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Abstract

System Modelling is important in the field of process control. In this thesis, we reviewed the different

kinds of modelling strategies and explained the importance of Continuous time models. Some of the

early methods such as LSSVF and RIVC and new methods such as PDA and GS were reviewed. In

case of noiseless systems model order is estimated using zero-norm minimization whereas for noisy

systems order estimation is done using a brute force search.
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Chapter 1

INTRODUCTION

1.1 Motivation

In the field of process control it is essential to identify the model, before designing a suitable control

strategy. The most general way of building a model is based on the first or the fundamental principles

i.e., on the basis of the physics of system. The main problem with such kind of approach is that the

model may become complex and cannot be used in design of control strategy.

An alternative approach to physics based modelling is data-based identification, which can be

classified broadly into three categories.

• Grey Box Models , are the models that are constructed from the basic physical princi-

ples and the parameters that represent the system coefficients, atleast have a direct physical

interpretation.

• Black Box Models , are flexible models that can be used in general applications, in which

the parameters may or may not have any physical interpretation.

• Data Based Mechanistic Models , are similar to that of the black box models but are

meaningful only when the identified parameters have some physical interpretation.

If system obeys the zero-order hold (ZOH) assumption, then discrete time identification techniques

are equivalent to the continuous time identification techniques. Modelling the system without con-

sidering the ZOH assumption is the main motivation for doing Continuous Time Identification. One

more important aspect is that, as most of the physical systems are continuous in nature, a continuous

time model may provide physical understanding of the system. If a system has both fast and slow
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dynamics, one cannot build a discrete time model for such cases [1] and CTI is the best alternative.

1.2 Definitions

1.2.1 System Identification:

Any System Identification problem is characterized by the following

• a class of models

• a class of input-output signals

• a criterion

System identification methodologies can be broadly classified into two categories

1. Discrete Time Identification

2. Continuous Time Identification

1.2.2 Zero Order Hold:

When the input between two consequent time instances remains constant, then it is called a ZOH

system whose mathematical representation is u(t) = k where, Ti < t < Ti+1

1.2.3 Linear Time Invariant System

Any Linear Time Invariant System (LTI) system can be represented mathematically by

• An nth order differential equation, can be represented as

an
dny

dtn
+ an−1

dn−1y

dtn−1
+ . . .+ aoy = bm

dmu

dtm
+ bm−1

dm−1u

dtm−1
+ . . .+ bou (1.1)

• A transfer function

• n-first order differential equations

• A matrix differential equation i.e., state space model

A state space representation is a mathematical model of representing the physical system as a set of

input, output and state variables which are related by a system of first order differential equations.
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• State Variable: A state variable of a system is one of the set of variables that describes enough

about the system to determine its future behaviour in the absence of any external forces

affecting the system.

In general, any LTI system can be described using state variables as

dx1

dt = f [x1, x2, x3, . . . , xn, u1, u2, . . . , un]

dx2

dt = f [x1, x2, x3, . . . , xn, u1, u2, . . . , un]

dx3

dt = f [x1, x2, x3, . . . , xn, u1, u2, . . . , un]
...

dxn
dt = f [x1, x2, x3, . . . , xn, u1, u2, . . . , un]

Representing all these equations in the form of a matrix, gives a state space model of generalized

form as

dX
dt = AX

Thus, the most general state space representation of a linear system with “p” inputs , “q” outputs

and “n” state variables is

dX(t)

dt
= A(t)X(t) +B(t)U(t)

Y (t) = C(t)X(t) +D(t)U(t)

Where

X(t) : State Vector, of dimension n× 1

U(t) : Input Vector, of dimension p× 1

Y (t) : Output Vector, of dimension q × 1

A(t) : State or System matrix, of dimension n× n

B(t) : Input matrix, of dimension n× p

C(t) : Output matrix, of dimension q × n

D(t) : feed through matrix, of dimension q × p
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Chapter 2

LITERATURE REVIEW

Continuous Time Identification (CTI) has gained much of its current importance from the year 1960,

prior to which, dynamic systems modelling was done using either frequency or transient response

data. The rapid development in the methods of parameter estimation in the domain of discrete-

time modelling, allowed the scientific community to draw parallels between it and its counterpart,

continuous time modelling, leading to simultaneous development in the domain of CTI [2].

Consider the following generic representation of a system of ordinary differential equation (ODE),

dX

dt
= f(x, u, t/θ) (2.1)

In general, in case where the analytical solution of the system of ODEs mentioned above is not

available, the method of Laplace transform might be used to estimate the parameters of the system

of linear ODEs when they are time independent. While in most of the other cases, several numerical

methods may be applied, such as least square regression, etc. to estimate the parameters. The

dependency of the solution of system of ODEs on the Laplace variable imposes certain restrictions

on the selection of inputs into the system to ensure stability of the algorithm [3]. While the numerical

methods to solve the system of ODEs, would either fail with increase in number of the parameters

or again suffer with the issues of instability.

A significant work [4] reported in the literature suggested two kind of approaches viz.

a. To identify a discrete time model from the given data and then to effectively convert the discrete

time model into the continuous time model. Although there exists considerable amount of work

in literature to identify the discrete time models, conversion from discrete time to continuous

time domain is not accurate [4].
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b. To directly identify the continuous time model from the sampled data, where one can proceed

with integrating the obtained system of ODEs. However, a major flaw in this formulation lies

with the fact that the estimation of integrals is not trivial in all cases, which sometimes might

lead to a highly intense and laborious exercise.

Garnier et. al. used Equation Error(EE) methods to fit a continuous -time transfer function

model to the discrete time data, and evaluated the performance of the models by using Monte-Carlo

Simulations [1]. The experiments have been carried out to determine the parameters, sampling

period, type of input signal. The general scheme for EE model structure-based estimation of a

continuous time model from a discrete time measurement requires two stages

• Primary stage which consists of finding a pre-processing method to generate some measures of

process signals and their time derivatives. Pre-processing methods are broadly classified into

three categories

– Linear filters

– Integral Methods

– Modulating functions

This stage also includes finding a discretizing technique so that the pre-processing operation

can be performed from the sampled input-output data.

• Secondary stage in which CT parameters are estimated within the frame work of estimation

method.

Ramsay et. al. [5] suggested a two step optimization based procedure to estimate the parameters

where, the first step being fitting the observed data using certain basis functions to enable the eval-

uation of differentials necessary in the subsequent step. While, the second step solves the obtained

system of higher order differentials in order to estimate the parameters.
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Chapter 3

Laplace Transform based

Identification

3.1 Problem Statement

The problem of system identification can be stated as the estimation of the parameters “A”, “B”, “C”

and “D” of state space model or the parameters an, an−1, . . . , ao, bm, bm−1, . . . , bo of Linear Time

Invariant (LTI) system from the input-output data: U(t)−Y (t). For the sake of simplicity, we have

assumed that the parameters A, B, C are time independent while D is a zero vector. We focused on

a single input single output (SISO) formulation which, without loss of any generality, can be easily

extended to a multiple input multiple output (MIMO) systems.

