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Abstract

Understanding the stability of open shear flows such as wakes and jets has important

implications for flows in industry and nature. When a fluid flows past a stationary

bluff body such as a cylinder, the well known Karman vortex shedding occurs where

the shed vortices align themselves in a zig-zag anti-symmetric pattern. Recent exper-

iments and numerical simulations show that if the inlet flow is oscillatory or if the

cylinder oscillates about a fix position, the vortex shedding pattern can sometimes

be symmetric rather than asymmetric. The goal of this thesis is to gain insight into

the pattern formation process resulting in a symmetric shedding pattern. This can

be achieved by carrying out a stability analysis on an oscillating wake profile.

In this thesis, we carry out a linear stability analysis on an oscillating wake profile.

To keep the analysis analytically tractable, we restrict the analysis to piece-wise

continuous profiles. Since the base-flow is time-periodic, a generalized version of the

Rayleigh stability equation is first derived. This is a partial differential equation

with both time and spatial derivatives unlike the classical Rayleigh equation which

is an ordinary differential equation. Generalization of kinematic and pressure jump

conditions at vorticity interfaces are also derived. Two methods are used to analyse

the stability of the oscillating base flow, a small frequency asymptotic analysis and

a Floquet analysis. In all the cases, it was found that sinuous (asymmetric) modes

were more unstable compared to varicose modes. A more extensive stability analysis,

perhaps with smooth base-state profiles along with viscosity is needed to shed further

light on why experiments and numerical simulations find a symmetric mode of vortex

shedding.
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Chapter 1

Introduction

Within the geophysical sciences, shear instability is known to be an important cause

of turbulence and mixing in the atmosphere and oceans. The first step in the study

of a shear flow is to perform a linear stability analysis to determine whether small

perturbations applied to the flow will grow in time Fig. 1.1.

(a) (b)

Figure 1.1: steady oscillating wake

The primary goal of this work is to study the instability process. The main focus

is on understanding the stability properties of piecewise-linear profiles. However more
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realistic smooth profiles, as well as the application to geophysical flows will also be

discussed.

1.1 Motivation of problem

In fluid dynamics, a Karman vortex street Fig. 1.3 is a repeating pattern of swirling

vortices caused by the unsteady separation of flow of a fluid around bluff bodies. It is

named after the engineer and fluid dynamicist Theodore von Krmn and is responsible

for such phenomena as the ”singing” of suspended telephone or power lines, and the

vibration of a car antenna at certain speeds.

The motivation for this work is to investigate the instabilities of the wake flow.

The great advantage of this interpretation is that it gives one a physically based

understanding of the often nonintuitive results from a stability analysis.

(a) (b)

Figure 1.2: flow past a stationry and oscillating cylinder

(a) (b) S-II mode

Figure 1.3: karman and symmetric vortex shedding
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1.2 Literature review

[KELLY(1965)]:Discussion of stability for interface between two inviscid fluids for un-

steady shear layers using a form of Mathieu equation to get the sub-harmonic motion,

such that a wave which is neutrally stable in the absence of the oscillations and whose

frequency is half of the frequency of the flow oscillations becomes unstable. The sub-

harmonic response is very important in stability, because viscous effects would tend

to eliminate the higher harmonic responses. [Srikanth T. & Govindarajan(2011)]The

S-II mode of shedding is obtained computationally for the first time. A new sym-

metric mode, named here as S-III, is also found. At low oscillation amplitudes, the

vortex shedding pattern transitions from anti-symmetric to symmetric smoothly via a

regime of intermediate phase. Fig. 1.3 [S. J. X U & G(2006)] discovered a new mode

of symmetric shedding, which named S-II. Two vortices of opposite sense were shed

from each side (top and bottom) during each cycle. This mode was observed for high

frequencies and amplitudes.There was considerable reverse flow during a part of the

cycle, which aided in the formation of opposite signed vortices on a given side of the

cylinder.Fig. 1.3 [Hultgren & Aggarwal(1987)] Agrawal is investigate the effects of

viscosity on the absolute instability of wake flows using as a model the simple gaus-

sian mean velocity profile. [BRIDGES & MORRIS(1984)] [T. B. Benjamin(1954)]

[Suresh & Homsy(2004)] [Schmid & Henningson(2000)] [von Kerczek & Tozzi(1986)]

