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Abstract

This thesis focuses on computation of transitive closure of affine integer tuple relations and its effect

on improvement on runtime of the resultant parallelized programs. Scalability issues of the compu-

tation are also discussed.

Different strategies are used by automatic parallelization compilers to find statements that can be

executed in parallel. Most of the current approaches like Pluto [1] and Polly [2] use linear/integer-

linear programming based techniques as a means to do the same. An emerging alternative is to

use the transitive closure to do the same. The transitive closure based methods are different in

strategy and complexity with compared with methods that use the linear programming based ap-

proaches. Traco [3] is a source to source transformation tool which tries to find slices of program

that can be executed in parallel using Transitive Closure. Polly [2] is a branch of LLVM which uses

scanning of AST to obtain independent dimension of iteration vector. Both Traco and Polly use

OpenMP [4] pragmas to show detected parallelism. We do a comparative study of Traco and Polly

to extract coarse grained parallelization. We suggest important modifications to Polly’s algorithm

of dependence extraction. We show limitations of the Traco compiler on various fronts: limitations

in extracting parallelism, scalability because of dependence on transitive closure etc.
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Chapter 1

Introduction

Now a days it is difficult to find someone who uses single-core machine. If we are using multi-

core machines and running code in sequential manner, then that is a wastage of resources. To

detect available parallelism in program is difficult task to do. It has always been a difficult task to

manually analyze and detect parallelism in program. The task even become more complicated in

auto-parallelism. There are some frameworks like OpenMP where we can manually annotate the

parallelism in program and make best use of underlying multi-core hardware. But if we can do this

automatically then that could save lots of time and efforts of programmer.

Amadahl’s law states that, if f is a fraction of code parallelized, and if we are using p processors

then speed up achieved is given by

1

(1− f) + (f/p)

So, if half of the computations are sequential then speed up can be at max doubled, regardless

of number of processors. Most of time of program execution is passed during execution of loops.

Parallelizing compilers tries to separate these iterations and execute them on different processors.

A dependency analysis pass is performed on code to check if loop can be executed in parallel safely.

And here computation of transitive closure comes in picture. Transitive closure is a technique that

groups up all statement instances that are dependent on each other.

1.1 What is Transitive closure

For program analysis purpose, for example in dependence analysis, we cannot construct graph of

all variables and their dependences. This is because the number of actual dependence instances are

unbounded at compile time. It is generally not possible to enumerate all the related pairs of relation

and then compute transitive closure. So parameterized integer tuple relations are used to summarize

the dependence information. For example

1 for(i=3;i<=n;i++)

2 a[i]=f(a[i -3]);

The dependence relation of above ACL can be written as.

1



R := {[i] → [i+ 3] | 1 ≤ i ≤ n}

Transitive Closure for above relation can be written as follow.

{[i] → [j] |∃k, i− j = 3k ∧ 3 ≤ i, j ≤ n ∧ (i > j ∨ i < j)}

Figure 1.1: Example of Slicing

image source: [5]

When we apply standard Codegen functionality of Omega/Cloog, we get following equivalent

code snippet. Here outer loop can be executed in parallel without being interfered by other slices.

1 for (i = 1; i <= min(n-3,3); ++i) { // parallel loop

2 a[i] = f(a[i -3]);

3 for (j = i + 3; j <= n; j += 3)

4 a[j] = f(a[j -3]);

5 }

Here, even if we know value of parameter n we still we can’t enumerate all vertices just for

analysis purpose. Here what we are describing is family of infinite relations.

Linear programming based approaches takes cubic to fifth power of number of statements to find

dependences while Transitive closure based approaches takes exponential time. Transitive closure

approaches suffer from scalability issues but they give better results than linear programming based

approaches.

