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Abstract

Over the last few years, there has been considerable amount of study and work on developing algorithms

for processing massive graphs in the data stream model. Storing massive graphs in the memory of a single

machine is not practical which is what the motivation behind data stream algorithms. To obtain space

and time efficient algorithms, we develop streaming/semi-streaming algorithms where it is reasonable

to assume that the input graph arrives as a stream of edges. We can process the input in either one

or multiple passes and the working memory space is restricted. In this thesis, we first present the

algorithms for processing the directed dynamic graphs in the semi-streaming model which is an open

area for research. Semi-streaming model is a variant of streaming model(restricted space is O(polylog n))

where the space usage is restricted to O(n polylog n) where n is the number of vertices in the graph. We

also propose a solution to the open problem suggested by Andrew McGregor in Matching Open Problem.

The problem states that “Consider an unweighted graph on n nodes defined by a stream of edge insertions

and deletions. Is it possible to approximate the size of the maximum cardinality matching up to constant

factor given a single pass and o(n2) space?”.

We present new solutions for finding kernels of the parameterized versions of few graph problems

in streaming/semi-streaming models. For each problem, we are provided an undirected graph G and

parameter k as input and our goal is to decide whether there is a solution bounded by k. We mainly

consider two models for the graph stream in this thesis. First one is the insertion-only model where only

edge insertions are possible. The other one is dynamic model where both edge insertions and deletions

are possible.

We show the following results :

1. In insert-only model, we present an algorithm for finding linear kernel for edge dominating set where

the parameter k is the size of the solution.

2. In insert-delete model, we combine the kernelization technique with sketch structures to present an

algorithm for finding linear kernel for edge dominating set where the parameter k is the size of the

solution.

3. In insert-only model, we present the first algorithms for finding the linear kernels of undirected

feedback vertex set where the parameter k is the size of the solution.

v
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Chapter 1

Introduction

1.1 Massive Graphs

Graphs are the fundamental data structures for many computational applications. Many types of

highly structured data can be represented as graphs. For example : data structures, computer networks,

pathing and maps, molecules represent massive data which can be modeled as graphs. In many real world

scenarios, massive graphs arise naturally. Massive graphs can be either sparse graphs which have a large

number of nodes or dense graphs that have a large number of edges. Massive graphs usually arise in any

data-relationship applications. Few examples of massive graphs are

i. Social network graphs in which vertices represent people and edges represent relationships. Eg :

Facebook graphs.

ii. Call graphs in which vertices represent users and edges represent the calls made from one user to the

other.

iii. Web graphs in which vertices represent web-pages and edges represent hyperlinks between the pages.

Few properties of massive graphs are

i. Many real world graphs are large. For eg., Facebook graph, contains on an order of a billion vertices

and nearly one trillion edges.

ii. They are highly dynamic. New structures appear in social network graphs at every moment. Some

of the features of such graphs are new friends can be added, friends can be de-friended.

iii. There is significant interest in the global structure of these graphs, and in particular how that

structure changes over time.

iv. We need infinite amount of space and time to solve the properties of these graphs, but having such

huge memory is not practical. Compared to the size of the graphs, our computing power is very

limited.

There are few every day transactions such as using a phone, using a credit card or browsing a web

that leads to storage of data automatically. Hardware technology advancements have made it easier to

collect these continuous data. These large volumes of data are then queried to estimate their properties.

Massive data is too big to be stored on computer memory of a single machine. Rather, storage devices

like tapes are used to store them. So, it is appropriate to assume the input, which is stored in storage

devices, to be a stream of data to develop algorithms efficient in time. Since the data is massive, it

might not be possible to process the stream by making multiple passes. Sometimes, user is allowed to
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process the input elements only once. These conditions, roughly, define the so-called “streaming graph

problem”, in which the user must analyze a graph presented in the form of either incremental updates

or both incremental and decremental updates, using limited space and time. So, one useful model for

dealing with massive graphs is the semi-streaming model. The details about data-stream model and the

variants of it will be dealt in the next chapters.

The drawback when traditional graph algorithms are applied to graphs which are massive, is the need

for them to have a random access to the edges of the graph. The tradeoff between restricted space and

the constraints in accessing of input is that at one end, we have dynamic algorithms that may store the

whole input graph and in the other, we have polylog(polynomial in logarithm) space restricted streaming

algorithms. But, it is very hard to solve the graph problems using only polylog space. It was then

suggested by S.Muthukrishnan in [26] that the mid way, ie., algorithms using O(n polylogn) bits of

space, is a challenging research area.

1.2 Related Work

Over the past few years, reasonable effort has been done on streaming algorithms for analyzing massive

graphs. The data stream model was first proposed by S.Muthukrishnan in [26], [2], [27]. We could refer

to [25, 22, 4, 32] for survey on graph stream algorithms. Graph streams can be queried to estimate it’s

properties as seen in [23, 20, 5]. A lot of work has been done on parameterized complexity and fixed

parameter tractability earlier in [16, 17]. The most recent work on undirected feedback vertex set is

studied in [29] which gives a quadratic kernel. This result improves the previous kernel bounds given in

[6, 7]. The variants of feedback vertex set are discussed in [14, 12].

1.3 Thesis Outline

We start in chapter 2 by giving the background details about data stream model. In Chapter 3,

we give the outline about streaming algorithms. In Chapter 4, we discuss the new solutions in semi-

streaming model for directed acyclic graphs and matching in turnstile streams. Chapter 5 discusses

about parameterized streaming. In Chapter 6, we present the algorithms for finding kernels of edge

dominating set and undirected feedback vertex set in parameterized streaming framework.

2



Chapter 2

Data Stream Algorithms

2.1 Data Stream

Data stream is defined as a continuously arriving sequence of elements drawn from the universe which

are accessed in the order. In a stream, data is revealed sequentially, one at a time. Usually streams are

massive. Examples of data stream are stream of IP packets, stream of stock prices.

2.2 Data Stream Model

In the classical data stream model([26, 2, 27]), the algorithm processes the stream of data using space

which is small when compared to the size of the input. In particular, the algorithm cannot store the

whole input and therefore has to construct the summary of the input using less space in order to answer

the query. This model can be formalized as a sequence σ = < a1, a2, . . . . , am >, where the elements

of the stream are drawn from the universe set [n] := 1, 2, . . . , n. m is the stream length and n is the

size of the universe.

The goal of the data stream model is to compute a function on the input stream with limited working

space, usually which is sublinear in m and n. When we are dealing with massive streams, we may not

require exact answer all the time. Even an approximate answer would do the task. Data stream algo-

rithms may even perform pre-processing or post-processing without access to the data stream.

The performance measures of this model are

i. Space utilized by the algorithm.

ii. Number of passes it needs.

iii. Processing time per element([31]).

Input data stream is represented by various models.

i. Cash Register Model : Only data item inserts are possible.

ii. Turnstile Model : Both data item inserts and deletes are possible.

iii. Strict Turnstile Model : Deletion of data item is possible only after it is inserted.

3



2.3 Techniques used

There are two techniques for handling data streams. The techniques are sampling and sketching. In

sampling , we sample few elements from the stream at random and compute a function on these sampled

elements. The technique for sampling is given in following algorithm (taken from [26]) :

Algorithm 2.3.1 Sampling Algorithm

Input: A stream a1 , a2 , . . . an where n is the size of the universe.

1: procedure Sampling

2: Sample S = φ.

3: for each element ai in stream do

4: S = ai with probability 1/i.

5: end for

6: end procedure

Sketching is another useful technique for processing streams. It is a useful summary of the input

stream. The basic idea here is to, apply linear projection on the air, that takes the higher dimensional

data to a smaller dimensional data in which the properties of graph are preserved and the latter is used

to compute any query on the stream. Thus, sketches uses less space and also preserves the relevant

properties of original graph. Sketches generally should be

Non-Adaptive : One update on sketch should not be dependent on other.

Loss of independence : The random neighbours returned will not be independent when the sketches

are updated repeatedly and queried.

If the input stream is a graph , then sketch looks like this :

Graph sketches project O(n2)-dimensional graph information into a smaller O(polylog n)-dimensional

space, the projection preserves structural properties of the graph with high probability:

[

M
]

×
[

v
]

→Mv

where

a. M ∈ R
polylogn×n2

is a large projection matrix, from a particular random family. We do not need to

store the whole matrix, it can be computed from a small random seed.

b. v ∈ R
n2

is a long vector encoding graph information, for example, a row of the incidence matrix.

c. Mv ∈ R
polylogn is the smaller-dimensional graph sketch which preserves structural properties of v.

Sketches also obey the property of linearity. So,

M(u+ v) = Mu+Mv (2.1)

2.4 Example

Example problems in this model include finding frequency moments, frequent items in stream, heavy

hitters in input, etc. We could refer to [8] for these algorithms.
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Chapter 3

Streaming Algorithms

3.1 Models in Steaming Algorithms

Streaming algorithms are used for dealing with massive data which arrives as a stream. In this model,

elements arrive in a sequence and each element can be read only once. The number of data elements may

not be known in advance. Space that can be used is restricted to (log n)O(1) where n is the number of

data elements.

Variants of streaming model are :

a. Semi Streaming Model : This is variant of streaming model, where the space usage is restricted to

O(n lognO(1)), where n is the number of data elements.

b. Sliding Window Model : ([13]) In some applications, we may not require all the data and we might

be interested only on new data. One such model is sliding window model in which most recent w

elements are taken into account, where w is the length of the window. The elements in the window

are said to be active and the rest are said to be expired. An active element may become expired after

some point of time but expired elements always remain expired. Only active elements are eligible for

estimating statistics or performing the queries. The windows can be sequence-based or time-based

windows. Exponential and Smooth histograms are effective methods for estimating queries in this

model. An example we can consider is a call-graph where, telephone numbers are represented by

nodes and calls placed during some time interval are represented by edges.

c. W-Stream Model : This allows the writing of intermediate passes. Intermediate stream at one pass

can be used as input stream for the next pass.

d. Stream-sort Model : Here, this allows the data stream to be sorted according to the key.

