
pH2 =

RT

Van
qH2 (4.7)

here qH2 is the time derivative of nH2 , and represents the hydrogen molar flow rate.

Here the hydrogen molar flow constitutes the input flow, output flow and reaction.

d

dt
pH2 =

RT

Van
(qH

in
2 − qHo2ut− qHr2) (4.8)

According to the basic electrochemical relationships, the molar flow of hydrogen that

reacts can be calculated as :

qH
r
2 =

N0 I

2 F
= 2 Kr I, (4.9)

where N0 is the number of cells associated in fuel cell stack in series. F is the fara-

day’s constant (C/ kmol),I is the stack current, Kr is a constanat defined for modelling

purposes[kmol/(s A)]. Now,
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Table 4.1: constants for model population

Parameter Value Unit

N0 384 -
KH2 8.43e-4 kmol/(atm s)
KH2o 2.81e-4 kmol/(atm s)
Ko2 2.52e-3 kmol/(atm s)
τH2 26.1 s
KH2 78.3 s
KH2 2.91 s

r 0.126 ω

d

dt
pH2 =

RT

Van
(qH

in
2 − qHout2 − 2 Kr I) (4.10)

Applying laplace transforms on both sides,we get

spH2 − pH2(0) =
RT

Van
qH

in
2 (s)− qHout2 (s)− 2 Kr I (4.11)

spH2 − pH2(0) =
RT

Van
(qH

in
2 − 2Kr I)− RT

Van
(KH2PH2) (4.12)

(
RT

Van
KH2 + s)PH2 =

RT

Van
(qH

in
2 − 2Kr I) (4.13)

(s+
1

τH 2

)pH2 =
1

τH2 KH2

(qH
in
2 − 2Kr I) (4.14)

τH2s+ 1

τH2

pH2 =
1

τH2 KH2

(qH
in
2 − 2Kr I) (4.15)

pH2 =

1
KH2

1 + τH2s
(qH

in
2 − 2Kr I) (4.16)

4.4 Stack Voltage Calculation

For the calculation of stack output voltage we use nernst equation and ohms law.

And the expression is as follows,

V = N0(E0 +
RT

2F
[ln
pH2 po

0.5
2

pH2o
])− r I, (4.17)
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Figure 4.2: Steady state voltage-current and power-current characteristics.

where E0 is the voltage associated with the free energy[V], R is the universal gas

constant [J/kmol K], r is the ohmic losses of the stack . The parameters required

for the model are listed in table 1. This particular model is used to generate the

steady state voltage-current and power-current curves at different flow rates. In this

by fixing a current value we run the simulations to get the steady voltage. The same

is repeated with different current values to get the v-i plot, are displayed in results.
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Chapter 5

Continuous Time Identification

From Sampled Data

Most of the dynamic systems are described in the continuous time(differential equa-

tions), because the physical laws like conservation equations which explain the system

are in the same form.

5.0.1 System Identification Procedure

Consider a linear time- invariant continuous time system with input u and output y

can be described by, [12]

y(t) = G(p)u(t) + ε(t) (5.1)

where G is the transfer function, p is the differential operator for time domain and

the term ε(t) represents the disturbances and errors. Here we assume that the input

and output are sampled at descrete times t1, t2......tN

Here we have mainly two different kind of models, namely

• Grey-box models : These models are constructed on the basis of physical prin-

ciples and are generally in continuous time form. Parameters in the model will

have a direct physical interpretation. Also known as physically parameterised
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models.

• Black-box models : These models can be continuous time or descrete time.

Parameters in the model will not have any physical interpretation. These are

used to describe the properties of the input output relations of the system.

5.0.2 Least square based state variable filter method

Consider a continuous time model in the form of differential equation

dny(t)

dtn
+ a1

dn−1y(t)

dtn−1
+ ......+ any(t) = b0

dmy(t)

dtm
+ bmu(t) + v(t) (5.2)

here dix(t)
dti

represents the i th derivative of the continuous time signal x(t). Now the

above equation can be written as

y(n)(t) + a1y
n−1(t) + ....+ any(t) = b0u

m(t) + ........+ bmu(t) + v(t) (5.3)

The equations 2.2 , 2.3 can be written as

A(p)y(t) = B(p)u(t) + v(t) (5.4)

The above equation can be written for noise free case as

A(p)x(t) = B(p)u(t) (5.5)

