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Abstract

Keywords : Content based image retrieval, clustering, k-means, top-k, data sets, MapReduce

framework, distributed computing model, apache hadoop , cyclic redundancy check.

With high availability of portable and low cost digital cameras and improvement in image cap-

ture technology, huge amount of visual data (photos and videos) is being generated everyday. The

processing capability of standalone devices is insufficient to handle such massive data also known as

big data. Apache Hadoop, a distributed computing model that is based on MapReduce framework is

an easy to use solution for managing big data with freely available implementation models. Hadoop

is mainly designed for cost-effective commodity hardware or inexpensive cloud computing infras-

tructure. Hence, access to expensive hardware or in-depth understanding of parallel programming

is no longer required to work on big data. A hadoop cluster comprises of a master node and many

computing nodes (slaves). The master node’s main purpose is to interact with users and monitor the

status of the slaves, keep track of load balancing and other background tasks. Such a cluster is well

capable of working independently for many trivially parallelised processes which makes it suitable

for the task of clustering data. The focus of this Thesis is content based image retrieval in the

context of visual big data where clustering is a necessary preprocessing step. The input images are

organised into clusters by using standard clustering algorithms like k-means implemented in hadoop.

While searching, the top-K similar images are retrieved from the cluster closest to the query image.

The performance of the setup was measured on two data sets with 397 image categories. The first

one had 1,08,679 images and the second one comprised of 80 million tiny images. It was shown that

using hadoop, significant speedup on search and retreival can be obtained on such large datasets.
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Chapter 1

Introduction

With the rapid growth of information technology, a new class of problems has emerged. As we have

achieved more computation and processing power we are able to tackle more intense tasks efficiently.

However the scale of data to be processed is increasing exponentially. To have an idea about scale of

data, let’s look at data of famous social networking site ’Facebook’ : It handles 300 million photos

each day (2012 stats). It is virtually impossible (also inefficeint) to store and process such large

amount of data on single machine. Solution to this problem can be storing and processing data in

distributed manner.

In recent time smartphones are able to solve some problems which was not possible even for super-

computers many years ago. However as computer architectures are moving close to some physical

limitations, systems that are distributed are getting more and more popular. The main reasons to

which popularity of distributed computed can be attributed are : i) Physical limitations of proces-

sors ii) Scalability iii) Fault Tolerance iv) Latency.

Currently there are many popular ways for parallal computation like multi-core GPU’s, Map Reduce

etc. Both approaches have their own advantages and disadvantages in terms of speed, portability

and cost.

With the exponential growth in amount of data, it is becoming more and more complex task to

find the relevant content. Let’s take example of google images : Google database contains a huge

amount of images. While searching with a image or just a text phrase (signifying class of images),

it will return relevant images. Such huge databases can not be stored and processed on single ma-

chines. There is a need to store and process this data in a distributed manner. Specifically speaking

Google uses GFS to store it’s content over the servers.

1.1 Problem Statement

Content based image retrieval(CBIR) is about to get the similar content images from the database

to a image query. In this thesis we tried to implement Content based image retrieval in detributed
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framework using Hadoop. Our intention is to speedup the performance of content based image

retrieval, starting from the feature extraction to image searching.

1.2 Content Based Image Retrieval

Content-based image retrieval (CBIR) is the application of computer vision techniques to the image

retrieval problem, which involves searching visually similar images to a query image from a large

pool of data.

Visual contents like color,texture, shape of images are used by CBIR system to identify the

similarity. Generally in CBIR the visual contents of the images in the database are extracted

and described by multi-dimensional feature vectors. These feature vectors form a feature database.

Query image provided by user to the CBIR system to retrieve the similar images. Distances between

the feature vectors of the query image and images present in the database are calculated and retrieval

is carried out with the help of indexing scheme. [1]

1.2.1 Traditional Content Based Image Retrieval Model

Content based image retrieval [CBIR] is mainly about developing a technique that extract the sim-

ilar images to a query image based on their content from a large data set. Query image is given as

input to the CBIR system, then the system will process the query and the images from data set and

retrieve similar images as output.

Figure 1.1: CBIR Process Model.