1.2 Who uses Transitive closure computation

Computation of transitive closure is at heart of many applications. It is used in analysis of counter

systems to accelerate the computation of counter systems. In counter systems the power of relation

is used as “counting acceleration”[6]. In loop invariants computation, function bodies are treated

as Transitive closure which applied on invariants to refine them. Work done by shankarnarayan

[7], gonnord [8] deals with computation of invariants and that’s why allows overapproximations of

transitive closure. Fast [9] which deals with acceleration of loops, uses transitive closure. We find

reachable set of states by applying transitive closure to source vertex in program verification and

find whether error region is reachable or not. In equivalence checking [10] we apply transitive closure

to states under consideration and check if both of them are reaching same state or not. Similarly

they have prime role in maximal static expansion [11] to check weather two memory accesses are

same or not. In this thesis use of transitive closure in particular for compilers those are dealing with

automatic parallelization are studied.

2



1.3 Related work

Kelly [12] have shown that computation of transitive closure of affine tuples may not be affine in

nature. Hence often we need to go for approximations. Overapproximations are considered by

Beletska [13] and verdoolaege[5]. We can calculate exact transitive closure of set of relations which

gives a convex set. Also exact transitive closure is computable for relations which are normalized,

but that would be just subset of programs. Computation of exact transitive closure is studied by

Bielecki [14] but that is for non-affine relations. Vivien maissoneuve [15] have studied comparative

study of libraries used for transitive closure computation. Vivien’s result shows that among Aspic

[16], ISL[17] and PIPS[18] no one is better than other, they perform better on particular type of

problem.

1.4 Our contribution

In this thesis, I have done comparative study of automatic compilers, which extract parallelization

using different strategies. All of them generate code with OpenMP pragmas. In particular, I

have considered Traco [3] compiler which uses transitive closure computation to find independent

statements, and Polly [2] which uses linear/integer-linear programming based techniques to find

parallel loops. Pluto [1] is also automatic parallelization tool on polyhedral model is also studied.

Due to Pluto particularly works on C language and needs input program with pragma scops to show

probable scope for parallelization, it is not discussed much in this thesis.

I have tested the performance of both of them using the Polybench [19] benchmarks on various

metrics: For example, the results are plotted for serial and parallel execution of programs. Also

improvement in Polly’s parallelization extraction is suggested. Scalability issues of Traco compiler

are discussed. In this thesis, i have done comparative study of automatization compilers, who tries to

extract parallelization by different strategies and adds OpenMP pragmas to expose parallelization.

I have particularly considered Traco compiler which uses transitive closure computation to find

independent statements, and Polly which rely on iteration vector to find independent loop iterators.

Performance of both of them is tested on Polybench benchmark and results are plotted for serial and

parallel execution of programs. Also improvement in Polly’s parallelization extraction is suggested.

Scalability issues of Traco compiler are discussed.

1.5 Organisation of thesis

Remainder of thesis is organised as follows. In Chapter 2, we will see introduction to polyhedral

compilation, different terms and terminology used to define it, some mathematical definitions needed

to understand underlying theory. We will also have brief overview of LLVM and Polly. In Chapter

3, we will study few motivating applications which use transitive closure. We will also briefly see

current work done in computation of transitive closure and their strategies used. In Chapter 4,

we will have close look of Traco compiler, its functionality. In Chapter 5, we will see comparative

study of different approaches used to extract parallelization and their effectiveness. We will also see

scalability issues associated with them. In Chapter 6, we will have concl its functionality.
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Chapter 2

Background and Definitions

In this chapter, we will see introduction to polyhedral theory in section 2.1, we will see it’s usefulness

in program transformation. In section 2.2 we will see basic structure considered by polyhedral

compilation. In section 2.3 we define mathematical background behind polyhedral compilation.

2.1 Polyhedral Compilation

Direct translation of high level program to assembly code to object code most likely produce very

inefficient code. Architectures are now a days quite complex including several levels of cache memory,

many cores, deep pipelining, number of functional units, registers etc. Task of getting the best

possible performance object code must utilize target architecture in most efficient way is left to

compiler. As long as output program gives the same result as that of input program compiler

is free to transform intermediate code in any manner. From the very first compiler intermediate

representation of programs is in terms of Abstract syntax trees. ASTs represent each statement of

program exactly once even if statement is going to execute many number of times due to being in a

loop. This sort of representation naturally puts lots of restrictions to optimize the program.