3.2 Graph Streams

State-of-the-art results of graph streams are discussed in [25]. In the previous chapter, we looked at

data streams. When the input is a graph, the data stream becomes a graph stream. Massive data could

be structured in the form of graphs which leads to the motivation of studying graph streams. Here, the

input is a stream that describes a graph and the objective is to estimate various properties of graph. In

the graph stream, the input consists of set of edges (vi, vj) ∈ [n] × [n] where n is the number of vertices

and m be the number of edges in graph G(V , E) where V = {v1 , . . . , vn}. Edges arrive in arbitrary

order in the stream. The upper bound on m is O(n2).

Many large graphs can be represented by a sequence of edges. This sequence of edges may be a stream

5



only of edge insertions, which gets added to the graph stored, or may be a combination of both edge

insertions and deletions. The graph stream can be either fully dynamic or partially dynamic([15]).

Fully Dynamic : Supports insertion and deletion of vertices and edges. Eg : (u, v, +) for insertion,

(u, v, −) for deletion. We usually construct sketches of the input to deal with this model.

Partially Dynamic : Supports either insertion or deletion of vertices and edges but not both.

Incremental : Supports only insertions of vertices and edges.

Decremental : Supports only deletions of vertices and edges.

3.2.1 Variants in Graph Stream Model

The following are few variants in graph stream model :

Multi-Pass Models : Here, the stream algorithm is allowed to make more than one pass over the input

data. W-Stream and Stream-Sort models can also be used in multi-pass models.

Dynamic, Weighted or Directed graphs : Dynamic graph is a graph which is subject to a sequence of

updates. An update can be either edge insertions or edge deletions. For a weighted graph, the

stream element will be of the form (u, v, wt) ,where wt is the weight associated with edge (u, v)

ie., vk ∈ [n] × [n] × R+. In a directed graph, an edge (u, v) implies an edge u to v (not vice-versa)

in the graph.

Adjacency and Incidence Orderings : In the incidence model, all edges on one vertex arrive consecutively.

In the adjacency model any such assumption is not made.

3.3 Example Algorithms

Example problems in graph streams include finding connectivity, bipartiteness, counting triangles,

matching, minimum spanning tree, etc in the input stream. Earlier work on these algorithms was dis-

cussed in [21]. For the above mentioned standard algorithms in semi-streaming model, we could refer to

[8]. Let us look at connectivity algorithm from [8].

Connectivity : An undirected graph is said to be connected , if there exists a path between every

pair of vertices in it.

The algorithm is given below.

Algorithm 3.3.1 Connectivity Algorithm

Input: An undirected graph whose stream consists of edges in the form (u,v) ∈ [n] × [n] where n is

known. but stream length is not known.This is insert only stream.

1: procedure Connectivity

2: Initialize F ← φ , i ← 0.

3: for each element (u, v) in stream do

4: if ¬i ∧ ((u,v) does not form a cycle in F ) then

5: F = F ∪ (u, v)

6: if |F | is equal to n− 1 then

7: i = 1.

8: end if

9: end if

10: end for
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11: Output i

12: end procedure

Its space usage is O(n logn), since size of F is atmost n− 1 and each edge in F requires O(log n) bits.
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Chapter 4

New Solutions in Semi-Streaming

Model

4.1 Simple Directed Graphs

4.1.1 Preliminaries

Let G(V , E) be a graph where V is the set of vertices and E is the set of edges. Let n be the

size of V and m be the size of E. We assume n is known in advance but m is not known. We for-

mally write G = (V , E) where V is a set and E ⊆ V × V . A graph G is said to be undirected ,

if ∀ vertices u, v ∈ V , (u, v) ∈ E ⇔ (v, u) ∈ E. Otherwise, G is said to be directed. Input for this

problem is a simple dynamic acyclic graph stream which is defined as a < S = s1, s2, ...st > where

sk ∈ [n] × [n] × {−1, 1} defines a multi-graph G =(V , E) where V = [n] and the multiplicity of an

edge e = (u, v) is represented by x which is equal to x(e) = |k : sk = (u, v,+)| − |k : sk = (u, v,−)|. But

in our problems, we assume the graph to be simple. The example of dynamic graph stream/turnstile

stream is shown in Figures 4.1.1 and 4.1.2. The first part of Figure 4.1.1 is the original graph. The second

part is after arrival of the edge (1,2,+). The first part of Figure 4.1.2 is after the arrival of the edge (2,

3, +) and the next part is after the arrival of the edge (1,2,−).

Figure 4.1.1: Turnstile Stream
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Figure 4.1.2: Turnstile Stream Contd

The following definition and lemma are from [3].

Definition An (ǫ, δ) lp sampler for x 6= 0 returns ⊥ with probability atmost δ and otherwise returns

some i ∈ [n] with probability in the range :

[

(1− ǫ)|xi|
p

lpp(x)
,
(1 + ǫ)|xi|

p

lpp(x)

]

where lp(x) =

(

∑

i∈[n] |xi|
p

)
1

p

Lemma 4.1.1. There exists a linear sketch-based algorithms that perform lp sampling using O(log2 n log δ−1)

space for p = 0. We may set ǫ = 0 in this case.

4.1.2 Algorithms for Simple Directed Graphs

Not much research has been done on directed graphs till now. Yet, many real time graphs are directed.

Few examples are

i. Airline route maps : Here airports are vertices and there is an edge from vertex u to vertex v if there

is flight from airport u to airport v.

ii. Flowcharts : Here boxes are represented by vertices and arrows are represented by arrows.

iii. Social graphs : Here people are vertices and follow links are edges.

iv. Web graphs : Here web pages are vertices and hyperlinks are edges.

v. One way streets in a map : Here crossings are vertices and streets are edges.

vi. Telephone graphs : Here phones are vertices and calls made are edges.

Let us first look at the connectivity algorithms on directed acyclic graph problems in dynamic graph

streams under semi-streaming model. Then, as we can see in [3], all other properties of graph like

k-connectivity, bipartiteness, approximate arborescence can be easily computed using connectivity algo-

rithm, given the roots.

4.1.2.1 Connectivity

To check the connectivity of the input directed acyclic graph, we construct minimum spanning tree

of it starting with root. All the vertices reachable from the root forms a connected component. To find

the minimum spanning tree of the input directed acyclic dynamic graph, we cannot store all the edges

of the input stream as it would require a space of O(n2). But the space restriction in semi-streaming

9



model is O(n polylog n). So, we use a concept called sketching, where we construct a sketch of size d

(where d << n2) for an O(n2) - dimensional graph in such a way that the sketch preserves the relevant

properties of the original graph with high probability.

We now present a single pass, semi-streaming algorithm that checks the connectivity in the input graph

for the given root. The maximum number of edges in directed graph are n ∗ (n − 1), where n is the

number of vertices. An edge (u, v) in G represents a path from u to v where u is called a head and v is

called a tail. A directed spanning tree of G rooted at r is a spanning tree in which no two edges share

their tails. Each vertex is the tail of atmost one edge of the directed spanning tree.

Let us see how to construct sketches now.

Given a directed graph G, we construct a sketch matrix where each row in the matrix correspond to a

vertex.Formally, we define a n× 2
(

n

2

)

matrix SG with entries (i, (j, k)) ∈ [n]× 2
(

[n]
2

)

defined by

Si(j, k) = 1 if i = j and (vj , vk) ∈ E

Si(j, k) = −1 if i = k and (vj , vk) ∈ E

= 0 otherwise

(4.1)

Each row Si in SG corresponds to vertex vi. So, as we can see, for directed graphs sketches are of form

Si = (0, 1)2∗(nC2
). Given a directed graph, the basic algorithm, given the root(Let the root be u), is as

follows :

1. In the first stage, the first phase is as follows

a. We find an incident edges for all the vertices starting with root.

b. For each incident edge, if the edge can be added to spanning tree/forest, we merge the vertices of

this incident edge into a super-vertex. This in turn has one step.

i. Let this incident edge be (u, v).

ii. We remove edges from any other vertex to v as each vertex can become a tail atmost once in

a spanning forest.

2. We repeat these steps until the super-vertices cannot be collapsed any further.

3. The minimum spanning tree of the graph is the graph formed by the edges selected. If we get one

connected component, we can say that the input graph is connected otherwise disconnected and we

can output the number of connected components in the graph for the given root.

The example is shown in Figure 4.1.3. Assume all edges are forward directed edges. This example is

taken from [3].

Figure 4.1.3: Spanning Forest Example
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Now, we develop a sketch-based algorithm to find the spanning forest and the number of connected

components in the input stream. To find an incident edge for any vertex, we could simply l0 sample the

sketch of the vertex. l0 sampling returns a neighbour of the vertex with uniform probability. Let (u, v)

incident on u be the edge selected by l0 sampler for vertex u. We then merge these two vertices u and

v into a super-vertex u, v by adding the sketches of both these vertices. Let the merged sketch be Su,v.

Since {u, v} is a super-vertex, the edges between {u} and {v} doesn’t exist. So we update these entries

as 0 in the merged sketch. The next modification which needs to be done to the sketches is that the entry

which has a tail as u has to be nullified in each vertex sketch as each vertex can become a tail atmost

once. Let X be a sketch which is used to update the sketches of all vertices.

To ensure that every vertex in spanning forest can become a tail atmost once, we construct X as

X(j, k) = 0 if k = v

= 1 otherwise
(4.2)

We then multiply this sketch X with the every vertex sketch. We can clear X after each stage and reuse

it for all stages.

4.1.2.1.1 Sketch-Based Algorithm We maintain O(log n) sketch matrices for each vertex which

means that , if S1 is used in first stage of algorithm, then S2 is used in next stage and so on. Given

the roots, Bipartiteness, Approximate arborescence, K-edge connectivity can be found using the same

algorithms as given in [3]. The algorithm is shown in Algorithm 4.1.1 :

Algorithm 4.1.1 Connectivity Algorithm in Directed Acyclic Graphs

Input: Directed acyclic graph whose stream which consists of edges in the form (u, v, +/−) ∈ [n] × [n] × R

where n is known but stream length is not known and u < v or vice versa.

Input: A root s.

