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Chapter 1

Introductory Mathematics for
Quantum computing

1.1 Introduction

In this chapter we will study topics of Linear algebra that will be needed for the rest of thesis.
We begin by defining linear operators on vector spaces. we define physics Bra-Ket notation that
will be used throughout the thesis. The next few sections deal with topics related to matrices
like Trace,Unitary, Hermitian and Positive and Positive semi definite matrices. We define vector
spaces with some additional structures which includes inner product space, Outer product, Hilbert
space. we study how to make new spaces from the given spaces which includes direct sum of
vector spaces, Tensor product. Tensor product of spaces plays an important role in various area
of Quantum mechanics (we will study in next few chapters). we close this chapters with some
applications of Tensor product.

1.2 Bra-Ket Notation

Let x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Cn. We write,

|x〉 =
(
x1x2 . . . xn

)T
and 〈x| = (|x〉)∗ =

(
x̄1x̄2 . . . x̄n

)
Definition 1.2.1. A vector space V endowed with an inner product is called inner product space.

Example 1.2.2. Cn has an inner product defined by

(
(y1y2 . . . yn), (z1z2 . . . zn)

)
=

n∑
i=1

y∗i zi. for all yi, zi ∈ C, 1 ≤ i ≤ n.

1.2.1 Hilbert Space

Definition 1.2.3. A complex inner product space is called Hilbert space if it is complete with respect to the
norm ‖x‖ =

√
〈x, x〉.
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Throughout this thesis, we will be dealing with operators defined on the finite dimensional complex
Hilbert space.

1.3 Linear Operators

Definition 1.3.1. Let V and W be vector spaces over a field K, either real or complex. A map T : V → W
is linear if it satisfy following condition:

T (ax+ by) = aT (x) + bT (y) for allx, y ∈ V anda, b ∈ K. (1.1)

Definition 1.3.2. Let T : V→W be a linear operator. Then, Range(T) and Null(T) is defined as:

Range(T ) = {T (x)|x ∈ V}.

Null(T ) = {x ∈ V|T (x) = 0}.

Remark 1.3.3. 1. We denote the space of all linear maps from V to W byL(V,W) andL(V,V) = L(V).

2. Every m × n matrix defines a linear operator from V to W where V is n dimensional and W is m
dimensional.

3. The set of all n× n matrices with entries from K is denoted by Mn(K).

Definition 1.3.4. Let V be a vector space. Dual of V, denoted by V∗, is the space defined by:

V ∗ = {f : V→ C| f is linear}.

1.4 Eigenvectors and eigenvalues

Definition 1.4.1. Let T be a linear operator on a vector space V then a nonzero vector |v〉 ∈ V is said to be
an eigenvector if there exists a complex number λ such that

T |v〉 = λ|v〉,

and complex number λ is called eigenvalue of T associated to λ.

The eigen space corresponding to an eigenvalue λ is given by :

ker(T − λI) = {|v〉 ∈ V : T |v〉 = λ|v〉 for someλ ∈ C}.

Definition 1.4.2. An operator T on a vector space V is said to be diagonalizable if there exists a basis β of
V such that [T ]β is a diagonal matrix.

Remark 1.4.3. If T is diagonalizable then T can be represented as

T =
∑
i

λi|vi〉〈vi|
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where {v1, v2, ..., vn} is an orthonormal basis of V with corresponding eigenvalue {λ1, λ2, ..., λn}. This
representation is known as diagonal representation for T.

Spectral decomposition theorem:

Theorem 1.4.4. Let T be a linear operator on a complex inner product space V then V has an orthonormal
basis consisting of eigenvectors of T if and only if T is normal.

1.4.1 Adjoint of a linear operator

Definition 1.4.5. Let T be a linear operator on an Hilbert space H . Then there exists a unique linear oper-
ator T ∗ on H such that

(|v〉, T |w〉) = (T ∗|v〉, |w〉).

This linear operator is known as the adjoint of the operator T, for all vectors |v〉, |w〉 ∈ H

1.4.2 Outer Product

There is a way to represent linear operators defined on inner product spaces which make use of inner product
and it is known as outer product.

