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Abstract

Given enormous amount of data produced each day it would be immensely useful if we could use it to

learn hidden patterns in the data without the need for explicit labels. Clustering is one of the most

popular approaches to label-less or unsupervised learning where the goal is to group together data

points (for example, images, objects, web articles etc) into meaningful sub-classes called clusters.

Although clustering is a well studied problem in machine learning but being unguided in nature, it

may result in uninteresting patterns or trends. In general clustering is considered to be an ill-posed

problem and any type of user input will help in guiding clustering towards a useful solution. For

specific problems supervised learning is a conventional alternative, but in the real world it is costly

to manually label the data and a supervised approach is no longer an option.

Most clustering algorithms fundamentally depend on the measure of similarity or dissimilarity of

data points. Traditional distance measures like Euclidean distance, Mahalanobis distance etc. can

be employed for measuring similarity but the choice of a particular measure depends on the problem

and geometry of data itself. This raises a couple of issues. How can one learn a distance metric

from the data according to the geometric properties of data? How can a few data points be selected

intelligently from the entire dataset and expert knowledge be used to provide labels or give hints

about them? If these questions can be answered sufficiently, it can lead to a significant improvement

in results over a fully unsupervised approach.

In this work we present some new ideas to address the issues raised above. We propose a method

to extend Diffusion Maps in an incremental framework using incremental Singular Value Decom-

position (SVD) which allows us to approximate diffusion distance in a computationally efficient

way. Our work also extends the Information Theoretic Metric Learning (ITML) by leveraging the

idea of low dimensional embedding using manifold learning techniques. Apart form these ideas, we

also propose to extend ’Pseudo-Metric Online Learning Algorithm’ for Active learning for clustering

by intelligently selecting the few points for which expert can provide hints. We have tested these

proposed solutions on different standard UCI machine learning datasets.
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Chapter 1

Introduction

1.1 Introduction to Metric Learning

Most machine learning algorithms, such as Support Vector Machines (SVM), kernel regression, Gaus-

sian Processes, k-means or k-nearest neighbors (kNN) fundamentally depend on the representation

of input data for which a reliable measure of (dis)similarity is known. This fundamental requirement

of machine learning algorithms raises a question on how objects are compared. If an algorithm

can determine how to measure (dis)similarity between objects then the subsequent tasks become

relatively simpler.

One of the commonly used similarity measure is Euclidean distance, which is applied under the

assumption that feature space is a Euclidean subspace. Other popular metrics like Mahalanobis

distance, Manhattan distance can also be used but a simplistic assumption on the metric may not

work well due to sophisticated hidden structure of feature space. However, manually deriving a good

metric for a specific dataset is especially arduous. This has led to Metric learning, which can be

viewed as a way to automatically learn a metric by understanding the hidden geometry of data.

1.2 Application of Metric Learning in Clustering

Metric learning is useful whenever any algorithm depends on the notion of distance measure between

data instances. Clustering, being unsupervised in nature depends on the distance measure at a very

fundamental level and using the correct metric can lead to a significant improvement in results [1].

There are many applications which involve metric learning in clustering [2] like detecting general

trends in web by clustering text, clustering news in Google news etc.

1.3 Applicability to Ocean Data Analysis

All the analytic methods on oceanic data fundamentally requires us to compute the distance between

two measurements. These data are in the form of measurements of temperature, salinity, dissolved

oxygen etc which are taken at different places by floats in ocean around the world. Clustering is

one of the widely used methods by scientists and experts to visualize and detect trends in ocean

behaviour. Although one can manually analyze the clusters but for that correctly clustering the
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enormous amount of data produced and choosing correct distance metric for it becomes crucial[3].

Further, most of the clustering methods used by them involve euclidean distance. This may not be

a reasonable assumption as models are constantly updated to reflect the current behaviour. This

makes metric learning more important.

To apply metric learning for oceanic data two factors have to be considered. First, the dimension-

ality of generated data is high, which makes it difficult to derive a correct distance metric manually.

More importantly, ocean data is ever evolving which means updating the metric is a challenge that

needs to solved continuously. This makes the problem of finding trends in oceanic data an ideal

candidate for applying automated metric learning for clustering.

1.4 Main objective

The goal of this work is to propose an unsupervised (or semi-supervised) metric learning method

which can solve the problems discussed in the previous sections. Although an unsupervised metric

learning method is an ideal solution it sets an ambitious aim of learning insights from nothing but

raw data which is difficult to achieve without compromising on the accuracy of results. A more

practical way is to get a few labels or hints from human experts which generally lead to a huge

improvements in results. This is more cost effective than the completely supervised setting without a

major sacrifice in performance. There are various challenges related to metric learning and clustering

which needs to be tackled and it is difficult to address all of them in a single solution.

In this work we have contributed different methods each of which can be used to address some

challenges.

1.5 Summary of contributions

This section describes a summary of contributions of this work. Detailed descriptions of each approach

is present in chapter 3.

1.5.1 Contribution 1: Unsupervised Metric Learning using low dimen-

sional embedding

It can be observed that natural high dimensional data usually resides in an intrinsic low dimensional

space. Manifold learning techniques like Laplacian eigenmaps[4], LLE[5], Diffusion maps[6] etc can be

used to recover the intrinsic low dimensional geometry of the data. Understanding the geometry of

data brings us close to correctly measure distance between data points. Low dimensional embedded

space of Laplacian eigenmaps and Diffusion maps are euclidean which means we can use euclidean

distance measure in embedded space to get (dis)similarity information.