1: procedure Connectivity in Directed Graphs

2: Sketch v1, v2, . . , vn using the sketch matrices S1, S2, . ., St where t = O(logn).

3: Initialize the set of supervertices as V ′ = V

4: for r ∈ [t] do

5: In the first phase, we find incident edges for all the vertices starting with the root. For the

root s ∈ V ′ , l0 sample an edge using the sketch
∑

vi∈s Sr(ai). Let the sampled edge for root be

(s, vi).

6: for each edge in incident edges do

7: if edge can be added to spanning tree then

8: Merge the vertices into a super-vertex in V ′.

a) Update the entries in all sketches where vi is a tail as 0 using X .

b) Clear X .

9: end if

10: end for

11: Repeat the above steps for other vertices which corresponds to the next phases and then

proceed to second stage to find incident edges from one super-vertex to other.

12: end for

13: The spanning forest of the input graph is formed by the set of sampled edges and G has |V ′|

number of connected components.

14: end procedure
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There are logn sketches for each vertex, so, the space complexity of this algorithm is O(n polylog n)

and it returns the spanning forest of the input graph.

Let us consider a small example(with root as 1) as shown in Figure 4.1.4:

Figure 4.1.4: Spanning Forest : Example 1

We will construct the sketches for the example of Figure 4.1.4 (as shown in Table 4.1.1) :

Table 4.1.1: Sketch Table of connectivity : Step 1

Node (1,3) (3,2) (3,4) (3,5) (6,3) (6,7) (7,5) (8,4) (8,7)
s1 1 0 0 0 0 0 0 0 0
s2 0 -1 0 0 0 0 0 0 0
s3 -1 1 1 1 -1 0 0 0 0
s4 0 0 -1 0 0 0 0 -1 0
s5 0 0 0 -1 0 0 -1 0 0
s6 0 0 0 0 1 1 0 0 0
s7 0 0 0 0 0 -1 1 0 -1
s8 0 0 0 0 0 0 0 1 1

So, in the first stage, let the edges sampled be (1, 3), (3, 4), (6, 3), (7, 5), (8, 7).

The first incident edge is the root’s edge. (1, 3) edge can be added to spanning forest. All the

other edges having 3 as tail are removed from the sketches by multiplying all the sketches with con-

structed sketch X . Now the step wise sketches look like as shown in Tables 4.1.2, 4.1.3. Now V ′ =

{{1, 3}, 2, 4, 5, 6, 7, 8}.

Table 4.1.2: Sketch Table of connectivity : Step 2

Node (1,3) (3,2) (3,4) (3,5) (6,3) (6,7) (7,5) (8,4) (8,7)
s1,3 0 1 1 1 -1 0 0 0 0
s2 0 -1 0 0 0 0 0 0 0
s4 0 0 -1 0 0 0 0 -1 0
s5 0 0 0 -1 0 0 -1 0 0
s6 0 0 0 0 1 1 0 0 0
s7 0 0 0 0 0 -1 1 0 -1
s8 0 0 0 0 0 0 0 1 1

Table 4.1.3: Sketch Table of connectivity : Step 2 - Construction of X

Node (1,3) (3,2) (3,4) (3,5) (6,3) (6,7) (7,5) (8,4) (8,7)
X 0 1 1 1 0 1 1 1 1
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After multiplying X with every sketch, Table 4.1.4 shows how the sketches look like after merging the

nodes 1 and 3 :

Table 4.1.4: Sketch Table of connectivity : Final Step 2

Node (1,3) (3,2) (3,4) (3,5) (6,3) (6,7) (7,5) (8,4) (8,7)
s1,3 0 1 1 1 0 0 0 0 0
s2 0 -1 0 0 0 0 0 0 0
s4 0 0 -1 0 0 0 0 -1 0
s5 0 0 0 -1 0 0 -1 0 0
s6 0 0 0 0 0 1 0 0 0
s7 0 0 0 0 0 -1 1 0 -1
s8 0 0 0 0 0 0 0 1 1

The next edge is (3, 4). This edge can be added to spanning tree as 4 has not become a tail even once

till now. We now add the sketches s1,3 and s4 which is shown in Table 4.1.5. Now 4 cannot become a tail

again in the spanning tree. So we construct X as shown in Table 4.1.6. Now V ′ = {{1, 3, 4}, 2, 5, 6, 7, 8}.

Table 4.1.5: Sketch Table of connectivity : Step 3

Node (1,3) (3,2) (3,4) (3,5) (6,3) (6,7) (7,5) (8,4) (8,7)
s1,3,4 0 1 0 1 0 0 0 -1 0
s2 0 -1 0 0 0 0 0 0 0
s5 0 0 0 -1 0 0 -1 0 0
s6 0 0 0 0 0 1 0 0 0
s7 0 0 0 0 0 -1 1 0 -1
s8 0 0 0 0 0 0 0 1 1

Table 4.1.6: Sketch Table of connectivity : Step 3 - Construction of X

Node (1,3) (3,2) (3,4) (3,5) (6,3) (6,7) (7,5) (8,4) (8,7)
X 1 1 0 1 1 1 1 0 1

After multiplying X with every sketch, Table 4.1.7 shows how the sketches look like after merging the

nodes {1, 3} and 4 :

Table 4.1.7: Sketch Table of connectivity : Final Step 3

Node (1,3) (3,2) (3,4) (3,5) (6,3) (6,7) (7,5) (8,4) (8,7)
s1,3,4 0 1 0 1 0 0 0 0 0
s2 0 -1 0 0 0 0 0 0 0
s5 0 0 0 -1 0 0 -1 0 0
s6 0 0 0 0 0 1 0 0 0
s7 0 0 0 0 0 -1 1 0 -1
s8 0 0 0 0 0 0 0 0 1

The next edge is (6, 3). This cannot be added to spanning tree as 3 has already become a tail once.

So we don’t perform any operation on sketches.

The next edge is (7, 5). This edge can be added to spanning tree as 5 has not become a tail even once

till now. We now add the sketches s7 and s5 which is shown in Table 4.1.8. Now 5 cannot become a tail

again in the spanning tree. So we constructX as shown in Table 4.1.9. Now V ′ = {{1, 3, 4}, 2, 6, {7, 5}, 8}.
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Table 4.1.8: Sketch Table of connectivity : Step 4

Node (1,3) (3,2) (3,4) (3,5) (6,3) (6,7) (7,5) (8,4) (8,7)
s1,3,4 0 1 0 1 0 0 0 0 0
s2 0 -1 0 0 0 0 0 0 0
s6 0 0 0 0 0 1 0 0 0
s7,5 0 0 0 -1 0 -1 0 0 -1
s8 0 0 0 0 0 0 0 0 1

Table 4.1.9: Sketch Table of connectivity : Step 4 - Construction of X

Node (1,3) (3,2) (3,4) (3,5) (6,3) (6,7) (7,5) (8,4) (8,7)
X 1 1 1 0 1 1 0 1 1

After multiplying X with every sketch, Table 4.1.10 shows how the sketches look like after merging

the nodes 7 and 5 :

Table 4.1.10: Sketch Table of connectivity : Final Step 4

Node (1,3) (3,2) (3,4) (3,5) (6,3) (6,7) (7,5) (8,4) (8,7)
s1,3,4 0 1 0 0 0 0 0 0 0
s2 0 -1 0 0 0 0 0 0 0
s6 0 0 0 0 0 1 0 0 0
s7,5 0 0 0 0 0 -1 0 0 -1
s8 0 0 0 0 0 0 0 0 1

The next edge is (8, 7). This edge can be added to spanning tree as 7 has not become a tail

even once till now. We now add the sketches s7,5 and s8 which is shown in Table 4.1.11. Now 7

cannot become a tail again in the spanning tree. So we construct X as shown in Table 4.1.12. Now

V ′ = {{1, 3, 4}, 2, 6, {7, 5, 8}}.

Table 4.1.11: Sketch Table of connectivity : Step 5

Node (1,3) (3,2) (3,4) (3,5) (6,3) (6,7) (7,5) (8,4) (8,7)
s1,3,4 0 1 0 0 0 0 0 0 0
s2 0 -1 0 0 0 0 0 0 0
s6 0 0 0 0 0 1 0 0 0

s7,5,8 0 0 0 0 0 -1 0 0 0

Table 4.1.12: Sketch Table of connectivity : Step 5 - Construction of X

Node (1,3) (3,2) (3,4) (3,5) (6,3) (6,7) (7,5) (8,4) (8,7)
X 1 1 1 0 1 0 1 1 0

After multiplying X with every sketch, Table 4.1.13 shows how the sketches look like after merging

the nodes {7, 5} and 8 :

Table 4.1.13: Sketch Table of connectivity : Final Step 5

Node (1,3) (3,2) (3,4) (3,5) (6,3) (6,7) (7,5) (8,4) (8,7)
s1,3,4 0 1 0 0 0 0 0 0 0
s2 0 -1 0 0 0 0 0 0 0
s6 0 0 0 0 0 0 0 0 0

s7,5,8 0 0 0 0 0 0 0 0 0
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In the next stage, the sampled edges is only (3, 2) as remaining sketches do not have any neighbours.

We now add the sketches s1,3,4 and s2 which is shown in Table 4.1.14. Now 2 cannot become a tail again

in the spanning tree. So we construct X as shown in Table 4.1.15. Now V ′ = {{1, 3, 4, 2}, 6, {7, 5, 8}}.

Table 4.1.14: Sketch Table of connectivity : Step 6

Node (1,3) (3,2) (3,4) (3,5) (6,3) (6,7) (7,5) (8,4) (8,7)
s1,3,4,2 0 0 0 0 0 0 0 0 0
s6 0 0 0 0 0 0 0 0 0

s7,5,8 0 0 0 0 0 0 0 0 0

Table 4.1.15: Sketch Table of connectivity : Step 6 - Construction of X

Node (1,3) (3,2) (3,4) (3,5) (6,3) (6,7) (7,5) (8,4) (8,7)
X 1 0 1 1 1 1 1 1 1

After multiplying X with every sketch, Table 4.1.16 shows how the sketches look like after merging

the nodes {1, 3, 4} and 2 :

Table 4.1.16: Sketch Table of connectivity : Final Step 6

Node (1,3) (3,2) (3,4) (3,5) (6,3) (6,7) (7,5) (8,4) (8,7)
s1,3,4,2 0 0 0 0 0 0 0 0 0
s6 0 0 0 0 0 0 0 0 0

s7,5,8 0 0 0 0 0 0 0 0 0

Now V ′ = {{1, 3, 4, 2}, 6, {7, 5, 8}}.