3.2 Proposed Method

The proposed method is based on the fact that, for the systems where the aforementioned assump-

tions hold good and initial values of the states are zeros, the Laplace transformed equation results

in a system of linear equations which in most cases can be solved easily. Thus for such systems, the

state space equations can now be written as follows:

dX(t)

dt
= AX(t) +BU(t) (3.1)

Y (t) = CX(t) (3.2)
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Now, applying Laplace transform on both sides results in the following equation:

sX(s)−X(0) = AX(s) +BU(s)

Y (s) = cX(s)

As X(0) = 0, the final form of transformed equations are

sX(s) = AX(s) +BU(s)

Y (s) = CX(s)

Modifying the above equation gives,

X(s) = [sI −A]−1BU(s) (3.3)

Thus Final Y (s) can be written as,

Y (s) = C[sI −A]−1BU(s) (3.4)

Truncating the expansion [sI −A]−1 to the first n+ 1 terms, we have

⇒ Y (s) = −[CA−1B + CA−2B + CA−3B + CA−4B + · · ·+ CA−(n+l)B]U(s)

⇒ Y (s) = −
[
CA−1B CA−2B CA−3B . . . CA−(n+l)B

]



1

s

s2

s3

. . .

sn


U(s)

The above equation is of the form Y = −G ∗W where

Y = Y (s)

G =

[
CA−1B CA−2B CA−3B . . . CA−(n+l)B

]
W =

[
1 s s2 s3 . . . sn

]T
U(s)
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Although the above expressions are derived only for a single value of s, it can be shown that a similar

derivation can be obtained for multiple values of s. In such cases where one encounters multiple

values of s, Y will be a vector, W will be decomposed into two matrices in which one is a pure s

matrix, known as Vandermonde matrix while the other one is the “input matrix”.

For example, considering n values of s, then the system of equations retains the same structure of

Y = G×W, but

Y =

[
Y (s1) Y (s2) Y (s3) . . . Y (sN )

]
G =

[
CA−1B CA−2B CA−3B . . . CA−(n+l)B

]

W =



1 1 1 . . . 1

s1 s2 s3 . . . sN

s21 s22 s23 . . . s2N
...

...
... . . .

...

sn1 sn2 sn3 . . . snN





U(s1) 0 0 . . . 0

0 U(s2) 0 . . . 0

0 0 U(s3) . . . 0

...
...

... . . .
...

0 0 0 . . . U(sN )


The solution to the equation Y = G×W is given below:

G = (Y ∗WT )−1(W ∗WT ) (3.5)

Here since the direct estimation of Laplace transform is impossible, the Laplace transforms are

calculated numerically by using the equation

U(s) = L{U(t)} =

∫ ∞
0

e−stU(t)dt = δ

T∑
k=0

e−skδU(kδ) (3.6)

The major issues regarding the solution of the equation is

• The matrix W should be of full row rank.

• Numerical estimation of the Laplace transform and selection of values of s, as bad selection

leads to the matrix W to become highly ill conditioned.

One possible solution to the aforementioned problems might be the selection of values of s lying on

a unit circle which would lead to W being the Discrete Fourier Transform Matrix, whose condition
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number is one thus ensuring stability of the system. The general formula for selecting s values are

sk = e−
i2kπ
n+1 , k = 0, 1, . . . , n (3.7)

But as mentioned previously the choice of s restricts the selection of input to that whose poles lie in

a region with real part less than -1, an example to such an input is exponentially decaying function.

One more restriction is that the number of s values that are needed to be chosen should be equal to

the series truncating number i.e., N = n+ 1

3.3 Numerical Experimentation:

For a simple illustration consider a simple single tank system which is a simple first order system as

shown in the given figure.

Figure 3.1: Simple Tank System

Writing a simple mass balance to such a system,

A
dh1
dt

= u1 − q1 (3.8)

where

q1 =
h1
R1

⇒ dh1
dt

=
u1
A1
− h1
A1R1

11



After rearranging,

⇒ dh1
dt

= − 1

A1R1
h1 +

u1
A1

(3.9)

Y = h1 (3.10)

Comparing the above equations with the state apace equation, the height of the tank was the

state variable and the parameters are:

a = − 1

A1R1

b =
1

A1

c = 1;

d = 0;

3.4 Results and Conclusions

Consider a state space model with exponentially decaying function as input and with the variables

a = −2,b = 1, c = 1 and d = 0 for obtaining the input-output data. Once the input-output data

were obtained, the proposed method was utilized to solve the problem for obtaining the values of

a,b,c and d. The results of the proposed method are compared with the original values in Table

3.1. Instead of individual values of a,b,c and d, one can obtain a the values in groups such as cb/a

. . . etc. using which, one can exactly estimate only single parameter “a” and if in the remaining

parameters if one parameter is fixed the other one can be estimated.

Table 3.1: Comparision of actual method and the proposed method for a first order system
proposed method original value

CA−1B 2.000274016 2
CA−2B 2.00042701 2
CA−3B 2.000590941 2
CA−4B 2.000899333 2
CA−5B 2.001616662 2
CA−6B 2.003224625 2
CA−7B 2.006511801 2
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Consider a case of higher order system of the state space form with

A =

 0 1

−6 −5

 B =

0

1

 C =

[
1 0

]

Again following the above algorithm , the results are tabulated below

Table 3.2: Comparison of actual method and the proposed method for second order system.
proposed method original value

CA−1B 0.184336 0.166667
CA−2B 0.144282 0.138889
CA−3B 0.089778 0.087963
CA−4B 0.050743 0.050154
CA−5B 0.02731 0.027135
CA−6B 0.014289 0.014253
CA−7B 0.007339 0.007355
CA−8B 0.003715 0.003754
CA−9B 0.001852 0.001902

Thus, from the above tables, this can be concluded that the proposed method works good for

single input single output (SISO) case as well as for a higher order systems.
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Chapter 4

Parameter estimation of Linear

Time Invariant System

4.1 Introduction

Consider a system which takes an input vector u(t) and does certain operations and transforms it

into the output vector y(t). Such systems can be represented by the following form of ODE.

dy

dt
= f(y, u, t/θ) (4.1)

where the vector, θ contains all the parameters defining the function f , which needs to be estimated.

The function f , can either be linear or non-linear. In this chapter, we has assumed the function f

to be always linear. The general form of an equation which represents the LTI system is described

below:

dny

dtn
+ an−1

dn−1y

dtn−1
+ . . .+ aoy = bm

dmu

dtm
+ bm−1

dm−1u

dtm−1
+ . . .+ bou (4.2)

where

θ =

[
an−1 an−2 . . . ao bm bm−1 bm−2 . . . bo

]
(4.3)

are the parameters vector that needs to be estimated.

Here, one can use the Laplace transform tool to estimate the parameters which on one hand facili-
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tates the individual estimation of parameters [3]. While on the other hand this method of Laplace

transforms suffers with certain specific problems as disscussed in the previous chapter.

This chapter is organized as follows. The subsequent section describes the algorithms which

are well established in literature such as Least Squares based State Variable Filter (LSSVF) [6] and

Refined Instrumental variables for Continuous Time systems (RIVC) [7] along with some recently de-

veloped algorithms such as Principal Differential Analysis (PDA) [8], Generalized Smoothing splines

(GS) [5]. The following section presents a comprehensive comparison study of all the aforementioned

methods in both noise as well as noise-less systems along with some numerical simulations. The final

section presents the algorithm to estimate the parameters for the systems with unknown order.

The following three steps remain unchanged, irrespective of the algorithm.

• Define a predictor, ŷ(t, θ)

• Form an error function, e(t) = y(t)− ŷ(t, θ) and pass it through a filter, F to filter the noise.

• Form an optimization problem with this filtered errors.

Depending upon the way of filtering and the formation of optimization problem, the algorithms

differ from each other.