Low dimensional embedding computed by Laplacian eigenmaps follows euclidean geometry, which

means we can use euclidean distance in embedding space to measure distance between points. We

leverage this property of Laplacian eigenmaps to compute similarity information between the points

and use them as an input constraints to Information Theoretic Metric Learning(ITML)[7]. We

combine Laplacian eigenmaps and ITML to get an unsupervised metric learning method. Once we
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learn a metric by our method it can be used to measure distance for new data points without the

need of any further projection or learning as required by other incremental methods[8].

To proof the proposed concept we have tested our proposed method on various standard UCI

datasets and we observe that it performs better than using euclidean distance in original space.

1.5.2 Contribution 2: Incremental Diffusion Maps

Diffusion Maps[6] is a non-linear manifold learning technique, given data in high dimensional space it

can learn a low dimensional embedding of the data such that local geometry of data is preserved.

Embedded space is euclidean which means we can use euclidean distance as a (dis)similarity measure

between data points. Since we have pairwise distance between points we can use this to get

(dis)similarity information.

To the best of our knowledge there is no incremental method proposed which can be used to calculate

diffusion distance for out of sample(new points which does not belong to training data) points. This

solves the issue of efficiently calculating the distance for newer points which is one of the challenges in

metric learning. To solve this we have leveraged the idea of incremental singular value decomposition

to approximate diffusion distance for out-of-sample data and proposed an incremental version of

diffusion maps. We have got considerable results in toy dataset but overall we conclude that due to

high approximation error this method does not work for real datasets.

1.5.3 Contribution 3: Online Active Metric Learning for Clustering

Clustering is considered as an unsupervised learning problem and many clever algorithms have been

proposed to solve it. In many cases where it is possible to get a few labels from the expert it is more

practical to view clustering as semi-supervised learning problem, but in real world when unlabeled

data is very large, to maximize the gain over the limited availability of expert feedback training

examples should be actively selected as maximally informative ones.

Although we can select more informative points using active learning methods which distance measure

to use still remains a question. To solve this we propose a two stage approach for ’Online Active

metric learning for clustering’. Our method updates the learned metric using Pseudo-Metric Online

Learning Algorithm(POLA)[9] based on actively selecting pairwise data constraints by iteratively

improving the metric with user feedback.
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Chapter 2

Related work

2.1 Metric Learning methods

Most popular machine learning algorithms like k-nearest neighbour, k-means, SVM uses a metric to

identify the distance(or similarity) between data instances. It is clear that performances of these

algorithm heavily depends on the metric being used. In absence of prior knowledge about data we

can only use general purpose metrics like Euclidean distance, Cosine similarity or Manhattan distance

etc, but these metric often fail to capture the correct behaviour of data which directly affects the

performance of the learning algorithm. Solution to this problem is to tune the metric according to

the data and the problem, manually deriving the metric for high dimensional data which is often

difficult to even visualize is not only tedious but is extremely difficult. Which leads to put effort on

metric learning which satisfies the data geometry.

Goal of metric learning algorithm is to learn a metric which assigns small distance to similar points

and relatively large distance to dissimilar points.

Definition 1 A metric on a set X is a function (called the distance function or simply distance).

d : X ×X → R,

where R is a set of real numbers, and for all x,y,z in X following condition are satisfied:

1.d(x, y) ≥ 0 (non-negativity)

2.d(x, y) = 0 if and only if x = y (coincidence axiom)

3.d(x, y) = d(y, x) (symmetry)

4.d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

If a function does not satisfy the second property but satisfies other three then it is called a

pseudometric. But since most of the metric learning methods learns a pseudometric instead of a

metric for rest of the discussion we will refer pseudometric as metric. Most of the metric learning

methods in literature learns the metric of form,

dM (x, x′) =
√

(x− x′)TM(x− x′) (2.1)

which is Mahalanobis distance,where, M = (A1/2)T (A1/2) is a positive semi-definite matrix.
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2.1.1 Supervised Metric Learning

Given a set of k dimensional data points X ∈ RN×k, supervised metric learning methods learns

a metric by using some similarity/dissimilarity information provided as a constraints. There are

different formulations proposed for supervised metric learning accommodating different kinds of

constraints. In a general supervised setting most popular form of constraints used in literature [7]

are:

1. Similarity/dissimilarity constraints

dA(xi, xj) ≤ u (i, j) ∈ S

dA(xi, xj) ≥ l (i, j) ∈ D

where, (i, j) ∈ S for objects that are similar, (i, j) ∈ D for objects that are dissimilar.

2. Relative constraints

R = (xi, xj , xk) : xi should be more similar to xj than to xk .:

dA(xi, xj) < dA(xi, xk)−m

Where m is margin, generally m is chosen to be 1.

Next section summarizes some of the widely used methods.

2.1.1.1 Large Margin Nearest Neighbor

Large Margin Nearest Neighbour(LMNN) [10] learns a metric of form 2.1 parameterized by matrix

A for kNN classification setting. Intuition behind this method is to learn a metric so that the

k-nearest-neighbours belongs to the same class while instances with difference class labels should be

separated by a margin.

Let Xn×d is a set of data points in d dimensional space, and class labels yi : i = 1...n we define

Figure 2.1: Schematic illustration of LMNN approach [10]

target neighbours for each point xi ∈ X as those points which are in k-nearest-neighbour of xi and

share the same label yi and points which do not have same label as of xi we call them impostors.