There are no more neighbours for vertices in V ′. So, this algorithm stops after 2 stages and the number

of connected components are number of vertices in V ′. For root 1, the graph is disconnected and there

are three connected components in the example above.

4.2 Matching in Turnstile Streams

4.2.1 Definitions

Let G(V , E) be a simple undirected unweighted graph where V is the set of vertices and E is the

set of edges. Let n be the number of vertices and m be the number of edges. We assume n is known in

advance. We formally write G = (V , E) where V is a set and E ⊆ V × V . A matching, M of graph G

is a subset of edges of E, such that no two edges in M are adjacent. Maximal matching is a matching,

where any edge that is violating the property cannot be added. Maximum matching is a matching with

maximum number of edges. The example of maximal and maximum matching is given in Figure 4.2.1.

Figure 4.2.1: Matching

15



As we can see, in the Figure 4.2.1,

First graph is the original graph.

Second graph is maximal matching but not maximum.

Next graph is maximum matching.

4.2.2 Maximal matching in dynamic graph streams

This is one of the open problems as suggested by Andrew McGregor in Matching Open Problem.

Earlier work on this was discussed in [24] where they gave a multi-pass algorithm for matching, but not

in streaming model. Input here is a dynamic graph stream which is defined as < S = s1, s2, ...st > where

sk ∈ [n] × [n] × {−1, 1}. Our goal is to find maximal matching in dynamic graph streams under semi-

streaming model. It is very well known fact that maximal matching is a 2-approximation of maximum

matching whose proof is given below in theorem 4.2.1(referred to 2-appx Proof).

Theorem 4.2.1. Let M1 be a maximal matching and M2 be a maximum matching in an arbitrary graph.

Show that maximal matching is a 2-approximation of maximum matching.

Proof. Since M2 is maximum, |M1| ≤ |M2|. We now prove that |M2| ≤ 2.|M1|. We go through the

edges of M2 one by one. For any edge (i, j) ∈ M2 , either i is matched in M1 or j is matched in M1.

Otherwise, this edge could have been added to M1 . Hence, the matched vertices in M1 is atleast half

of the matched vertices in M2. Let these sets be denoted by V (M1), V (M2). Clearly, V (M1) = 2|M1|,

V (M2) = 2|M2|, Since now we have that V (M2) ≤ 2.V (M1) , the result is obvious.

We present two solutions for matching in turnstile model, where in one solution, we consider incidence

model and in the other, we consider arbitrary input stream.

4.2.2.1 Solution 1

The input here is an incidence stream of edges of a simple undirected unweighted graph G(V , E). In

incidence model, all edges incident on one vertex arrive together. So, all insertions and deletions of one

vertex appear consecutively. The edges (u, v) in E are, such that u < v. An edge can be deleted only

after being inserted.

Example of stream in incidence model is

Eg : {(1, 2, +) ,(1, 4, +) ,(1, 3, +) ,(1, 2, −) ,(1, 4, −) ,(2, 3, +) ,(2, 4, +) ,(2, 3, −) ,(3, 4, +) ,

(3, 4, −)}.

Now in the algorithm, we maintain two buffers Mm and B where Mm is used to maintain maximal

matching in G and B is a buffer to hold replacement edges. For the set of incident edges to first vertex,

we follow greedy approach for matching and add the edges selected to Mm. Add the remaining insertion

edges incident to same vertex to the buffer B. If an edge added to Mm is deleted later in the stream,

then we replace this with any possible edge from B. If any edge is a deletion edge and if it is present in

B, then delete it from B. After reading the edges incident to one vertex, we can clear the buffer B and

use it for the next set of edges.

The algorithm is given below.

Algorithm 4.2.1 Matching in Turnstile Stream Algorithm : Solution 1

Input: An undirected graph whose stream consists of edges in the form (u, v, +/−) ∈ [n] × [n] × R

where n is known but stream length is not known and u < v. Stream follows incidence model.

1: procedure Matching Solution 1

Require: Maximal matching Mm = φ and buffer B = φ.
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2: for all the veritces u ∈ V do

3: for each edge (u, v) in the stream do

4: if the edge is an insertion edge (u, v, +) then

5: Follow the greedy approach for matching.

6: if it is possible to add edge to Mm then

7: Add it to Mm.

8: else

9: Add the edge to B.

10: end if

11: end if

12: if the edge is a deletion edge (u, v, −) then

13: if this edge is in Mm then

14: Delete this edge from Mm.

15: for the edges e in B do

16: if e can be added to Mm then

17: Transfer e from B to Mm and break the loop.

18: end if

19: end for

20: end if

21: if this edge is in B then

22: Delete it from B.

23: end if

24: end if

25: end for

26: Clear the buffer B.

27: end for

28: end procedure

4.2.2.1.1 Example : Let us look at a small example now.

The input stream is as follows :

(1, 2, +) , (1, 3, +) , (1, 4, +) , (1, 2, −) , (1, 5, +) , (1, 6, +) , (1, 5, −) ,

(2, 3, +) , (2, 4, +) , (2, 5, +) , (2, 4, −) , (2, 6, +) ,

(3, 4, +) , (3, 5, +) , (3, 6, +) , (3, 5, −) ,

(4, 5, +) , (4, 6, +) , (4, 5, −) ,

(5, 6, +) , (5, 6, −).

1. When (1, 2, +) arrives ,

i. We follow the greedy approach to maintain maximal matching.

ii. M will have (1, 2) and buffer is empty set {}.

2. When (1, 3, +) arrives ,

i. M still has {(1, 2)} and buffer contains {(1, 3)}.

3. When (1, 4, +) arrives ,

i. M still has {(1, 2)} and buffer contains {(1, 3), (1, 4)}.
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4. When (1, 2, -) arrives ,

i. Since edge (1, 2) is deleted , it will be replaced by any edge from the buffer. So M will have

{(1, 3)} and buffer contains {(1, 4)}.

5. When (1, 5, +) arrives ,

i. M has {(1, 3)} and buffer contains {(1, 4), (1, 5)}.

6. When (1, 6, +) arrives ,

i. M has {(1, 3)} and buffer contains {(1, 4), (1, 5), (1, 6)}.

7. When (1, 5, -) arrives ,

i. M will have {(1, 3)} and buffer contains {(1, 4), (1, 6)}.

After this , buffer is reset to empty set.

8. When (2, 3, +) arrives ,

i. M still has {(1, 3)} and buffer contains {(2, 3)}.

9. When (2, 4, +) arrives ,

i. M will have {(1, 3), (2, 4)} and buffer is {}.

10. When (2, 5, +) arrives ,

i. M still has {(1, 3), (2, 4)} and buffer is {(2, 5)}.

11. When (2, 4, -) arrives ,

i. M will have {(1, 3), (2, 5)} and buffer is {}.

12. When (2, 6, +) arrives ,

i. M will have {(1, 3), (2, 5)} and buffer is {(2, 6)}.

After this , buffer is reset to empty set.

13. When (3, 4, +) arrives ,

i. As 3 is already present in matching. We cannot add the edges incident on 3 to M. So, we neither

add edges incident on 3 to M nor B.

14. When (3, 5, +) arrives ,

i. Ignore this edge.

15. When (3, 6, +) arrives ,

i. Ignore this edge.

16. When (3, 5, -) arrives ,

i. Ignore this edge.

17. When (4, 5, +) arrives ,
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i. M still has {(1, 3), (2, 5)} and buffer will have {(4, 5)}.

18. When (4, 6, +) arrives ,

i. M will have {(1, 3), (2, 5), (4, 6)} and buffer will have {(4, 5)}.

19. When (4, 5, -) arrives ,

i. M will have {(1, 3), (2, 5), (4, 6)} and buffer is {}.

20. When (5, 6, +) arrives ,

i. As 5 is already present in matching. We can ignore all edges incident on 5.

21. When (5, 6, -) arrives ,

i. Ignore this edge.

Following this approach, maximal matching M will have {(1, 3), (2, 5), (4, 6)}.

At any time buffer will store atmost n edges if we consider a simple graph. (where n is the number

of vertices.)

So, the space complexity is O(n).

4.2.2.2 Solution 2

The input here is an arbitrary stream of edges of a simple undirected unweighted graph G(V , E).

The edges (u, v) in E are, such that u < v. An edge can be deleted only after being inserted.

We maintain maximal matching in Mm. We construct sketches for all the vertices Si , ∀i ∈ V in the

input stream. We also maintain a buffer Um to hold unmatched vertices and a buffer Vm for matched

vertices. The algorithm explanation is as follows :

For every edge (u, v) in input stream,

a. If (u, v) is an insertion edge,

1. Then, we add this edge to maximal matching Mm if possible and if (u, v) is added to Mm, then

maintain the vertices in this edge in Vm.

2. If this edge is added to Mm, check if u or v or both is present in Um, if found, delete them from

Um as Um maintains only unmatched vertices.

3. Update sketches Su , Sv ie., Su(u, v) = Sv(u, v) = 1 to make sure that we have seen this edge in

the stream which is not yet deleted.

b. If (u, v) is a deletion edge,

1. If this edge in present in matching Mm , then delete (u, v) from Mm, update sketches Su, Sv ie.,

Su(u, v) = Sv(u, v) = 0(which means either this edge has not arrived in the stream or it is deleted)

and delete vertices u and v from Vm.

i. We first check if all vertices other than u, v are present in Vm. If yes, we need not have to find

any replacement edge for both u and v, else l0 sample Su until we find a replacement edge for

u. We know that l0 sampling returns a neighbour with equal probability.

ii. l0 sample Sv until we find a replacement edge for v.

iii. If replacement edge is not found for either u or v or both, then store that particular ver-

tex(vertices) in buffer Um.
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iv. In case replacement edges are found for either u or v or both , then the replacement edges are

of form (u , w), (v , x). First add the replacement edges found to Mm and the matched vertices

to Vm. If any of w or x is there in Um, delete that particular vertex (or vertices) from Um.