Polyhedral compilation uses compilation technique that rely on mathematical representation of

programs, especially those involving nested loops and arrays. It uses geometric and combinatorial

optimization on program to analyze and optimize them. Initially it was introduced for compiler

parallelizer and then adopted by wide range of applications like data locality optimization, memory

management optimization, program verification etc.

Following are the most useful functionality provided by polyhedral compilation.

• It optimize or analyze program based on shape of program and not on size.

• It gives symbolic counterpart for program.

• It works on granularity of array element giving complete control over each element.

Following is the example of domain transformation of program.
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2.2 Affine Control Loop(ACL)

Affine Control Loops are defined in [20].In affine control loop programs, there are two different classes

of variables: Data variables and Index variables. The Index variables also include size parameter

which is assigned only one value at any instance of program. Data variables are typically treated as

multi-dimensional arrays and represents primary values computed by program. Scalars are treated

as zero-dimensional arrays. Index variables are of integer type and never explicitly assigned. They

get their value implicitly in execution of loop and are used to access the data variables.

The only control construct allowed is either for loop or while loop . Note that there is no if-then-

else part. The body of loop is either a assignment statement, another loop or sequential combination

of both. In any assignment statement left hand side(lhs) is data variable and right hand side(rhs) is

expression involving data variables. Access function of data variables is affine function of surrounding

loop indices.

In ACL assignment statement S executed many times depending on different values of surround-

ing loop indices. Loop indices are called as valid if they are within appropriate bounds. The set of

valid indices surrounding S is called as iteration domain, D. Since there are no conditionals, each

statement in loop must be executed for each valid value of index of surrounding loop. Every oper-

ation in loop is then identified by < Si, z >, where Si is statement and z ∈ D is an integer vector,

the iteration vector. Following is example of ACL.

1 for(i=0;i<=N;i++)

2 {

3 for(j=0;j<=N;j++)

4 {

5 A[i][j] = A[i][j] + u[i] * v[j];

6 }

7 }

5



2.3 Mathematical Definitions

In this section we will see mathematical background behind polyhedral compilation. Different types

of polyhedral structure are defined in following section.

2.3.1 Rational Polyhedron vs Polyhedron

A Rational polyhedron is a subset of Rndefined by a finite set of inequalities. Let P = {x ∈ Rn|Ax ≤
b} be a polyhedron, where A and b are rational. We call rational polyhedron as a polyhedron when

we point to set of integral points in it.

Eg.

P1 = {i, j | 0 ≤ i ≤ 4, 0 ≤ 3j ≤ 17}

can be interpreted as a rational polyhedron or polyhedron, in later case it contains 30 integer points.

2.3.2 Lattice

A lattice is a subset of Rndefined by integral linear combination of linearly independent vectors of

Rn , called generating vectors, plus affine vector. An integer lattice is a lattice having generating

vectors and affine part as integral.

Let B = {b1, b2, ..., bk} ∈ Rn*k be linearly independent vectors in Rn. Then the lattice generated

by B is given by following.

L(B) = {Bx|x ∈ Zk} = {
k�

i=1

xi ∗ bi|xi ∈ Zk}

Lattice of L1 = {2i+ 1, 3j + 5|i, j ∈ Z} is shown in figure 2.2 .

2.3.3 Z-Polyhedra

A Z-Polyhedra is a intersection of integer polyhedra with lattice. According to [21] alternatively

Z-polyhedra can be defined as invertible affine image of integer polyhedra.

Z-Polyhedra for above lattice and integer polyhedra is given by

Z1 = P1 ∩ L1

Z1 = {2i+ 1, 3j + 5|− 1 ≤ 2i ≤ 4,−15 ≤ 3j ≤ 2}

Alternatively Z1can be defined as image of polyhedron Q1 = {i, j|− 1 ≤ 2i ≤ 4,−15 ≤ 3j ≤ 2}
by an affine function {(i, j) → (2i+1, 3j +5)}. P1is obtained by taking pre-image of Q1by function

defining lattice i.e. {(i, j) → (2i+ 1, 3j + 5)}.
Following figures illustrate above mathematical definitions.
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Figure 2.2: Z-Polyhedra

Facts of Z-Polyhedra

• Iteration domains are in fact a Z-polyhedra with unit lattice.