Retrieval of similar content images is based on processing of features. An image can have many

features like color, texture, edge information etc.
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1.2.2 Image Content Descriptors

A good visual content descriptor should be insensitive to the variation of the illuminant of the scene.

Between the invariance and the discriminative power of visual features,There is a tradeoff, since a

very wide class of invariance loses the ability to discriminate between essential differences. Invariant

description has been largely investigated in computer vision (like object recognition), but is relatively

new in image retrieval [2] [1].

1.2.2.1 Color

Color is a important feature and many popular use this feature. Image can be a RGB (Red, Green,

Blue) color space or spaces such as HSV (Hue, Saturation, and Value). Differences in color spaces

are very much close to the differences in color that human recognise. There are many color spaces are

available which are beneficial for different purposes. However color feature is very much dependent

on illuminance, shadows etc.

1.2.2.2 Texture

Another important feature for CBIR is texture. Visual patterns with the properties of homogeneity

that do not occur from the presence of only a single color or intensity can be considered as tex-

ture.Texture representation methods can be defined into two categories: 1).structural 2). statistical.

In CBIR systems coarseness, and regularity information provided by texture content is very useful.

1.2.2.3 Shape

Edge information and corner (intersection of edges) is very much suitable for CBIR. Edge directionn

and gradient magnitude are well tested features of image to get the similar content in CBIR system.

We have used Histograms of oriented gradients (HOG) in our system to get the edge direction feature

of images.

1.2.3 Retrieval of Similar Content Images

Images organised in clusters so most similar images grouped in same cluster and can be differentiated

with other images. For making cluster of images we have used k-means clustering algorithm based

on euclidean distance. TreeMap [3] algorithm used to get top k number of imgaes from the cluster

based on content similarity.

1.2.3.1 TreeMap

TreeMap is very similar to the HashMap because it stores key, value pairs. Difference between both

is treemap sort data in ascending order. Natural ordering is used for the sorting purpose. TreeMap

implementation takes log(n) time to do operations like Put,Get,Remove etc. TreeMap is based

on red-black tree operations.

To understand the operations of red-black tree, the knowledge of it’s properties is very essential.

Description of properties given below -

• Color of every node will be red or block.
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• Root must be black color

• Red node can not be neighbor

• From root to leaf all the paths should have same number of black nodes.

4



Chapter 2

Overview of approaches for

Content Based Image Retrieval

There is a lot of work has been done in field of content based image retrieval but not by using

MapReduce framework.

In Web-Scale Computer Vision using MapReduce for Multimedia Data Mining [4], Brandyn

White et al. present a case study of classifying and clustering billions of regular images using

MapReduce. No mention is made of average image dimensions or any issues with not being able to

process certain images because of memory limitations. However, a way of pre-processing im- ages

for use in a sliding-window approach for object recognition is described. Therefore one can assume

that in this approach, the size of images is not an issue, because the pre-processing phase cuts

everything into a manageable size. The question still remains whether a sliding window approach

is ca- pable of recognizing any objects present in the image that do not easily fit into one analysis

window, and whether the resource requirements for image classification and image processing are

significantly different or not. An Architecture for Distributed High Performance Video Processing

in the Cloud [5] by Rafael Pereira et al. outlines some of the limitations of the MapReduce model

when dealing with high-speed video encoding, namely its dependence on the NameNode as a single

point of failure, and lack of possibility for the more sophesticated issues. An alternative - optimized

- implementation is proposed for providing a cloud-based IaaS (Infrastructure as a Service) solution.

However, considering the advances of distributed computation technology within the past two years

and the fact that the processing of large images was not touched upon, the problem posed in this

work still remains.

A description of a MapReduce-based approach for nearest-neighbor clustering by Liu Ting et al.

is presented in Clustering Billions of Images with Large Scale Nearest Neighbor Search [6].

In Parallel K-Means Clustering of Remote Sensing Images Based on MapReduce [7], Lv Zhenhua

et al. describe using the k-means algorithm in conjunction with MapReduce and satellite/aerophoto

images in order to find different elements based on their color (i.e. separate trees from build- ings).