[YOSHIKAWA & WESFREID(2011)] [Davis(1976)] [William E. Boyce(2009)]

1.3 Thesis structure

The thesis is divided into five chapters .The first chapter covers the introduction to

stability of time periodic wake flow. Solvin governing equation using normal mode

analysis and further simplification of the derived equation using different methods

have been discussed in the second chapter. In the third chapter we discuss Steady

state problem of kelvin helmholtz (KH) instability for piecewise continuous mixing

layer profile.Chapter four deals with unsteady state problem of oscillatory kelvin

helmholtz profile. In the last chapter is Conclusion.
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Chapter 2

Governing Equation

Let us consider the system of governing differential equations for incompressible flow

and 2D Euler equations, describing the conservation of mass and momentum:

∂ũ

∂x
+
∂ṽ

∂y
= 0

∂ũ

∂t
+ ũ

∂ũ

∂x
+ ṽ

∂ũ

∂y
= −1

ρ

∂P̃

∂x

∂ṽ

∂t
+ ũ

∂ṽ

∂x
+ ṽ

∂ṽ

∂y
= −1

ρ

∂P̃

∂y
(2.1)

Where ũ, ṽ, p̃ are total quantities.(ũ, ṽ are the velocity in x, y direction and p̃ is

the pressure )

To derive the disturbance equations, each of the velocity vector components is

divided into mean and disturbance parts, with the disturbance being of order ε. The

functional form for the mean part only involves the axisymmetric parallel mean flow

assumption.

So, it is clear from the above discussion that one cannot predict the behavior of the

solutions of differential equation by just looking at the form of the equations.

2.1 Derivation of governing stability equations

The following steps define the procedure to identify the nature of a mathematical

equation.

Step 1: Write the Navier Stokes (NS) equation for linear stability

analysis. To get the special case of rotational incompressible flow, write
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the vorticity function for the flow equation...

ũ = U(y, t) + u(x, y, t) u, v << U

ṽ = v(x, y, t)

p̃ = P (x, y, t) + p(x, y, t) p << P

∂ω̃

∂t
+ ũ

∂ω̃

∂x
+ ṽ

∂ω̃

∂y
= υ(

∂2ω̃

∂x2
+
∂2ω̃

∂y2
) (2.2)

Where ω̃ = ∂ṽ
∂x
− ∂ũ

∂y
is the vorticity function

Equations are obtained after substituting the expressions of the velocity vector com-

ponents in the Navier Stokes equations, considering contributions of first order in

ε. Contributions of order one only satisfy Navier Stokes equations, where as ε2 are

ignored in the small disturbance limit.

Step 2: Consider the vorticity function and simplicity let υ = 0 to get

the PDEs

ω̃ = ω + Ω =
∂v

∂x
− ∂(U + u)

∂y

ω + Ω = −∂U
∂x

+

[
∂v

∂x
− ∂u

∂y

]

Ω = −∂U
∂x

, ω =
∂v

∂x
− ∂u

∂y

∂ω

∂t
+ U

∂ω

∂x
= vU ′′ (2.3)

Substituting ω̃, ũ, ṽ in equation (2.2) to get PDEs (2.3) and for simplicty inviscid

flows to get υ = 0

Step 3:By using the normal mode analysis to get PDEs

u = ū(y, t)eikx v = v̄(y, t)eikx ω = ω̄(y, t)eikx

∂ω̄

∂t
+ ikω̄U − v̄ ∂

2U

∂y2
= 0 (2.4)
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Continuity Equation:

ū = − 1

ik

∂v̄

∂y

Vorticity:

ω =
∂v

∂x
− ∂u

∂y

ω̄ = −(D2 − k2)v̄
ik

ω = −∇2ψ and v =
∂ψ

∂x(
U +

1

ik

∂

∂t

)
(D2 − k2)v̂ − v̂ ∂

2U

∂y2
= 0 (2.5)

Equation 2.9 is the main stability equation governing vertical velocity perturbation

v̄ for a time-dependent velocity field U(t).

Step 4: Eigenvalue problem for steady state flow field

If U is not a function of time, we can assume the disturbance to be in the normal mode

form, i.e. v̄(y, t) = v̂(y)e−ikct. This form is used to obtain a simplified perturbation,

especially in the continuous form. Equation 2.9 simplifies into an ordinary differential

equation called the Rayleigh equation:

(U − c)(D2 − k2)v̂ − U ′′v̂ = 0. (2.6)

The Rayleigh equation can be written as an eigenvalue problem with eigenvalue c.

