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Abstract

We present two contributions in this work: i) a bivariate generalized Gaussian distribution (BGGD)
model for the joint distribution of luminance and disparity subband coefficients of natural stereo-
scopic scenes, and ii) a no-reference (NR) stereo image quality assessment algorithm based on the
BGGD model. We first empirically show that a BGGD accurately models the joint distribution
of luminance and disparity subband coefficients. We then show that the model parameters form
good discriminatory features for NR quality assessment. Additionally, we rely on the previously
established result that luminance and disparity subband coefficients of natural stereo scenes are
correlated, and show that correlation also forms a good feature for NR quality assessment. These
features are computed for both the left and right luminance-disparity pairs in the stereo image and
consolidated into one feature vector per stereo pair. This feature set and the stereo pair’s difference
mean opinion score (DMOS) (labels) are used for supervised learning with a support vector machine
(SVM). Support vector regression is used to estimate the perceptual quality of a test stereo image
pair. The performance of the algorithm is evaluated over popular databases and shown to be com-
petitive with the state-of-the-art no-reference quality assessment algorithms. Further, the strength
of the proposed algorithm is demonstrated by its consistently good performance over both symmetric

and asymmetric distortion types. Our algorithm is called Stereo QUality Evaluator (StereoQUE).
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Chapter 1

Introduction

1.1 Evolution of 3D multimedia systems:

The day by day advancements in the multimedia technology and devices, the consumer acceptance
increases in tremendous way. Owing to these causes many research institutes and industries zones
showing much attention in the development of this technology. This is especially true in the case of
3D or stereoscopic images and videos. The 3d imaging technology starts at the earlier time of 19th
century but still it is a developing technology. With the ubiquitous usage of digital 3D content, so
many movie industries and gaming zones are putting a large amount of budget on preparation of
3D content [1]. Now this technology is not ended up with the theater screen but it also extends to
the mobile phones and broadcast televisions. This technology sends the movie lovers to a new world
which feels like good entertainment. According to the statistics of MPAA [2], nearly one third of
the general movie lovers at least attended a 3D movie in 2013. Due to this cause recently many
theater screens are changed to 3D from 2D screen. Due to the involvement of several processing
steps (sensors, compression, conversions, etc ) involved on processing of multimedia content, quality
degradation is happening to the end user. Based on present and future situation on the availability
of digital 3D content, there is a need to improve the quality of experience (QOE) to the end user.
The QOE of an observer depends on how perceptually feeling when he viewing that multimedia
content. There are two types of methods to assess the quality of multimedia content. Those are

Subjective assessment and objective assessment.



1.1.1 Types of quality assessment methods and metrics:

Quality Assessment Methods

In subjective assessment task, the human observers are giving their score of multimedia content based
on how he is feeling when he perceive the multimedia content under certain conditions. Subjective
assessment task is impractical and time consuming and cumbersome. But the subjective assessment
scores are very important to develop or performance improvement of objective quality method.
Because the subjective scores are best quality scores to mimic with HVS. So there is a need of good
objective quality metric to predict the quality score of multimedia content without using any pre
reference score. The pre reference scores are mean opinion scores (MOS) or difference mean opinion
scores (DMOS). These objective experiments are subset of Psychophysical experiments because in
these experiments we are trying to mimic with the Human Visual System (HVS). In the case of
2D multimedia content tremendous growth happening in the development of objective metric but
in stereo or 3D it is very limited. There is need of good improvement in the developing of good

objective metrics for 3D.

Quality assessment Metrics

There are three types of quality metrics are available to predict the quality score of given multimedia
content. All these methods are working based on the availability of reference or pristine multimedia
content. The Full reference image quality (FRQA) [3] model uses the entire information regarding
to the reference multimedia content. In this metric, we compare the distorted and reference content
based on our requirements, and it predict the quality score based on this comparison. In the Reduced
reference image quality (RRQA) [4] model uses some fractional information about the reference or
pristine content but in the case of No reference image quality (NRQA) [5, 6, 7] assessment does
not require any information regarding to the reference or pristine content. Compare to all these
methods NRQA is the robust method because of non-usage of reference content. Most of real time
transmissions such as multimedia services in the context of wireless, telecom links did not contain
any information regarding to the reference content. In this type of situations the NRQA is the

robust method compare to the other quality metrics.



1.2 Stereo Vision:

Two frontal horizontally spaced eyes (HVS system or binocular visual system) always receive two
slightly different images when we perceive one object or one scene. Our human brain will perform
complex manipulations on these two images to create a 3D vision. Based on these complex ma-
nipulations we are getting some additional information regarding to the depth or disparity. This

disparity or depth visualization create good difference in between the 2D and 3D perception. In the

(a) Left Stereo image. (b) Right Stereo image.

Figure 1.1: Left and Right Stereoscopic views.

above Figure 1.1 shows the left and right views of stereoscopic image. It is clearly we can observe
that both images are not same because the left image didn’t contain the right most part of right

image and the right image didn’t contain the left most part of the left image.