Not much is told about encountering and overcoming the issues of analyzing large images besides
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mentioning that a non-parallel approach was unable to process images larger than 1000x1000 pixels,

and that the use of a MapReduce-based parallel processor required the conversion of TIFF files into

a plaintext format.

Case Study of Scientific Data Processing on a Cloud Using Hadoop [8] from Zhang Chen et al.

describes the methods used for processing sequences of microscope images of live cells. The im-

ages and data in question are rela- tively small - 512x512 16-bit pixels, stored in folders measuring

90MB - there were some issues with regard to fitting into Hadoop DFS blocks which were solved

by implementing custom InputFormat, InputSplit and RecordReader classes. No mention was made

about the algorithm used to extract data from the images besides that it was written in MATLAB

and MapReduce was only involved as a means distribute data and start the MATLAB scripts for

processing.

While the above shows that there has been a lot of work in this area the question still remains

: Is Hadoop well suited for large scale visual recognition tasks, because as evidenced by this brief

overview, there are only a few cases where image processing has been done with MapReduce.
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Chapter 3

Hadoop Architecture and

Programming Model Used for

CBIR

3.1 Why Hadoop?

Hadoop is well known for its Map Reduce and distributed file system and the system well tested

for its feasibility to process images. Data processing in batches on PC is feasible but only for

small amount of data and computation will suffer since only a part of this data fits into memory at

given time and also slow hard drive access. Now solution lies in running the data simultaneously

on several computers but it require job monitoring, mechanisms for data distribution and means

to ensure that the processing completes even when some computers experience failure in process.

Apache Hadoop was designed to solve. Another approach is treating the problem like a traditional

large-scale computing task which requires specialized hardware and complex parallel programming.

Cluster computers built on graphics processing units (GPU) are an example of this. It is interesting

to know whether the same issues can be tackled with simpler and cheaper systems without much

decrease in efficiency.

3.2 Hadoop Processing

3.2.1 Hadoop Cluster

Cluster mainly consist of master computer and any number of computing nodes purpose of master is

to interact with users and monitor the status of computing nodes, keep track of load balancing and

other background tasks[9][10]. Computing node deals with storing and processing of data. Execution

happens in MapReduce in following manner-

• User uploads input data to Hadoop distributed file system (HDFS), which in turn distributed

and stored among computing nodes [11].
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• Users starts the job by specifying MapReduce programme to execute along with input and

output path and other parameters.

• Master node sends a copy of programme along with its parameters to every computing nodes

and starts execution.

• Computing nodes starts the map phase first and process data in their local storage, fetching

more data from other computers if necessary and possible (based on master node decision).

• After all map tasks are finished, there output is sorted in a way, that for every distinct key

reduce task process all pairs with that key.

• Once reduce phase finished and its output written back to HDFS the user can retrieves the

resulting data.

Hadoop provides a fairly straightforward implementation of the MapReduce model. In order to

write a complete a MapReduce job, a programmer has to specify the following things:

• An InputFormat class, which handles reading data from disk and converting it to Key-Value

pairs for the Map function.

• A Mapper class, which contains the map function that accepts the �Key, V alue� pairs from

InputFormat and outputs �Key, V alue� pairs for the Reduce function.

• A Reducer class with a reduce function that accepts the �Key, V alue� pairs output from the

Mapper class and returns �Key, V alue� pairs.

• An OutputFormat class, which takes �Key, V alue� pairs from the Reducer and writes output

to disk.

3.2.2 MapReduce

MapReduce is a programming model for data processing. MapReduce works by breaking the pro-

cessing into two phases: the map phase and the reduce phase. Each phase has key-value pairs as

input and output, the types of which can be chosen. The programmer also specifies two functions:

the map function and the reduce function. I will focus on describing the general philosophy and

methodology behind this model. MapReduce computation can be describe as following [11]:

• Input from the disk in �Key, V alue� pair.

• Map function process each pair separately and gives out put in �Key, V alue� pair.

• For each distinct key, the Reduce function processes all �Key, V alue� pairs with that Key, and

- similarly to Map returns Key- Value pairs.

• After processing output of reduce function written into disk in �Key, V alue� pair.
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3.2.3 Hadoop Distributed File System (HDFS)

Hadoop Distributed File System is integral part of hadoop cluster. Its purpose is to provide fault

tolerant storage structure capable of holding large amount of data. It provides fast access of data

and provide a way for MapReduce to perform computations on same location as the data.