2. else update sketches Su , Sv ie., Su(u, v) = Sv(u, v) = 0 which implies that this edge is deleted

after being inserted.

After the stream has completely arrived, we find possible replacement edges for each unmatched vertex

of Um and add them to matching Mm. The space utilized is O(n+ n polylog n).

The algorithm is as given below :

Algorithm 4.2.2 Matching in Turnstile Stream Algorithm : Solution 2

Input: A stream which consists of edges of a simple undirected unweighted graph G(V , E) in the form

(u, v, +/−) ∈ [n] × [n] × R where n is known but m is not known and u < v. Stream follows

arbitrary model.

1: procedure Matching Solution 2

Require: Maximal matching Mm = φ , matched vertices buffer Vm = φ, unmatched vertices buffer Um

= φ and sketches for all vertices Si , ∀i ∈ V .

2: for each edge (u, v) in the stream do

3: if the edge is an insertion edge (u, v, +) then

4: if adding (u, v) to maximal matching Mm is possible then

5: Add (u, v) is added to Mm.

6: Add the vertices u and v to matched vertices buffer Vm.

7: if u ∈ Um then

8: Delete u from Um.

9: end if

10: if v ∈ Um then

11: Delete v from Um.

12: end if

13: end if

14: Update sketches Su , Sv ie., Su(u, v) = Sv(u, v) = 1.

15: end if

16: if the edge is a deletion edge (u, v, −) then

17: if (u, v) ∈ Mm then

18: Delete (u, v) from Mm

19: Update sketches Su,Sv ie., Su(u, v) = Sv(u, v) = 0

20: Delete vertices u and v from Vm.

21: if |Vm| = n− 2 then

22: Don’t find replacement edges.

23: else

24: if degree of u is < n logn then

25: l0 sample Su until we find a replacement edge for u.

26: else

27: Sample (n logn) edges from Su and find a replacement edge for u in this sample.

28: end if

29: if degree of v is < n logn then

30: l0 sample Sv until we find a replacement edge for v.

31: else

32: Sample (n logn) edges from Sv and find a replacement edge for v in this sample.
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33: end if

34: end if

35: if replacement edge for u is found (Let it be (u, x)) then

36: Add (u, x) to Mm.

37: Add the vertices u and x to matched vertices buffer Vm.

38: if u ∈ Um then

39: Delete u from Um.

40: end if

41: if x ∈ Um then

42: Delete x from Um.

43: end if

44: else

45: Add u to Um.

46: end if

47: if replacement edge for v is found (Let it be (v, w)) then

48: Add (v, w) to Mm.

49: Add the vertices v and w to matched vertices buffer Vm.

50: if v ∈ Um then

51: Delete v from Um.

52: end if

53: if w ∈ Um then

54: Delete w from Um.

55: end if

56: else

57: Add v to Um.

58: end if

59: end if

60: else

61: Update sketches Su , Sv ie., Su(u, v) = Sv(u, v) = 0.

62: end if

63: end for

64: for each vertex in Um do

65: Find the replacement edges and add them to Mm and remove the vertices of these edges from

Um.

66: end for

67: end procedure

4.2.2.2.1 Example : Let us consider a small example :

The input stream is as follows :

(1, 2, +) , (3, 4, +) , (1, 2, −) , (2, 4, +) , (1, 3, +) , (2, 4, −) ,

(2, 3, +) , (1, 4, +) , (2, 3, −) , (2, 3, +) , (2, 4, +) , (3, 4, −) , (3, 4, +).

1. On seeing the edge (1, 2, +),

i. Mm = {(1, 2)}.

21



ii. Vm = {1, 2}.

iii. Look at the Table 4.2.1.

iv. Um = φ.

Table 4.2.1: Matching Sketches Example : 1

Node 12 13 14 23 24 34
s1 1 0 0 0 0 0
s2 1 0 0 0 0 0
s3 0 0 0 0 0 0
s4 0 0 0 0 0 0

2. On seeing the edge (3, 4, +),

i. Mm = {(1, 2), (3, 4)}.

ii. Vm = {1, 2, 3, 4}.

iii. Look at the Table 4.2.2.

iv. Um = φ.

Table 4.2.2: Matching Sketches Example : 2

Node 12 13 14 23 24 34
s1 1 0 0 0 0 0
s2 1 0 0 0 0 0
s3 0 0 0 0 0 1
s4 0 0 0 0 0 1

3. On seeing the edge (1, 2, −),

i. Mm = {(3, 4)}.

ii. Look at the Table 4.2.3.

iii. Vm = {3, 4}.

iv. There are no neighbours for either 1 or 2. So, add them to Um. Therefore, Um = {1, 2}.

Table 4.2.3: Matching Sketches Example : 3

Node 12 13 14 23 24 34
s1 0 0 0 0 0 0
s2 0 0 0 0 0 0
s3 0 0 0 0 0 1
s4 0 0 0 0 0 1

4. On seeing the edge (2, 4, +),

i. Mm = {(3, 4)}.

ii. Vm = {3, 4}.

iii. Look at the Table 4.2.4.

iv. Um = {1, 2}.
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Table 4.2.4: Matching Sketches Example : 4

Node 12 13 14 23 24 34
s1 0 0 0 0 0 0
s2 0 0 0 0 1 0
s3 0 0 0 0 0 1
s4 0 0 0 0 1 1

5. On seeing the edge (1, 3, +),

i. Mm = {(3, 4)}.

ii. Vm = {3, 4}.

iii. Look at the Table 4.2.5.

iv. Um = {1, 2}.

Table 4.2.5: Matching Sketches Example : 5

Node 12 13 14 23 24 34
s1 0 1 0 0 0 0
s2 0 0 0 0 1 0
s3 0 1 0 0 0 1
s4 0 0 0 0 1 1

6. On seeing the edge (2, 4, −),

i. Mm = {(3, 4)}.

ii. Vm = {3, 4}.

iii. Look at the Table 4.2.6.

iv. Um = {1, 2}.

Table 4.2.6: Matching Sketches Example : 6

Node 12 13 14 23 24 34
s1 0 1 0 0 0 0
s2 0 0 0 0 0 0
s3 0 1 0 0 0 1
s4 0 0 0 0 0 1

7. On seeing the edge (2, 3, +),

i. Mm = {(3, 4)}.

ii. Vm = {3, 4}.

iii. Look at the Table 4.2.7.

iv. Um = {1, 2}.

Table 4.2.7: Matching Sketches Example : 7

Node 12 13 14 23 24 34
s1 0 1 0 0 0 0
s2 0 0 0 1 0 0
s3 0 1 0 1 0 1
s4 0 0 0 0 0 1
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8. On seeing the edge (1, 4, +),

i. Mm = {(3, 4)}.

ii. Vm = {3, 4}.

iii. Look at the Table 4.2.8.

iv. Um = {1, 2}.

Table 4.2.8: Matching Sketches Example : 8

Node 12 13 14 23 24 34
s1 0 1 1 0 0 0
s2 0 0 0 1 0 0
s3 0 1 0 1 0 1
s4 0 0 1 0 0 1

9. On seeing the edge (2, 3, −),

i. Mm = {(3, 4)}.

ii. Vm = {3, 4}.

iii. Look at the Table 4.2.9.

iv. Um = {1, 2}.

Table 4.2.9: Matching Sketches Example : 9

Node 12 13 14 23 24 34
s1 0 1 1 0 0 0
s2 0 0 0 0 0 0
s3 0 1 0 0 0 1
s4 0 0 1 0 0 1

10. On seeing the edge (2, 3, +),

i. Mm = {(3, 4)}.

ii. Vm = {3, 4}.

iii. Look at the Table 4.2.10.

iv. Um = {1, 2}.

Table 4.2.10: Matching Sketches Example : 10

Node 12 13 14 23 24 34
s1 0 1 1 0 0 0
s2 0 0 0 1 0 0
s3 0 1 0 1 0 1
s4 0 0 1 0 0 1

11. On seeing the edge (2, 4, +),

i. Mm = {(3, 4)}.

ii. Vm = {3, 4}.

iii. Look at the Table 4.2.11.
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iv. Um = {1, 2}.

Table 4.2.11: Matching Sketches Example : 11

Node 12 13 14 23 24 34
s1 0 1 1 0 0 0
s2 0 0 0 1 1 0
s3 0 1 0 1 0 1
s4 0 0 1 0 1 1

12. On seeing the edge (3, 4, −),

i. Mm = {(1, 3), (2, 4)}.

ii. Vm = {1, 2, 3, 4}.

iii. Look at the Table 4.2.12.

iv. Um = φ.

Table 4.2.12: Matching Sketches Example : 12

Node 12 13 14 23 24 34
s1 0 1 1 0 0 0
s2 0 0 0 1 1 0
s3 0 1 0 1 0 0
s4 0 0 1 0 1 0

13. On seeing the edge (3, 4, +),

i. Mm = {(1, 3), (2, 4)}.

ii. Vm = φ.

iii. Look at the Table 4.2.13.

iv. Um = φ.

Table 4.2.13: Matching Sketches Example : 13

Node 12 13 14 23 24 34
s1 0 1 1 0 0 0
s2 0 0 0 1 1 0
s3 0 1 0 1 0 1
s4 0 0 1 0 1 1

Now, the entire stream is over. Since there are no vertices in Um, we need not have to find any

replacement edges. So the maximal matching is Mm = {(1, 3), (2, 4)}.

Theorem 4.2.2. If the vertex y has degree greater than n logn , then there is a high probability that we

find a replacement edge from n logn-recovery sketch of Sy for y.

Proof. Let (y, x1), (y, x2), . . .(y, xn log n) be the edges sampled from sketch Sy. Let Ny be the

neighbourhood of vertex y. Let Ny

′

be the neighbourhood of vertex y at current time instance. Let Vm

be the set of matched vertices. Number of matched vertices can be atmost n − 2 as we are trying to

find a replacement edge for an edge of 2 vertices. So, these 2 vertices are not present in Vm. Therefore,
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Ny ∩ Vm ≤ n− 2 and Ny −N
′

y ≤ n− 2.