• In general intersection of Z-polyhedra is not convex.

• Union is complex to compute.

• Parametric lattices are challenging.

• We can count number of points inside, optimize and scan.

2.3.4 Affine Transformation

Affine transformation is a function which preserves points, lines and planes eg. scaling, reflection,

rotation translation etc. Affine transformation are where we can multiply predicate by constant and

can add a constant.

Example: R2 := {[i] → [2i] | 1 ≤ i ≤ n} is an affine relation. But relationR2 :=
�
[i] →

�
i2
�
|1 ≤ i ≤ n

�

is not an affine relation.

Affine relations are basically needed to reduce problem to integer linear programming.

2.3.5 Quasi-affine Integer Tuple Sets and Relations

Quasi-affine integer sets and relations are relations of the form:

7



S (s) :=
�
x ∈ Zd|∃z ∈ Ze : Ax+Bs+Dz ≥ c

�

R (s) :=
�
x1 → x2 ∈ Zd1 × Zd2|∃z ∈ Ze : A1x1 +A2x2 +Bs+Dz ≥ c

�

A quasi-affine relation may involve parameters which correspond to symbolic constant. In the

above definition, s is a parameter. Quasi-affine term is used to specify existentially quantified

variable z. Any Presburger formula can be represented in this form.The inequality of above set gives

a convex set of points in d-dimensional field.

2.3.6 Powers of Relation

Power of is defined as below.

Definition (Power of a Relation) Let R ∈ Zn → 2z
d→zd

be a relation and k ∈ Z≥1 a positive

number, then power k of relation R is defined as

Rk :=




R if k = 1

R ◦Rk−1 k ≥ 2

Example For the relation,

R := {x → x+ 1} the k-th power is Rk := {x → x+ k|k ≥ 1}.

2.3.7 Transitive Closures

Let R ∈ Zn → 2z
d→zd

be a relation and k ∈ Z≥1 then the transitive closure R+ of R is the union of

all positive powers of R,

R+ :=
�

k≥1

Rk

Example transitive closure for relation,

R := {x → x+ 1} can be written as R+ := {x → y|∃k ≥ 1: y = x+ k} := {x → y|y ≥ x+ 1}.

2.3.8 Approximation

Fact: Even if relation is expressed in affine integer tuple form still its transitive closure and

power(with parameter k) may not be affine in nature.

Example: consider a following simple relation and its power k relation.

R := {x → 2x}

Rk :=
�
x → 2kx

�

8



In this example power k of relation is not affine and so is a case with transitive closure. Hence

we need approximation. Two varieties of approximations are possible.

Over-Approximations (OA) OA can be used in cases like program verification. Here we can

show that error state is unreachable even when reachable set is overestimated. In automatic par-

allelization where we can say two statements are independent even when dependence relation is

overestimated.

Under-Approximations (UA) UA is particularly useful in computing communication free pro-

cesses where it is often case that we obtain only one connected component.

9



Chapter 3

Literature Survey

In this chapter, in section 3.1, we will study few motivating applications which heavily rely on

computation of transitive closure to achieve their functionality at maximum. We will also see

current work done in computation of transitive closure and its approximations in section 3.2.

3.1 Motivating Applications

Three representative applications, which uses transitive closure computation are discussed in this

section.

3.1.1 Iteration Space Slicing

The purpose of iteration space slicing is to partition iteration domain into program slices that are

not interconnected through dependences. To reduce this problem to transitive closure we consider

composition of dependence relation. Any pair that is connected through one or more applications of

composition is in belong to same slice. Transitive closure thus connects each iteration to each other

iteration in same slice. In Figure 1.1. Example of Iteration space slicing is explained in details in

chapter 1.

3.1.2 Equivalence Checking

Both programs can be represented as inverted dependence graph that has been annotated with

statements that performed in that node. The two programs are equivalent if every pair of paths

that start from same element of same output arrays are such that they pass through nodes that

compute same constant or in nodes that read the same elements from the same input array. This is

essentially a reachability analysis, Barthou et al [10].