Importance of HDFS with respect to image processing is approach of storing files in block storage.

Default block size in HDFS is 64 MegaBytes, but it can be customized. There are reasons for this

kind of design. Firstly, as the blocks are written to physical storage in a contiguous manner, they

can also be read with minimal disk seeking times. Secondly, file system is geared towards storing

very large files, a larger block size ensures that storage of meta-data such as read/write permissions

and physical locations of individual blocks creates less overhead.

Block size is somewhat important with regard to processing images, since if an image that is

too big is uploaded to HDFS, there is no guarantee that all of its blocks would be stored in the

same physical location. Since a Map or Reduce task would then have to retrieve all of its blocks

before processing, the idea behind executing tasks that are local with regard to the data is lost, the

speed of reading input data now depends on the network. Therefore, in order to ensure optimal

processing speed, images should fit inside the HDFS block size. This is not a problem with most

regular images, as it is easily possible to configure the cluster with a block size of even 128 megabytes

or more, however increasing this parameter past a certain point may not have the desired effects.

Also, as discussed before, processing very large images sets considerable memory requirements to

the computers. For these reasons, splitting large images into manageable parts is the best solution.

On the other hand, when dealing with a data-set of many small images, simply uploading them

to HDFS results in the creation of a separate block for each file. Since a given Map or Reduce task

operates so that it uses its defined InputFormat to read data one block at a time, having many

small blocks increases the overhead with regard to these operations. In these cases, it is standard

practice to first store the data using a SequenceFile. Drawback: There is a caveat, however, with

9



regard to the files that are located on the ”edge” of the split. In order to illustrate this, I uploaded

a SequenceFile with 3 images - 30 megabytes each - to HDFS with a configured block size of 50

megabytes Quering the uploaded file with the Hadoop fsck tool, I found that instead of writing the

file as three blocks, each containing a full image, it was split into two blocks, so that one image

ended up divided into two. This could negatively affect the performance of a job, since a Map or

Reduce task would need to read both blocks to assemble the full image. If I set block size 64 MB

then there will be no problem in reading image from a single block and there will be no overhead so

optimal block size is important to get the best out of Hadoop.

3.3 Data Integrity in Hadoop

It is very necessary to preserve the integrity of data in overall processing to make the system reliable.

It is rightly said that hadoop provides data integrity. It uses the cyclic redundancy check 32 (CRC-

32). Hadoop calculates checksum of input data and also also claculate checksum of data after data

passess through any network. If checksum calculated have no difference that means there is no

corruption in data and hadoop preserves integrity.[11]

3.3.1 Data Integrity In HDFS

HDFS calculates checksum before reading the data and also calculate the difference to make sure

that data is not corrupted. Checksum is calculated for every byte of data and default size is 512

bytes. Actually CRC-32 has size of 32 so overall overhead is approximately less than 1 percent.

Primary responsibility of calculating and checking the validity of checksum is of datanodes.

Datanodes recieve data from clients and other datanodes during replication then datanode check

the integrity of data by calculating checksum. Each datanodes maintains the list of checksum

that it had calculated previously. Each datanode runs DataBlockScanner to scan each block in

background and make sure that every byte of data is error free. Some replicas of blocks maintained

by HDFS so if any block gone corrupted it can be replaced by new one that can be produced by

replicas.[11]

3.3.2 Client Side Data Integrity

Client side calculation of checksum is very important to make sure that data is noncorrupt. Client

side data checksum is calculated by hadoop LocalFileSystem. For example if we give a name to a

file like featuredata then local file system automaticaly create one another file name featuredata.crc

that will contain all checksum calculation of every chunk of that file.

To calculate the checksum LocalFileSystem uses ChecksumFileSystem. When ever Check-

sumFileSystem detects the erroe it calls its report function.
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3.4 Small File Problem

The dataset that we are using have all the small images. In hadoop small size of file means the size

of file is significantly less thah the default size of block in HDFS. 64 MB is the default size of block

in HDFS. Size of images in our dataset is in range of kilobytes only.