Here x(t) is the noise free output. Now assume that a state variable filter F(p) is

applied to both sieds of equation 2.4 , then

A(p)F (p)x(t) = B(p)F (p)u(t) (5.6)
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A minimum order state variable filter F(p) has chosen, will have the form as follows,

F (p) =
1

(p+ λ)n
(5.7)

where λ is the band width of the filter.

equation 2.6 can be expanded as,

(
pn

(p+ λ)n
+a1

pn−1

(p+ λ)n
+ .....+an

1

(p+ λ)n
)x(t) = (b0

pm

(p+ λ)n
+ .....+bm

1

(p+ λ)n
)u(t)

(5.8)

Let Fi(p) can be defined for a set of filters as,

Fi(p) =
pi

(p+ λ)n
(5.9)

Now, using the filter defined in equation 2.7 , equation 2.8 can be written as,

(Fn(p) + a1Fn−1(p) + ...+ anF0(p))x(t) = (b0Fm(p) + ......+ bmF0(p))u(t) (5.10)

Now this can be rewritten as,

x
(n)
f (t) + a1x

n−1
f (t) + .......+ anx

(0)
f (t) = b0u

(m)
f (t) + ......+ bmu

(0)
f (t) (5.11)

where

x
(i)
f (t) = f(i)(t) ∗ x(t) (5.12)

x
(i)
f (t) = f(i)(t) ∗ x(t) (5.13)

where fi(t) is the impulse response of the filter and * denotes the convolution operator.

Consider a case where additive noise in the output. At a time instant t = tk ,

substituting xf (t) for yf (t) , equation 2.11 can be written as in the linear regression

form,

y
(n)
f (tk) = ϕTf (tk)θ + η(tk) (5.14)
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where ,

ϕTf (tk) = [−y(n−1)f (tk).......− y(0)f u
(m)
f (tk)........u

(0)
f (tk)] (5.15)

θ = [a1.......anb0....bm]T (5.16)

Now, the input output signals measured at descrete times t1, ......., tN (not necessarily

uniformly sampled) from N available samples, The linear least square based state

variable filter parameters are given by

θLSSV F = [
1

N

N∑
k=1

ϕf (tk)ϕ
T
f (tk)]

−1 1

N

N∑
k=1

ϕf (tk)y
(n)
f (tk) (5.17)

5.0.3 Refined Instrumental Variable Method

This is an optimal method for the continuous time models and estimation of transfer

function models from sampled data. Here dynamic system is modeled in continuous

time, while the noise model is estimated as descrete time Auto regressive moving

average model. [12]

Problem Formulation

Consider a signle input single output system with input u(t) and noise free output

x(t),

x(n)(t) + a1x
n−1(t) + .......+ anx

(0)(t) = b0u
(m)(t− τ) + ......+ bmu

(t−τ)(t) (5.18)

where xi (t) is the ith time derivative of signal x(t) and τ is the time delay.

Now the above equation can be written in transfer function form,

x(t) = G0(p)u(t) =
B0(p)

A0(p)
u(t) (5.19)

It is important to consider the errors occured in output measurement. Here the mea-

surement noise is denoted by ξ (t). Now the complete equation can be written as
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y(t) = G0(p)u(t) +H0(p)e0(t) (5.20)

Here our objective is to identify a suitable model stucture and to estimate the param-

eters which characterize the structure based on the sampling data. ZN = u(tk); y(tk)

i=1....N

G(p, ρ) =
B(p, ρ)

A(p, ρ)
=
b0p

m + b1p
m − 1 + ....bm

pn + a1pn−1 + ......+ an
(5.21)

And the noise model is as follows,

H(q−1, η) =
C(q−1, η)

D(q−1, η)
=

1 + c1q
−1 + ......+ cqq

−q

1 + d1q−1 + ......+ dpq−p
(5.22)

Here q−r is the backward shift operator. And we need to find out the parameter

vector θ for the complete model.  ρ

η


In the simplified refined instrumental variable method, the additive noise is considered

to be white. Hence C(q−1, η) =D(q−1, η) =1.