Derive accessibility relation from regular expression-

• concatenation composition

• branches union

• cycles transitive closure

10



Figure 3.1: Free scheduling
image source: [3]

3.1.3 Free Scheduling

Bielecki [3] proposed an approach permitting us to build free scheduling for statement instances of

affine loops. A legal schedule of loop statement instances is function that assigns a time of execution

to each loop statement instance preserving all depends in loop. Under free schedules, statement

instances are executed as soon as their operands are available. This allows us to minimize number

of synchronization events. Basic operation of this is to compute Rk.

3.2 Current Work

In this section, we will see different approaches used to compute transitive closure.

3.2.1 Kelly et al.

Kelly et al.[12] have shown that computation of transitive closure of affine relation may not be affine

or even computable. Author have modified floyd warshall algorithm to compute transitive closure.

Kelly particularly focuses on computation of underapproximation, which are targeted for particular

applications.

A relation is said to be in d-form iff it can be written as

{[i1, i2, . . . , im] → [j1, j2, . . . jm] |∀p, 1 ≤ p ≤ m,Lp ≤ jp − ip ≤ Up ∧ jp − ip = Mpαp}

Where Lp,Upare constants and Mpis an integer. Transitive closure of d-form is

{[i1, i2, . . . , im] → [j1, j2, . . . jm] |∃k > 0 s.t. ∀p, 1 ≤ p ≤ m,Lpk ≤ jp − ip ≤ Upk ∧ jp − ip = Mpαp}

If relation is not in d-form then we have to go for approximation. Here we set lower bound and

iteratively refine it to get better approximation.

11



R+
LB(n) =

n�

k=1

Rk

Drawback of this approximation gives large number of relations, that cannot be handled further.

3.2.2 Bielecki et al.

Bielecki et al.[14] exclusively tries to compute exact transitive closure for subset of relations that

are normalized, i.e. linear in nature. Author consider relations that are not affine, we prefer affine

relations cause they are easier to manipulate.

Bielecki et al. here author gives iterative algorithm which tries to compute exact transitive

closure, if it not computable then it goes for overapproximations. Proposed solution is set of four

algorithms. Input to algorithm is set of relations.

1. Algorithm 1: Firstly it recognizes class of each relation like d-form relation, uniform relation,

relations describing chaining only, relations with different number of input and output indices

etc. Calculate transitive closure for each relation separately and then take a union.

2. Algorithm 2: If exact transitive closure computation is not possible then convert relation to

d-form by overapproximating it and compute transitive closure.

3. Algorithm 3: Calculate union of these transitive relations.

3.2.3 Verdoolaege, Albert Cohen et al.

Verdoolaege [5] computes difference set �. The elements of � are difference in translation. k�is

path of k length in �.

R := {x → y|y ≥ 3 + x ∧ y ≤ 4 + x}

��
:= {d|∃k, 3k ≤ d ≤ 4k}

�
x → y ∈ (domR× rangR) |∃d ∈ ��

: y = d+ x
�

Parameters:

1. Parameters can be handled as constant and then project out from ��
.

2. Classify constraints

(a) Involving only variables

A1x+ c1 ≥ 0 A1x+ kc1 ≥ 0

(b) Involving only parameters

B2s+ c2 ≥ 0 B2s+ c2 ≥ 0

(a) Involving both variables and parameters

12



A3x+B3s+ c3 ≥ 0

copy only those who satisfy

∇� {y − x|B3,js+ c3,j > 0} = �

Basic notion here is to compute set of all differences. Then find k-length path from this set and

finally project out k to get transitive closure. This paper is giving better results than others but

fails when differences are affine but distances are not.
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Chapter 4

Compilers for Coarse Grained

Parallelization

In this chapter, we will have close look at Traco compiler which tries to extract independent iteration

slices. In section 4.1 we will see internal structure and libraries which traco uses. In chapter, 4.2 we

will discuss approach used by Traco to find independent iteration slices. Section 4.3 discusses the

LLVM and Polly, important modification to Polly’s parallelism extraction algorithm is suggested.