The probability that there is a matched vertex in neighbourhood of the high degree vertex is

Pr
[

xi ∈ Vm

]

≤
∑

z∈N ′

y∩Vm

Pr
[

xi = z
]

≤
∑

z∈N ′

y∩Vm

1

Ny
′

≤
∑

z∈Ny
′∩Vm

1

Ny − (n− 2)

≤
n− 2

n logn− (n− 2)

≤
1

logn

So, the probability that there is an unmatched vertex in neighbourhood of the high degree vertex is

1− 1
log n
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Chapter 5

Parameterized Complexity Concepts

As mentioned in [18], most of the graph optimization problems are NP-Hard, indicating that, unless

P = NP, there can be no polynomial time algorithm which can solve all the instances of an NP-Hard

problem exactly. The traditional way to prevent this intractability is to design approximation algorithms

where we get an approximate solution or randomized algorithms where we lose the guarantee that the

output is always correct. They run in polynomial time. All problems in NP have trivial exponential time

algorithms which just search and verify all the witnesses. So, any algorithm which beats this brute-force

algorithm is thought of as making a clever search in the big space of all candidate solutions.

5.1 Parameterized Complexity

Parameterized Complexity is essentially a two-dimensional analogue of P vs NP. Here, instead of

expressing the running time only in terms of input size, one or more parameters of the input are defined,

and we analyze how parameters are effecting the running time. If the input size is huge and if it has a

small parameter, the goal of PC is to design efficient algorithms.

In parameterized complexity problem specification has three parts :

1. The input.

2. The parameter(of the input).

3. The statement of the problem.

Definition A parameter is a function from problem instances to the set of natural numbers.([1])

The parameter can be input size, size of optimal solution of the problem, etc.

5.2 Fixed Parameter Tractability

It is not likely that polynomial time algorithms exist for NP Hard and NP Complete problems

(FPT Problems). But many of these problems might be associated with some parameters related to

their complexity. If the parameter is small, then there is a hope that we may find polynomial time solu-

tion to that instance. This is the basic idea behind Fixed Parameter Tractability. For more information

on fixed parameter tractability, we could refer to [17].
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Definition We say that a parameterized problem is fixed parameter tractable (FPT) with respect to

parameter k if there exists a solution running in f(k) × nO(1) time, where f is a function of k which is

independent of n.([1])

5.2.1 Techniques used

There are some techniques which can be used to say that a problem is fixed parameter tractable. Few

of them are bounded search trees, kernelization, iterative compression and color coding.

5.2.1.1 Bounded Search Trees

This technique does exhaustive search on the problem space. It uses the parameter to branch on the

search tree so that running time is still polynomial in input size. For an example, we could refer to [1].

5.2.1.2 Kernelization

The formal definition is

Definition Let L ⊆
∑∗
×
∑∗

be a parameterized language. A reduction to a problem kernel, or

kernelization, comprises replacing an instance (I,k) by a reduced instance (I ′, k′), called a problem

kernel, such that

(i) k′ ≤ k.

(ii) |I ′| ≤ g(k), for some function g depending only on k, and

(iii) (I, k) ∈ L iff (I ′, k′) ∈ L. ([11])

If a problem is fixed parameter tractable, then we can reduce an instance of size n to an instance of

size f(k), which is called as kernel where f(k) is a function in k. A kernelization algorithm applied to

some problem instance takes polynomial time in the input size and always returns an equivalent instance

(i.e., the instances will have the same answer) of size bounded by a function of some problem-specific

parameter.

The formal definition is

Definition A kernelization algorithm (kernel) for a parameterized problem Q ⊆
∑∗
×N is an algorithm

that, for input (x, k) ∈
∑∗×N outputs a pair (x′ , k′ ) ∈

∑∗×N in (|x| + k)O(1) time such that |x′|,

k′ < g(k) for some computable function g, called the size of the kernel, and (x, k) ∈ Q ⇐⇒ (x′ , k′) ∈

Q. A polynomial kernel is a kernel with polynomial size.

To obtain a kernel, we use some reduction rules that delete the unnecessary parts of the input. In

parameterized complexity theory, it is possible to prove that kernel size can be found in polynomial time.

Then, FPT algorithm can be applied on this kernel. Infact, a problem is said to be in FPT iff it is

kernelizable. For some problems, we can find a kernel ie, a smaller instance of the original instance such

that solution to smaller instance is the solution to original instance. The size of the kernel has to be

bounded in terms of a function in k , where k is the parameter of the instance.

Now let us consider an example, Vertex Cover with parameter k being the size of optimal solution.

Every vertex with degree greater than k has to be in the solution set, because otherwise, all it’s neighbours

which are more than k will be in the solution set , which is clearly not possible. So, include the vertex

with degree greater than k in solution set, remove this vertex and it’s incident edges from the graph and

repeat the procedure. So, by this point, every vertex has a degree with degree ≤ k.Thus, our kernel is
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found with atmost k2 edges and atmost 2k2 vertices. Now we can apply bounded search tree algorithm on

this kernel to get the final solution. The time complexity is O(2kk2). The major part of this information

is taken from Kernelization Wiki. The kernel of a graph/dynamic graph can sometimes be found using

sampling as shown in [9].

5.3 Parameterized Streaming

In many real world applications, there are instances of graph problems whose solutions are small

compared to the size of input. There are some cases where a less number of X meet the need for huge

number of Y. For example, very few railway stations can cover the whole city. In these cases, assuming

the number of facilities to be a small number k is practical. Parameterized Streaming is a new approach

to handle graph streams, where the goal is to seek solutions for the parameterized versions of the graph

problems using streaming space restriction. In the parameterized versions of graph problems, each graph

problem is associated with a parameter k and the objective is to decide whether there exists solution

bounded by k, using a space complexity bounded in terms of k ie., sublinear in the size of the input. The

various input streams that could be considered are insert-only stream and dynamic stream. Not much

research has been done in this model. Some recent work is discussed in [10, 11, 19].
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Chapter 6

New Solutions in Parameterized

Streaming

6.1 Preliminaries

Let G(V , E) be a simple undirected graph where V is the set of vertices and E be the set of edges.

Let n be the size of V and m be the size of E. We assume that n is known and m is not known. Let V (E)

be the set of vertices that are incident with edges in E. For a graph G, let G(V ) be the subgraph of G

induced by vertices in V . Let G(E) be the subgraph of G induced by edges in E. G(E) = G(V (E), E).

If there exists a vertex x in a graph, such that there exist a set of k cycles pairwise intersecting exactly

on x, then this is called an x-flower of order k.

A streaming kernelization algorithm (streaming kernel) is an algorithm that receives input (G, k) for a

parameterized problem in the following fashion. The algorithm is presented with an input stream where

edges of G are presented in a sequence, ie., adhering to the cash register model. Finally, the algorithm

should return a kernel for the problem upon request. A t-pass streaming kernel is a streaming kernel

that is allowed t passes over the input stream before a kernel is requested. We assume that a streaming

kernelization algorithm receives parameter k and the size of the vertex set before the input stream. In

the strict streaming kernelization setting the streaming kernel must use at most p(k) log |n| space where

p is a polynomial. In the semi-streaming kernelization setting the streaming kernel must use at most

np(k) log |n| space where p is a polynomial.

6.2 Edge Dominating Set

6.2.1 Definition

Given a graph G(V , E) and an integer k, the EDS problem is to decide whether there exists a set

S of atmost k edges such that every edge in E − S is incident with an edge in S. Since we follow a

streaming model here, input graph arrives as a sequence of edges either only insertions or both insertions

and deletions. The approach we follow here is to find a kernel for edge dominating set, on which a FPT

algorithm is run later to get the final solution.

6.2.2 Existing Work

We could refer to [19] for the existing work where they proved that single pass streaming kernel is not

possible for edge dominating set. So, they presented a 2-pass kernel which works only in insert-model.
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[30] discusses the parameterized solution of edge dominating set.

6.2.2.1 Single Pass Kernel

Theorem 6.2.1. A single pass streaming kernelization algorithm for Edge Dominating Set(k) requires

at least m - 1 bits of local memory for instances with m edges.(from [19])

Proof. Consider the following instance. Let G(V , E) be a simple graph, where V ⊆ [n] and E =

(a, vi), ∀i ∈ [n]. Let A be a single pass streaming kernelization algorithm for Edge Dominating Set with

parameter k. Let k = 1 for this instance. Let V = v1, v2, ..., v|V | be a partial stream which consists of

edges E = (a, v1), (a, v2), ..., (a, v|V |). If A uses less than n bits of memory, then by pigeonhole principle

there must exist two partial streams V ′, V ′′ ∈ [n] such that V ′ 6= V ′′ and both of them result in same

kernel. Now let us check whether there exists a pair of streams < V ′, e > and < V ′′, e >, for every edge

e, that result in same kernel. Let us assume w.l.o.g V ′ − V ′′ 6= φ and let i ∈ V ′ − V ′′. So, (a, vi) is an

edge dominating set for E(V ′) ∪ (b, vi), where b 6= a. But E(V ′′) ∪ (b, vi) results in an edge dominating

set with two edges, which results a NO instance because k = 1. Thus, A does not result in same kernel

for both instances, which is a contradiction. Thus any algorithm for edge dominating set uses n bits for

an instance on n+ 1 edges. Thus, for m edges, algorithm requires m− 1 bits of memory.

6.2.2.2 2 - Pass Kernel

The algorithm they presented is as follows :

i. In the first pass, find the 2k vertex cover for the input graph.

ii. In the second pass, find the induced graph for vertices stored in first pass.

Space used here is O(k3 log k).