Error function is defined according to prediction error minimisation approach, given

by

ε(tk) =
D(q−1, η)

C(q−1, η)
y(tk)−

B(p, ρ)

A(p, ρ)
u(tk) (5.23)

ε(tk) =
D(q−1, η)

C(q−1, η)

1

A(p, ρ)
[A(p, ρ)y(tk)−

B(p, ρ)

A(p, ρ)
u(tk)] (5.24)

THe above equation can be written as

ε(tk) = A(p, ρ)yf (tk)−B(p, ρ)uf (tk) (5.25)

Here yf (tk) , uf (tk) are the sampled outputs after continuous time filtering with the

filter,

fc(p, ρ) =
1

A(p, ρ)
(5.26)
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And the complete model structure can be represented as linear in parameter model,

y
(n)
f (tk) = ϕTf (tk)θ + η(tk) (5.27)

where ,

ϕTf (tk) = [−y(n−1)f (tk).......− y(0)f u
(m)
f (tk)........u

(0)
f (tk)] (5.28)

5.0.4 Estimation Procedure

In this method an iterative algorithm is used, where at each iteration we generate

an instumental variable and prefilters. These are updated based on the parameters

obtained in the previous iteration.

The instrumental variable is given by

x̂(t, ρ̂j−1) = G(p, ρ̂j−1)u(t) (5.29)

Now, the noise free case of IV vector ϕTf (tk) is given by

ϕ̂Tf (tk) = [−x̂(n−1)f (tk).......− x̂f (tk)u(m)
f (tk)]

T
(5.30)

Now the instrumental variable optimisation problem can be expressed as in the least

squares form

ρ̂j(N) = [
N∑
k=1

ϕ̂f (tk)ϕ
T
f (tk)]

−1
N∑
k=1

ϕ̂f (tk)y
(n)
f (tk) (5.31)

We have tried these two algorithms, using MATLAB toolbox. Because of the nonlin-

earities in the system, we were not able to get the exact result.
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Chapter 6

Distributed parameter model for

SOFC

SOFC is an environmental friendly device to generate electricity with high efficiencies.

It has advantages like fuel flexibility, reliability, very low levels of green house gas

emissions. Modeling has a huge impact on fuel cell development. Dynamic models

are developed inorder to analyze the complicated interactions between the various

phenomenon occurring inside the fuel cell. Most of the dynamic models that are

available in literature are lumped models. Such that they can only compute average

compositions and temperature for a cell or a stack.

Here our objective is to get the dynamic response of the cell to sinusoidal changes in

input. In our model the fuel which we use is the product of reformed methane. This

model accounts for convective transport in flow channels, porous media diffusion in

electrodes, at the interface between electrolyte and electrode and heat transport in

flow channels.

6.1 Cell geometry

The model we consider here is the co flow sofc with the cell length of 10cms. The

model geometry and assumptions are taken from Zhu [4].
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Table 6.1: Cell cimensions
Parameter Value
air channel 1mm
fuel channel 1mm

anode 500 µ m
cathode 30µ m

electrolyte 20 µ m

6.2 Model assumptions

• The fuel and air which we use are assumed to be ideal because high operating tem-

perature and low pressure is maintained.

• The pressure in the flow channels should be constant.

• The cross section of the fuel cell is very less so that the assumption of plug flow is

valid.

• Species transport in the electrode is one dimensional and perpendicular to the

channel flow due to the large aspect ratio.

• The temperature variations along the cell thichness van also be neglected due to

the large aspect ratios.
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6.3 Species transport equation

Here the flow of the gas mixture is assumed to be plug flow. So the species transport

equation for the gas mixture in the channel is given by Zhu [4].

ρ u Yk
dx

=
Pe
Ac
Jk Mk (6.1)

Where ρ is the density , u is the velocity, Yk is the mass fraction of the species k, x

is the independent coordinate, Pe is the electrochemically active perimeter, Ae is the

area of cross section of the flow channel, Jk is the molar flux of the species k, Mk is

the molecular weight.

The velocity in the channel calculated from

ρ u

dx
=
Pe
Ac
Jk Mk (6.2)

6.4 Energy balance equation

From the energy balance equation the temperature of the gas phace is

ρ u cp
dT

dx
=

4

Dh

h(Ts − T ) (6.3)

Where Dh is the hydraulic diameter, h is the heat transfer coefficient, and Ts is the

cell temperature. In the same way we can write the transport equations for the gas

in electrodes.

6.5 Boundary conditions

The current density i is calculated from modified butler volmer equations for anode

and cathode. The Species flux at the interface between electrodes and electrolyte is

give by
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Jk = i
neF

ne is the number of electrons transferred during the reaction, F is the

faradays constant.

6.6 Response to sine change in inlet velocity

The step change in the velocity is observed in earlier studies. But here we are in-

terested in sinusoidal change in inlet velocity. Such that the dynamic response in

velocity and current is plotted.