4.2 Least Squares based State Variable Filter

Let x(t) denotes the noise-free output. In such case, the equation (4.2) can be written as

dnx

dtn
+ an−1

dn−1x

dtn−1
+ . . .+ aox = bm

dmu

dtm
+ bm−1

dm−1u

dtm−1
+ . . .+ bou (4.4)

The above equation can be further simplified to

A(p)x(t) = B(p)u(t) (4.5)

where,

A(p) = pn + pn−1 + · · ·+ p0

B(p) = pm + pm−1 + · · ·+ p0

pi =
di

dti
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The filter used in LSSVF is of the form

F (p) =
1

(p+ λ)k
(4.6)

where, k should be greater than or equal to n. For sake of simplicity we considered k = n.

Thus, the equation 4.4 can be expressed as

x
(n)
f (tk) = ΦT (tk)ΘT (4.7)

where,

xif (t) = fi(p)x(t)

uif (t) = fi(p)u(t)

and fi(p) = pi

(p+λ)n

Thus, the solution vector is of the form

θ̂ =
( n∑
k=1

Φ(tk)ΦT (tk)
)−1( n∑

k=1

Φ(tk)xnf (tk)
)

(4.8)

where,

ΦT (tk) =

[
−x(n−1)f (tk) −x(n−2)f (tk) . . . −x(0)f (tk) u

(m)
f (tk) u

(m−1)
f (tk) . . . u

(0)
f (tk)

]
and θ =

[
an−1 an−2 . . . ao bm bm−1 bm−2 . . . bo

]
In case of an additive noise, the output can be expressed as y(tk) = x(tk) + η(tk) and the solution

remains same with change in Φ vector as depicted below

ΦT (tk) =

[
−y(n−1)f (tk) −y(n−2)f (tk) . . . −y(0)f (tk) u

(m)
f (tk) u

(m−1)
f (tk) . . . u

(0)
f (tk)

]

4.3 Refined Instrumental Variable Method for Continuous

Time Models

Here the error function is defined as ε(tk) = y(tk) − B(p)
A(p)u(tk), which can be modified as ε(tk) =

A(p)yf (tk)−B(p)uf (tk) with yf (tk) = 1
A(p)y(tk) and uf (tk) = 1

A(p)u(tk) and unlike LSSVF method,

here the filtering mechanism is dependent on the differential equation thus making it as an iterative
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procedure.

The RIVC algorithm is a two stage algorithm where the first stage is the initialization stage while

the second one is the actual procedure wherein each stage consists of four to five steps.

In the initialization step, to estimate the initial parameters, SRIVC algorithm was used which is

same as RIVC but with slight modifications which are explained below.

Stage 1: Initialization step

Step 1: Design a stable filter similar to the one in LSSVF method, i.e., F (p) = 1
(p+λ)n

Step 2: Filter the input-output data with this filter and also estimate the derivatives of the filtered

signals.

Step 3: Thus, the error function is x
(n)
f (tk) = ΦT (tk)ΘT and the solution is

θ̂ =
( n∑
k=1

Φ(tk)ΦT (tk)
)−1( n∑

k=1

Φ(tk)xnf (tk)
)

(4.9)

where,

ΦT (tk) =

[
−y(n−1)f (tk) −y(n−2)f (tk) . . . −y(0)f (tk) u

(m)
f (tk) u

(m−1)
f (tk) . . . u

(0)
f (tk)

]
where,

yif (t) = fi(p)y(t)

uif (t) = fi(p)u(t)

fi(p) = pi

(p+λ)n

Step 4: Proceed with the algorithm developed in stage 2 (as described below) but without the discrete

filter, known as the SRIVC method.

After estimating the initial parameters in stage-1, the stage-2 procedure is as follows

Stage 2: Actual procedure, for j=1:convergence

Step 1: Estimate x̂(tk) =
B̂j(p)

Âj(p)
u(tk)

Step 2: Estimate the error η(tk) = y(tk)− x̂(tk) and use least squares to solve

error function = η(tk)− 1

Dj(q−1)
e(tk)
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where, e(tk) is a white noise.

Step 3: Filter x̂(tk), y(tk), u(tk) and also their derivatives by passing it into a continuous filter, 1
Âj(p)

and then through discrete filter, Dj(q
−1)

Step 4: Thus the error function is ε(tk) = Φ̂(tk)(ynf (tk)− ΦT (tk)θ̂j) and solution is of the form

θ̂j =
( n∑
k=1

Φ̂(tk)ΦT (tk)
)−1( n∑

k=1

ˆΦ(tk)xnf (tk)
)

(4.10)

Where,

ΦT (tk) =

[
−y(n−1)f (tk) −y(n−2)f (tk) . . . −y(0)f (tk) u

(m)
f (tk) u

(m−1)
f (tk) . . . u

(0)
f (tk)

]
Φ̂T (tk) =

[
−x(n−1)f (tk) −x(n−2)f (tk) . . . −x(0)f (tk) u

(m)
f (tk) u

(m−1)
f (tk) . . . u

(0)
f (tk)

]
where,

yif (tk) =
Dj(q

−1)

Âj(p)
piy(tk)

uif (tk) =
Dj(q

−1)

Âj(p)
piu(tk)

xif (tk) =
Dj(q

−1)

Âj(p)

B̂j(p)

Âj(p)
pix(tk)

4.4 Principal Differential Analysis:

Similar to the LSSVF method this is not an iterative procedure and on an overview, this method

consists of two steps

• Fitting the splines to the output data with or without the penalty function(for smoothing

purpose)

• Solving the ode to obtain the parameters

First, we give some details about B-splines and their construction.

B-splines and its Construction

4.4.1 Construction

A B-spline is a piece wise polynomial of some order, fitted between points.

Let “U” be a set of “m + 1” non-decreasing sequence of numbers of form ui, called the knots and
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the P si are the control points then the general nth order spline is expressed as a recursive relation

of the form

Ni,p =
t− ui

ui+p − ui
Ni,p−1 +

ui+p+1 − t
ui+p+1 − ui+1

Ni+1,p−1 (4.11)

where

Ni,0 =


1, if ui ≤t< ui+1

0, otherwise

(4.12)

and the curve is defined by

C(t) =

N∑
i=0

PiNi,p(t) (4.13)

The Derivative of the B-spline curve is given by the general expression

dNi,p
dt

=
p

ui+p − ui
Ni,p−1 +

p

ui+p+1 − ui+1
Ni+1,p−1 (4.14)

4.4.2 Methodology:

Here, the actual LTI system is modified with considering coefficient of the input term as one. The

main reason for such a modification lies in the fact that, in such systems, the estimation of the order

becomes more accurate. Thus, the modified LTI model is

an
dny

dtn
+ an−1

dn−1y

dtn−1
+ . . .+ aoy = bm

dmu

dtm
+ bm−1

dm−1u

dtm−1
+ . . .+ u (4.15)

While solving the LTI system, the function formulation contains two parts, the first one gives

information corresponding to how best one can fit the data to a particular equation and the second

part corresponds to solving the ode.

Representing the things mathematically, in step-1, the equation to be solved was

H(c) = ||Y − Ŷ ||2 + λ

∫ T

0

(
d2Ŷ

dt2

)
(4.16)
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where

Ŷ =

N∑
k=0

ckφk

Differentiating the above equation w.r.t c′s, gives

C = (ΦTΦ− Φd)
−1(ΦY ) (4.17)

where,

Φ =



φ1(t1) φ1(t2) φ1(t3) . . . φ1(tM )

φ2(t1) φ2(t2) φ2(t3) . . . φ2(tM )

φ3(t1) φ3(t2) φ3(t3) . . . φ3(tM )

...
...

...
...

...