[
U(D2 − k2)− U ′′

]
v̂ = c(D2 − k2)v̂. (2.7)

This is in the form

Av̂ = cBv̂ (2.8)

Step 5: Matrix differential equation

Equation 2.9 can be rewritten in the form

∂

∂t
(D2 − k2)v̂ = ikU(D2 − k2)v̂ − ikv̂ ∂

2U

∂y2
(2.9)

The above equation can be solved using Floquet theory for time periodic differential
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equations. The details of this procedure will be discussed later. We briefly discuss

below the procedure involved with Floquet theory. If A(t) is a time-periodic matrix

governing the evolution of vector X(t) by the equation

d

dt
X = A(t)X. (2.10)

• Let X = Df(c) be the matrix of first-order partial derivative of (Jacobian

Matrix)evaluated at c.

• Every solution is stable if all eigenvalues of X has negative real parts.

• Every solution is unstable if at least one eigenvalue of X has positive real part.

• Floquet theory is very important for the study of dynamical systems.

d

dt

[
x1

x2

]
=

[
a11 a12

b21 b22

][
x1

x2

]
The eigenvalues of a real or complex (n×n) matrix X are the roots of its characteristic

polynomial det(X − λI). Since the degree of the characteristic polynomial equals n,

the dimension of X, it has n roots, so X has n eigenvalues. The eigenvalues may be

real or complex, even if X is real. In case of complex roots, eigenvalues appear in

pairs ( complex conjugates).
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2.2 Piecewise Discontinuous & Continuous veloc-

ity profile

(a) (b)

(c)

Figure 2.1: (a)Discontinuous velocity profile (b)Continuous velocity profile
(c)Velocity profile

[(
U +

1

ik

∂

∂t

)
(D2 − k2)v̄ − v̄ ∂

2U

∂y2

]
= 0
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For piecewise profiles, U ′′ = 0, and the above equation becomes

(D2 − k2)v̂ = 0

2.3 Spatial & Temporal Stability analysis (c & k )

ω(x, y, t) = ω̄(y)eik(x−ct)

The exponential structure allows the solution to oscillate and grow/decay in space

and time, depending on the real and imaginary parts of k and c .In the temporal

analysis, the solution grows/decay and oscillates with time, only in space: k ∈ R is

given, and one obtains c from the dynamic equations. In the spatial analysis, one

assume that the solution oscillates in time at a given spatial position, but is allowed

to grow/decay and oscillate in space: c ∈ R is given, and k is obtained from the

dynamics equations.

• If ci > 0: Flow is unstable, ekcit increase with time.

• If ci < 0: Flow is stable, ekcit decrease with time.

• If ci = 0: Flow is neutrally Stable

Three types of analysis will be described. The analysis making the complex fre-

quency ω the eigenvalue while fixing the axial wavenumber k is called a temporal

stability analysis. On the other hand, if ω is fixed and k is the eigenvalue, a spatial

stability analysis is performed. If the relationship between k and ω is restricted such

that the combination of both values defines a point of vanishing group velocity, the

resulting analysis determines the absolute stability of the flow field.
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2.4 Sinuous and Varicose modes

Introducing a second shear layer allows the interaction betwenn shear layers. These

interactions take place in two different configurations; sinuous motions (I) which are

anti-symmetric about the centreline and varicose motions (II) which are symmetric

about the centreline. These two configurations are shown in Fig. 2.2

Since the governing equations are linear, any initial normal mode disturbance can

be decomposed into a combination of varicose and sinuous modes, thus in turn it is

sufficient to study the stability of each type of configuration individually.

• Sinuous mode, where the shear layers move parallel to each other.

• Varicose mode, where the shear layers move as mirror images of each other.

• Taking advantage of these symmetries, we may consider just one half of the

domain for both kinds of mode.