3.4.1 Small File Problem with HDFS

Hadoop works better with a small number of large files than a large number of small files. One

reason for this is that FileInputFormat generates splits in such a way that each split is all or part

of a single file. If the file is very small (small means significantly smaller than an HDFS block) and

there are a lot of them, then each map task will process very little input, and there will be a lot of

them (one per file), each of which imposes extra overhead.[11]

Example : Every file, directory and block in HDFS is represented as an object in the namenodes

memory, each of which occupies 150 bytes. So 10 million files, each using a block, would use about

3 gigabytes of memory. Scaling up much beyond this level is a problem with current hardware.

Certainly a billion files is not feasible.

3.4.2 Small File Problem With MapReduce

There is also a small file problem with Map Reduce, Map will process very little data because of

small size of files, so there will be a lot more map task, each of which will impose extra overhead.

Example : Compare a 1GB file broken into 16, 64MB blocks, and 10,000 or so 100KB files.

The 10,000 files use one map each, and the job time can be tens or hundreds of times slower than

the equivalent one with a single input file.

3.4.3 Solution : Sequence Files

Idea here is that use the file name as the key and file content as the value [12]. Going back to the

10,000, 100KB files, write a program to put them into a single SequenceFile and then process them

in a streaming fashion (directly or using MapReduce) operating on the SequenceFile. A sequence

file is a persistent data structure for binary key-value pairs. Sequence files have sync points included

after every few records that align with record boundaries, aiding the reader to sync. The sync

points support splitting of files for mapreduce operations. Sequence files support record-level and

block-level compression. SequenceFiles are splitable so MapReduce can break them into chunks and

operate on each chunk independently. They also support compression. It is perfectly possible to

create a collection of SequenceFiles in parallel.

3.5 Iterative Algorithms in Hadoop

For any programme to execute hadoop initialize itself. To initialize cluster master node destribute

the copy of programme to every datanode and also regulate the memory management in the cluster.

Task of initialization takes some time, this time depends upon the strength of network like bandwith

and organization of network and the time also depends upon the number of nodes in the cluster.
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As the number of nodes increases the task of replication of data for the master node and network

congestion also increses. So larger the cluster, larger is the initialization time.

After every iteration hadoop stores data in hard drive and in next iteration hadoop will initialize

itself (In our case in 6 node cluster it takes 9 to 10 seconds for initialization) and take data from

hard drive as input so it becomes time consuming affair. If the data is small and aglorithm used in

process require many iteration then hadoop will initialize itself many time and overall implementation

becomes inefficient. So if data is big and algorithm needs less number of iteration then hadoop

implementation will surely give efficient result. This shows that hadoop is designed only for bigdata

problems.
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Chapter 4

Features Used for Clustering and

Image Retrieval

We have used two features namely Histograms of Orientations (HOG) and Scale Invariant Feature

Transformations (SIFT) to identify the similarity among the pictures. We extracted both the features

together and stored in sequence file having image name as a key and features as value. Dimensions

of a feature is separated by commas so that it is easier to use it in next steps.

4.1 Histograms of Oriented Gradients (HOG)

4.1.1 Introduction

HOG features, proposed in 2005 descriptors are a widely used technique for object recognition in

field of computer vision. Main idea behind HOG descriptors is that local object appearance and

shape within an image can be described by the distribution of edge direction (intensity gradients).

Histogram of gradient direction is computed by dividing image into cells. The algorithm is explained

through a simple example below.

4.1.2 Algorithm

• Gradient Computation : Divide image in to cells. Compute horizontal and vertical gradi-

ents using derivate masks.

• Orientation Binning : Compute gradient orientation and magnitude. Based of strategy of

weighted votes cell histogram is calculated.

- For color image pick the color channel with highest gradient magnitude for each pixel.

• Descriptor Blocks: Gradient strengths are locally normalized to tackle affects change in

contrast and illumination. It is done by grouping the cells together into larger, spatially

connected blocks. The HOG descriptor is then the concatenated vector of the components of

the normalized cell histograms from all of the block regions.

• Block Normalization : Finally blocks are normalized using lk norm.

13



Example :

Consider an image with size 64x128

Divide the image in 16x16 blocks of 50% overlap

7x15 = 105 blocks in total.