φN (t1) φN (t2) φN (t3) . . . φN (tM )


Φd =



∫ T
0
φ111 φ

11
1 dt

∫ T
0
φ111 φ

11
2 dt . . .

∫ T
0
φ111φ

11
N dt∫ T

0
φ112 φ

11
1 dt

∫ T
0
φ112 φ

11
2 dt . . .

∫ T
0
φ112 φ

11
N dt∫ T

0
φ113 φ

11
1 dt

∫ T
0
φ113 φ

11
2 dt . . .

∫ T
0
φ113 φ

11
N dt

...
... . . .

...∫ T
0
φ11N φ

11
1 dt

∫ T
0
φ11N φ

11
2 dt . . .

∫ T
0
φ11N φ

11
N dt


In the outer optimization step, the ODE is solved to obtain the parameter vector,

J(θ) =

∫ T

0

[an

N∑
k=1

Ck
dnφk
dtn

+ . . .+ ao

N∑
k=1

Ckφk − (bm

m∑
k=1

Cu
dmφk
dtm

+ . . .+

m∑
k=1

Cuφk)]2dt (4.18)

The solution to such problem is found using any existing optimization formulations leading to:

θ = (A)−1B (4.19)

where,

A =



∫ T
0
dnŶ
dtn

dnŶ
dtn dt

∫ T
0
dn−1Ŷ
dtn−1

dnŶ
dtn dt . . . −

∫ T
0
dmÛ
dtm

dnŶ
dtn dt . . . −

∫ T
0
dÛ
dt

dnŶ
dtn dt

...
... . . .

... . . .
...

−
∫ T
0
dnŶ
dtn

dmÛ
dtm dt −

∫ T
0
dn−1Ŷ
dtn−1

dmÛ
dtm dt . . .

∫ T
0
dmÛ
dtm

dmÛ
dtm dt . . .

∫ T
0
dÛ
dt

dmŶ
dtm dt

...
... . . .

... . . .
...

−
∫ T
0
dnŶ
dtn

dÛ
dt dt −

∫ T
0
dn−1Ŷ
dtn−1

dÛ
dt dt . . .

∫ T
0
dmÛ
dtm

dÛ
dt dt . . .

∫ T
0
dÛ
dt

dÛ
dt dt



θ =



an

an−1
...

a0

bm
...

b1



B =



∫ T
0
dnŶ
dtn U(t)dt∫ T

0
dnŶ
dtn U(t)dt

...

−
∫ T
0
dnŶ
dtn U(t)dt

...

−
∫ T
0
dnŶ
dtn U(t)dt


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4.5 Generalized Smoothing Spline:

Similar to the RIVC, this method is also an iterative method. The main difference between the

PDA method and this method is that the smoothing is based on the ODE which makes it more

effective than PDA. It also has two steps wherein the first step corresponds to the data fitting and

second step corresponds to the ode solving. The error function can be represented mathematically

as follows:

J = J1 + J2 (4.20)

where,

J1 = ||Y −
N∑
k=1

Ckφk||2 (4.21)

J2 = λ

∫ T

0

[ẏ − f(y, u, t/θ)]2dt (4.22)

The objective function is of two kinds based on the input

• Known input

• Unknown input

If case of a known input, the problem is straight forward as the objective function is of the form

J = ||Y −
N∑
k=1

Ckφk||2 + λ

∫ T

0

[

N∑
k=1

Ck
dnφk
dtn

+ . . .+ ao

N∑
k=1

Ckφk − (bm
dmu

dtm
+ . . .+ bou)]2dt (4.23)

Unlike the situation of known inputs, most of the problem formulations are with unkown inputs in

which case the form of the input function is unknown. In such cases where the inputs are unknown

but are devoid of noise, b-splines are fitted to the input data to estimate the general form of the

input equation in terms of spline coefficients.

The objective function in such a case is of the form

J = ||Y −
N∑
k=1

Ckφk||2 + λ

∫ T

0

[

N∑
k=1

Ck
dnφk
dtn

+ . . .+ ao

N∑
k=1

Ckφk − (bm

m∑
k=1

Cuk
dmφk
dtm

+ . . .+ bo

m∑
k=1

Cukφk)]2dt

(4.24)
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If the problem is such that the form of the input is known, then the optimization procedure is further

divided into two steps.

• The Inner Optimization in which, the objective function is optimized with respect to the

nuisance parameters alone keeping the structural parameters constant.

• The Outer Optimization in which the optimization is performed with respect to the structural

parameters alone.

On the other hand, if the problem is of the form where the input form is unknown, apart from

the two steps mentioned previously for the case of known inputs, an additional step has to be done

to find the spline coefficients of input by minimizing the function

J3 = ||U −
m∑
k=1

Cukφk||2 (4.25)

If the above function is optimized with respect to the coefficients, the solution vector of the form

CU = [ΦΦT ]−1[ΦU ] will be obtained where,

CU = [Cu1 Cu2 . . . Cum]T

The following sections are explained by taking the case of unknown input form into consideration.

4.5.1 Inner Optimization

During the Inner Optimization, the structural parameters are to be fixed and are differentiated with

respect to the nuisance parameters c′is. If the partial derivatives of the function with respect to the

nuisance parameters are equated to zero, the following equation will be obtained:

[λΨ− ΦΦT ]C = [λUa− ΦY ] (4.26)

and the solution for nuisance parameters will be

C = [λΨ− ΦΦT ]−1[λUa− ΦY ] (4.27)
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where,

Φ =



φ1(t1) φ1(t2) φ1(t3) . . . φ1(tM )

φ2(t1) φ2(t2) φ2(t3) . . . φ2(tM )

φ3(t1) φ3(t2) φ3(t3) . . . φ3(tM )

...
...

...
...

...

φN (t1) φN (t2) φN (t3) . . . φN (tM )


C =



C1

C2

C3

...

CN


Y =



Y1

Y2

Y3
...

YM


a =



a0

a1

a2
...

aN



U =



∫ T
0
φ1(t)(bm

∑m
k=1Cu

dmφk
dtm

+ . . .+ bo
∑m
k=1Cuφk)dt

∫ T
0
φ1

1(t)(bm
∑m
k=1Cu

dmφk
dtm

+ . . .+ bo
∑m
k=1Cuφk)dt . . .∫ T

0
φ2(t)(bm

∑m
k=1Cu

dmφk
dtm

+ . . .+ bo
∑m
k=1Cuφk)dt

∫ T
0
φ1

2(t)(bm
∑m
k=1Cu

dmφk
dtm

+ . . .+ bo
∑m
k=1Cuφk)dt . . .∫ T

0
φ3(t)(bm

∑m
k=1Cu

dmφk
dtm

+ . . .+ bo
∑m
k=1Cuφk)dt

∫ T
0
φ1

3(t)(bm
∑m
k=1Cu

dmu
dtm

+ . . .+ bo
∑m
k=1Cuφk)dt . . .

...
... . . .∫ T

0
φN (t)(bm

∑m
k=1Cu

dmφk
dtm

+ . . .+ bo
∑m
k=1Cuφk)dt

∫ T
0
φ1
N (t)(bm

∑m
k=1Cu

dmφk
dtm

+ . . .+ bo
∑m
k=1Cuφk)dt . . .



Ψ =



∑n
p=0

∑n
j=0ajap

∫ T
0
φj1φ

p
1

∑n
p=0

∑n
j=0ajap

∫ T
0
φj1φ

p
2 . . .

∑n
p=0

∑n
j=0ajap

∫ T
0
φj1φ

p
N∑n

p=0

∑n
j=0ajap

∫ T
0
φj2φ

p
1

∑n
p=0

∑n
j=0ajap

∫ T
0
φj2φ

p
2 . . .