• Sinuous Mode: At y = 0: Dv̄ = 0

• Varicose Mode: At y = 0: D2v̄ = 0

(a) (b)

Figure 2.2: Wake stability mode. (a)sinuous mode with v(x,−y, t) = v(x, y, t) and
(b) varicos mode with v(x,−y, t) = −v(x, y, t)
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2.5 Mathieu Equation

Mathieu equation is a linear differential equation of second order.A pendulum has

two critical points in its swing: the lowest position and the highest. The stability

diagram for the Mathieu equation is shown in Fig. 2.3 .The lower position,one of

the classic examples of an approximate harmonic oscillator, is completely stable.The

upper position is unstable, falling with even the slightest change in the position or

velocity of the pendulum

Its characteristics lead us to expect, for instance, that an inverted pendulum

can be stabilized by suitably oscillating it in the vertical direction, thus causing the

effective gravitational force to vary periodically with time.Normally stable pendulum

can be made unstable by the vertical oscillations, especially if the frequency of vertical

oscillation is exactly twice the frequency of the pendulums natural motion shown in

Fig. 2.3)

• The Mathieu Equation is a second order linear ODE:

∂2Y

∂τ 2
+ [δ + ε cos τ ]Y = 0, (2.11)

Y (T + τ) = Y (τ).

• T is the periodicity.

• If Mathieu Equation has the solution that grows exponentially with time then

motion will be considered as unstable.

Figure 2.3: Stability boundary for Mathieu equation
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Chapter 3

Steady Problem

“Every perfect geometrically sharp edge by which a fluid flows must tear

it as under and establish a surface of separation however slowly the rest

of the fluid may move” Helmholtz

In this section we wish to consider the stability of two-dimensional flows. Flows

of this type were first studied by Reynolds (1883),[Drazin(1981)]: who observed that

instability could occur in quite different ways depending on the form of the basic ve-

locity distribution. By comparing the flow of a viscous fluid with that of an inviscid

fluid, both flows being assumed the same basic velocity distribution, he was led to

formulate two fundamental hypotheses which can be stated as follows:

First hypothesis. The inviscid fluid may be unstable and the viscous fluid stable.

The effect of viscosity is then purely stabilizing.

Second hypothesis. The inviscid fluid may be stable and the viscous fluid stable.

In this case viscosity would be the cause of the instability.

The main focus is on understanding the stability properties of piecewise-linear

profiles..[W. O. Criminale(2003)]

12



3.1 Piecewise continuous mixing layer profile

Figure 3.1: Piecewise continuous mixing layer profile

• Assuming viscous effect is neglected, 2D flow , steady state .

• We are using N . S. Equation to get the equation for Vorticity.

∂ω

∂t
+ U

∂ω

∂x
= vU ′′

We will analyze stability of the mean flow with respect to wave like velocity and

pressure perturbations. We assume v(x, y, t) = v̂(y)eik(x−ct)

• Then we get the Rayleigh equation:

[(U − c)(D2 − k2)v̂ − U ′′v̂] = 0 (3.1)

(A)Continuity of pressure: P |+ = P |−

[(U − c)Dv̂ − U ′v̂] = 0

(B)Continuity of particle displacement: Dη
Dt

= 0[
v̂

U − c

]
= 0

13



The equation (3.1) can be derived from the vorticity equation . Note that Rayleigh

equation are unchanged when k is replaced by −k. Thus we shall always consider

k ≥ 0 and the criterion for instability then becomes that there exists a solution with

ci > 0 for some k > 0. Also if D is an eigen function with c for some k then so is

D∗ with eigen value c∗ for the same k. Thus to each unstable mode, there exists a

correspong stable mode.

The first jump condition is obtained from the fact that pressure be continuous at

the material interface. Since the basic pressure is constant, we must have the per-

turbed pressure continuous across the interface. To derive the second jump condition

we note that the normal velocity of the fluid must be continuous at the interface.

Thus we must have from the definition of vertical velocity.

Unbounded shear layer U ′′ = 0 and thus Rayleigh’s equation reduced to (U −
c)(D2− k2)v̂ = 0. If we ignore the continuous spectrum then we have (D2− k2)v̂ = 0

which is equivalent to the vanishing of the y component of the vorticity. Since the

perturbation vanish as y → ±∞, the solution can be written as v = C2e
−kyy ≥ 0

v = C5e
kyy ≤ 0 If we assume C2 = 1 then the solution can be written as

U(y) =


1 y ≥ 1

y −1 ≤ y ≤ 1

−1 y ≤ 1

v(y) =


e−ky y ≥ 1

C3e
ky + C4e

−ky −1 ≤ y ≤ 1

C5e
ky y ≤ 1

By using the jump condition you get equation in form of matrix. 1 e2k 0

−k(1− c)− 1 (k(1− c)− 1)e2k 0

e2k 1 −1


 C3

C4

C5

 =

 1

−k(1− c)
0



14



3.1.1 Results for mixing layer profile

[Drazin(1981)]:

Figure 3.2: Eigenvalue for the piecewise linear mixing layer(a)Real part of the eigen-
value (phase speed) as a function of wave number(b) Imaginary part of the eigenvalue
(phase speed) as a function of wave number

3.2 Stability of constant wake profile[(
U +

1

ik

∂

∂t

)
(D2 − k2)v̄ − v̄ ∂

2U

∂y2

]
= 0

Assume normal mode: v(y, t) = v̂(y)eik(x−ct)

[
(U − c)(D2 − k2)v̂ − U ′′v̂

]
= 0 (3.2)

Equation (3.2) is the well known Rayleigh Equation.

U(y) =


V (y) 0 ≤ y ≤ b
1−V (y)
1−b y + V (y)−b

1−b b ≤ y ≤ 1

1 y ≥ 1

v̂(y) =


c1e

ky + c2e
−ky 0 ≤ y ≤ b

c3e
ky + c4e

−ky b ≤ y ≤ 1

c5e
ky + c6e

−ky y ≥ 1

15



(a)

Figure 3.3: Piecewise continuous profile

3.2.1 Jump & Boundary Condition

Boundary conditions:

• As y → +∞, v̄ → 0 =⇒ c5 = 0

• At y = 0, D2v̄ = 0 =⇒ c1 = −c2
(A)Continuity of pressure: P |+ = P |−

[(U − c)Dv̂ − U ′v̂] = 0

(B)Continuity of particle displacement: Dη
Dt

= 0[
v̂

U − c

]
= 0

Jump conditions:

• At y = b, v̄|b+ = v̄|b− =⇒ c2 =
c3e

kb + c4e
−kb

e−kb − ekb

• At y = 1, v̄|1+ = v̄|1− =⇒ c6 = c3e
2k − c4

• At y = b, P̄ |b+ = P̄ |b−[
(V (y)− c)k{e

kb + c4e
−kb

e−kb − ekb
}(−e−kb − ekb)

]
−[

{(1− V (y)

1− b
y +

V (y)− b
1− b

)− c}k(ekb − c4e−kb)− (ekb + c4e
−kb) ∗ (

1− V (y)

1− b
)

]
= 0

16



• At y = 1, P̄ |1+ = P̄ |1−[
{(1− V (y)

1− b
y +

V (y)− b
1− b

)− c}k(ek − c4e−k)− (ek + c4e
−k) ∗ (

1− V (y)

1− b
)

]
−
[
(1− c)k(−ek + c4e

−k)
]

= 0

Where

V (y) = 0.5 b = 0.5

3.2.2 Result for Sinuous mode: Analytical solution

(a) (b)

Figure 3.4: Sinuous mode results
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3.2.3 Result for Varicose mode: Analytical solution

(a) (b)

Figure 3.5: Varicose mode result

3.2.4 Comparison of growth rate for constant profile: Sinu-

ous vs Varicose

The varicos (II) mode is smaller than that of the sinuous (I) mode for the same flow

parameters.

(a)

Figure 3.6: Comparison of growth rate: Sinuous vs Varicose

18



Chapter 4

Unsteady Problem

4.1 Stability of oscillatory Kelvin Helmholtz pro-

file

The investigation concerns the stability of an interface between two inviscid fluids of

same density which flow parallel to each other in an oscillatory manner. When the

difference in the mean speeds is below the steady, critical speed for instability but

is large compared to the amplitude of the fluctuations,parametric amplification of

waves at the interface occurs, and the interface exhibits a resonance of a subharmonic

nature.[KELLY(1965)]:

There would seem to be at least two reasons why the stability of time-dependent

flows is of interest. First, one may be interested in how external effects which cause

the basic flow to be unsteady but still laminar affect the stability of that flow.