Definition 1.4.6. Let |v〉 ∈ V and |w〉 ∈W, where V and W be two inner product spaces over a field K.
Define |w〉〈v| : V→W by,

(|w〉〈v|)|v1〉 = |w〉〈v|v1〉 = 〈v|v1〉|w〉, ∀ v ∈ V. (1.2)

1.4.3 Completeness relation

Let {v1, v2, ...vn} be an orthonormal basis for an inner product space V. Then |v〉 ∈ V can be written as

v =
n∑
i=1

ci|vi〉 for some complex numbers c1, c2, ...cn ∈ C, Where ci = 〈vi|v〉, for i = 1, 2, ..., n.

(

n∑
i=1

|vi〉〈vi|)|v〉 =

n∑
i=1

|vi〉〈vi|v〉 =

n∑
i=1

ci|vi〉 = |v〉.

since the last equality is true for all |v〉 ∈ V, it follows that

n∑
i=1

|vi〉〈vi| = I. (1.3)

This equation is known as completeness relation.

Remark 1.4.7. Every operator can be written in its outer product representation. Suppose A : V → W
where V and W are two inner product spaces. Let |vi〉 and |wj〉 be orthonormal basis of V and W respectively.
Then A can be written as A = IWAIV.
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1.5 Unitary and Hermitian matrices

Definition 1.5.1. U ∈Mn(C) is Unitary if U∗U = I

Proposition 1.5.2. For U ∈Mn(C), Following statements are equivalent:

(i) U is unitary.

(ii) U is invertible and U−1 = U∗.

(iii) UU∗ = I.

(iv) U∗ is unitary.

(v) The columns of U are orthogonal.

(vi) The rows of U are orthogonal.

(vii) (Isometry) ‖Ux‖ = ‖x‖ for all x ∈ Cn.

(viii) (Inner product preserving) 〈Ux|Uy〉 = 〈x|y〉 for all x, y ∈ Cn.

Theorem 1.5.3. LetA ∈Mn(C). Then there exists a unitary matrixU such thatU∗AU is upper triangular.

Definition 1.5.4. H ∈Mn(C) is called Hermition matrix if H = H∗.

Proposition 1.5.5. For H ∈Mn(C),the following statements are equivalent:

(i) H is hermition.

(ii) There exists a unitary matrix U such that U∗AU = D where D is diagonal matrix with real entries.

(iii) H has orthonormal basis with real eigenvectors that is H is diagonalizable.

(iv) 〈x,Hx〉 is real, for all x ∈ Cn.

1.6 Positive definite and Semi definite matrices

Definition 1.6.1. Let P ∈ Mn.Then P is called positive semi definite, denoted by, P ≥ 0 if 〈x|Px〉 ≥
0∀x ∈ Cn. It is called positive definite,denoted P > 0, if 〈x|Px〉 > 0∀x ∈ Cn.

Remark 1.6.2. Every positive semi definite (positive definite) matrix is symmetric. It follows From Propo-
sition 1.5.5(iv)

Proposition 1.6.3. For P ∈Mn,the following statements are equivalent:

1. P ≥ 0 (P > 0).

2. P = P ∗ and all eigenvalues of P are non negative (positive).

3. P = B∗B for some matrix B (in case of positive definite B is invertible).

Theorem 1.6.4. P ≥ 0 if and only if P =
m∑
i=1

|vi〉〈vi| for some set of vectors {v1, v2, ..., vn}.

Theorem 1.6.5. Let P ∈Mn and P =
m∑
i=1

|vi〉〈vi|,then p > 0 if and only if span{v1 . . . vm} = Cn.

Theorem 1.6.6. Let P ∈ Mn be a Hermitian matrix.Then P ≥ 0 if and only if determinant of its all
principal minors are positive.
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1.7 Trace

Definition 1.7.1. Let A ∈Mn(K) then trace of A, denoted by, Tr(A) is the sum of all diagonal entries of A

Tr(A) =

n∑
i=1

aii.

Proposition 1.7.2. Let A,B ∈Mn. Following statements hold true:

(i) Tr(AB)=Tr(BA).

(ii) Tr(A+B)=Tr(B+A).

(iii) Tr(zA)=zTr(A) for any z ∈ C.

(iv) Trace of a matrix is invariant under unitary similarity transformation.

Tr(UAU∗) = Tr(A).

1.7.1 Trace of an operator

Definition 1.7.3. Let V be an n dimensional vector space and T ∈ L(V ) ,then Trace of T , denoted by,
Tr(T ), is the trace of [T ]β where β is any basis of V.

Remark 1.7.4. If β1 and β2 are two basis of V. Then there exists P ∈Mn such that [T ]β1 = P [T ]β2P
−1.