4.1 Traco compiler

Automatic coarse grained parallelization of loop program is of great importance in parallel computing

systems. Traco compiler tries to extract available parallelism in arbitrary nested program loops.

Traco is a source to source transformer compiler. It takes valid C program as a input and find

its independent slices that can be executed in parallel. The resultant program will have OpenMP

pragmas explaining parallelism. Traco automatically searches for loops in input program and replace

them with appropriate ones. It uses Petit[22] tool for dependence analysis and Omega[23] for pres-

burger arithmetic calculation. Traco can use ISL[24] or CLOOG[25] instead of codegen functionality

of omega. Basic function blocks of compiler are shown in following fig.

4.2 Optimization

The input to Traco compiler is any valid C program. For Traco compiler, pragmas are not needed to

show existence of loops. Basic functionality of finding loops is performed by function find loops.py.

It gives line number where Petit starts to extract dependence relations. Output of dependence

analysis by Petit is stored in intermediate file in a form OpenScop Specifications. To find the

source of dependences(Ultimate Dependence Source) from where independent slices starts Traco

uses following formula.

UDS = Range(R)−Domain(R)
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Figure 4.1: Traco Blcok Dia.

Preprocessing is done on input relations to make their input and output tuple have exactly same

number of elements in each relation.

eg. Replace the tuple e = [e1, e2,...em−k] by e = [e1, e2,...em−k,−1,−1,−1(k times)]. Also

extend the input and output tuples by adding identifiers to tuple eg. Ri,j = [(e) → (e
�
)] by

Ri,j = [(e, i) → (e
�
, j)].

Dependence relations along with UDS are passed to Omega calculator. Omega applies transitive

closure on each UDS and finds iteration slices. According to [26] if we have Rk then we can obtain

R+ from it and vice a versa. When we compute set S(k) = Rk(UDS) at that time set can contain

vertices that are reachable after k composition of relation or k length path, but a particular vertex

may have more than one incoming edge having reachable path of more than k length. So to compute

set of vertices that can be executed at time k we have

S(k) = Rk(UDS)−R+ ◦Rk(UDS)

4.3 Integration of Traco’s functionality in Polly

In this section,

4.3.1 Low Level Virtual Machine(LLVM)

LLVM is a compiler infrastructure developed by Lattner and Vikram adve [27]. It is build around

LLVM-IR and comes with large set of optimization and transformation passes. It uses SSA based

strategy and provide a middle layer of compiler system. LLVM is especially designed to optimize

compile time, link time, and run time, so we need not to postpone the optimization till end. Major

feature of LLVM is it’s low level intermediate representation(LLVM-IR) which captures very minute

details like size and type of variable. Such details would be much useful to perform effective opti-

mizations. Tools are already available to convert high level languages like C, python to LLVM-IR.
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It gives 3 times better performance than GCC.

4.3.2 Polly

Polly [28] project uses the polyhedral compilation strategy to optimize the LLVM-IR. It operates

on LLVM-IR there by increasing number of beneficent languages. It is high level data locality

and loop optimisation infrastructure for LLVM. It uses abstract mathematical representation of

integer polyhedra to analyse and optimize the memory accesses. Polly project of LLVM currently

implements auto-parallelism and vectorization. It is built around advanced polyhedral library with

full support for existentially quantified variables and include its own dependency analysis. Due to

simple file interface it is possible to apply transformation manually or as an external optimizer.

Unlike other Polyhedral transformation Polly do not change domain, it operates only on schedule.

4.3.3 Current working and Improvements proposed

Polly is designed as compiler’s internal analysis and optimization passes. Transformation in Polly

would create parallel loops with OpenMP pragmas as if user have added pragmas manually. The

dependency analysis module of Polly automatically detects existence of SCoPs and give them to

OpenMP code generation module.

Naive Approach used to detect parallelism is to check if certain dimension of iteration space is

carrying any dependence. If it is not then the dimension is parallel. This is very naive approach

and can detect only fully parallel dimensions. But while generating AST, compiler may split loop

over several for loops. This may happen automatically when cloog tries to optimize flow control.