Each block will consist of 2x2 cell with size 8x8.

Quantize the gradient orientation into 9 bins.

Bi-linear interpolation between bin centers in its neighborhood.

Vote is used with Gaussian to downweight the pixel center near the edge block.

Concatenate the histograms (Feature dimension is : 105x4x9)

dy = I(C, r − 1)− I(C, r + 1)

dx = I(C + 1, r)− I(C − 1, r)

Gradient Magnitude (GM) =
�
dy2 + dx2

Gradient Orientation (GO) θ = tan−1( dydx )

Example : if θ = 85 Distance to the bin center bin 70 and bin 90 are 15 and 5 degree respectively

Hence ratios are 5
20 = 1

4 and 15
20 = 3

4

4.2 Scale Invariant Feature Transform (SIFT)

There exist some algorithm like Harris Corner Detection, which are rotation invariant i.e. even if

the image is rotated, this algorithm will still detect same corners. But if image is scaled up or down,

Harris Corner Detection algorithm may fail i.e. it is scale invariant. Let’s understand this through

an example : When the image is scaled up the curvature of edges usually get changed. So the corner

may not fit in the same window which was used earlier to detect it. In 2004, D. Lowe came up with

an new algorithm Scale Invariant Feature Transform(SIFT) [?]. It focus on extracting Distinctive

Image Features (desciptors) from Scale Invariant Points (keypoints).

14



4.2.1 Scalespace Extrema Detection

For corner detection window with same size can not be used, as we will need variable size window

to detect a corner. For this purpose scalespace filtering is used. Here corners are detected at various

scales. Laplacian of Gaussian operator is used to detect blobs, with variation in parameter corner of

various size are detected. So, we find the local maximas’ across the scale and space which generates

a list of values which means there is a potential keypoint at (x,y) at scale. Sometimes Difference of

Gaussian is used as an approximation as LoG is costly.

4.2.2 Keypoint Localization

In previous step list of potential keypoints was generated, to get more accurate results a threshold

is use to refine the list. Taylor series expansion of scale space is used for this purpose. It basically

removed low contrast keypoints.

4.2.3 Orientation Assignment

Next step is to assign direction to each keypoint. A neighborhood is taken around the keypoint

location depending on the scale, and the gradient magnitude and direction is computed. Histogram

is created with 36 bins which covers 360 degrees. This step contributes to stability of matching. It

is weighted by gradient magnitude and gaussianweighted circular window with equal to 1.5 times

the scale of keypoint. The highest peak in the histogram is taken and any peak above 80 percent of

it is also considered to calculate the orientation.

4.2.4 Keypoint Descriptor

Next step is to get keypoint descriptor. A 16x16 neighborhood is considered around the keypoint.

It is divided into 16 subblocks of 4x4 size. For each subblock, histogram with 8 bins is used. Hence

total 128 bins are available, a vector is used for representation. In addition to this, several measures

are taken to attain robustness against factors such as rotation, variation in illumination etc.

4.2.5 Matching

To identify nearest neighbors, only keypoints need to be matched. In some cases, when matches are

very close, then ratio of closest distance to second closest distance is used. If that is more than 0.8,

they are skipped.
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Chapter 5

Implementation

5.1 Introduction

We have implemented our process in two phases. In preliminary phase data is preprocessed and then

features are extracted. These features are stored as clusters which are created based on similarity

of images. In phase II, given a query image we have to search similar images based on the content.

First the most close cluster is detected and then top k most similar images are returned as result.

Input to 

Hadoop

Images as Sequence 

files (Stored in HDFS)

Master Node

Slave Node 1

Slave Node 2

Extracted Feature 1

Histograms of Oriented

Gradients (HOG)

Extracted Feature 2

Scale Invariant Feature

Transformations (SIFT)

Both feature are extracted

and combined using Hadoop

and stored in HDFS as sequence

file.

This output is used as 

input to next step i.e. retreival

step.

Hadoop Cluster

Preprocessing : Image content

as sequence files

Feature Extraction

Figure 5.1: Phase 1.