∑n
p=0

∑n
j=0ajap

∫ T
0
φj2φ

p
N

...
... . . .

...∑n
p=0

∑n
j=0ajap

∫ T
0
φjNφ

p
1

∑n
p=0

∑n
j=0ajap

∫ T
0
φjNφ

p
2 . . .

∑n
p=0

∑n
j=0ajap

∫ T
0
φjNφ

p
N


with an=1

The value of the nuisance parameters obtained from the inner optimization step will be utilized in outer

optimization loop.

4.5.2 Outer Optimization

In order to perform the outer optimization which enables the estimation of the values of structural parameters

θ, the function J1 is considered which is an explicit function of nuisance parameters ck, which are also explicit

functions of θ. Assuming that the function J1 is twice differentiable with respect to θ and ck, the following

equation will be obtained:

dJ1

dθ
=
∂J1

∂θ
+
∂J1

∂c

∂c

∂θ
(4.28)

The dependence of nuisance parameters on θ is given by the Implicit Function Theorem which is explained

in the further section.
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4.5.2.1 Implicit Function Theorem

Statement of Theorem: Let f : Rn+m→Rm be a continuously differentiable function. The main aim is

to construct a function g : Rn→Rm whose graph is precisely the set (x, y) such that f(x, y) = 0

Explanation:

As observed above, in order to find a map, all the solutions of the given function f are needed. Since it

is not always possible to find all the solutions of f , a single point (a, b) is considered which is the solution of

the above function “f” i.e., f(a, b) = 0 and a function “g” is constructed around that point (a, b) i.e., two

open sets “U” and “V ” are constructed around “a” and “b” respectively, such that the function g : U→V is

the solution of “f” on “U×V ”. Mathematically this can be represented as:

{(x, g(x))|x ∈ U} = {(x, y) ∈ U × V |f(x, y) = 0} (4.29)

In order to state the implicit function theorem, the Jacobian matrix of f is defined at (a, b) as follows:

(Df)(a, b) =


∣∣∣∣∣∣∣∣∣∣

∂f1
∂x1

(a, b) . . . ∂f1
∂xn

(a, b)

...
...

...

∂fm
∂x1

(a, b) . . . ∂fm
∂xn

(a, b)

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
∂f1
∂y1

(a, b) . . . ∂f1
∂ym

(a, b)

...
...

...

∂fm
∂y1

(a, b) . . . ∂fm
∂ym

(a, b)

∣∣∣∣∣∣∣∣∣∣

 = [|X||Y |] (4.30)

Then, from the statement of implicit function theorem, if Y is an invertible matrix then there always exists

U,V and g and the following equation can be defined.

∂g

∂xj
(x) = −

(
∂f

∂y
(x, g(x))

)−|(
∂f

∂xj
(x, g(x))

)
(4.31)

Applying Implicit function theorem to the outer optimization problem mentioned above results in

dc

dθ
= −

(
∂2J

∂c2

)−|(
∂2J

∂c∂θ

)
(4.32)

and

dH

dθ
= −∂H

∂c

(
∂2J

∂c2

)−|(
∂2J

∂c∂θ

)
(4.33)

which is to be estimated at (θo, c(θo))

Gauss Newton algorithm is needed to estimate d2H/dθ2, which is given by the following equation:

d2H

dθ2
=

d

dθ

(
dH

dθ

)
(4.34)

Substituting dH/dθ into the above equation, the final equation will be of the form,
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d2H

dθ2
= −

(
∂2J

∂c2

)−|(
∂3J

∂c∂θ2

)
+

(
∂2J

∂c2

)−|(
∂3J

∂c2∂θ

)(
∂2J

∂c2

)−|(
∂2J

∂c∂θ

)
(4.35)

Gauss Newton algorithm is used for estimation of the new θ′s and the general step of Gauss Newton algorithm

is

θn+1 = θn − γ
(
d2H

dθ2

)−|
dH

dθ
(4.36)

Upon obtaining the new θ′s, inner optimization step is solved to get the new c′s and the process is

repeated till the convergence criteria is satisfied and the algorithm explained below.

Inputs are u(t) and

y(t)

Initialize θ0 and λ0

such that J1 >> J2

Estimate c′is by

optimizing the

equation 4.28

Estimate the new

parameter vector θ̂, by

Gauss Newton

Algorithm

Estimate the output

vector , ˆy(t) with the

new θ̂,values

Estimate ||y(t)− ˆy(t)||

value and save in err

vector

If

err at λ(i) <

err at λ(i+ 1)

Go for next lambda

Gives the parameter

vector, θ

yes

no
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4.6 Numerical simulations in Noise-less cases:

In all the following cases input u(t) is linear combination of sine wave of frequencies from 0.1 to 2.0 with a

step of 0.1.

4.6.1 System 1:

dy

dt
+ y = u(t)

Table 4.1: Comparision of all Methods for noiseless first order system

Actual LSSVF RIVC PDA GS method

lambda=0 lambda=0.1
1 1.025 1.055 0.9995 0.7154 1.015
1 1.019 1.043 1.0001 1.0178 1.018

4.6.2 System 2:

d2y

dt2
+ 3

dy

dt
+ y = u(t)

Table 4.2: Comparision of all Methods for noiseless second order system

Actual LSSVF RIVC PDA GS method

lambda=0 lambda=0.1
1 1.011 1.013 0.9905 0.724 0.98
3 3.034 3.023 2.992 2.284 2.9389
1 1.009 1.011 1 1.018 1.051

4.6.3 System 3:

d4y

dt4
+ 10

d3y

dt3
+ 35

d2y

dt2
+ 42

dy

dt
+ 24y = u(t)
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Table 4.3: Comparision of all Methods for noiseless fourth order system

Actual LSSVF RIVC PDA GS method

lambda=0 lambda=0.1
1 1.045 1.039 0.751 3.639 0.82
10 10.34 10.32 9.534 9.836 10.23
35 36.44 36.23 34.397 40.298 34.33
42 43.79 43.55 41.214 41.32 40.24
24 25.06 24.91 23.868 25.428 22.23

From the above results, we can conclude that all the aforementioned methods works well in case of a noiseless

system except the PDA method with a defined λ value. The main reason for this is because of the penalty

function in PDA is independent of system (ODE) what we have considered.

4.7 Numerical simulations in Noisy cases:

In general, there exists two kinds of noise:

a) Noise that is caused by the same signal of different frequency and amplitude

b) Random noise.

We consider a combination of both.

The input is a sine wave of frequency ranging from 0.1 to 2 with a step size of 0.1 and amplitude of 1. Thus

the noisy sine signal is of the frequency 5 and amplitude 0.1 and the mean and variance of the random noise

considered in this formulation is zero and σ, respectively. The mean to variance ratio of noise free signal to

the noisy signal is at a minimum of 5.

4.7.1 System 1:

dx

dt
+ x = u(t)

y(t) = x(t) + ε(t)

Table 4.4: Comparision of all Methods for noisy first order system

Actual LSSVF RIVC PDA GS method

lambda=0 lambda=0.1
1 1.014 1.132 0.9431 0.722 0.9602
1 0.9888 1.09 1.032 1.081 0.9428
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4.7.2 System 2:

d2x

dt2
+ 3

dx

dt
+ x = u(t)

y(t) = x(t) + ε(t)

Table 4.5: Comparision of all Methods for noisy second order system

Actual LSSVF RIVC PDA GS method

lambda=0 lambda=0.1
1 0.6282 0.603 0.1831 0.7508 1.223
3 1.762 1.538 2.924 2.409 3.006
1 0.6505 0.5965 0.7818 1.002 1.273

From the above results, we can clearly see that GS algorithm works well than the PDA. This is because of

the penalty function what we have considered in GS is ODE, which is not the case with PDA.