1.2.1 Disparity:

Binocular disparity refers to the difference or deviation of image object location in the both views.
The brain uses the disparity information to create the illusion of depth information.

The disparity of two retinal images on the actual retina depends on factors internal to the eye,
especially the location of the nodal points, even if the cross section of the retina is a perfect circle.
Disparity on retina conforms to binocular disparity when measured as degrees, while much different
if measured as distance due to the complicated structure inside eye. In the Figure 1.2 shows the
model to compute the disparity.

The full black circle is the point of fixation of both retinas. The blue object lies nearer to the
observer. Therefore it has a ”near” disparity d,,. Objects lying more far away (green) correspondingly
have a "far” disparity dy. Binocular disparity is the angle between two lines of projection in one eye
(Mathematically, d,, —d, with sign, measured counterclockwise). One of which is the real projection

from the object to the actual point of projection. The other one is the imaginary projection running



Figure 1.2: Disparity computation.

through the nodal point of the lens of the one eye to the point corresponding to the actual point of
projection in the other eye. For simplicity reasons here both objects lie on the line of fixation for
one eye such that the imaginary projection ends directly on the fovea of the other eye, but in general
the fovea acts at most as a reference. Note that far disparities are smaller than near disparities for
objects having the same distance from the fixation point.

Till now so many disparity computation algorithms are available to compute disparity map
[8]. To compute disparity map we considered that the pixel positions are deviated only in vertical
direction but not in horizontal position. The choosing of disparity algorithm we should consider
different constraints based on computation complexity, time consuming, good visualization map and
robustness. So that, to compute disparity map all algorithms are going to search in same horizontal
position. We are hypothesizing that these algorithms are mimicing with the HVS because all these
algorithms are showing very annoying errors (pixel errors) at occluded places.

The quality assessment of stereoscopic is much different from the 2D image quality assessment.
The main difference between the 2D and stereo is the third dimension (disparity). The disparity
plays a good role when we try to assess the quality of stereoscopic image. Chen et al. [9] studied the
effect of binocular depth variation of stereoscopic image in the perceptual quality of a stereoscopic
image. They finally concluded that the overall quality experience is going to decrease when the
depth increases and also they showed that for 2D images the (QOE) will not effect when the depth
variation happened.

In my thesis work I am going to present the No reference quality assessment algorithm for the

stereoscopic images based on the Natural Scene Statistics (NSS) features. In this work totally relied



in the joint statistics of luminance and disparity. These statics are going to modeled with the help
of Bivariate Generalized Gaussian Fitting (BGGD) fitting. It shows that good discrimination with
the type and level of distortion. The correlation values between the luminance and the disparity

coefficients served as one more feature for this algorithm.



Chapter 2

Literature

Stereoscopic image quality assessment receives very less attention compared to the 2D image quality
assessment in all cases (FRQA,RRQA, NRQA). This could be attributed to several factors including
but not limited to the smaller fraction of stereoscopic content compared to 2D content, an inclina-
tion to apply 2D metrics to each of the left and right stereo images, and paradoxically, the visual
annoyance resulting from poorly designed stereo imaging systems. NR stereo quality assessment has
received even lesser attention than FR and RR methods. We first review significant human visual
system (HVS) inspired FR, RR and NR stereo image quality assessment algorithms. To place our
proposed algorithm in perspective, we briefly review NSS-based 2D and stereo NR-IQA algorithms,

followed by a review of natural stereo-scopic scene statistical models.

2.1 HYVS inspired approaches

In the HVS inspired approaches, based on disparity they considered two types of approaches in
quality assessment task. Campisis et al. [10] did a systematic study about the stereoscopic image
quality assessment. In their study, they perform the subjective evaluation and proposed a FRQA
metric based on the consideration of left and right views. They used 2D FR-IQA algorithms on
the left and right views individually and combined these scores based on perceptually inspired
approaches. Finally, concluded that the 2D-IQA algorithms on the individual views necessarily can
not give a perfect score of a stereoscopic image set. Gorely et al. [11] also proposed a FRQA metric
based on the Stereo Band Limited Contrast (SBLC) feature. The above two methods did not used
any disparity map computation in their algorithms. Benoit et al. [12] are the first persons extensively

using of disparity map in their metrics. The proposed a FRQA metric based on Local and global