Extracted Feature of

query image 

      +

Stored feature of

Images (As Sequence file)

Features of Dataset are organized 

in clusters using k-means

clustering.

- Feature of query

image are projected

into same space as

stored feature.

- Locate nearest 

cluster

- Search

 for top-k images 

using Euclidean 

norm as distance 

measure

Top K images

having most 

similar content

is retrieved.

Processed in Hadoop

Cluster

Figure 5.2: Phase 2.

5.2 Preprocessing

5.2.1 Dataset

We are using SUN397 for this purpose [13]. This dataset contains 108679 images of variable size

belonging to 397 classes [14] .

Database Size = 39 GB

Number of classes = 397

Total number of mages = 108679
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5.2.2 Ideal input for Hadoop : Sequence File

As we have discussed the problem of small files with HDFS and MapReduce in previous section

and we also mentioned the one of the solution lies in sequence files. Taking all the images into

consideration we created sequence file having image name as a key and binary content as value. It

took around 2 hour and 22 minutes. Although it can be generated in parallel in cluster but we

created in a single node. Now onwards we will take this sequence file as a input and also we will

store output in sequence file.

5.3 Feature Extraction

5.3.1 HOG

To get orientation gradient of the images HOG features have been extracted. These features cap-

tures edge direction along with depth by which image has been taken. Edge direction is proven to be

suitable to identify similarity among images. Following things we have considered while extracting

the HOG features :

Size of block : 2x2

Number of blocks : Variable because of variable size of images

Feature vector size : 6300 (maximum)

Number of bins : 9

To visualize HOG features :

5.3.2 SIFT

To get Scale Invariant Feature Transformation interest points and their descriptors are required.

As we have already discussed SIFT features are scale and rotation invariant. have considered while

extracting the HOG features :

Size of Feature Vector : 6300 (maximum)
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Figure 5.3: Query Image. Figure 5.4: Retreived Images.

5.4 Dimensionality Reduction

As we saw in earlier section, that due to variation in dimension of images, feature vector may vary

too. So feature vector size is restricted to 6300 dimension to maintain a constant vector size for

easier computations.

’Curse of Dimensionality’ [15] is a well known problem in computer vision. Higher dimension of

feature vectors doesn’t provide full proof solution for discrimination among classes. So we have used

Principal Component Analysis (PCA) technique to reduce the dimension of feature vectors.

We have used PCA with an goal of maintaining 95% of variance in the data i.e. Data in lower

dimension have 95% variance with respect to origninal data. 455 dimensions for SIFT and 976

dimensions for HOG were selected to maintain 95% variance.

While implementing PCA we have used approach with eigen vectors rather than SVD. The k compo-

nents with highest k eigen values are selected for new k-dimension space. Both training and testing

images were projected in this space for later.

5.5 Clustering of Images

To make the searching more efficient we divided the data into clusters. Clustering is mainly about

grouping data on the basis of selected features. We organised data in k number of groups where k

is a positive integer number.

5.5.1 Clustering Algorithm : K-Means Clustering

Motivation behind k-means clustering is to grouping data in clusters. Here we are clustering images

in k groups according to similarity in features.The grouping is done by minimizing the sum of squares

of distances between data and the corresponding cluster centroid.

Initially k centres are randomly choosen, where k is number of clusters

Iterate until last (No more changes in clusters):

(i)Centroid coordinate Determination.

(ii)Calculate distance between each object and the centroids.

(iii)Based on minimum distance, group the object (find the closest centroid).
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Example : Lets take a example to understand the working of k-means clustering. weight and

lenght of a commodity are displayed in table , weight and length are considered as features.

Table 5.1: Commodity Table
Commodity Weight Length
A 1 1
B 2 1
C 4 3
D 5 4

Iteration (0) : Here we consider the features of commodity A and commodity B as initial center

(C1 (1,1) and C2 (2,1)).

Now calculate distance from C(4,3) to C(1,1).�
(4− 1)2 + (3− 1)2 = 3.61

AlsocalculatedistancefromC(4, 3)toC(2, 1).�
(4− 2)2 + (3− 1)2 = 2.81

The Object centroid distance calculated as

D(0) =

�����
0 1 3.61 5

1 0 2.83 4.24

�����

Now The Object clustering written as

D(0) =

�����
1 0 0 0

0 1 1 1

�����
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Iteration (1) : Now in this iteration we calculated new centers these new centers are C1(1,1)

and C2(2+4+5/3, 1+3+4/3). So the two bcenters are C1(1,1) and C2(11/3,8/3).