Note 1.7.5. Tr(T ) does not depend upon the basis. If β1 and β2 are two basis ofH then Tr[T ]β1 = Tr[T ]β2

as it is very clear from the above remark.

Remark 1.7.6. Let T ∈ L(V ) and ψ ∈ V.Suppose that ψ is a unit vector in V. Then

Tr(T |ψ〉〈ψ|) = 〈ψ|T |ψ〉. (1.4)

1.7.2 Properties of Trace

(i) Cyclic property of trace: Let A and B be two linear operators defined on n dimensional vector
spaces. Then,

Tr(AB) = Tr(BA).

(ii) Linearity of Trace: Let A and B be two linear operators. Then,

Tr(A+B) = Tr(B +A).

T r(zA) = zTr(A) for all z ∈ C.

1.8 Direct sum of vector spaces

Definition 1.8.1. Given vector spaces V and W their direct sum is defined as

V ⊕W = {(v, w)|v ∈ V,w ∈W},
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such that every element of this space has unique representation. It is a vector space with operations:

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2), v1, v2 ∈ V andw1, w2 ∈W.

a(v, w) = (av, aw); a ∈ K, v ∈ V,w ∈W

Note 1.8.2. It is a Hilbert space with respect to the inner product

〈(v1, w1)|(v2, w2)〉 = 〈(v1, v2)〉V + 〈(w1, w2)〉W ∀v1, v2 ∈ V ;w1, w2 ∈W.

Where (., .)V and (., .)W denote inner products on V and W , respectively.

Proposition 1.8.3. If {v1, v2, ..., vn} is a basis for V and {w1, w2, ..., wk} is a basis for W , then
{(v1, 0), (v2, 0), ..., (vn, 0), (0, w1), (0, w2), ..., (0, wk)} is a basis for (V ⊕W ) and
hence, dim (V ⊕W )=dim(V )+dim(W ).

Theorem 1.8.4. Let U be a subspace of a vector space V . Then there always exist a subspace W of V such
that V = U ⊕W.

1.8.1 Orthogonal Projection

Definition 1.8.5. Let M be a subset of an inner product space V . Then the orthogonal complement of M
denoted as, M⊥, is the set of all vectors in V which are orthogonal to every vector in M.

M⊥ = {v ∈ V |〈u, v〉 = 0∀u ∈ U}.

Theorem 1.8.6. Let M be a subspace of an inner product space V . Then V = U ⊕ U⊥.

Definition 1.8.7. Let U be a subspace of an inner product space V and T : V → U .

T (v) = T (u+ w) = u

where u ∈ U,w ∈ U⊥. Then T is called orthogonal projection of V onto U.

Proposition 1.8.8. Let T : V → U be orthogonal projection of V onto U. Then, following properties hold
true.

(i) Range(T )=U

(ii) Null(T )=U⊥

(iii) T 2 = T

(iv) T = T ∗

1.9 Bilinear mappings

Definition 1.9.1. Let X,Y and Z be vector spaces over a field K.Then mapping B : X × Y → Z is called
Bilinear if the following conditions are satisfied.
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(i) B(x1 + x2, y) = B(x1, y) +B(x2, y) for allx1, x2 ∈ X and y ∈ Y

(ii) B(cx, y) = cB(x, y), B(x, cy) = cB(x, y) for allx ∈ X and y ∈ Y, c ∈ K

Note 1.9.2. When Z = K,bilinear mapping is called a bilinear form.
We denote the set of all bilinear forms as B(X × Y,Z). This is a linear subspace of space of all maps from
X × Y to Z and dimension of this subspace is dim(X).dim(Y ).dim(Z).

Example 1.9.3. Let V be an inner product space over a field K. Then an inner product is a bilinear map
from V × V to K.

Example 1.9.4. Let V and W be two inner product spaces over a field K. Let φ ∈ V ∗ and ψ ∈ W ∗. Then
the mapping B : V ×W → K defined as B(v, w) = φ(v).ψ(w) is a bilinear from.

Remark 1.9.5. Let V be a vector space over a field K. Then bilinear map from V × V to K is same as
bilinear form V × V to K.

1.10 Tensor Product

Motivation: Tensor product gives a way of putting vector spaces together to form a large vector space. This
construction is crucial to understand the Quantum mechanics of two or more physical system which we will
define in next chapter.