luminance quality scores. The performance of this algorithm has been shown to be competitive over
commonly occurring distortions. You et al. [13] also did the similar work based on the Local and
global luminance quality scores. But they extensively showed om the LIVE database and Custom
database. These two algorithms mainly concentrated on the disparity computation. Wang et al. [14]
conducted a systematic study on symmetrically distorted stereoscopic images. In the symmetrically
distorted means, both views are annoying with same level of distortion. They concluded that for
symmetrically distorted views have the overall perceptual quality score is approximately equal to
the average of left and right views but in case of asymmetric it is not working. Bensalma and
Larabi [15, 16, 17] proposed a series of FRQA approaches based on the modeling of binocular
energy. In their method, to model the binocular energy they extensively used the simple cells and
complex cells (in visual cortex) representation. To represent these cells they used the Bandlet wavelet
transform and Complex wavelet transform. Ryu et al. [18] proposed a FR-IQA for steroscopic image
based on binocular energy modeling and the SSIM (i.e. luminance, contrast,structural similarity)
parameters. They computed these parameters for each view finally they polled these scores to
get a single score. Li et al. [19] proposed a stereoscopic FR-IQA metric based on structure and
texture decomposition. They measured gradient magnitude similarity and luminance and contrast
similarity from the structure and texture decompositions. They compute these values for each
image and finally combine these scores to come up with a single score for a stereo pair. Shen et
al. [20] proposed a stereoscopic FR-IQA metric based on disparity map segmentation and SSIM
values. In their metric, they computed the disparity maps for the pristine and distorted images
and they computed the SSIM scores for these segmented disparity maps. HU et al. [21] proposed a
stereoscopic full reference image quality metric based on distortion separation method. They used
left and right views of stereoscopic view individually for distortion separation. Later they applied
the singular value decomposition (SVD) and phase-amplitude description (PAD) methods. These
scores are pooled to compute a quality score for the stereo image pair. Zhou et al. [22] proposed
a RR-IQA metric based on the degradation level of water marking on symmetric distorted images.
They embedded water marking on the extracted features, later at the receiver end they compared
the degradation level of water marking on account of distortion.

Till now all these metrics are working based on individual views of stereoscopic view and disparity
map. Later, so many researchers were proposed their metrics based on cyclopean model.

The cyclopean image paradigm has proven to be a successful approach for integrating depth
information into a 2D image and subsequently relying on 2D IQA algorithms for quality assessment.

Maalouf and Larabi [23] proposed a RR-IQA stereoscopic metric based on the cyclopean model of



stereoscopic image and color disparity maps. They construct individual cyclopean images and color
disparity maps for the reference and distorted set and find the IIVS-based thresholds. Later, they
compare the sensitivity coefficients of reference and distorted images to predict the quality score.
Chen et al. [24] proposed a FR-IQA metric for stereoscopic images based on the cyclopean paradigm.
They considered the effect of binocular rivalry on the stereoscopic image that are asymmetrically
distorted. They showed that the effect on quality score with and without the use of disparity
information. Chen et al. [25] also proposed a NR-IQA metric for stereoscopic image based on the
cyclopean model and NSS features. In this method, they again considered the effect of binocular
rivalry on perceptual quality. In their approach, they used a combination of 2D features extracted
from the cyclopean image and 3D features extracted from the uncertainty map produced by the
stereo matching algorithm. Chetouani et al. [26] proposed a stereoscopic FR-IQA metric that is
also based on the cyclopean image paradigm and 2D image quality metric (IQM) fusion. They
extracted 2D features from the cyclopean image and used an artificial neural network to predict the
quality score.

Akther and Sezzad et al. proposed NRQA algorithm based on the local edge based and non edge
based disparity information. Their work is based on the concept of high frequency components in the
image because to get the disparity map the edges of an object is an important thing. Additionally
they used the blockiness estimates for the distortion identification features. Mainly these people
worked on the jpeg compressed artifacts. Saho et al. explored the NRQA metric for stereoscopic
images based on the distortion specific features. They used different types of features to discriminate
the type of the distortion i.e. features are varied with type of distortion. Later they used Support
Vector Regression (SVR) to prepare the relation between the extracted features and the human
observer scores. Fezza et al. [27] proposed a NRQA metric based on the blurness maps and the
local entropy values. In their method they calculated the blurness maps for each stereo image. To
calculate these blurness maps they consider a thresholds based on the occluded region. They used
the local entropy values as weights to pool these scores. Finally, they take the average between
occluded region score and non-occluded region Score. The above methods are working based on
the modelling of HVS. All these deterministic methods (FRQA, RRQA & NRQA) shows very good
correlation with the HVS scores.

But recently many researchers are using the statistical modelling of features. These methods
are showing even better performance compared to the above approach. In the following approach.
I totally relied on the Natural Scene Statistical (NSS) modelling. The meaning of natural images

meaning those are not processed with any computer application. This approach already used in the



context of 2D image and video assessment task. In their methods this approach showed very good
performance with Dmos scores. So I inspired from these approaches to use the NSS modeling. Now

we are reviewing the statistically inspired quality assessment methods.

2.2 NSS-inspired NR-IQA Algorithms

While deterministic (HVS-inspired) approaches to FR, NR, and RR IQA have been quite popular
and successful, statistical approaches have also proven to be very successful. Our proposed algorithm
is motivated by the success of these statistical approaches. We now review a small but significant
subset of NSS-inspired 2D and stereo NR-IQA methods.