A second reason for interest in such flows is that, prior to its final breakdown into

turbulence, a flow may develop from its steady, laminar form through one or more

stages of finite-amplitude oscillation. Non-linear analyses based upon perturbing the

primary, steady flow have provided information on these states of oscillation, but not

on the final breakdown into turbulence. Hence it would seem worth while to take

the view that the instability has grown to such a degree that the basic flow must be

taken to be time-dependent and to perform a linear stability analysis based upon a

model of this unsteady flow.

−δpj = ρjUjδuj + gρjη + ρj
∂δφj
∂t

(4.1)
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Figure 4.1: Oscillating velocity profile

We assume that the disturbance may be expressed in terms of normal modes, i.e.

f(x, y, t) = f̄(y, t)eikx.

Solving for the interface position, we get

∂2η̄

∂t2
− 1

4

[
k2(U1(t)− U2(t))

2
]
η̄ = 0 (4.2)

If (U2(t)−U1(t)) = U0 + ∆U cos ft, the above equation reduces to the well known

Mathieu equation in the limit of ∆U � U0.

4.2 Methods employed for analysis of governing

equations:Small frequency asymptotic analysis[(
U +

1

ik

∂

∂t

)
(D2 − k2)v̄ − v̄ ∂

2U

∂y2

]
= 0
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U(y, t) =


1 y ≥ 1
1−V (t)
1−b y + V (t)−b

1−b b ≤ y ≤ 1

V (t) 0 ≤ y ≤ b

φ̄(y, t) =


A0(t)e

ky + A1(t)e
−ky y ≥ 1

A2(t)e
ky + A3(t)e

−ky b ≤ y ≤ 1

A4(t)e
ky + A5(t)e

−ky 0 ≤ y ≤ b

(a)

Figure 4.2: Piecewise continuous profile

4.2.1 Jump & Boundary Condition

• As y → +∞, v̄ → 0 =⇒ A0(t) = 0

• At y = 0, D2v̄ = 0 =⇒ A4(t) = A5(t)

(A) Continuity of particle displacement: DF
Dt

= 0

F (x, y, t) = y − η(x, t) η = η̄eikx η̄ = η̃e−iλt v̄ = φ(y, t)e−iλt[
φ

kU − λ

]+v
−v

= 0 (4.3)

(B) Continuity of pressure: P |+ = P |−[
∂2φ

∂y∂t
+ ikU

∂φ

∂y
− ikφ∂U

∂y

]+p
−p

= 0 (4.4)

Jump conditions:
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• At y = b, v̄|b+ = v̄|b− =⇒ A2(t)e
2kb − A3(t) = A4(t)[e

2kb − 1]

• At y = 1, v̄|1+ = v̄|1− =⇒ A1(t) = A3(t)− A2(t)e
2k

• At y = b, P̄ |b+ = P̄ |b−

k
[
−2ekb dA2(t)

dt
+ 2ekbA3(t)

]
−k2V (t)

[
−2ekbA2(t) + 2ekbA3(t)

]
+k(e2kb − 1)

[(
1− V (t)

1− b

)
(A2(t)e

kb − A3(t)e
−kb
]

= 0

• At y = 1, P̄ |1+ = P̄ |1−

dA2(t)

dt
+
i

2

[
2kU1 −

(
1− V (t)

1− b

)]
A2(t) +

i

2

(
1− V (t)

1− b

)
A3(t)e

−2k = 0

dA3(t)

dt
+

[
ik − ikV (t)− i

2

(
1− V (t)

1− b

)
e2kb
]
A2(t)

+

[
i

2

(
1− V (t)

1− b

)
e−2k + ikV (t) +

i

2

(
1− V (t)

1− b

)
(1− e−2kb)

]
A3(t) = 0

We are solve for A2(t) and A3(t) using the form of matrix.

d

dt

[
A2(t

A3(t)

]
=

[
a11(t) a12(t)

b21(t) b22(t)

][
A2(t)

A3(t)

]
where

a11(t) = − i
2

[
2kU1 −

(
1− V (t)

1− b

)]
a12(t) = − i

2

(
1− V (t)

1− b

)
e−2k

b21(t) =

[
−ik + ikV (t) +

i

2

(
1− V (t)

1− b

)
e2kb
]

b22(t) = −
[
i

2

(
1− V (t)

1− b

)
e−2k + ikV (t) +

i

2

(
1− V (t)

1− b

)
(1− e−2kb)

]
• ~X ′ = A ~X + ~g To find the particular solution.