As illustrated in iteration (0) again we can get the distance of object from the center and we can

construct matrix on calculated values.

The Object centroid distance calculated as

D(0) =

�����
0 1 3.61 5

3.14 2.36 0.47 1.89

�����

Now The Object clustering written as

D(0) =

�����
1 1 0 0

0 0 1 1

�����

If the object clustering matrix of this iteration is same as previous which indicates clusters are

stable.
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Chapter 6

Experimental Results

6.1 Time Required to Extract Image Features

Both features (HOG and SIFT) have been extracted using hadoop. Statistics are given in table

below.

Cluster Start Time End Time Total Time Splits Maps Reducer Tasks

5 Node 0:47:55 0:59:10 0:11:15 5 5 1

6 Node 10:43:14 10:54:21 0:11:07 5 5 1

6.2 Time Required for Clustering

Clustering has been done by using k-means clustering algorithm. We organised data in many k

showing number of images present in one cluster.

Figure 6.1: cluster Visualisation.
Figure 6.2: 80 clusters.
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Figure 6.3: 120 clusters. Figure 6.4: 160 clusters.

Figure 6.5: 200 clusters. Figure 6.6: 240 clusters.
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Figure 6.7: 280 clusters. Figure 6.8: 320 clusters.

Figure 6.9: 360 clusters. Figure 6.10: 397 clusters.
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6.3 Time Required to Form Clusters : A comparison

It is not necessary that time will increase with number of clusters. Time in clustering depends upon

number of iterations required for k-means clustering. Less clusters may require more iteration to

find out the shortest distance from the centroid and it is also possible to get clustering done in less

time if it finished in few iterations.

Figure 6.11: number of clusters vs time (in hrs) required to form clusters.

6.4 Searching Time in Hadoop

Figure 6.12: Query Image.

Figure 6.13: Retreived Images.

Searching in clusters depends upon the number of images in the cluster. If the query image falls

in the cluster which has large number of images that other clusters then it will take more time as

compare to others. As shown in figure 397 clusters take less time than 360 clusters. Time may

change when query image changes.

Figure 6.14: Time required to get similar images.
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Chapter 7

Conclusions

We have described a different approach for distributed image processing using the Hadoop model and

we also provided a practicl application using Apache hadoop framework. We also organised images

of large scale database into clusters and explained some of the basic issues that should be taken

into account when considering methods of parallelisation in hadoop. When discussing all of these

subjects, I have focused on two-dimensional images with three color channels, which is essentially

the vast majority of data that is commonly thought of as an ”image”.

In the case of working with a data-set of small/big images, there are almost no insurmountable

issues with adapting any kind of algorithm to the MapReduce model. The divide-and-conquer

approach of splitting up the data-set for independent processing works well in frameworks such

as Hadoop. As we explained earlier there are some issues related to small files and the same can

be solved with using sequence files having key as image name and valus as image binary content.

Hadoop is well suited for non-iterative algorithms as it stores the data in hard drive after each

iteration and again initialise itself for the next iteration. For example, clustering algorithms like

k-means which need to compare images to each other. Another restriction stems from the Hadoop

framework itself: no matter the size of input data,the start-up time of a job remains at roughly

10 to 11 seconds. With local non-iterative algorithms, it is enough to partition the input, process

the pieces, and then assemble the final output image. It is the delay in initiating a MapReduce

job that makes this approach unattractive for any algorithm involving many short iterations. With

algorithms that have less iterations or iterations that last longer, adaptation to MapReduce might

be an option.

In conclusion, I would say that when considering the feasibility of using MapReduce as a means

for large-scale distributed image processing, the nature of the data determines the algorithms that

can be used. With a data-set of many images, there are almost no issues to speak of, as parallelisation

of the processing in this case is simply a more fault-tolerant, efficient and automated way of dividing

up the data amongst several computers, doing the calculations and later merging the result back

together.
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