The generalized Gaussian density (GGD) and the Gaussian scale mixture (GSM) density are two
models for 2D natural scene statistics [28, 29] that are very popular and have been widely employed in
2D IQA. Moorthy et al. [30] studied NSS feature (GSM and GGD model parameter) variations over
natural and unnatural scenes. They proposed a NR-IQA metric for 2D images based on a two-stage
frame work. With the help of NSS features they classified distorted image into different distortion
classes and used these statistical features to predict the quality score of the distorted image. Mittal
et al. [31, 32] proposed a 2D NR-IQA metric based on statistical modeling of natural scenes in the
pixel domain. They considered mean subtracted contrast normalized luminance coefficients (MSCN
coeflicients) in the spatial domain and computed pairwise product of adjacent normalized luminance
coefficients to get the distortion specific information. Asymmetric GGD fitting model was used to
fit the MSCN coefficients in their method to discriminate the type of distortion. Saad et al. [6]
proposed a 2D image NR-IQA metric based on NSS modeling of DCT coefficients, again using a
univariate GGD model. Their method does not use any distorted specific features. They applied
the sample Bayesian inference model to predict the quality score of an image. Sheikh et al. [33]
proposed a 2D image NR-IQA metric based on the NSS modeling of JPEG compressed images.
They showed that the deviation or variation of expected natural statistics of respective image is
related to the perceptual quality. Chikkerur et al. [34] proposed a 2D video FR-IQA and RR-IQA
quality metric based on the statistical modeling of natural visual characteristics and perceptual
characteristics. Natural visual characteristics are divided into natural visual statistics and natural
visual features. Similarly, perceptual characteristics are classified into either frequency or pixel-
domain methods. Based on the classification scheme, they used MS-SSIM as a quality metric for

natural visual statistics, VQAM as a quality metric for natural visual features and the MOVIE index



for perceptual quality characterization. Yeskethu et al. [35] proposed a NR-IQA stereo image and
video quality metric based on the standard methods. They showed that VQM is a good metric to
predict the overall qulaity of a video and PSNR, SSIM provides better in depth perception. Mittal
et al. [36] proposed a NR stereoscopic quality of experience assessment metric based on the statistics
of luminance images and disparity maps. A slew of statistics including mean, variance, skewness,
kurtosis, differential disparity etc. are computed on the disparity maps. The mean, variance and
kurtosis of spatial activity maps of the left and right images are also computed. These statistics
compose the feature vector for the stereo pair. Dimensionality reduction techniques such as principal
components analysis (PCA) and forward feature selection (FFS)are employed on a training images to
reduce feature vector dimension. Finally, linear regression is used to estimate the perceived quality
of experience. For video quality assessment, the same method is applied on a frame-by-frame basis.
However, it is important to note that this approach, though based on statistical features, does not
attempt to model and exploit the rich and unique signature of natural stereo scene statistics. In the

following, we review statistical models of natural stereoscopic scenes.

2.2.1 Stereoscopic NSS Models

The statistical characteristics of natural stereoscopic scenes have been studied by a number of
researchers. For stereoscopic images, the modeling is typically done on subband luminance and
range/disparity coefficients — either jointly or marginally. Huang et al. [37] model the range statis-
tics of the natural environment. To construct these statistics they used a laser range finder [38] to
acquire the range maps of the natural environment. To describe the properties of range maps they
consider the single pixel and derivative statistics. The discontinuities of range maps are explored
with help of Haar wavelets. Liu et al. [39] construct the disparity information from the depth map
which is created by the range finder when a fixed point described. To construct these maps, a
spherical model of the eye structure is employed. Finally, they correlate the disparity distribution
with stereopsis of HVS.

Potetz and Lee [40] and Liu et al [41, 42] explored the statistical relationship between the
luminance and disparity maps in the spatial domain and in a multiscale subband domain respectively.
They modeled conditional histograms of luminance and disparity/range using a univariate GGD [43]
model. They also demonstrated considerable correlation between the luminance and range/disparity
subband coefficients. Su et al. [44] conducted a study on the relationship between the chrominance

and range components. They showed that the conditional distribution of luminance or chrominance

10



on the range gradients can be modeled with a Weibull distribution. Su et al. [45] proposed a
stereoscopic NR-IQA metric based on the bivariate statistical correlation model (a bivariate GGD
model) for spatially adjacent luminance subband coefficients. This model is applied to capture the
joint statistics of subband coefficients of a cyclopean image. In addition to the bivariate statistics,
they also rely on univariate NSS to form their feature vector. Support vector machine training is
performed using these features and DMOS scores as labels. Support vector regression is used to
predict the quality of a test stereo image pair. This algorithm is the current state-of-the-art NR

stereo IQA technique and outperforms state-of-the-art FR, stereo IQA algorithms as well.
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Chapter 3

Metric development

Our proposed algorithm is closest in philosophy to the work by Su et al. [45]. As noted previously,
their approach models adjacent luminance subband coefficients of cyclopean images using a bivariate
GGD. However, they do not model the joint statistics of luminance and disparity /depth subbands.
The flowchart of the proposed algorithm is shown in Fig. 3.1 and is described in the [ollowing

subsections.