Formulation consist of two terms which compete with each other, first term is to penalizes the large
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distance between each point xi and its target neighbors while second term penalizes small distance

between xi and impostors. Cost function is defined as:

ε(L) =
∑
ij

ηij ||L(xi − xj)||2 + c
∑
ij

ηij(1− Yil[1 + ||L(xi − xj)||2 + ||L(xi − xl)||2]+) (2.2)

Where Yij and ηij are binary matrices such that Yij is 1 when labels yi and yj match and ηij is 1

when xj is in the target neighbours of xi, in second term [z]+ = max(0, z) is a standard hinge loss

function and c is some positive constant. Using cost function defined in 2.2 a convex optimization

problem can be formulated as:

min
∑
ij

ηij(xi − xj)TM(xi − xj) + c
∑
ij

ηij(1− Yilξijl) (2.3)

subject to (xi − xl)TM(xi − xl)− (xi − xj)TM(xi − xj) ≥ 1− ξijl
ξijl ≥ 0

M � 0

where matrix M = LTL and ηijl are slack variables.

2.1.1.2 Information Theoretic Metric Learning

Given similarity and dissimilarity constraints Information Theoretic Metric Learning(ITML)[11]

learns a metric of form 2.1. Problem is formulates as a convex optimization using LogDet divergence:

min
A

Dld(A,A0)

subject to dA(xi, xj) ≤ u ∀(xi, xj) ∈ S
dA(xi, xj) ≥ l ∀(xi, xj) ∈ D

A � 0

(2.4)

Details are described in section 3.1.2.

2.1.1.3 Mirror Descent for Metric Learning

Mirror Descent for Metric Learning, by Kunapuli and Shavlik [12], is online metric learning approach

which learns a pseudo-metric of form,

dM (x, z)2 = (x− z)TM(x− z)

given a pair of labeled points,(xt, zt, yt)
T , where yt denotes similarity/dissimilarity.

Taking µ as a margin, constraints can be written as,

y(µ− dM (x, z)2) ≥ 1

l(M,µ) = max
{

0, 1− y(µ− dM (x, z)2)
}

6



Where l(M,µ) is hinge loss.To learn pseudo-metric incrementally from triplets, updates can be

computed as,

Mt+1 = argmin
M�0

Bψ(M,Mt) + η 〈∆M lt(Mt, µt),M −Mt〉+ ηρ|||M |||

µt+1 = argmin
µ≥1

Bψ(µ, µt) + η∆µlt(Mt, µt)
′(µ− µt).

Where Bψ(M,Mt) is bregman divergence, with ψ(x) was taken as either squared-Frobenius distance

and von Neumann divergence.

2.1.2 Unsupervised Metric Learning

Unsupervised metric learning is generally seen as a byproduct of manifold learning or dimensionality

reduction algorithms, although metric learning has a direct connection between linear manifold

learning techniques as it finally learns a projective mapping but for non linear techniques, which are

more useful, connection is not exact and can only be seen with some approximations. Because of these

limitations of manifold techniques unsupervised metric learning has its own importance. Unsupervised

metric learning aims to learn a metric without any supervision, most of the method proposed in this

area either solve this problem in a domain specific way like clustering Gupta Abhishek A. [13] or by

understanding the geometric properties of data.

2.1.2.1 Diffusion Maps

Diffusion maps Coifman and Lafon [6] is a non-linear dimensionality reduction technique. Consider

a graph G = (Ω,W ) where Ω = {xi}Ni=1 are data samples and W is a similarity matrix with

W (i, j) ∈ [0, 1]. W is obtained by applying Gaussian kernel on distances,

W (i, j) = exp

{
−d2(i, j)

σ2

}
(2.5)

Using W we can obtain a transition matrix by row wise normalizing the similarity matrix:

P (i, j) =
W (i, j)

di
where, di =

N∑
j=1

Wij (2.6)

Diffusion map introduce diffusion distance based on transition probabilities P of data, given as:

d2t = ||Pt(i, :)− Pt(j, :)||21/φ (2.7)

where, Pt = P t.

2.1.2.2 Unsupervised metric learning using self-smoothing operator

Unsupervised metric learning using self-smoothing operator Jiang, Wang, and Tu [14] proposed a

diffusion based approach to improve input similarity between data points. It uses similar framework

as diffusion maps but instead of using the notion of diffusion distance it uses a Self Smoothing
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Operator(SSO) which preserves the structure of weight matrix W described in equation 2.5. Main

steps of SSO algorithm are summarized below:

1. Compute smoothing kernel: P = D−1W , where D is a diagonal matrix such that D(i, i) =∑n
k=1 = W (i, k)

2. Perform smoothing for t steps: Wt = WP t

3. Self-normalization: W ∗ = Γ−1Wt where Γ is a diagonal matrix such that Γ(i, i) = Wt(i, i)

4. Project W ∗ to psd cone Ŵ ∗ = psd(W ∗)

2.1.2.3 Unsupervised Distance Metric Learning using Predictability

Unsupervised distance metric learning using predictability Gupta Abhishek A. [13] learns a transfor-

mation of data which give well separated clusters by minimizing the blur ratio. This work proposes a

two step algorithm to achive this task which alternates between predicting cluster membership by

using linear regression model and again cluster these predictions. Given input data matrix XN×p

with N number of points in p dimensional space goal is to find learn a mahalanobis distance metric

d(x, y) =
√

(x− y)A(x− y)T which minimizes the blur ration defined as:

min
A,c

BR(A, c) ≡ SSC

SST

where SSC and SST are within cluster variance and total variance respectively.