6.2.3 Proposed Work

Let us consider a simple undirected graph whose edges arrive as our input stream. Our algorithm

is a 2 pass algorithm which works for both insert and insert-delete streams. Algorithm returns a linear

kernel after 2 passes, on which, any FPT algorithm is run to get the final solution. The brief algorithm

is as follows :

i. In the first pass, we find the maximal matching of the input graph. Let it be M .

ii. If |M | ≤ k , output M as the required edge dominating set and quit.

iii. If |M | > 2k, then there cannot exist an edge dominating set of size atmost k. So, we return a NO

instance.

iv. In the second pass, kernel G′ is the induced graph G(V (M)) along with one edge for each matched

vertex where this edge has one vertex as this matched vertex and the other vertex is any unmatched

vertex in it’s neighbours.

v. If there is a x-flower of order ≥ k + 1 in G′, then return a NO instance.

In the first pass, we find maximal matching using greedy algorithm for insert streams and using al-

gorithm explained in chapter 4 for dynamic streams. Let it be M . Every maximal matching is an edge

dominating set but not every edge dominating set is a matching. So, if the size of M is less than or

equal to k, we return M as our edge dominating set. The vertex set of edge dominating set must include

atleast one vertex of each edge in maximal matching. So, if the size of maximal matching is greater than
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2k which implies the vertex set of the edge dominating set includes atleast (2k + 1) vertices and thus,

there do not exist an edge dominating set of size atmost k. So, the size of maximal matching lies between

k and 2k : k + 1 ≤ |M | ≤ 2k where |M | is the size of matching M . Let matched vertices Vm be the

vertices in M and let Um be the unmatched vertices.

In the second pass, the induced graph on V (M) along with adding one edge for each matched vertex to

graph G′ where this edge has one vertex as this matched vertex and the other vertex is any unmatched

vertex in it’s neighbours. If there is a x-flower of order greater than or equal to k + 1, then there cannot

be an edge dominating set of size atmost k, so, we return a NO instance. Otherwise our kernel is the

graph G′. In insert only model, we can greedily add the edges for each matched vertex whose neighbour

is unmatched whereas in dynamic model , we could l0 sample the sketches of matched vertices, that were

constructed during the first pass for finding maximal matching, to return unmatched neighbour for each

matched vertex. A k-sample recovery algorithm recovers k neighbours from Sx(or all neighbours if num-

ber of non-zero entries in Sx < k) such that sampled edge (i, j) has Sx(i, j) 6= 0 and is sampled uniformly.

Since k + 1 ≤ |M | ≤ 2k implies 2k + 2 ≤ |V (M)| ≤ 4k. All unmatched vertices have neighbours

only in matched vertices. So number of unmatched vertices is equal to number of matched vertices which

is atmost 4k. The number of vertices in kernel G′ are

= Vm + Um

= 4k + 4k

= 8k

= O(k)

(6.1)

The number of edges in kernel G′ are O(k2).

Let us prove that this algorithm is safe.

Theorem 6.2.2. S is an edge dominating set of size atmost k for G iff there is an edge dominating set

S′ of size atmost k for G′.

Proof. Let us first prove the forward direction ie., if S is an edge dominating set of size atmost k for

G then there exists an edge dominating set S′ of size atmost k for G′. We shall construct S′ which is

initially φ.

For every edge (u, v) in S, there exists two cases :

i If (u, v) ∈ G′, then this edge can be added to S′. It covers all the neighbouring edges.

ii If (u, v) /∈ G′, this means that one of the vertex in (u, v) is a matched vertex and the other is

an unmatched vertex. Both of them cannot be unmatched vertices because if they were, this edge

would have been added to maximal matching in the first pass. Let the matched vertex be u and

the unmatched vertex be v. S will have an edge that covers the matched vertex edge(edge on u

in maximal matching) of maximal matching and the edge between this matched vertex and it’s

unmatched neighbours. So this edge covers (u, v). So, this edge can be covered by either including

the matched vertex edge of maximal matching or the edge between this matched vertex and it’s

unmatched neighbour vertex included in G′.

iii In this way, S′ has size atmost k.

Now let us prove the backward direction ie., if there is an edge dominating set S′ of size atmost k for

G′ then S′ is an edge dominating set for G too. The only edges that are present in G and not present

in G′ are some edges between unmatched vertices and matched vertices. But one edge for each matched
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vertex with a neighbouring unmatched vertex is added to G′. The remaining edges which are not added

to G′ are covered by S′. So, S′ of size atmost k is also an edge dominating set for G. Thus G has an

edge dominating set S = S′ of size atmost k.

6.2.3.1 Multi Pass Kernel for Insert Only Stream

Algorithm 6.2.1 Edge Dominating Set Streaming Kernel Algorithm : Insert Only Stream

Input: An undirected graph whose stream consists of edges in the form (u, v) ∈ [n] × [n] where n is

known but stream length is not known and u < v and, an integer k.

1: procedure EDS Insert-Only Stream

Require: Maintain buffer M = φ , matching vertices Vm = φ and unmatched vertices Um = V − Vm.

2: Pass 1 :

3: for the edge (u, v) in the input stream do

4: if u ∈M or v ∈M then

5: Ignore this edge and don’t add this edge to M .

6: else

7: Add this edge to the maximal matching M .

8: end if

9: end for

10: if |M | < k then

11: Return M as the edge dominating set solution.

12: else

13: if |M | > 2k then

14: Return a NO instance.

15: else

16: Let Vm = V (M). Go to Pass 2.

17: end if

18: end if

19: Pass 2 :

20: for the edge (u, v) in the input stream do

21: if both u ∈ M and v ∈ M but (u, v) /∈ M then

22: Add (u, v) to M .

23: else if u /∈M and v ∈M and v is not marked then

24: Add this edge to M .

25: Mark v as done.

26: else if u ∈M and v /∈M and u is not marked then

27: Add this edge to M .

28: Mark u as done.

29: else

30: Don’t add this edge.

31: end if

32: end for

33: Kernel G′ = M .

34: if there is a x-flower of order ≥ k + 1 in G′ then

35: Return a NO instance.

36: else

37: Output G′ as kernel.

38: end if
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39: end procedure

6.2.3.2 Multi Pass Kernel for Insert Delete Stream

Algorithm 6.2.2 Edge Dominating Set Streaming Kernel Algorithm : Dynamic Streams

Input: An undirected graph whose stream consists of edges in the form (u, v, +/−) ∈ [n] × [n] × R

where n is known but stream length is not known and u < v, and an integer k. An edge can be

deleted only after being inserted.

1: procedure EDS Insert-Delete Stream

Require: Maintain buffer M = φ, matching vertices Vm = φ and unmatched vertices Um = V − Vm.

2: Pass 1 :

3: Refer Maximal matching algorithm in turnstile streams from Algorithm 4.2.1. Let it be M .

4: if |M | < k then

5: Return M as the edge dominating set solution.

6: else

7: if |M | > 2k then

8: Return a NO instance.

9: else

10: Let Vm = V (M). Go to Pass 2.

11: end if

12: end if

13: Pass 2 :

14: for the edge (u, v) in the input stream do

15: if the edge is an insertion edge and both u ∈ M and v ∈ M but (u, v) /∈ M then

16: Add (u, v) to M .

17: else

18: if the edge is a deletion edge and (u, v) ∈ M then

19: Delete (u, v) from M .

20: end if

21: end if

22: end for

23: for each vertex um in Vm do

24: Sample n edges from the sketch Sum
and add it’s incident edge whose other vertex is unmatched

to buffer M .

25: end for

26: Kernel G′ = M .

27: if there is a x-flower of order ≥ k + 1 in G′ then

28: Return a NO instance.

29: else

30: Output G′ as kernel.

31: end if

32: end procedure
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6.3 Undirected Feedback Vertex Set

6.3.1 Definition

Given an undirected graph G(V , E) and an integer k, the FVS problem is to decide whether there

exists a set V ′ ⊆ V such that G − V ′ has no cycles. In a parameterized semi-streaming model, input

graph arrives as a stream of edges and the space restriction is atmost O(n p(k) log |n|) space where p(k)

is a polynomial in k. [29] gives an algorithm for finding quadratic kernel(not in the streaming model)

which improves the bounds in [6] and [7]. Application of feedback vertex set is deadlocks.

We present two solutions for undirected feedback vertex set with semi-streaming space restriction.

6.3.2 Solution 1

A streaming algorithm may have three parts : pre-processing, processing the data and post processing.

The following is the semi-streaming kernel algorithm for UFVS.

Algorithm 6.3.1 Undirected Feedback Vertex Set : Solution 1

1: Pass 1 :

Input: A stream which consists of edges of a simple undirected unweighted graph G(V , E) in the form

(u, v) ∈ [n] × [n] where n is known but m is not known and u < v. Stream follows arbitrary model.

Input: A parameter k.

Require: Maintain minimum spanning tree T = φ and a count for number of edges c = 0.

2: for every edge (u, v) in the stream do

3: c = c+ 1.

4: if Adding this edge to T does not result in a cycle then

5: Add this edge to T .

6: else

7: Find the path from u to v which resulted in the cycle and write this path in the order to

W-stream.(This W-stream is used as input stream for next pass.)

8: end if

9: end for

10: if c > n+ nk then

11: Return a NO instance.

12: else

13: Go to Pass 2.

14: end if

15: Space usage for this pass is O(n).

16: Pass 2 :

Input: The W-stream from the previous pass and the parameter k.

Require: Graph G′ = φ where G′ has vertex set V ′ and edge set E′.

Require: Parameter k′ = k for G′.

Require: Feedback vertex set S′ = φ.

17: for every path (u, a, b, . . , z, v) in the W-stream do

18: Add edges (u, a), (a, b), . . . , (z, v), (v, u) to G′.

19: end for

20: Space usage for this pass is O(nk).

21: Post Processing :

22: By this point degree of every vertex in G′ is greater than 2.
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23: Now we will apply the reduction rules.

24: Reduction Rule 1 :

25: If any vertex w in G′ has degree > 2k + 1, then

a. G′ = G′ − w.

b. k′ = k′ − 1.

c. S′ = S′ ∪ w.

26: Reduction Rule 2 :

27: If the degree of any vertex w is ≤ 1, then

a. G′ = G′ − w.

b. S′ and k′ remains unchanged.

28: Apply the above rules repeatedly until none of the above rules are valid on G′.

29: Reduction Rule 3 :

30: if there are more than k′ connected components in G′ then

31: Return a NO instance.