4.8 Model Order Estimation:

The algorithm described in the previous section gives the parameters in case of a known order. In general,

the order is also a parameter which needs to be estimated. This section deals about the case of unknown

order and its estimation using zero norm minimization [9]. First the algorithm is explained in a general case

and then application of algorithm in PDA case is described in detail.

Representing the order estimation problem mathematically, the objective is to find sparse approximation

of θ vector that minimizes some f(θ) i.e., min
||θ||0<s

f(θ), where f(θ) can be a linear function or a non-linear

function

If the function f(θ) is linear, one can use compressed sensing (CS) algorithms to estimate the model order.

In both the PDA and the GS algorithms, the function, f(θ) is non-linear, which makes it difficult to use the

CS algorithms. This leads to development of a new algorithm called the Greedy Sparse Algorithm.

4.8.1 Notations, Assumptions and Definitions:

For a given vector, x ∈ Rn, the support set of x is defined as

I1(x) ≡ {i : xi 6= 0}
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and its compliment is given by

I0(x) ≡ {i : xi = 0}

The set of vectors with at most s−sparse is given by Cs and

Cs = {x : ||x||0 ≤ s}

One assumption is that the function f is lower bounded.

Definitions:

4.8.1.1 Basic Feasible Vector:

A vector, x∗ ∈ Cs is called a basic feasible vector of our problem, if

1. when ||x∗||0 < s,5f(x∗) = 0

2. when ||x∗||0 = s,5if(x∗) = 0∀i ∈ I1(x∗)

4.8.1.2 Coordinate-wise Minima:

Let x∗ be a feasible solution of our problem ,then it is called a CW-Minima point if

1. ||x∗||0 < s and i = 1, 2, . . . , n, f(x∗) = min
t∈R

f(x∗ + tei)

2. ||x∗||0 = s and for every i ∈ I1(x∗) and j = 1, 2, . . . , n, f(x∗) ≤ min
t∈R

f(x∗ − x∗i ei + tej)

In the hierarchy, any optimal point is a CW-Minima point and any CW-Minima point is a Basic Feasible

vector (Proofs described in the subsequent chapter). So if one can have an algorithm that gives a CW-Minima

point, we can get an approximate solution to our problem and the algorithm is explained below.

Greedy Sparse Algorithm
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Initialize x0 ∈ Cs

and k = 0, 1, . . .

If ||xk||0 < s

i=1,2,. . . ,n

ti ∈

argmin
t∈R

f(xk + tei)

fi = min
t∈R

f(xk + tei)

ik ∈ arg min
i=1,2,..,n

fi

If fik < f(xk) xk+1 = xk + tikeik

stop

If ||xk||0 = s

stop

i ∈ I1(x
k), j =

1, 2, . . . , n

ti,j ∈

argmin
t∈R

f(xk − xki ei + tej)

fi,j =

min
t∈R

f(xk − xki ei + tej)

(ik, jk) ∈ argmin fi,j

i ∈ I1(x
k), j =

1, 2, . . . , n

If fikjk < f(xk)
xk+1 =

xk − xkikeik + tik,jkeik

stop

yes

yes

no

no

no

yes

The main advantage with this algorithm is that CW-minima point is guaranteed (proved in subsequent

chapter). If, we apply this algorithm to our PDA problem, the final algorithm will be as follows.

Equation 1:

H(c) = ||Y − Ŷ ||2 + λ

∫ T

0

(
d2Ŷ

dt2

)
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Start

Provide y(t) and u(t)

data

Estimate ck’s by

optimizing equation 1

Solve equation 4.19

using the greedy

sparse algorithm to

obtain the θ vector

stop

This algorithm suffers with the disadvantages of the selection of sparsity level and initial values. In the

subsequent paragraph we has proposed a method on the selection of the sparsity level and also the initial

values. To start with we has assumed certain order which can be (say) g and let n be the actual order. 1.

Solve PDA algorithm without the Sparse algorithm and obtain a dense solution of size g + 1 and let that

solution be θ̂p. Since this solution may contain negative values which may lead to an unstable system, these

negative and near zero values are replaced with 0. Thus the dense solution now become sparse and the

sparsity level was assumed to be the number of non-zero entries in the sparse vector. The application of this

algorithm has provided the following results.

Noiseless case:

Two sub cases were considered in all the simulations owing to:

• Study the effect of variation of λ along with

• Study of order variation.
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4.8.1.3 System 1:

2
dy

dt
+ y = u(t)

Table 4.6: Model order estimation of First order system

lambda=0 lambda=0 lambda=0 lambda=0 lambda=0.1 lambda=0.1 lambda=0.1 lambda=0.1

order=2 order=3 order=4 order=5 order=2 order=3 order=4 order=5
0 0 0 0 0 0 -0.1033192 0

1.996544 0 0 0 1.74111067 0.12753425 0 0
0.999088 1.991579 0 0 1.03200426 1.28709489 0 0

1.000091 1.992835 0 1.05456375 0 0
1.00068 1.976941 1.15282621 2.22116543

1.004941 1.03414023

4.8.1.4 System 2:

2
d2y

dt2
+ 3

dy

dt
+ y = u(t)

Table 4.7: Model order estimation of Second order system

lambda=0 lambda=0 lambda=0 lambda=0 lambda=0.1 lambda=0.1 lambda=0.1 lambda=0.1

order=3 order=4 order=5 order=6 order=3 order=4 order=5 order=6
0 0 0 0 0 0 0 0

1.953454 0 0 0 2.411117096 0 0 0
3.053112 1.987457 0 0 3.123129404 2.478826902 0 0
0.994333 3.050429 1.983596 0 1.049594347 3.132341843 2.484038096 0

0.998954 3.082375 2.001301 1.058161359 3.096198824 2.519186804
0.998337 3.077378 1.058984015 3.095405884

1.001813 1.064746787

4.8.1.5 System 3:

2
d3y

dt3
+ 3

d2y

dt2
+ 3

dy

dt
+ y = u(t)
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Table 4.8: Model order estimation of Third order system

lambda=0 lambda=0 lambda=0 lambda=0.1 lambda=0.1 lambda=0.1

order=4 order=5 order=6 order=4 order=5 order=6
0 0 0 0 0 0

1.641471 0 0 1.805499099 1 -0.3947826
3.193595 1.698925 0 3.37620816 1 0
2.655207 3.043406 1.500747 2.783207934 5.06355616 0
1.03268 2.74524 3.283224 1.055673281 1 2.77043259

1.007193 2.314762 1.17187804 1.78440873
1.05454 0.97166016

From the above results, it can be concluded that in case of noiseless systems, with lambda=0, PDA algorithm

works well. The reason for this might be the initial values of sparse step is itself a good approximation of

the solution, which is not the situation in case of lambda=0.1.

4.9 Estimation using error plot:

The above algorithm works fine in case of noiseless systems but in presence of noise, the PDA does not work

well and for such cases a Brute force method has been employed to estimate the model order.

In this procedure, we first fix the support of the parameter vector and use the GS-algorithm to obtain a

solution. The errors for various sparsity levels are plotted and the sparsity at which the minimum occurs is

considered to be the final solution.