2.1.2.4 Laplacian Eigenmaps

Laplacian eigenmaps learns a low dimensional embedding of the data such that the local geometry is

preserved optimally using spectral decomposition of graph laplacian. Data is represented in the form

of a graph which can be considered as an approximation of low dimensional manifold. Algorithm

comprises of three steps:

1. Construct weighted graph: This steps computes a weighted graph representation W of input

data by weighting the neighbourhood graph.

2. Construct graph laplacian: Calculate unnormalized graph laplacian as L = D −W

3. Calculate low dimensional embedding: Low dimensional embedding is calculates by doing

eigen-decomposition of graph laplacian.

2.1.2.5 Why don’t these work for us?

Unsupervised methods described in previous section has some limitations, manifold learning techniques

like Diffusion maps or Laplacian eigenmaps aims to learn a low dimensional embedding which is

then used to calculate distance between pair of points, but it does not provide us with a actual

metric which can be used to measure distance between points which were not in the sample which

essentially means we have to recompute the distances all again. Self smoothing operator approach

2.1.2.2 which is presented as an unsupervised metric learning approach has same limitation it cannot

be used to compute a general metric. Cluster predictability and cluster membership approach
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described in 2.1.2.3 learn a metric by learning a transformation by minimizing the blur ratio, but

this transformation may not be optimal if new data is added to input set.

2.1.3 Active Metric Learning

Active learning is a form of semi-supervised learning, difference is that in an active learning setup

algorithm itself chooses what data it wants to learn. Aim is to select data instances which is most

effective in training the model this saves significant cost to the end user end by asking less queries.

2.1.3.1 Active Metric Learning for Object Recognition

Active metric learning for object recognition by Ebert, Fritz, and Schiele [15] propose to combine

metric learning with active sample selection strategy for classification. This work explores to

exploitation(entropy based and margin based) and two exploration(kernel farthest first and graph

density) based strategy for active sample selection. To learn a metric Information theoretic metric

learning is used, which is combined with active sample selection is two different modes,

1. Batch active metric learning: In this mode metric is learned only once, it starts with querying

the desired number of labeled data points according to the chosen sample selection strategy

and learns a metric based on this labeled data.

2. Interleaved active metric learning: This approach alternates between active sample selection

and metric learning.

2.1.3.2 Metric+Active Learning and Its Applications for IT Service Classification

Metric+Active learning Wang et al. [16] learns a metric for ticket classification which are used by IT

service providers. This work proposed two methods to solve this problem:

1. Discriminative Neighborhood Metric Learning (DNML): DNML aims to minimize the local

discriminability of data which is same as maximize the local scatterness and to minimize the

local compactness simultaneously.

J =

∑
j:xj∈Noi

(xi − xj)TC(xi − xj)∑
k:xk∈N ei

(xi − xk)TC(xi − xk)

Where N o
i is nearest points from xi with same labels as of xi, N e

i are nearest points from xi

which have different labels than of xi.

2. Active Learning with Median Selection(ALMS): ALMS improves Transductive Experimental

Design (TED) by using available labelled information.

2.1.4 Review of Ocean Data analysis using Machine Learning

Machine learning techniques has been applied in many ocean data analysis tasks. One of the

problem is ocean biome classification. Biomes are region on earth with similar climate,ocean biome

classification can be formulated as a clustering problem which is well studied in machine learning

literature. Below are reviewed some of the published work in this area.
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2.1.4.1 Mapping Uncharted Waters

This work by Lewis et al. [3], provides quantitative classification of ocean biomes by directly applying

leading methods on high dimensional data analysis. Analysis was done on World Ocean Altas

2005(WOA05) data considering in total 14 parameters including temperature,salinity, phosphate etc

measured at 9105 locations.

Different methods like k-means, principal component analysis (PCA), multidimensional scaling,

ISOMAP, Maximum variance unfolding (MVU) were compared. This work concludes that MVU

works best for those regions seeking to measure fine spatial or temporal gradients.

2.1.4.2 ST-DBSCAN

Spatio-temporal DBSCAN(ST-DBSCAN), proposed by Birant and Kut [17], is an extension of density

based DBSCAN algorithm which uses two parameters instead of one in DBSCAN, Eps1 and Eps2,

to determine whether set of points can be considered in a same cluster.

Eps1 measures the geographical closeness of two points(latitude and longitude), while Eps2 measures

the similarity between parameters. Neighbor of object p in dataset D is defined by the points in

radius,

max
{
dist(p, q)|q ∈ D

∧
dist1(p, q) ≤ Eps1

∧
dist2(p, q) ≤ Ep2

}

10



Chapter 3

Proposed Work

In this chapter we describe the details of major contributions of this work. Chapter is divided into

subsections each of them gives details of method proposed, results and summary.

3.1 Unsupervised Metric Learning using low dimensional em-

bedding

Goal of approach presented in this section is to come up with an unsupervised metric learning

technique. Unsupervised metric learning has been generally studied as a byproduct of dimensionality

reduction or manifold learning techniques. Manifold learning techniques like Diffusion maps, Laplacian

eigenmaps discussed in previous chapter 2 has a special property that embedded space is euclidean.

Although laplacian eigenmaps can provide us with some (dis)similarity information it does not

provide with a metric which can further be used on out-of-sample data. On other hand supervised

metric learning technique like ITML which can learn a metric needs labelled data for learning.