32: else

33: if there exists a set of vertices X ⊆ V ′ in such a way that G′ −X is a spanning forest(F ′) with

maximum number of edges then

34: Let x be the maximum degree vertex in F ′. Removal of x in F ′ results in many connected

components in F ′.

35: Remove the bridge edges between x and every connected component in F ′. The only modifi-

cation made to G′ is on x.

36: Add double edges from x to every vertex in X .

37: end if

38: end if

39: Reduction Rule 4 :

40: Apply reduction rule 2 on G′ − x. So, every vertex in resulting graph has degree ≥ 2.

41: for every vertex y ∈ X do

42: if there is a path from y to y in G′ − x with the internal vertices from V ′ −X then

43: Add a self-loop on y.

44: end if

45: end for

46: Now our kernel G′′ = G′[X ∪ x]

47: Output (G′′, k′, S′) as the kernel instance.

48: The number of vertices in kernel = O(2k′) and the number of edges = O(k′2).

The algorithm explanation is as follows : The definition of UFVS states that we need to find a set

of vertices that hits all the cycles in the graph. So, our first pass should be finding all needed cycles

from the graph. For finding the cycles, we construct the minimum spanning tree, on the fly, and if any

edge(say (u, v)) is forming a cycle , we find the shortest path from u to v in spanning tree and write this

path in the order to W-stream. In streaming algorithm, the space to be used is limited. Since we cannot

store all cycles formed in any storage, we use the concept of W-stream and write it to W-stream which

can be used as input to next pass.

Let S of size atmost k be the feedback vertex set of input graph G. We will now prove that the upper

bound on the number of edges in G is n + nk. If S is feedback vertex set of G(V,E), then G(V − S)

forms a spanning forest which has atmost |V − S| − 1 edges. Vertices in S have atmost (n− 1)|S| edges.
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So the total number of edges

= (n− 1)|S|+ |V − S| − 1

= (n− 1)k + n− k − 1

= (nk − k) + n− k − 1

= nk + n− 2k − 1

< nk + n

(6.2)

The space usage is O(nk). By this time, every vertex in our graph has a minimum degree of 2 which

means every vertex is involved in some or the other cycle. In the second pass, we re-construct our graph

from cycles of W-stream. Now we will look at the reduction rules and prove that each rule is safe.

Reduction Rule 1 : If any vertex has degree > (2k + 1) in G′ , then delete this vertex from graph

G′, decrement the value of k′ by 1 and include this vertex in feedback vertex set S′. If there are many

vertices of degree > (2k+1), include the maximum degree vertex among these in the feedback vertex set

S′. Apply reduction rule 2. Apply this rule until it is applicable.

We will prove that this rule is safe. If a vertex v is involved in k+ 1 cycles , then that vertex will have a

degree > (2k + 2). If we do not include this vertex in our feedback vertex set, then we must include one

vertex from each cycle in the feedback vertex set S′. But feedback vertex set S′ should be of size atmost

k. So v must be included in feedback vertex set.

Reduction Rule 2 : If any vertex has degree ≤ 1. Then remove these vertices from graph G′. Param-

eter k′ and feedback vertex set S′ remains unchanged. If G′ has a vertex of degree 0, which means this

vertex is an isolated vertex which need not have to be included in feedback vertex set. If G′ has a vertex

of degree 1, this vertex cannot be involved in any cycle, so removal of this vertex will not affect the graph

G′. So, these vertices of degree ≤ 1 can be safely removed.

Now every vertex has degree ≤ (2k + 1). We may have many connected components at this stage. If

the number of connected components at this stage are greater than k′, then feedback vertex set must

include atleast one edge from each of these components which violates the statement that S′ must be of

size atmost k′. So, in this case, we return a NO instance. If the number of connected components are

less than k′, then we can apply next rule for each connected component.

Reduction Rule 3 : If there exists a set of vertices X in G′ whose removal from G′ will result in

spanning tree F ′ with maximum number of edges. Let x be the maximum degree vertex in F ′. Removal

of x from F ′ results in many connected components as x has bridge edges to each connected component

in F ′ − x. Now we remove these bridge edges and add double edges from x to every vertex in X .

Our feedback vertex set may contain X as subset because every vertex in X is involved in some

or the other cycle, otherwise this vertex could have been added to spanning forest. We remove the

edges incident on x in F ′ as this is forming cycles with every vertex in X . In the end, to compensate

with these cycles that are formed by x with each vertex in X , we add double edges from x to every

vertex in X . G′ is the resulting graph with changes made only to x. There still exist some cycles in

G′ as otherwise X would be empty if there are no cycles. So, we apply our next rule which is the final rule.

Reduction Rule 4 : We consider G′ − x here. Apply reduction rule 2 on this which ensures every

vertex in G′ − x is involved in atleast one cycle. X is the set which is forming the cycles, as otherwise

they could have been added to F ′. Let y be a vertex in X . We try to find a path from y to y in G′ where

the internal vertices in this path belong to V ′ −X . If such a path is found, we add a self loop on y. If
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such a path is not found, we move on to next vertex in X . Two vertices from X cannot have the same

path to themselves, as otherwise the common point of the two paths would be there in X instead of these

two vertices. Once we read all vertices in X , we return our kernel G′′ which is equal to G′(X ∪x). There

can be atmost k′ connected components in G′ before applying reduction rule 3. So there can be atmost

k′ vertices in X and atmost one x for each connected component. So kernel has O(2k′) vertices.

Once we find the kernel, we can run any FPT algorithm on this to find the final feedback vertex set.

Final Feedback vertex set is S = S′∪ FPT(kernel) where FPT(kernel) refers to applying FPT algorithm

on kernel.

Let us prove that this algorithm is safe.

Theorem 6.3.1. S is an feedback vertex set of size atmost k for G iff there is a feedback vertex set S′

of size atmost k for G′.

Proof. Let us first prove the forward direction ie., if S is a feedback vertex set of size atmost k for G then

there exists a feedback vertex set S′ of size atmost k for G′. We shall construct S′ which is initially φ.

For every vertex u in S, there exists two cases :

i If u ∈ G′, then

a. If u has a self loop, then this vertex can be included in S′.

b. If it does not have a self loop, then either this vertex can be included in S′ or the other vertex

which has double edges from u can be included in S′. So atmost one vertex is included any time.

ii If u /∈ G′, then this can be replaced by atmost one vertex in G′. G′ contains only those vertices which

can remove all cycles from the original graph. So, if u is not there in G′, then any other vertex must

be hitting all cycles caused by u. So u can be replaced by any other vertex.

iii In this way, S′ has size atmost k.

Now let us prove the backward direction ie., if there is a feedback vertex set S′ of size atmost k for

G′ then S′ is a feedback vertex set for G too. G′ contains all those vertices that hits all the cycles. So if

S′ is the feedback vertex set of G′, then it must be the feedback vertex set of G.

6.3.3 Fixed Parameter Tractable algorithm for Feedback Vertex Set

This algorithm is taken from [28].

Algorithm 6.3.2 UFVS FPT Algorithm

Input: Kernel G′, parameter k′.

Require: Partial FVS S′ from kernel. Let S = φ be the final FVS.

1: if G′ is acyclic then

2: Answer YES and return φ.

3: end if

4: if k′ = 0 and G′ has a cycle then

5: Return NO and exit.

6: end if

7: if G′ has any vertex with degree ≤ 1 then

8: Remove those vertices.

9: end if

10: Find a shortest cycle C in G′.

11: for some vertex z ∈ C do

12: if UFVS FPT Algorithm(G′ − z, k′ − 1) is YES then
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13: Answer YES.

14: S = S′ ∪ z.

15: Return S∪ UFVS FPT Algorithm(G′ − z, k′ − 1).

16: else

17: Answer NO.

18: end if

19: end for

6.3.4 Solution 2

We will reduce the problem of finding undirected feedback vertex set to the problem of d-Hitting Set.

d-Hitting set is defined as follows :

Input: A set U and a family F of subsets of U each of size at most d, and kǫN .

Question: Is there a set H of at most k elements of U that has a nonempty intersection with each set in F?

d - Hitting set with U as vertex set of G , F as the all cycles in G and d as the number of vertices

in longest cycles of G is nothing but an instance of undirected feedback vertex set. The algorithm to find

feedback vertex set in an undirected graph is as follows :

Algorithm 6.3.3 Undirected Feedback Vertex Set : Solution 2

1: Pass 1 :

Input: A stream which consists of edges of a simple undirected unweighted graph G(V , E) in the form

(u, v) ∈ [n] × [n] where n is known but m is not known and u < v. Stream follows arbitrary model.

Input: A parameter k.

Require: Maintain kernel graph G′ = φ and an integer d = 0.

2: for every edge (u, v) in the stream do

3: Store the edge in the graph G′.

4: if |G′| > (n+ nk) then

5: Return a NO instance.

6: end if

7: end for

8: Run any algorithm to find all cycles in G′ and write these cycles to W-Stream which can be used as

input to next pass. Let d be the length of largest cycle.

9: Pass 2 :

Input: W-Stream from previous pass.

Input: d which is the length of largest cycle.

10: This becomes an instance of d-hitting set whose family of subsets are cycles from the W-Stream. The

output of d-hitting set is a set of vertices that hits all subsets(ie cycles) which is what we want.

We can refer to [19] for finding streaming kernel of d-Hitting Set.
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Chapter 7

Conclusion and Future Work

We present algorithms for finding connectivity in directed acyclic dynamic graph. We also proposed

a solution for the open problem on matchings in turnstile streams. We also presented algorithms for

finding kernels of various graph problems including edge dominating set and undirected feedback vertex

set in parameterized streaming model. Our algorithm for edge dominating set works for both insert-only

and insert-delete model whereas algorithm for undirected feedback vertex set works in insert-only model.

There are many possible directions for future research. Naturally, it would be interesting to improve

existing results like reducing the space used for all the problems proposed in this thesis and improving

the approximation ratio when estimating matching size and finding connectivity in generalized directed

graphs. Some other problems include considering other NP-Hard problems in parameterized streaming

framework. Other specific questions can be found at the wiki, Sublinear Open Problems.
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