Definition 1.10.1. Given two vector spaces X and Y , then tensor product of X and Y is given by:
X ⊗ Y := span {x ⊗ y|x ∈ X, y ∈ Y }, where x ⊗ y is called elementary tensor which is a linear mapping
acting on the space of all bilinear maps.

x⊗ y : B(X × Y )→ K given by

x⊗ y(A) = 〈A, x⊗ y〉 = A(x, y).

Elements of tensor product are called tensors.

Remark 1.10.2. For every x1, x2 ∈ X, y1, y2 ∈ Y and λ ∈ K. Following statements are true.

(i) (x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y.

(ii) x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2.

(iii) λ(x⊗ y) = (λx)⊗ y = x⊗ (λy).

Definition 1.10.3. Given a nonzero tensor u ∈ X ⊗ Y , then there exists n ∈ N such that u =
n∑
i=1

xi ⊗ yi.

The smallest nonzero n such that the set {x1, x2, ..., xn} and {y1, y2, ..., yn} are linearly independent is
known as Schmidt rank or rank of u. Tensors of rank 1 are called elementary tensors.

Proposition 1.10.4. Let X and Y be vector spaces.

(i) Let E and F be linearly independent subsets of X and Y respectively. Then {x⊗ y|x ∈ E, y ∈ F} is
a linearly independent subset of X ⊗ Y .
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(ii) If {ei|i ∈ I} and {fj |j ∈ J} are bases for X,Y respectively then {ei ⊗ fj |(i, j) ∈ I × J} is a basis of
X ⊗ Y .Hence, If X and Y are finite dimensional then dim(X ⊗ Y ) = dim X .dim Y .

Proposition 1.10.5. If {e1, e2, ..., en} and {f1, f2, ..., fm} are bases for X,Y respectively and u ∈ X ⊗
Y .Then,

(i) There exists unique x1, ...xm ∈ X such that u = x1 ⊗ f1 + x2 ⊗ f2 + ...+ xm ⊗ fm.

(ii) There exists unique y1, ..., yn ∈ Y such that u = e1 ⊗ y1 + e2 ⊗ y2 + ...+ en ⊗ yn.

Remark 1.10.6. It follows from proposition (1.10.5) that if dim(X) = n and dim(Y ) = m then

(i) X ⊗ Y ∼= X ⊕ ...⊕X (m copies).

(ii) X ⊗ Y ∼= Y ⊕ ...⊕ Y (n copies).

Moreover,the above isomorphism preserves linear structure of spaces.

Example 1.10.7. Consider the vector space C2 over C. we will calculate C2 ⊗ C2. here, dim C2 = 2 and
standard ordered basis is {(1, 0), (0, 1)}. we will use the Bra-Ket notation to define the basis of this vector
space. write |0〉 = (1, 0) and |1〉 = (0, 1). Then dim (C2 ⊗ C2) = 4 and

C2 ⊗ C2 = span{|0⊗ 0〉, |0⊗ 1〉, |1⊗ 0〉, |1⊗ 1〉}

= span{|00〉, |01〉, |10〉, |11〉}.

1.11 Tensor product and Linearization

The primary purpose of tensor product is to linearize a bilinear mapping. Let X,Y and Z be vector spaces
over a field K. We will show that the space of all bilinear mapping on X × Y is in one to one correspondence
with the space of all linear mappings on X ⊗ Y.
Let A ∈ B(X × Y,Z). We define a linear mapping

Ã : X ⊗ Y → Z

by

Ã(

n∑
i=1

xi ⊗ yi) =

n∑
i=1

A(xi, yi).

To show that above mapping is well defined. It is enough to prove that if∑
i

(xi ⊗ yi) = 0, then Ã(
∑
i

xi ⊗ yi) = 0.

Suppose that
∑
i

xi ⊗ yi = 0 then for each φ ∈ Z∗, the composition φ ◦A is a bilinear functional on X × Y.

So,
φ(
∑
i

A(xi, yi)) =
∑
i

φ ◦A(xi, yi) = 〈
∑
i

xi ⊗ yi, φ ◦A〉 = 0

and hence,
∑
i

A(xi, yi) = 0. Therefore,Ã is well defined.

Thus, Bilinear mapping A is associated with linear mapping Ã. This situation is described in following
diagram:
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X × Y X ⊗ Y

Z

A
Ã

T

The Universal property

Proposition 1.11.1. For every bilinear mapping A : X × Y → Z there exists a unique linear mapping
Ã : X ⊗ Y → Z such that A(x, y) = Ã(x⊗ y)∀x ∈ X, y ∈ Y.