Test Stereo Disparity
Stereo Pair Algorithm Map

N

Steerable Pyramid Decomposition

—

Correlation Bivariate
RMS Values v
Parameters / \ Parameters
Correlation Bivariate GGD
Feature vector Feature vector

~

Supervised Learning, Regression

Figure 3.1: Flowchart of proposed algorithm.

To construct any NRQA metric, the available information to us is very minimum. Based on
the available information we extracted some additional features which are very helpful to us. In
our approach we used only the basic information of stereoscopic view i.e. left and right view. The

proposed approach is starting with calculation of disparity map.



3.1 Disparity calculation:

The disparity evaluation is working on the basic principle of best matching between the left and
right view in the same horizontal direction. There are several algorithms are used to evaluate the

disparity map [8].

-~ =

§ . i T et
g

(c) Left corresponding disparity map. (d) Right corresponding disparity map.

Figure 3.2: Left and Right Stereo images and corresponding disparity maps.

Based on the effect of time consuming and accuracy, complexity we could choose the SSIM based
stereo matching algorithm. Even though high accuracy algorithms Belief propagation, adaptive
window algorithm etc ... performed well in terms of disparity map because of time consuming and
complexity we did not opted such algorithms and some less complex algorithms like SAD, SSD etc
...taking less time but those are not computing accurate disparity maps. So finally we relied on
SSIM approach [25] with moderate speed and better disparity map condition. The SSIM stereo
matching algorithm is working based on the best ssim score between two patches of left and right
view. Here in our case we limited the pixel variation in disparity map upto 15 only. Two sets of
disparity maps are computed per stereo pair one with the left image treated as reference and the
other with the right image treated as reference. In the Figure 3.2 it shows the left and right stereo
images and their corresponding disparity maps. The information from the disparity map is brighter

pixels are corresponding to the nearer objects and black pixels corresponding to the far objects.
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3.2 Steerable Pyramid decomposition:

The Steerable Pyramid is a linear multi-scale, multi-orientation image decomposition that pro-
vides a useful front-end for image-processing and computer vision applications [46]. The steerable
pyramid performs a polar-separable decomposition in the frequency domain, thus allowing inde-
pendent representation of scale and orientation [47, 48]. More importantly, the representation is
translation-invariant (i.e., the subbands are aliasing-free, or equivariant with respect to translation)
and rotation-invariant (i.e., the subbands are steerable, or equivariant with respect to rotation).
This can make a big difference in applications that involve representation of position or orientation
of image structure.

At the outset we would like to note that our analysis is carried out on a multi-scale/multi-
orientation subband decomposition of the stereo images and their disparity maps. This is motivated
by the multiscale modeling of the human visual system. Specifically, we work with a steerable
pyramid decomposition [47, 48] at 3 spatial scales and six orientations (0°,30°,60°,90°,150°,180°).
The subband decomposition is performed on the logarithm of the luminance and disparity images

[49].

3.3 Bivariate GGD Modeling & Correlation calculation:

The multivariate GGD distribution of a random vector x € R¥ is given by

(XM, 0 B) = ——go5(x"M %), (3.1)

M=
N
Bl'(%) O

9o.8(y) = (Q%Ha)%r(%)

where M is an N x N symmetric scatter matrix, « is the scale parameter, 5 the shape parameter
and go (-) is the density generator. Its heavy-tailed and completely parameterized form makes it
particularly attractive in modeling natural scenes. We propose a bivariate GGD model (N = 2) for

the joint distribution of luminance and disparity wavelet coefficients of natural stereoscopic scenes.

We hypothesize that a bivariate GGD can accurately model the joint distribution of luminance
and disparity subband coefficients. Fig. 3.3 illustrates a bivariate GGD model [50] fit for the joint
histogram of luminance and disparity subband coefficients of a representative pristine natural scene

from the LIVE Phase-II [24] database at the first scale and 0° orientation. Also shown are the

14



(a) Left Stereo image. (b) Left corresponding disparity map.

0

Disparity R i Disparity Al Luminance

(c) Joint histogram. (d) Bivariate GGD fit.

Figure 3.3: BGGD modeling. a =9 x107% 8 =0.11,x =5 x 1078,

model parameters and the goodness of fit statistic x. In Fig 3.4 shows the joint statistics variation
on symmetric and asymmetric distortion of the same image in LIVE Phase-II database. These are
also shown for first scale and 0° orientation. In our evaluation of the proposed BGGD model over
the LIVE Phase-I, Phase-1I, and the MICT [51] databases, the highest value for x (indicating the
worst fit) was found to be of the order of 1077. The low values of x present excellent statistical
support for our hypothesis.