22



• If ~g involves exponential term,try a particular solution of the form ~Xp = ~V (

exponential term).

• If the exponential term is part of the homogeneous solution ,the try ~Xp = t~V (

exponential term)+~η(exponential term).

• If ~g has a ’cos’ or ’sine’ term ,solve the more general problem with the nonho-

mogeneous term replaced with eiωt then cos(ωt) = Reeiωt sin(ωt) = Imeiωt

dX(t)

dt
= A(tf)X(t) τf

dX(τ)

dτ
= A(τf)X(τ)

X(t) = X0(t) + (ft)X1(t) + (ft)2X2(t) + ...

X0(t) = A0X0 O(0)

X1(t) = A0X1 + A1(t)X0 O(1)

(a)

Figure 4.3: Comparison of growth rate: Sinuous vs Varicose at different k value k=1
and k=2.5
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(a)

(b)

Figure 4.4: Comparison of growth rate: Sinuous vs Varicose (a)for ft=0 and k=1
(b)for ft=0 and k=2.5
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4.3 Methods employed for analysis of governing

equations:Floquet analysis[(
U +

1

ik

∂

∂t

)
(D2 − k2)v̄ − v̄ ∂

2U

∂y2

]
= 0

U(y, t) =


V (t) 0 ≤ y ≤ b
1−V (t)
1−b y + V (t)−b

1−b b ≤ y ≤ 1

1 y ≥ 1

v̄(y, t) = eσt
∑
m

eimωtvm(y)


c1e

ky + c2e
−ky 0 ≤ y ≤ b

c3e
ky + c4e

−ky b ≤ y ≤ 1

c5e
ky + c6e

−ky y ≥ 1

4.3.1 Jump & Boundary Condition

Boundary conditions:

• As y → +∞, v̄ → 0 =⇒ c5 = 0

• At y = 0, D2v̄ = 0 =⇒ c1 = −c2
(A) Continuity of particle displacement: DF

Dt
= 0

v(y, t)|+ = v(y, t)|− (4.5)

(B) Continuity of pressure: P |+ = P |−[
∂2v̄

∂y∂t
+ ikU

∂v̄

∂y
− ikv̄ ∂U

∂y

]+p
−p

= 0 (4.6)

Jump conditions:

• At y = b, v̄|b+ = v̄|b− =⇒ c2 =
c3e

kb + c4e
−kb

e−kb − ekb

• At y = 1, v̄|1+ = v̄|1− =⇒ c6 = c3e
2k − c4

• At y = 1, P̄ |1+ = P̄ |1−[
−β
i

(ek − c4e−k)− k(ek − c4e−k) + (ek + c4e
−k) ∗ (

1− V (t)

1− b
)

]
−
[
β

i
(ek + c4e

−k)− (ek + c4e
−k)

]
= 0
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• At y = b, P̄ |b+ = P̄ |b−[
−β
i
{e

kb + c4e
−kb

e−kb − ekb
}(−e−kb − ekb)− v(t)k{e

kb + c4e
−kb

e−kb − ekb
}(−e−kb − ekb)

]
+[

β

i
(ekb − c4e−kb) + v(t)k(ekb − c4e−kb)− (ekb + c4e

−kb) ∗ (
1− V (t)

1− b
)

]
= 0

We are trying to solve for c4 in terms of β

Where

β = σ + imω V (t) = Um + U0 sinωt

b =
1

2
Time = t =

2π

ω

Um = 0.5 U0 = 0.25

4.3.2 Result

(a)

Figure 4.5: Comparison of growth rate: Sinuous vs Varicose in between Re(σ+ imω)
Vs Time
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(a)

(b)

Figure 4.6: Comparison of growth rate: Sinuous vs Varicose
(a)t=0,T,2T(b)t=T/4,3T/4
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(a)

(b)

Figure 4.7: Comparison of growth rate: Sinuous vs Varicose
(a)t=3T/4,7T/4(b)t=T/2,3T/4
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Chapter 5

Conclusion

For a constant wake profile sinuous mode is more unstable than varicose mode.For

an oscillating base flow using two methods, (1) Small frequency asymptotic analysis

and (2) Floquet analysis the same result as of a cnstant wake profie is obtained i.e.

sinuous mode is more unstable than varicose mode
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Chapter 6

Appendix
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;
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4 k

+ ã
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