Uniqueness of Tensor product

Proposition 1.11.2. LetX and Y be two vector spaces. Suppose there exists a vector spaceW and a bilinear
mapping B : X × Y → Z with the property that, for every vector space Z and for every bilinear mapping
A : X × Y → Z there is a unique linear mapping L : W → Z such that A = L ◦ B.Then,there is an
isomorphism J : X ⊗ Y →W such that J(x⊗ y) = B(x, y)∀ x ∈ X, y ∈ Y.

1.12 Tensor product of Linear mappings

Definition 1.12.1. Let S : X → E and T : Y → F be two linear mappings. Then define a map B :

X × Y → E ⊗ F by
B(x, y) = (Sx)⊗ (Ty).

Then, B is clearly a bilnear map. So, by proposition (1.11.2) , linearization gives a mapping

S ⊗ T : X ⊗ T → E ⊗ F

given by
S ⊗ T (x⊗ y) = (Sx)⊗ (Ty) for allx ∈ X, y ∈ Y.

Remark 1.12.2. If S and T are both injective (respectively, surjective) then S ⊗ T is also injective (respec-
tively, surjective).
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1.12.1 Tensor product of matrices

Let

A =

[
a11 a12

a21 a22

]

and

B =

[
b11 b12

b21 b22

]

Then the tensor product A⊗B is:

A⊗B =

[
a11B a12B

a21B a22B

]

1.13 Tensor Product of Hilbert Spaces

Definition 1.13.1. Let H1 and H2 be two Hilbert spaces with the inner product 〈., .〉H1 and 〈., .〉H2 respec-
tively.Then tensor product of H1 and H2 is given by:

H1 ⊗H2 = span{h1 ⊗ h2|h1 ∈ H1, h2 ∈ H2},

where h1 ⊗ h2 are elementary tensors act on the space of all bilinear mappings on H1 ×H2.

Let h1 ⊗ h2 be an elementary tensor. Then h1 ⊗ h2 : B(H1 ×H2,C)→ C defined as:

h1 ⊗ h2(T ) = T (h1, h2).

Remark 1.13.2. Tensor product of finite dimensional Hilbert spaces is a Hilbert space. For this, define a
function

〈., .〉 : (H1 ⊗H2)× (H1 ⊗H2)→ C

by
〈h1 ⊗ k1|h2 ⊗ k2〉 = 〈h1|h2〉H1 .〈k1|k2〉H2 .

Then 〈., .〉 defines an inner product on H1 ⊗ H2. We call this inner product the Hilbert space tensor
product.

Note 1.13.3. If H1 and H2 are infinite dimensional, then H1 ⊗H2 is not complete with respect to the norm
coming from inner product.

Theorem 1.13.4. Let H1 and H2 be two Hilbert spaces with orthonormal basis {φi}i∈I and {ηj}j∈J re-
spectively. Then {φi ⊗ ηj : i ∈ I, j ∈ J} is an orthonormal basis for H1 ⊗H2.
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Proposition 1.13.5. Let K be a field. Suppose A ∈Mm(K) and B ∈Mn(K) have eigenvalues λ and µ in
K. Then,A⊗ In + Im ⊗B has eigenvalue λ+ µ.

Proof. Let v be an eigenvector of A corresponding to eigenvalue λ and let w be an eigenvector of B
corresponding to eigenvalue µ. Consider,

(A⊗ In + Im ⊗B)(v ⊗ w) = (A⊗ In)(v ⊗ w) + (Im ⊗B)(v ⊗ w)

= Av ⊗ Inw + Imv ⊗Bw

= λv ⊗ w + v ⊗ µw

= λ(v ⊗ w) + µ(v ⊗ w)

= (λ+ µ)(v ⊗ w)

Hence, (λ+ µ) is an eigenvalue of (A⊗ In + Im ⊗B).

1.14 Applications of Tensor Product

(i) Tensor product of two spaces is useful in studying the Quantum mechanics properties of
more than two physical system.

(ii) Tensor product is used to linearize the bilinear mappings.
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Chapter 2

Introductory Quantum Mechanics

2.1 Introduction

This chapter gives a very brief introduction to Quantum mechanics. we begin with basic definitions
that will be useful in rest of the thesis. we study four postulates of Quantum mechanics. Then we
move to problem of distinguishable quantum system that gives a condition to determine the state
of the quantum system. We then turn to composite quantum system which makes use of tensor
product to define the state of such system. Here, we have a beautiful property of composite system
called Entanglement (where the joint state can not be written as a product of states of its component
system) which we will study in next chapter. We define Quantum gates and Quantum cloning. we
close this chapter with some applications of Quantum mechanics.