In this approach we combine Laplacian eigenmaps and Information Theoretic Metric Learning(ITML)

to form an unsupervised metric learning method. We first project data into a low dimensional

manifold using Laplacian eigenmaps, in embedded space we use euclidean distance to get an idea

of similarity between points. If euclidean distance between points in embedded space is below a

threshold t1 value we consider them as similar points and if it is greater than a certain threshold t2

we consider them as dissimilar points. Using this we collect a batch of similar and dissimilar points

which are then used as a constraints for ITML algorithm and learn a metric. To prove this concept

we have tested our approach on various UCI machine learning datasets.

3.1.1 Laplacian eigenmaps

Laplacian eigenmaps learns a low dimensional representation of the data such that the local geometry

is optimally preserved, this low-dimensional manifold approximate the geometric structure of data.

Steps below describes the methods in detail.

Consider set of data points X ∈ RN , goal of laplacian eigenmaps is to find an embedding in m

dimensional space where m < N preserving the local properties of data.

1. Construct a graph G(V,E) where E is set of edges and V is a set of vertices. Each node in the
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graph G corresponds to a point in X, we connect any two vertices vi and vj by an edge if they

are close, closeness can be defined in 2 ways:

(a) ||xi − xj ||2 < ε, ||.|| is euclidean norm in RN or,

(b) xi is in k nearest neighbour of xj

here ε & k are user defined parameters.

2. We construct a weight matrix W (i, j) which assigns weights between each edge in the graph G,

weights can be assigned in two ways:

(a) Simple minded approach is to assign W (i, j) = 1 if vertices vi and vj are connected

otherwise 0.

(b) Heat kernel based, we assign weight W (i, j) such that:

W (i, j) =

exp
( ||xi − xj ||2

t

)
if vi and vj are connected

0 otherwise

3. Construct laplacian matrix L = D −W of the graph G, where D is a diagonal matrix with

Dii = ΣjW (i, j). Final low dimensional embedding can be computes by solving generalized

eigen decomposition

Lv = λDv

Let 0 = λ0 ≤ λ1... ≤ λm be the first smallest m + 1 eigenvalues, choose corresponding

eigenvectors v1, v2...vm ignoring eigenvector corresponding to λ0 = 0. Embedding coordinates

can be calculates as mapping:

xi ∈ RN 7→ yi ∈ Rm

where yTi = [v1(i), v2(i), ...vm(i)]

yi, i = 1, 2...n is the coordinates in m dimensional embedded space.

3.1.2 Information Theoretic Metric Learning

Information Theoretic Metric Learning(ITML)[11] learns a mahalanobis distance metric that satisfy

some given similarity and dissimilarity constraints on input data. Goal of ITML algorithm is to learn

a metric of form dA = (xi − xj)′A(xi − xj) according to which similar data point is close relative to

dissimilar points.

ITML starts with an initial matrix dA0 where A0 can be set to identity matrix(I) or inverse of

covariance of the data and eventually learns a metric dA which is close to starting metric dA0 and

satisfies the the defined constraints. To measure distance between metrics it exploits the bijection

between Gaussian distribution with fixed mean µ and Mahalanobis distance,

N (x|µ,A) =
1

Z
exp

(
− 1

2
dA(x, µ)

)

12



Using the above connection, the problem is formulated as:

min
A

∫
N (x, µ,A0)log

(
N (x, µ,A0)

N (x, µ,A)

)
dx

subject to dA(xi, xj) ≤ u ∀(xi, xj) ∈ S,
dA(xi, xj) ≥ l ∀(xi, xj) ∈ D,

A � 0

(3.1)

Above formulation can be simplified by utilizing the connection between KL-divergence and

LogDet divergence which is given as,∫
N (x, µ,A0)log

(
N (x, µ,A0)

N (x, µ,A)

)
dx =

1

2
Dld(A,A0)

where, Dld(A,A0) = tr(AA−10 )− logdet(AA−10 )− d
(3.2)

Using 3.2 and 3.1 problem can be reformulated as:

min
A

Dld(A,A0)

subject to dA(xi, xj) ≤ u ∀(xi, xj) ∈ S
dA(xi, xj) ≥ l ∀(xi, xj) ∈ D

A � 0

(3.3)

Above formulation can be solved efficiently using bregman projection method as described in Davis

et al. [11].

3.1.3 Proposed algorithm

We propose a method which combines Laplacian eigenmaps and ITML to form an unsupervised metric

learning method. Laplacian eigenmaps as described in 3.1.1 can be used to recover underlying low

dimensional manifold of data where we can use euclidean distance to get (dis)similarity information

using which we can learn a metric using supervised metric learning settings like ITML. In box 3.1.3

we describe the details of proposed algorithm.
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Manifold + supervised metric learning

Input:

X ∈ N × k, is input data in k dimensional space

ts: threshold for similarity

td: threshold for dissimilarity

ε,m: parameters for laplacian eigenmaps algorithm, m < k

Output: Learned metric Ak×k

Steps:

1. Construct low dimensional embedding:

E = laplacianEigenmaps(X, ε,m)

2. Construct similarity and dissimilarity pairs:

for each pair (xi, xj) ∈ E :

p = ||xi − xj ||2

if p ≤ ts then S ← S ∪ (xi, xj)

if p ≥ td then D ← D ∪ (xi, xj)

3. Apply ITML 3.1.2 procedure to learn metric:

A = itml(X,S,D)

We reduce the time complexity of above algorithm by limiting number of similar and dissimilar

points.