Approach used in Polly is after generating AST, analysing for each for loop is that can be parallelized.

This is achieved by limiting normal parallelization check to subset of iteration space enumerated by

the loop. Polly obtain this subset directly from cloog hence it don’t need to traverse AST. This

procedure of detection of parallelization is too naive can be replaced by above.

Comparison of effectiveness of Traco and Polly is tested on polybench benchmarks. Results of

comparison are shown in chapter 5. Clearly Traco performs better than Polly. Both Traco and

Polly adds OpenMP pragmas to expose parallelism. Basic difference between their functionality is

there ability to extract dependences. Traco internally uses omega to compute transitive closure of

dependence relations. Even Polly has ISL inbuilt it do not use it. Omega was developed around 90’s,

now a days bit outdated and is not maintained any more, also there are many corner cases which

are not handled properly in it. While ISL is inspired by omega and well tested and maintained.

So there are large benefits to implement above advanced algorithm in Polly and compute transitive

closure using ISL calls.
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Chapter 5

Experiments with Two Polyhedral

Compilers

In this chapter, we will see comparative study of Traco and Polly and their scalability. Section 5.1

shows experimental input and output by Traco compiler. Section 5.1.1 shows speed up achieved

by Traco over serial computation. Section 5.1.2 shows scalability issues of Traco. Section 5.2 gives

Polly’s speed up achieved.

5.1 Traco

Polybench is a benchmark containing static control parts. It has feature like non-null data initializa-

tion, syntactic data constructs to prevent dead code elimination, parametric loop bounds for general

purpose implementation and clear kernel marking using #pragma scops. It has programs like two

matrix multiplication, LU decomposition, dynamic programming, seidel, cholesky decomposition,

2D image processing etc.

Following is a piece of code form dynprog.c of Polybench benchmark. It is transformed by Traco

to extract parallelism.

1 #pragma scop
2 for (t = 0; t < niter; t++)
3 {
4 for (j = 0; j <= maxgrid - 1; j++)
5 for (i = j; i <= maxgrid - 1; i++)
6 for (cnt = 0; cnt <= length - 1; cnt ++)
7 diff[j][i][cnt] = sum_tang[j][i];
8 for (j = 0; j <= maxgrid - 1; j++)
9 {

10 for (i = j; i <= maxgrid - 1; i++)
11 {
12 sum_diff[j][i][0] = diff[j][i][0];
13 for (cnt = 1; cnt <= length - 1; cnt ++)
14 sum_diff[j][i][cnt] = sum_diff[j][i][cnt - 1] + diff[j][i]
15 mean[j][i] = sum_diff[j][i][ length - 1];
16 }
17 }
18 for (i = 0; i <= maxgrid - 1; i++)
19 path [0][i] = mean [0][i];

17



20 for (j = 1; j <= maxgrid - 1; j++)
21 for (i = j; i <= maxgrid - 1; i++)
22 path[j][i] = path[j - 1][i - 1] + mean[j][i];
23 } #pragma endscop

Result of transformation is shown below.

1 #pragma scop

2 for (t = 0; t < niter; t++)

3 {

4 #pragma omp parallel for

5 for (j = 0; j <= maxgrid - 1; j++)

6 #pragma omp parallel for

7 for (i = j; i <= maxgrid - 1; i++)

8 #pragma omp parallel for

9 for (cnt = 0; cnt <= length - 1; cnt ++)

10 diff[j][i][cnt] = sum_tang[j][i];

11 for (j = 0; j <= maxgrid - 1; j++)

12 {

13 for (i = j; i <= maxgrid - 1; i++)

14 {

15 sum_diff[j][i][0] = diff[j][i][0];

16 #pragma omp parallel for

17 for (cnt = 1; cnt <= length - 1; cnt ++)

18 sum_diff[j][i][cnt] = sum_diff[j][i][cnt - 1] + diff[j][i][cnt];

19 mean[j][i] = sum_diff[j][i][ length - 1];

20 }

21 }

22 #pragma omp parallel for

23 for (i = 0; i <= maxgrid - 1; i++)

24 path [0][i] = mean [0][i];

25 for (j = 1; j <= maxgrid - 1; j++)

26 for (i = j; i <= maxgrid - 1; i++)

27 path[j][i] = path[j - 1][i - 1] + mean[j][i];

28 }

29 #pragma endscop

5.1.1 Runtime Experiments

Benchmarks from polybench are passed through Traco to extract the available parallelism. Execution

time for both original benchmark and transformed benchmark are plotted in Figures 5.1,5.2 and 5.3.
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Execution time are in seconds shown on y-axis. To note execution time -O3 option is used in for

both original as well as transformed code. Results are taken on 32 gpu nvidia machine.