We also found that the shape parameter 8 lies in the interval [0.0014, 0.45], corresponding to
heavy tailed distributions (8 = 1 corresponds to the Gaussian distribution). This observation pro-
vides corroborative evidence for the findings of Liu et al. [49], and clearly highlights the non-Gaussian
nature of the joint statistics. We now present the effect of distortion on the joint distribution of lu-
minance and disparity subband coefficients. Fig. 3.5 shows the contour plots of the joint histogram
of an undistorted image and several distorted versions of it (from the LIVE Phase-II database).
These histograms have been computed at the first scale and 0° orientation. From the plots, it is
clear that distortions affect the joint distribution.

and therefore the best-fitting BGGD model parameters. Further, the change in the model pa-
rameter values relative to the reference is proportional to the amount of distortion. This observation

is fundamental to our premise that the BGGD model parameters form good discriminatory features
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Disparity 17 {aminarice Disparity 3 Luminance

(a) Symmetrically distorted image joint (b) BGGD fit for symmetrically distorted
histogram. image.

0
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T Luminance Disparity 1 Lurminance

Disparity

(c) Asymmetrically distorted joint (d) BGGD fit for asymmetrically distorted
histogram. image.

Figure 3.4: Tllustration of BGGD variation over symmetric and asymmetric distortions.

for the quality assessment task. In addition to the BGGD model parameters, we rely on the result
by Liu et al. [49] that there exists significant correlation between luminance and disparity subband
coefficients.

Fig. 3.6 shows the variation of correlation across the six orientations at the first scale for the
same set of reference and distorted images used for the joint histogram computation. As with the
joint histogram, Fig. 3.6 shows that correlation is also affected due to distortion in a manner that
is proportional to the amount of distortion. subband. Therefore, correlation also serves as a good
feature for no-reference quality assessment. Our proposed NR stereo IQA algorithm is built on this

statistically-inspired foundation and is presented in the following.
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Figure 3.5: Joint histogram contours for commonly occurring distortions.

Our analysis is carried out on oriented subbands of the luminance and disparity images. Specif-
ically, we operate at 3 scales and 6 orientations resulting in 18 subbands. At each subband, the
BGGD model parameters («, 3) and the correlation coefficient v are computed. The features cor-
responding to the left image are subscripted by [ and those corresponding to the right image are

subscripted by r.
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Figure 3.6: Correlation scores for LIVE Phase-II database.

This results in two feature vectors f; = [} ... af%; 8L ... B840 48T £ =[at .. al8; 8L B8 AL L AT
where the superscript corresponds to the subband index. Thus we end up with a pair of feature

vectors (f}, f.) containing a total of 108 elements per stereo image pair.

3.4 Feature Consolidation:

Once the feature vectors are extracted, the next step in our algorithm is supervised learning using
DMOS scores as labels. While a supervised learning algorithm could be trained with the feature
vector pair (f}, ), it is worthwhile exploring a reduction of the feature space dimensionality. Dimen-
sionality reduction is further motivated by the fact that stereo images typically contain redundant
information, and by implication, so would the pair (f}, f,.). One way to reduce dimensionality would
be to consolidate the vector pair into a single vector. To achieve this goal, we propose the following
consolidation strategy that is based on binocular rivalry [52] and the stimulus strength in the com-
ponents of the stereo pair. Here in Table 3.1 showed the different set of weights that are used for
combining f; and £, into a single feature vector f per stereo image pair. Basically the third pooling
combination produces very high correlation value but based on the convexity property we did not
use that combination. So we relied on the fifth pooling strategy which produces the second highest
correlation value. Those equations are shown below.

Ri

i
7 L7tdl
wi=———td 3.3
"7 RIR), + RiR], (3:3)
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% RT dr

wi = — o ldr 3.4
" RiRy + RLRy, 34

f=w,0fi+w,0f, (3.5)

where w}, w! are the weights assigned to the i*" left and right subbands respectively, R}, R. are the
RMS values of the i* left and right luminance subbands respectively, RY;, R’ are the RMS values
187

of the i*! left and right disparity subbands respectively. The vectors w; = [w},..., w87, w, =

L., w®]T and ® denotes element-wise product. The weights are chosen to be proportional to

[w
the stimulus strength to the respective eye and is inspired by binocular rivalry where the dominant
stimulus strongly influences overall perception. The RMS values of the luminance and disparity

subbands are chosen to be representatives of the respective subband strengths. The final feature

vector f is a convex combination of f; and f,..

Table 3.1: SROCC on LIVE PHASE-II database for different weighting factors.