Calculating threshold: Manually setting thresholds for similarity and dissimilarity can be

difficult in real case, but we can set these thresholds with a simple procedure of calculating the

distance extremes for data in embedded space E . A safe way for setting threshold is to compute

histogram of distances and set ts & td to be the 5th and 95th percentiles respectively.

3.1.4 Results

We have evaluated our method on different UCI datasets[18], to best of our knowledge there is no

other method that does exactly what we tried we compare our algorithm with euclidean distance, we

construct similar and dissimilar pairs using euclidean distance and then learn a metric using ITML.

We split each dataset randomly into two parts 80% for training and 20% for testing, to evaluate

the learned metric with k-NN classification using learned metric as distance measure. All results

presented are the average of 5 runs.

Dataset Proposed method Euclidean + ITML

Letter recognition 95.25 93.75

Iris 83.3 76.6

Scale 84.7 82.6

Yeast 60.7 59.4

Wine 75.9 74.1
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The method we proposed in this section is general and the metric learned can be used for clustering

dataset.

3.1.5 Summary

From results it is clear that performing low dimensional embedding to obtain similar and dissimilar

pairs performs better than directly apply a general measure than euclidean distance. One important

thing to notice is that comparison is not been made directly between euclidean distance and proposed

method rather in both the cases we learned a metric using ITML . We can notice that results are

still close which implies that there is still some scope for improvement.

3.2 Incremental Diffusion Maps

3.2.1 Diffusion maps

Diffusion maps[6] are non-linear dimensionality reduction technique. It achieves dimensionality

reduction by exploiting relation between Markov chains and heat diffusion. Diffusion map embeds

data into low dimensional space such that euclidean distance between points in embedded space is

approximated as diffusion distance in the original feature space.

Consider a graph G = (Ω,W ) where Ω = {xi}Ni=1 are data samples and W is a similarity matrix with

W (i, j) ∈ [0, 1]. W is obtained by applying Gaussian kernel on distances,

W (i, j) = exp

{
−d2(i, j)

σ2

}
(3.4)

where d(i,j) is the distance between xi and xj and σ is kernel size. Using W we can obtain a transition

matrix by row wise normalizing the similarity matrix:

P (i, j) =
W (i, j)

di
where, di =

N∑
j=1

Wij (3.5)

Transition matrix reflects the local geometry of the data, where p(x, y) is the probability of transition

from x to y in one step. If we look forward in time than P t gives the probability of transition from

x to y in t time steps. Intuitively what that means is running the diffusion in time will reveal the

geometric structure of data at different scales.

Diffusion process We define a new kernel L using normalized laplacian:

L(α) = D−αWD−α (3.6)

where, D is diagonal matrix suct that Dii =
∑
jWi,j and α ∈ R. Apply weighted graph Laplacian

normalization to this kernel:

M = (D(α))−1L(α) (3.7)

where D(α) is a diagonal matrix such that D
(α)
ii =

∑
j L

(α)
i,j
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Diffusion distance can be defined in terms of eigenvectors of matrix M t

Dt(i, j) = ||Ψt(xi)−Ψt(xj)||2 (3.8)

ψl is right eigenvector and λi are eigenvalues of M t and Ψt(x) = (λt1ψ1(x), λt2ψ2(x)..., λtkψk(x)).

3.2.2 Updating SVD

Given matrix Am×n and Âm×n = UΣV ′ where Âm×n is rank-k approximation of Am×n, Zha and

Simon [19] describes the procedure to get the approximate rank-k approximation of
[
Âm×n, Bm×r

]
and

[
Âm×n;Br×n

]
. Method proposed by Zha and Simon [19] is summarized below,

Updating Columns

1. Let the QR decomposition of (I − UU ′)B be (I − UU ′)B = QR where R is upper triangular.

2. Get SVD decomposition of

[
Σ U ′B

0 R

]
= Û Σ̂V̂ ′

3. Then best rank-k approximation of
[
Âm×n, Bm×r

]
is given as

(
[U,Q]Û

)
Σ̂
( [V 0

0 I

]
V̂
)′

Updating Rows

1. Let the QR decomposition of (I − V V ′)B′ be (I − V V ′)B′ = QL′ where L’ is lower triangular.

2. Get SVD decomposition of

[
Σ 0

BV L

]
= Û Σ̂V̂ ′

3. Then best rank-k approximation of
[
Âm×n;Bm×r

]
is given as

( [U 0

0 I

]
Û
)′

Σ̂
(
[V,Q]V̂

)
3.2.3 Proposed algorithm

In box 3.2.3 we have described the basics steps of proposed incremental diffusion maps algorithm.

Calculation can be done in a very efficient way by storing the previous values of row sum at step 2

and step 4 of the algorithm.
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Incremental Diffusion map algorithm

Input:

D: distance matrix of size N ×N
T: distance matrix of new points N + p× p
n: dimension of embedding

U,S,V : SVD of markov transition matrix M t obtained using old points

Diffusion maps paramenets: σ, α

Output: Û , Ŝ, V̂ , DD: Diffusion distance matrix of size N + p×N + p

Steps:

1. Update D by adding new rows and columns from T to get D̂(N + p×N + p)

2. Apply gaussian kernel to get W on D̂

3. Compute new kernel by applying laplacian normalization, L(α) = D−αWD−α

4. Calculate M = (D(α))−1L(α)

5. Get new rows R and columns C from M

6. Get Û , Ŝ, V̂ by using update SVD procedure 3.2.2

7. Use Û , Ŝ to get new diffusion distance matrix DDt(i, j) = ||Ψt(xi)−Ψt(xj)||2

3.2.4 Results

To check the performance of proposed method we have used a toy dataset having two non-linearly

separable clusters, total number of points in dataset are 2000, to test the effectiveness of incremental

procedure we divide the dataset into 2 parts of 1600 and 400 points. Initial 1600 points were used

in batch mode to get initial embedding then we update the embedding using proposed incremental

diffusion maps procedure. To simulate real world setting we update the embedding 10 points at a

time, calling incremental update 40 time in this case. Once we get the final embedding after updating

all 400 points for both batch and incremental setting we use k-means with k = 2 to visualize the

effectiveness of diffusion distance learned. Final results are plotted in figures 3.1.