In this particular model, after giving the sine change in the inlet velocity, at each time

along the length of the cell the velocity is obtained. By collecting all the velocities at

the entrance of the cell is plotted against time.

6.7 Wavelet based NARX models for nonlinear system iden-

tification

6.7.1 NARX

To describe the relation between input output of a nonlinear system NARX (Non-

linear Autoregressive Moving Avarage model which will have an exogeneous input)

method is useful. [13]

Here the current value o the time series is related to the past value of the time series

and current, past values of the driving series.

A general NARX model, which is in the form of nonlinear difference equation :

y(t) = f(y(t− 1), ....y(t− ny), u(t− 1), ...., u(t− nu)) + e(t) (6.4)

where f is an unknown nonlinear mapping and u(t), y(t) are input output samples.

e(t) is the noise variable, and nu , ny are the maximum input and output lags.
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Figure 6.1: Dynamic response of the system with sinusoidal change in inlet velocity.
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In NARX model the nonlinear function mapping f is expressed as a finite set of

functions which are expanded in terms of lagged input output variables y(t-i), u(t-j).

Which is

y(t) = f0 +
n∑
i=1

fi(xi(t)) +
n∑
j=1

fij(xi(t), xj(t)) + ε(t) (6.5)

Expanding functional components of a non parametric NARX model into the wavelet

basis. The model becomes linear in parameters and thus can be solved using least

square techniques. Here the wavelet analysis adopts a wavelet function called Mother

wavelet or simply Wavelets.

where xi(t) = y(t−i) when i = 1,2,...ny and xi(t) = u(t−i) when i = ny+1, ny+2....n,

with n = ny + nu .

6.7.2 Multiresolution Signal Decomposition

For analyzing the information content of images, multiresolution representation is

used as an effective tool. It will provide a complete framework for the Interpretation

of the image information at the different resolutions. Bert et al. introduced a pyrami-

dal algorithm for approximating a signal at different resolution. The detais at every

resolution 2j are computed by convolving the original signal with the low pass filter

and subsampling the resulting signal. And this operation is repeated over a finite

range of resolutions. the details at each resolution are arranged to form a pyramid

structure.

Here we talk about an operator which approximates a signal at a resolution 2j. Ac-

cording to mallat [9] the difference of the information between approximations at

different resolutions is extracted by decomposing the signal in a wavelet orthonormal

basis. The decomposition is defined as orthogonal multiresolution representation also

called as wavelet representation. Where the translations and dilations of a function

ψ(x) can be used as expansion of L2(R) functions. Meyer et al. showed that there
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exists a function ψ(x) such that (
√

2j ψ(2jx− k)) will form an orthonormal basis of

L2(R).

6.7.3 Multiresolution Approximation

An operator Aj2 , approximates a signal at a resolution 2j . This operator should

posses some properties are as follows.

• Consider a function f(x) and Aj2f(x) is the approximation at a resolution 2j.

Then if we approximate again at same resolution, Aj2f(x) shold not be changed.

• In all approximated functions at the resolution 2j, the most similar function to

f(x) is Aj2f(x).

• A signal is approximated at a resolution 2j+1 will contain all the information to

compute the same signal at a resolution 2j. Aj2 is a projection operator on V j
2 .

V j
2 ⊂ V j+1

2

• The vector spaces of the approximated functions are computed from one another

by scaling the approximated function by their resolution value.

• Approximation of a signal at resolution 2j samples per unit length. If we translate

f(x) by a length 2−j , then Aj2f(x) is also translated by a length proportional to

2−j.

6.7.4 Implementation

The orthogonal projection on V j
2 can be calculated by decomposing the signal f(x)

on the orthonormal basis,

Aj2f(x) = 2−j
+∞∑

n=−∞

< f(u), φ2j(u− 2−jn) > φj2(x− 2−jn) (6.6)
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Let V j
2 is a multiresolution approximation and corresponding scaling function be φ(x).