Le ftW eight(w)) RightW eight(w?) SROCC
( i
i _ A 0.7086
R+ R, R + R:.
_ B i
i i = i 0.4891
Ry + Ry, Ri, + Ri,
R Ry RRY
. . - - - - : - 0.8986
(R + Ry (Ry + Ry,) (R{ + Ri)(RY, + RY,)
1R il 1 R i
s* (o T ) s*(mr—sr + 5 ») 08214
2 R+ R, Ry A+ Ry, 2 "Ry+R. Ry + Ry,
RiRy + RLRy, RiRy + RLRy,

3.5 Supervised Learning and Regression:

The final stage of our algorithm is supervised learning using the feature vector f of a stereo pair
and its DMOS score as the feature label. We use a support vector machine (SVM) for training and
estimate the score of test inputs using support vector regression (SVR). In our experiments with
kernel choices, a radial basis function (RBF) kernel was shown to give the best performance. We

report our results for this kernel choice.
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Chapter 4

Results and Discussions:

The performance of our algorithm was evaluated on LIVE Phase-I [53], Phase-II [24],[25] and the
MICT [51] stereo image databases. Both the LIVE databases consist of five distortion categories-
White Gaussian, JP2K, JPEG, Gaussian Blur, Fast Fading and subjective quality as DMOS as-
sociated with each of its distorted stereo pair. LIVE Phase-I contains 20 pristine images and 365

distorted images. Each distortion type have 4 levels of distortion strengths.

DMOS
DMOS
3

‘o 0 0 10 20 30 0 50 B0 25 30 3/ 40 45 0 5 60 65 70 75 0 220 3 40 s 60 70 80 90 100
QScore QScore QScore

(a) LIVE PHASE-L (b) LIVE PHASE-IL (¢) MICT.

Figure 4.1: Scatter plots of SterecoQUE versus DMOS for various stereo image databases.

LIVE Phase-II contains 8 reference images and 360 distorted images. Each distortion type have
9 levels of distortion strengths. The LIVE Phase-II images are also classified into symmetric and
asymmetric distortions. The MICT database is composed of 13 reference images and JPEG distorted
versions of them. For each database, 80% of the images were used to train the SVM and the rest
were used for regression using the libsum package [54]. For statistical consistency, we perform the
training and testing 5000 times. We used random image assignment to the train and test sets for
each iteration and ensured that the train and test sets did not overlap. We report results that are

averaged over these 5000 iterations.
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Table 4.1 and 4.2 show the performance of our algorithm StereoQUE on the LIVE Phase-I

database.
Table 4.1: LCC(L) and SROCC(S) ON LIVE PHASE-I DATABASE.
Algorithm LIVE Phase-I Database
WN JP2K JPEG BLUR FF ALL
L S L S L S L S L S L S
Benoit [12] | 0.925 | 0.930 | 0.939 | 0.910 | 0.640 | 0.603 | 0.948 | 0.931 | 0.747 | 0.699 | 0.88 | 0.902
You([13] 0.941 | 0.940 | 0.877 | 0.860 | 0.487 | 0.439 | 0.919 | 0.882 | 0.730 | 0.588 | 0.881 | 0.878
Gorley[11] | 0.796 | 0.741 | 0.485 | 0.015 | 0.312 | 0.567 | 0.852 | 0.750 | 0.364 | 0.366 | 0.451 | 0.142
Chen|[24] 0.942 | 0.948 | 0.912 | 0.888 | 0.603 | 0.530 | 0.942 | 0.925 | 0.776 | 0.707 | 0.917 | 0.916
Hewage[55] | 0.895 | 0.940 | 0.904 | 0.856 | 0.530 | 0.500 | 0.798 | 0.690 | 0.699 | 0.545 | 0.830 | 0.814
Akther[51] | 0.904 | 0.914 | 0.905 | 0.866 | 0.729 | 0.675 | 0.617 | 0.555 | 0.503 | 0.640 | 0.626 | 0.383
Chen|25] 0.917 | 0.919 | 0.907 | 0.863 | 0.695 | 0.617 | 0.917 | 0.878 | 0.735 | 0.652 | 0.895 | 0.897
StereoQUE | 0.919 | 0.910 | 0.938 | 0.917 | 0.806 | 0.782 | 0.881 | 0.865 | 0.758 | 0.666 | 0.917 | 0.911

Table 4.2: RMSE ON LIVE PHASE-I DATABASE.

Algorithm

WN |JP2K

JPEGBLUR

FF | ALL

Benoit [12]
You [13]
Gorley [11]
Chen [24]
Hewage [55]
Akther [51]
Chen [25]

6.307 | 4.426

5.621 | 6.206
10.197|11.323
5.581 | 5.320
7.405 | 5.530
7.092 | 5.483

6.433 | 5.402

5.022 | 4.571

5.709 | 5.679
6.211 | 7.562
5.216 | 4.822
5.543 | 8.748
4.273 | 11.387

4.523 | 5.898

8.257| 7.061

8.492 | 7.746
11.569|14.635
7.387|6.533
9.226 | 9.139
9.332 |14.827

8.322| 7.247

StereoQUE |6.664

4.943

4.391| 6.938

9.317(6.598

Table 4.3: SROCC(S) ON LCC(L) ON MICT DATABASE.

Algorithm L S
Benoit [12] 0.910| 0.902
You [13] 0.864 | 0.857
Chen [24] 0.864 | 0.862
Akther [51] 0.765| 0.785
Chen [25] 0.913| 0.904
S3D-BLINQ Index [45]|0.933| 0.917
StereoQUE 0.935| 0.936

Table 4.3 lists performance on the MICT database on the same set of images as in Chen et al.
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[24]. Also shown are the performance numbers of the state-of-the-art methods.