4.9.1 Numerical simulations:

System1:

dx(t)

dt
+ x(t) = u(t)

y(tk) = x(tk) + ε(tk)

From the graph, at order=1 (which is the original order), the error is minimum and the solution was

a0 = 0.9846, b0 = 0.9226
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Figure 4.1: Error plot of first order System

System2:

d2x(t)

dt2
+ 3

dx(t)

dt
+ x(t) = u(t)

y(tk) = x(tk) + ε(tk)

Figure 4.2: Error plot of second order System

From the graph, at order=2 and 3, the error is minimum, so either of these can be the order of system and

for order=2, the solution was a1 = 2.239, a0 = 0.8745, b0 = 0.914

System3:

d3x

dt3
+ 3

d2x

dt2
+ 3

dx

dt
+ x = u(t)

y(tk) = x(tk) + ε(tk)

From the graph, it is clear that at order=3, the error is minimum and the solution was a2 = 3.374, a1 =
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Figure 4.3: Error plot of third order System

3.35, a0 = 0.9719 and b0 = 1.125

4.10 Conclusions and Future Study:

• From the above results it can be concluded that PDA algorithm works well in the noise-less systems

of both known and unknown orders. In the noisy systems the PDA failed in case of unknown order

because of the arbitrary regularization used (i.e, the regularization is independent of the ODE fit).

• In GS algorithm, the smoothing is based on the ODE but the main problem with GS is to find out

the initial parameters. So, either a hybrid method is needed which can perform well in all the cases

or a GS algorithm is needed along with sparsity algorithm to estimate the order of the system.

• Apart from the spline basis, we will try to use wavelet basis and multi-resolution analysis, as wavelets

are less susceptible to noise than splines.
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Chapter 5

Convergence Analysis and

Theorems

In this chapter, we briefly discuss about the convergence analysis of RIVC method as described in [10] and

the proofs of the Greedy Sparse algorithm as explained in [9].

5.1 Convergence analysis of RIVC

Consider the RIVC method explained in the previous chapter and if the following assumptions are satisfied

• The true system B∗(p)
A∗(p) is asymptotically stable and A∗(p) and B∗(p) are co-prime.

• u(tk) and e(tk) are stationary and mutually independent

• u(tk) is persistently exciting of order no less than n+m+ 1

• All zeros of Âj(p) have negative real parts , Âj(p) and B̂j(p) are co-prime and Real part of A∗(p)
Âj(p)

is

strictly positive.

• min(n−n∗,m−m∗) = 0 where, (n,m) are orders of estimates and (n∗,m∗) are orders of true systems

then the following are true.

• The matrix E{ϕ̂f (tk)ϕTf (tk)} is non-singular.

• The true parameter θ∗ is unique converging point.

• In the asymptotic case, the estimate θ̂j+1 from RIVC method locally converges in one iteration to

θ∗ [10].

Proof. Before going to begin the proof , let us define a matrix called “Sylvester Matrix”, it is a matrix that

is associated with two uni-variate polynomials.
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let P and Q are two polynomials defined as P (Z) = p0 + p1Z + p2Z
2 + · · ·+ pnZ

n and Q(Z) = q0 + q1Z +

q2Z
2 + · · ·+ qmZ

m, then Sylvester matrix is defined as

SP,Q=



pm pm−1 . . . po 0 . . . 0

0 pm pm−1 . . . po . . . 0

...
... . . .

...
... . . .

...

qn qn−1 . . . qo 0 . . . 0

0 qn qn−1 . . . qo . . . 0

...
... . . .

...
... . . .

...


The important property of this matrix is that if two polynomials do not have a common root then the matrix

is always non-singular.

Revisiting some of the equations mentioned previously in chapter 4,

ϕ̂f (tk)=
D̂j(q)

Âj(p)

[
− B̂j(p)
Âj(p)

pn−1u(tk) − B̂j(p)
Âj(p)

pn−2u(tk) . . . − B̂j(p)
Âj(p)

u(tk) pmu(tk) pm−1u(tk) . . . u(tk)

]T

ϕf (tk)=
D̂j(q)

Âj(p)

[
pn−1y(tk) pn−2y(tk) . . . y(tk) pmu(tk) pm−1u(tk) . . . u(tk)

]

Using x(t) = B∗(p)
A∗(p)u(t) and y(tk) = x(tk) + ε(tk) and if we modify the above equation then the final form of

equation is

ϕf (tk)=
D̂j(q)

Âj(p)

[
pn−1(B∗(p)u(tk) +A∗(p)ε(tk)) . . . (B∗(p)u(tk) +A∗(p)ε(tk)) pmA∗(p)u(tk) . . . A∗(p)u(tk)

]
If we simplify ϕ̂f (tk) and ϕf (tk) using the Sylvester matrix then the final form of matrices are

ϕ̂f (tk)=
D̂j(q)S(−B̂j(p),Âj(p))

Â2
j (p)

[
un+m(tk) un+m−1(tk) . . . u(tk)

]T

ϕTf (tk)=
D̂j(q)S(−B∗j (p),A∗j (p))

Âj(p)A∗(p)

[
un+m(tk) un+m−1(tk) . . . u(tk)

]
− D̂j(q)

Âj(p)

[
pn+1ε(tk) . . . ε(tk) 0 . . . 0

]

So the first part is to prove that E{ϕ̂f (tk)ϕTf (tk)} is non-singular. Substituting ϕ̂f (tk) and ϕf (tk) in it gives

E{ϕ̂f (tk)ϕTf (tk)} = S(−B̂j(p), Âj(p)).Φ.S(−B∗j (p), A∗j (p))

where

Φ = E

{
D̂2
j (q)

Â3
j (p)A

∗(p)

[
un+m(tk) un+m−1(tk) . . . u(tk)

]T [
un+m(tk) un+m−1(tk) . . . u(tk)

]}

and as from assumption-1 and assumption-4, it can be observed that both S(−B̂j(p), Âj(p)) and S(−B∗j (p), A∗j (p))

are non-singular. Thus if we prove that the matrix Φ is non-singular then the proof of part-1 is completed.
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Consider a stable filter of the form

fc̄ =
1

(p+ λ)n+m+1

uifc̄(t) = fc̄(p)p
iu(t) for i = 0, 1, . . . , n+m

Thus

Ufc̄(t) =

[
un+m
fc̄

(t) un+m−1
fc̄

(t) . . . ufc̄(t)

]

If we express it in state-space form, then U̇fc̄ = Ac̄Ufc̄ +Bc̄u(t) where

Ac̄ =



−α1 −α2 . . . −αn+m+1

1 0 . . . 1

...
... . . .

...

0 . . . 1 0


Bc̄ =



1

0

...

0


where, −α1,−α2, . . . ,−αn+m+1 are the coefficients of the polynomial (p+ λ)n+m+1

The discrete counterpart of the above state space-model is U̇fc̄(tk) = Ad̄Ufc̄(tk−1) + Bd̄u(tk−1) with

Ad = eAc̄h and Bd̄ =
∫ h

0
eAc̄γBc̄dγ where h is the difference between the sampling times, which can be

simplified as

U̇fc̄(tk) =Ad̄Ufc̄(tk−1) +Bd̄u(tk−1)

= Ad̄(Ad̄Ufc̄(tk−2) +Bd̄u(tk−2)) +Bd̄u(tk−1)

= Akd̄Ufc̄(t0) + ΓU

where Γ =

[
Akd̄Bd̄ Ak−1

d̄
Bd̄ . . . Bd̄

]
and U =

[
u(t1) u(t2) u(t3) . . . u(tk)

]T
As fc̄(p) is stable it indicates that all the roots are negative which implies that the eigenvalue of the Ad̄ lies

inside the unit circle which implies that as k → ∞, Akd̄Ufc̄(t0) → 0 and the state-space is minimal which

means that it has a minimum of n+m+ 1 states which implies the rank of the matrix Γ as n+m+ 1

Thus E{Ufc̄(tk).UTfc̄(tk)} = Γ.E{UUT }ΓT and under assumption-3, the correlation matrix E{UUT } is

positive definite which implies that E{Ufc̄(tk).UTfc̄(tk)} is positive definite.