All the experiment was done on Sony machine with i3 processor and 4GB RAM. It can be

observed that the results are very close with very less run time than batch mode. We have tested

this methods on other datasets but due to high approximation error in markov matrix calculation

and update svd procedure results are not good.

3.2.5 Summary

From our results we conclude that approximation in markov matrix and svd update leads to bad

results in real datasets, since we have implemented the idea using very basic svd update procedure

and as there are many other promising svd update procedures like Chen and Candan [20] has been

proposed in recent years we believe there there still scope of improvement.
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(a) Clusters using batch mode. Run time: 27.5 sec (b) Clusters using incremental mode. Run time 6.4 sec

Figure 3.1: Result incremental diffusion maps

3.3 Online Active Metric Learning for Clustering

In this work we propose an online pairwise constrained metric learning for clustering by actively

selecting informative similar and dissimilar pairs. We focus on selecting pairwise constraints for two

reasons, first is in real world with large number of clusters it is easier for user to say whether two given

points are similar or not then providing actual labels for points and second pairwise constraints is a

better choice for updating the clusters. We use Pseudo-Metric Online Learning Algorithm(POLA) [9]

combined with our active pairwise selection method to make an online active metric learning method

for clustering. We propose a two stage approach, first stage actively select new pair of points which

are then posed as a query to the user to label them as similar or dissimilar, in second stage we update

our learned metric in online manner using POLA based on new similarity/dissimilarity constraints.

Since we update our metric online there is a little learning overhead to clustering algorithm.

3.3.1 Pseudo-Metric Online Learning Algorithm(POLA)

Let X denotes the feature space. POLA learns a metric of form,

dA(x, x′) =
√

(x− x′)′A(x− x′)

Algorithm receives new samples as similarity and dissimilarity pairs in the form of z = (x, x′, y) ∈
(X ×X ×+1,−1), where y = +1 if pair (x, x′) are similar otherwise y = −1. Loss function is defined

as,

lτ (A, b) = max{0, yτ (dA(x, x′)2 − b) + 1} (3.9)

where, b ∈ R is threshold, if dA(x, x′) is greater than b we predict pairs to be dissimilar otherwise

similar. Goal is to learn matrix threshold pair (Aτ , bτ ) which minimize the cumulative loss. At each

step algorithm receives pair (x, x′, y) where y = +1 if pair (x, x′) are similar otherwise y = −1 and

update matrix threshold pair (Aτ , bτ ) in two steps.

1. Projecting current solution (Aτ , bτ ) onto set Cτ which,

Cτ = {(A, b) ∈ R(n2+1) : lτ (A, b) = 0}
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Cτ is a set of all matrix-threshold pairs which gives zero loss on (x, x′, y).

2. Then project new matrix-threshold pair to set of all admissible matrix-threshold pairs Ca,

Ca = {(A, b) ∈ R(n2+1) : A � 0, b ≥ 1}

Projecting onto Cτ : We denote matrix-threshold pair as a vector w ∈ Rn2+1, and Xτ ∈ Rn2+1 is

vector of matrix-scalar pair (−yτvτvtτ , yτ ), where vτ = xτ − x′τ . Using this we can rewrite set Cτ as,

Cτ = {w ∈ Rn
2+1 : wXτ ≥ 1}

Now we can write projection of wτ onto Cτ as,

PCτ (wτ ) = wτ + ατXτ (3.10)

where, ατ = 0 if wτXτ ≥ 1 otherwise ατ = (1− wτXτ )/||Xτ ||22. Which we can rewrite as,

ατ =
lτ (Aτ , bτ )

||Xτ ||22
=
lτ (Aτ , bτ )

||vτ ||42 + 1

and based on this we can update matrix and threshold,

Aτ̂ = Aτ − yτατvτvtτ , bτ̂ = bτ + ατyτ (3.11)

Projecting onto Ca: Projecting bτ on set {b ∈ R : b ≥ 1} is straightforward and can be achieved

as bτ+1 = max{1, bτ}, for projecting Aτ̂ has two cases,

• yτ = −1: In this case Aτ̂ becomes Aτ̂ = Aτ + ατvτv
t
τ and α ≥ 0 therefore Aτ̂ � 0 and hence

Aτ+1 = Aτ̂

• yτ = 1: In this case we can write Aτ̂ =
∑n
i=1 λiuiu

t
i where ui is the ith eigenvector of Aτ̂ and

λi is corresponding eigenvalue, we can get Aτ+1 by projecting Aτ̂ to PSD cone as,

Aτ+1 =

n∑
i:λi>0

λiuiu
t
i

For every new sample we update by successively projecting (Aτ , bτ ) to Cτ and Ca.

3.3.2 Proposed Method

In this section we describe our proposed active pair selection method and combine it with POLA to

form active metric learning.