Table 4.4 and 4.5 show the performance of our algorithm StereoQUE on the LIVE Phase-II

database.
Table 4.4: LCC(L) and SROCC(S) ON LIVE PHASE-I DATABASE.

Al ith LIVE Phase-I Database

gorithm WN JP2K JPEG BLUR FE ALL

L S L S L S L S L S L S

Benoit [12] | 0.925 | 0.923 | 0.939 | 0.751 | 0.640 | 0.867 | 0.948 | 0.455 | 0.747 | 0.773 | 0.88 | 0.728

You[13] 0.941 | 0.909 | 0.877 | 0.894 | 0.487 | 0.795 | 0.919 | 0.813 | 0.730 | 0.891 | 0.881 | 0.786
Gorley[11] 0.796 | 0.875 | 0.485 | 0.110 | 0.312 | 0.027 | 0.852 | 0.770 | 0.364 | 0.601 | 0.451 | 0.146

Chen[24] 0.942 | 0.940 | 0.912 | 0.814 | 0.603 | 0.843 | 0.942 | 0.908 | 0.776 | 0.884 | 0.917 | 0.889

Hewage[55] 0.895 | 0.880 | 0.904 | 0.598 | 0.530 | 0.736 | 0.798 | 0.028 | 0.699 | 0.684 | 0.830 | 0.501

Alkther[51] 0.904 | 0.714 | 0.905 | 0.724 | 0.729 | 0.649 | 0.617 | 0.682 | 0.503 | 0.559 | 0.626 | 0.543

Chen|25] 0.917 | 0.950 | 0.907 | 0.867 | 0.695 | 0.867 | 0.917 | 0.900 | 0.735 | 0.933 | 0.895 | 0.880

S3DBLINQ[45] | 0.953 | 0.946 | 0.847 | 0.845 | 0.888 | 0.818 | 0.968 | 0.903 | 0.944 | 0.899 | 0.913 | 0.905

StereoQUE 0.920 | 0.932 | 0.867 | 0.864 | 0.829 | 0.839 | 0.878 | 0.846 | 0.836 | 0.860 | 0.840 | 0.888

Table 4.5: RMSE ON LIVE PHASE-II DATASET.

Algorithm | WN (JP2K|JPEG|BLUR| FF |ALL

Benoit [12] |4.028 | 6.096 | 3.787 | 11.763|6.894 | 7.490
You [13] 4.396 | 4.186 | 4.086 | 8.649 [4.649|6.772
Gorley [11] |5.202|9.113 | 6.940 | 4.988 |8.155|9.675
Chen [24] 3.368 | 5.562 | 3.865 | 3.747 [4.966|4.987
Hewage [55] [10.713| 7.343 | 4.976 | 12.346 | 7.667 | 9.364
Akther [51] | 7.416 | 6.819 | 4.535 | 8.450 |8.505 [9.294
Chen [25] 3.513 | 4.298 | 3.342 | 4.725 [4.180|5.102

S3DBLINQ [45]| 3.547 | 5.482 | 4.169 | 4.453 |4.199|4.657

StereoQUE  [4.325| 5.087|4.756 | 6.662|6.519|7.279

The Fig. 4.1 shows the scatter plots for LIVE phase-I, LIVE phase-IT and MICT databases.
FR and RR methods are in normal font while the NR methods are italicised. From these results
it is clear that StereoQUE performs competitively not just with NR algorithms but also with FR
and RR algorithms. The strength of StereoQUE is highlighted by its consistently good performance
on both symmetric and asymmetric distortions (Table 4.6). The performance of the algorithm can
be explained by our choice of features and the weighting/consolidation strategy. The consolidation

strategy is particularly effective when assessing the quality of asymmetrically distorted images.
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Table 4.6: SROCC ON SYMMETRIC AND ASYMMETRIC DISTORTIONS IN LIVE PHASE-II
DATABASE.

Algorithm [SYMMASYMM

Benoit [12] | 0.860 | 0.671
You [13] 0914 | 0.701
Gorley [11] 0.383 0.056
Chen [24] | 0.923 | 0.842
Hewage [55] 0.656 0.496
Akther [51] | 0.420 | 0.517
Chen [25] | 0.918 | 0.834
S3D-BLINQ [45]| 0.937 0.849

StereoQUE 0.857 0.872
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Chapter 5

Conclusion

We presented a BGGD model for natural stereo scene statistics and an NR stereo IQA algo-
rithm dubbed StereoQUE based on the model. SterecoQUE was evaluated on popular stereo image
databases and shown to perform com- petitively with state-of-the-art methods. Further, it delivers
consistently high performance on symmetric and asymmetric distortions thereby demonstrating the
effectiveness of the approach. While we demonstrated the efficacy of the proposed BGGD model
using a NR stereo IQA application, the model could be useful in several other applications such as
stereo correspondence, stereo image restoration etc. In future, we intend to explore some of these

applications.
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