Now considering the matrix Φ and replacing Ufc̄(tk) in that, the final expression for Φ will be

Φ = E

{(
D̂j(q)

Âj(p)A∗(p)fc̄(p)
Ufc̄(tk)

)(
D̂j(q)

Â2
j (p)fc̄(p)

Ufc̄
T (tk)

)}
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From assumption-4 along with the fact that fc̄(p) is stable if one can substitute s = jω in
D̂j(q)

Âj(p)A∗(p)fc̄(p)

then the real part of this expression is positive implying the positive definiteness of the Φ matrix and also

its stability. The fact that Φ is non-singular implies that E{ϕ̂f (tk)ϕTf (tk)} is non-singular.

Now in the part-2, it is needed to prove that θ∗ is the unique converging point.

Assume that θ̄ is limiting point of θ̂j+1 and as j →∞, the equation

E
{

[ϕ̂f (tk)(ynf (tk)− ϕTf (tk)θ̂j+1)]|θ̂j+1=θ̄

}
= 0

From x(t) = B(p)
A(p)

u(t) ,y(tk) = x(tk) + ε(tk) and from the definitions of ϕ̂f (tk),ϕTf (tk), the above equation

can be written as

E
{

[ϕ̂f (tk)(ynf (tk)− ϕTf (tk)θ̂j+1)]|θ̂j+1=θ̄

}
= E

{
D̄(q)S(−B̄(p), Ā(p)

Ā2(p)
[un+m(tk) . . . u(tk)]T .

(
D̄(q)

Ā(p)B∗(p)− B̄(p)A∗(p)

Ā(p)A∗(p)
u(tk) + D̄(q)ε(tk)

)}

= E

{
D̄2(q)S(−B̄(p), Ā(p)

Ā3(p)A∗(p)
[un+m(tk) . . . u(tk)]T [un+m(tk) . . . u(tk)]

}
.H

= 0

Where, H = Ā(p)B∗(p)− B̄(p)A∗(p)

It can be proved that the first term is non-singular and the proof is similar to that of the proof in part-1.

As the expression is equated to zero it implies that H = 0 and from the assumptions-4 and assumption-5,

only one solution to this problem can be obtained which is θ∗. This is because from assumption-5, the

order of the system is clearly defined and from assumption-4, the solution should be positive definite. The

consideration of both these assumptions reveals that the only possible solution is θ∗. Thus, θ∗ is the unique

converging point.

Thus the only part left is to prove that in asymptotic case, the solution converges locally in only one iteration.

To prove this, certain variables have been redefined as follows, ϕ̂f (tk) as ϕ̂f (tk, θ̂j) and ϕf (tk) as ϕf (tk, θ̂j)

and the following two new functions are introduced.

f1(θ̂j) :=
( 1

N

N∑
i=1

ϕ̂f (tk, θ̂j)ϕ
T
f (tk, θ̂j)

)

and

f2(θ̂j) :=
( 1

N

N∑
i=1

ϕ̂f (tk, θ̂j)
(
ynf (tk)− ϕTf (tk, θ̂j)θ

∗))
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The linearisation of θ̂j+1 around the limiting point θ̄ then from Taylor expansion truncated to first term

gives

θ̂j+1 − θ̄'f1(θ̄)f2(θ̄) +

(
∂f1(θ̂j)

∂θ̂j

∣∣∣
θ̂j=θ̄

f2(θ̄) + f1(θ̄)
∂f2(θ̂j)

∂θ̂j

∣∣∣
θ̂j=θ̄

)
(θ̂j − θ̄)

From proof of part-2, one can observe that as N →∞, f2(θ̄) = 0

⇒ θ̂j+1 − θ̄'f1(θ̄)
∂f2(θ̂j)

∂θ̂j

∣∣∣
θ̂j=θ̄

(θ̂j − θ̄)

=
( 1

N

N∑
i=1

ϕ̂f (tk, θ̂j)ϕ
T
f (tk, θ̂j)

)
X

1

N

N∑
i=1

(∂ϕ̂f (tk, θ̂j

∂θ̂j

∣∣∣∣∣
θ̂j=θ̄

(
ynf (tk)− ϕTf (tk, θ̄j)θ̄

))

− ϕ̂f (tk)
(∂ynf (tk)

∂θ̂j

∣∣∣∣∣
θ̂j=θ̄

− θ̄T
∂ϕTf (tk, θ̄j)

∂θ̂j

∣∣∣∣∣
θ̂j=θ̄

)

Thus, here if it can be proved that eigenvalue of matrix are stable or the terms are asymptotic independent,

then θ̂j+1 is locally convergent to θ̄ [10]

The first term in the RHS comprises of two terms and if it is expanded,

ynf (tk)− ϕTf (tk, θ̄j)θ̄ = D̄(q)ε(tk)

∂ϕ̂f (tk, θ̂j)

∂θ̂j
= fp(u(tk))

where fp is some function of u(t) and from assumption-2, it can be observed that these two terms are

asymptotically independent. In the same way it can also be proved that the second term is also independent

(see equations after 24 in [10]). Thus ,in the asymptotic case, θ̂j+1 is locally convergent to θ̄. This completes

the theorem

5.2 Proofs of Greedy Sparse Algorithm

As explained in chapter-4, it has to be proven that any optimal point is a CW-minima point [9].

Instead of proving it, one can also prove that any CW-minima point is a BF-vector and any optimal point

is a BF-vector.

Theorem 5.2.1. Let x∗ ∈ Cs be a optimal point of min
||θ||0<s

f(θ), then x∗ is a BF-vector.

Proof. If ||x∗|| < s and let g(t) = f(x∗ + tei)

As x∗ is an optimal point ⇒ 0 ∈ argmin{g(t)}

otherwise, ∃ a t0 for which, f(x∗ + t0ei) < f(x∗)

when t = 0, there will be a minimum and thus g′(t) = 0⇒g′(t) = 0

40



⇒5if(x∗) = 0 ∀ i ∈ {1, 2, . . . , n} ⇒ 5f(x∗) = 0

If ||x∗|| = s, the same argument holds good but in this case, our i ∈ I1(x∗) ⇒5if(x∗) = 0

Theorem 5.2.2. Let x∗ ∈ Cs be a CW-minima of min
||θ||0<s

f(θ), then x∗ is a BF-vector.

Proof. When ||x∗|| = s, i ∈ I1(x∗) and j = 1, 2, . . . , n, and x∗ is CW-Minima,

⇒ by definition, f(x∗) ≤ min
t∈R

f(x∗ − x∗i ei + tej)

If i = j, ⇒ f(x∗) ≤ min
t∈R

f(x∗ − x∗i ei + tei), as x∗ is CW-minima point

⇒ f(x∗) is the minimum point, so f(x∗) = min
t∈R

f(x∗ − x∗i ei + tei)

Let s = t − x∗i ⇒ f(x∗) = min
s∈R

f(x∗ + sei) and if x∗ is CW-Minima point then by the same argument of

the above theorem, it can be observed that x∗ is BF-vector.
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