Speed up achieved is depends two factors, primarily it depends on available parallelism in program

and secondly on compilers ability to extract it. Hence different benchmark shown different level of

speedups. For adi.c which is Alternating Direction Implicit solver, Traco was unable to parallelize

code because Petit was not able to extract dependence from it. For some benchmark transformed

code is taken more time than original one. This is due to -O3 optimization used for compiling.

These examples shows few instances where -O3 optimization produce code which is even more time

consuming. Polybench benchmarks differ in runtime in a large margin. So benchmarks having nearly

same runtime are grouped in one figure. Total three plots are shown for thirty benchmarks.

Figure 5.1: Traco 1
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Figure 5.2: Traco 2

Figure 5.3: Traco 3
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5.1.2 Compile Time Experiments

Traco’s performance is largely dependent on dependence analysis. If there are large number of

dependences that cannot be handled by omega, then its performance degrades. Scalability of Traco

is tested on matrix multiplication programs. Number of matrices are multiplied in a careful manner

so that to guard against trivial optimizations and any dead code elimination. The are multiplied in

manner shown below. Traco is unable to handle dependence relations after 20 matrix multiplication

and fails to transform the code. In figure 5.4 x-axis shows number of matrices multiplied and y-axis

shows execution time of original code and parallelized code.

1 D=AB //D,A,B are matrices

2 F=DE

3 H=FG

4 ...

Figure 5.4: Un-scalability of Traco

As Petit was able to extract dependences for 2 matrix multiplication hence unscalability is not

due to inability to extract dependences. The reason for unscalability is Omega’s inability of handle

large number of dependence relations to compute transitive closure. The main point to note is

scalability of computation of transitive closure affects the overall performance of compiler in a large

manner.
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5.2 Polly

Polly’s performance is tested on Polybench benchmark version 3.2. Improvement in execution time

of benchmarks is shown in figure 5.5, 5.6 and 5.7. Performance of Polly is quite less than that of

Traco, this is directly due to inability to extract maximum parallelism from available parallelism.

Polybench benchmarks differ in runtime in a large margin. So benchmarks having nearly same

runtime are grouped in one figure. Total three plots are shown for thirty benchmarks. X-axis shows

benchmarks under consideration and y-axis shows execution time in seconds. Experiments were

taken on 1.2MHz 64 bit 4 cpu system.

Figure 5.5: Polly 1
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Figure 5.6: Polly 2

Figure 5.7: Polly 3
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Chapter 6

Conclusions and Future work

In this chapter, we will conclude by giving conclusion and showing future direction in which this

work can be extended.

Conclusions In this thesis, we particularly focuse on ability of compiler to extract parallelism

from available parallelism in program. We studied different approaches used in compilers like Traco

and Polly. We saw the importance of transitive closure computation on compiler’s ability to extract

coarse grained parallelism. We show that transitive closure based approaches extract parallelism

in better way when compared to linear programming techniques. We also show the drawbacks of

Transitive closure based approaches based on scalability issues. We suggest new algorithm for Polly

so that it can overcome it’s drawbacks.

Future Work

• There is huge scope of implementing transitive closure based parallelism extraction algorithm

in LLVM. LLVM have a large set of inbuilt functionality that can add up performance and

help in implementation too.

• The algorithm for computation of Transitive closure could be improved, which should give

better approximations, both overapproximations and underapproximations, and should also

scale well.

• We can use different representation for showing dependence and transitive closure, like Z-

Polyhedra, where computation of transitive closure could be more accurate and scalable.
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