The functions (
√

2−j−1φ2j+1(x− 2−j−1k )) form an orthonoraml basis of V j+1
2 . Here

the function φ2j(u− 2−jn) is a memeber of V j
2 also included in V j+1

2 . We can expand

this in orthonormal basis of V j+1
2

φ2j(u− 2−jn) = 2−j−1
+∞∑

k=−∞

< φ2j(u− 2−jn), φj+1
2 (u− 2−j−1k) > .φj+1

2 (x− 2−j−1k)

(6.7)

After changing the variables in the inner product integral, it can be written as,

2−j−1 < φ2j(u− 2−jn), φj+1
2 (u− 2−j−1k) >=< φ−12 , φ(u− (k − 2n)) > (6.8)

Now, computing the inner products of f(x) with both sides of

< f(u), φ2j(u− 2−jn) >=
+∞∑

k=−∞

< φ2−1(u− (k− 2n)) > . < f(u), φj+1
2 (u− 2−j−1k) >

(6.9)

Introducing a mirror filter (H), with impulse response h̃(n)=h(-n).

h(n) =< φ2−1(u− n) > (6.10)

Now, by inserting this in previuos equation, we get

< f(u), φ2j(u− 2−jn) >=
+∞∑

k=−∞

h(k − 2n). < f(u), φj+1
2 (u− 2−j−1k) > (6.11)

Approximation of a function at a resolution 2j can be computed by convolution of

approximation at resolution 2j+1 with filter H and downsampling the output. All

the discrete approximations at resolutions lessthan j are computed by repeating the

process. This procedure is called pyramid transform.
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6.7.5 Detail Signal

In this section extraction of the information between two approximation at resolu-

tions 2j+1 and 2j. Here the difference is called detail signal. Now the detail signal

at a resolution 2j is the orthogonal projection of original signal on the orthogoanl

complement of V j
2 in V j+1

2 . Here Oj
2 is the orthogonal complement. Now let V j

2 is a

multiresolution approximation vector space. φ(x) is the scaling function and ψ(x) be

the corresponding wavelet. Translations and dilations of this function ψ(x) will form

orthonormal basis of Oj
2.

Let the orthogonal projection on vector space Oj
2 is PO

2j
, can be written as

PO
2j
f(x) = 2−j

+∞∑
n=−∞

< f(u), ψ2j(u− 2−jn) > ψj2(x− 2−jn) (6.12)

Here the function ψ2j(x− 2−jn) is a memeber of Oj
2 also included in V j

2 + 1. We can

expand this in orthonormal basis of V j+1
2

ψ2j(x− 2−jn) = 2−j−1
+∞∑

k=−∞

< ψ2j(u− 2−jn), φj+1
2 (u− 2−j−1k) > .φj+1

2 (x− 2−j−1k)

(6.13)

And the detail signal D2j f can be computed with convolution of A2j+1 with a filter

G and downsampling the output. Decomposition of a discrete approximation A2j+1f

into the approximations at lower resolutions and detail signals D2j f can be shown in

following figure.

6.7.6 Multiresolution approximation for two variable case

Let V2j is a multiresolution approximation of L2(R2) and the associated scaling func-

tion φ(x, y) can be φ(x, y) = φ(x)φ(y). The orthonormal basis of V2j will be formed

by family of functions (2−jφ2j(x − 2−jn, (y − 2−jm)). And ψ(x) be the wavelet as-

sociated with the scaling function φ(x). Orthonormal basis of Oj
2 formed by three
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Figure 6.2: Signal decompostion

wavelets, they are

ψ1(x, y) = φ(x) ψ(y) (6.14)

ψ2(x, y) = ψ(x) φ(y) (6.15)

ψ3(x, y) = ψ(x) ψ(y) (6.16)

And the difference of the information between approximations at 2j+1 and 2j are

given by

D1
2jf = (< f(x, y), ψ1

2j(x− 2−jn, (y − 2−jm) (6.17)

D2
2jf = (< f(x, y), ψ2

2j(x− 2−jn, (y − 2−jm) (6.18)

D3
2jf = (< f(x, y), ψ3

2j(x− 2−jn, (y − 2−jm) (6.19)

The two dimensional signal decompostion can be shown in figure.

6.8 Conclusions

In this work, we have studied the system identification techniques. First, we got

the data from a detailed distributed parameter model, where a sinusoidal change

in inlet velocity was given as input and the corresponding output response is teken
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Figure 6.3: Two dimensional Signal decompostion

as output. We have tried the continuous time identification techniques like Linear

least square state variable filter method and Simplified refined instrumental vari-

able method because the input output data that we chose is nonuniformly sampled.

But these algorithms did not give us good results. Then we tried Nonlinear system

identification techniques like NARX. Where first we implemented using mexican hat

wavelets, later on we extended this to multiresolution alalysis.
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