Selecting new pairs: Idea behind selecting new pairs is as follows, we want to select those points

which can tell whether we should reduce or expand the boundary of current cluster, in this case we

are being conservative and trust the overall structure of cluster, at the same time we want to select

some points which can expose raider to the metric forcing it to diverge. We propose a heuristic based

approach to select these points in a given clustering.
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Given a set of points X ∈ Rn×d and cluster belongingness matrix Cij ∈ Rn×k such that Cij = 1 if

point xi belongs to cluster cj otherwise Cij = 0 where C = c1, c2...ck are number of clusters. Figure

Figure 3.2: Schematic illustration of actively selecting pairs

3.2 shows an illustration with two clusters shown with red and green colors, points inside a box are

selected points which are paired with point shown by arrow. For each cluster we select a set of points

which are farthest from the cluster center and a set of points which are closest to cluster centre and

make pairs as (cluster centre, selected point). Since cluster centre may not be an actual data point

we replace it with the nearest data point and query these pairs to the user for similarity information.

We apply alpha-trimming which reduces chances of selecting outliers in case of selecting boundary

points and give some space to select points near cluster center.
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Algorithm 1 Algorithm to select pairs

1: procedure SelectPairs

Input: X,C, p, Ŝ, D̂, A, r, α

Xn×d is input feature matrix

Cn×k is cluster belongingness matrix

p is number of pairs to select

α is alpha-trimming parameter

A is current distance matrix

r is ratio of near-center & boundary points to select

Output: S set of selected similar pairs

D set of selected dissimilar pairs

2: Calculate cluster density vector Wk×1 such that wi is density of ith cluster

3: for i = 1 to k do

4: Select points Y ∈ ci & calculate mean µ of all points y ∈ Y
5: Find point c closest to µ

6: ns← p× r
7: nd← p− ns
8: Ŷ ′ ← sorted(Y )

9: Ŷ ← trim top and bottom α percentage of points

10: for s = 1 : ns do

11: l← Ŷ (end− s)
12: if (c, l) /∈ Ŝ & (c, l) /∈ D̂ then t← querySimilarity(c, l)

13: if t == 1 then

14: S ← Ŝ ∪ (c, l)

15: else

16: D ← D̂ ∪ (c, l)

17: end if

18: end if

19: end for

20: for d = 1 : nd do

21: l← Ŷ (d)

22: if (c, l) /∈ Ŝ & (c, l) /∈ D̂ then t← querySimilarity(c, l)

23: if t == 1 then

24: S ← Ŝ ∪ (c, l)

25: else

26: D ← D̂ ∪ (c, l)

27: end if

28: end if

29: end for

30: end for

31: end procedure

Our proposed algorithm for online active metric learning is described in 2.
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Algorithm 2 Online active metric learning

1: procedure OAML
Input: X, p, r, α
number of cluster k
N number of iterations
Xn×d is input feature matrix
r is ratio of near-center & boundary points to select
p is number of pairs to select in each iteration
α is alpha-trimming parameter
Output: A learned metric
Cluster belongingness matrix Cn×k
Initialization: A← I;S ← ;D ←

2: for i = 1 to N do
Ĉ ← kmeans(X, k,A)
[S,D]← SELECTPAIRS(X,C, p, S,D,A, r, α)
Update matrix A based on new pairs using POLA, A← pola(A,S,D)

3: end for
4: end procedure

100 200 300 400 500 600 700

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of pairs

S
c
o

re

 

 

proposed method

random

(a) Silhouette score for Letter recognition dataset
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(b) Silhouette score for Magic dataset

Figure 3.3: Results of proposed method.

In algorithm OAML 2 we iteratively select new points and use them to update the current metric

using POLA, in each iteration our clusters becomes better by updating the metric.

3.3.3 Results

We have evaluated our procedure on Magic and Letter recognition datasets [18]. We divide each

dataset randomly into two parts as learning and evaluation set in the ratio of 30% and 70% respectively.

All the results presented are average over 5 runs.

We have used Silhouette measure to validate clustering which is given as S =

∑
i s(i)

n
, where

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(3.12)

and a(i) is average distance of point xi with points in the same cluster as of xi and b(i) is lowest

average distance to points which are not in same cluster as xi. In each iteration we apply new pair

selection procedure on learning set and update metric using new selected pairs, to evaluate the cluster
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performance we cluster the evaluation set using k-means by using learned metric. To best of our

knowledge no other method learn online metric using pairwise constraints for a clustering setup we

have tested our method against selecting random query pairs with same experimental setup and we

have found that our method performs better and with less number of query pairs.

From result we can notice that we can get same score eventually even by selecting random pairs but

label complexity for out method is much less which what we aim here.

3.3.4 Summary

We proposed a heuristic method to actively select new pairs to update metric in online manner. From

results we can see that on our proposed method select more informative points to update metric and

can learn faster than selecting random points. In future we would like to improve this method by

using a better approach with theoretical bounds.
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Chapter 4

Conclusion and future work

We have contributed different methods where each of them solves some challenges related to metric

learning for clustering. All the methods are generalized and does not depend on any particular type

of data. Although we have produced some interesting results but we think there are places where our

proposed methods can be improved.

4.0.5 Directions for Future Work

We have implemented Incremental Diffusion maps approach using very basic incremental SVD

method, we believe results can be improved by using a better SVD update method. In Online Active

Metric Learning we have proposed a heuristic based approach to select new pairs which may not

work in all the cases, this can be improved by a methods like probability or entropy based methods

which have a with better theoretical foundations.
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