Definitions

(i) Physical system: A physical system is a portion of universe chosen for analysis. Everything
outside the system is known as environment.

(ii) Quantum system: A theoretical or actual system based on Quantum physics.

(iii) State: A unit vector in complex Hilbert space is called state of system.

(iv) Observable: The operators are called observables.In Quantum mechanics, observables are
unitary matrices.

(v) Closed system: A system that does not interact with outside world.

(vi) Composite System: A Physical system is said to be composite, if it is made up of two or more
quantum systems.

(vii) Qubit: In classic computer,a bit can be either 0 or 1. A Quantum bit or qubit is smallest
unit for information in Quantum mechanics. A qubit is a vector in two dimensional complex
vector space. The main difference between a qubit and a classic bit is that a qubit can stay
in the superposition of basis states. Suppose |0〉 and |1〉 forms an orthonormal basis of state
space. Then an arbitrary state vector in the state space can be written as

|ψ〉 = a|0〉+ b|1〉.

12



for some complex numbers a and b are called amplitudes.
The condition that ψ should be a unit vector is equivalent to 〈ψ|ψ〉 = 1 which is same as
a2 + b2 = 1.

2.2 Postulates of Quantum Mechanics

• The first postulate of Quantum mechanics describes the space in which Quantum mechanics
takes place.

Postulate 1. Associated to any physical system there corresponds a complex Hilbert space known
as state space of the system. The system is completely described by its space which is a unit vector
in the system state space.

• How does the state of a closed Quantum mechanical system changes with time? The follow-
ing postulate gives a description.

Postulate 2.The time evolution from t1 to t2 where t1<t2 of a closed quantum system is described
by a unitary operator U : H → H. on state space. If system is in state ψ at time t1. Then system
would be in state U(ψ) at time t2.

• The evolution of the system which does not interact with rest of the world is given by mea-
surement operators.

Postulate 3.The evolution of an open Quantum system is described by collection of operators called
measurement operator. It is denoted by Mm where m denotes the outcomes that may occur in the
system. If the state of the quantum system is |ψ〉 immediately before the experiment, then the
probability that outcome will be m is given by

pm(ψ) = 〈ψ|MM∗|ψ〉 = 〈ψ|MM∗ψ〉 = ||Mmψ||2. (2.1)

And the state of the system after the measurement is given by Mmψ/||Mmψ||. The measurement
operators satisfy the completeness equation∑

m

M∗mMm = I.

• The following postulate describes that how the state space of a composite system is build up
from the state space of component systems.

Postulate 4. The state of a composite physical system is the tensor product of the state spaces of
component physical systems.

Example 2.2.1. We give an example of measurement of qubit on computational basis. This is a measurement
on a single qubit with two outcomes defined by two measurements operators M0 = |0〉〈0|,M1 = |1〉〈1|.
Each measurement is Hermitian and

M2
0 = M0

M2
1 = M1.
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And

I = M∗0M0 +M∗1M1 = M0 +M1. (2.2)

Hence, I satisfies the complete relation.
Suppose that the state being measured is ψ = a|0〉+ b|1〉.
Then the probability of obtaining measurement 0 is given by:

p(0) = 〈ψ|M∗0M0|ψ〉 = 〈ψ|M0|ψ〉 = |a|2. (2.3)

Similarly,the probability of obtaining measurement 1 is p(1) = |b|2.
The state after the measurement in two cases are:

M0|ψ〉
|a|

=
a

|a|
|0〉, M1|ψ〉

|b|
=

b

|b|
|1〉. (2.4)

2.2.1 Problem of distinguish Quantum state OR Quantum Game

In the classical world ,distinct states of an object is distinguishable. But in Quantum mechanics, this sit-
uation is a bit complicated. Given distinct states of a quantum system, we can not always distinguish the
states. This situation is described by the following example.

Example 2.2.2. Let H be state space of quantum system. Suppose Alice has two states {ψ, φ} and Bob
knows that quantum system takes these two states. Alice picks one and sends to Bob. Then,can Bob create a
measurement system Mm to describe which one he is given.
We want M1 and M2 such that
‖M1ψ2‖ = 0, ‖M1ψ1‖2 = p1(ψ1) = 1, ‖M2ψ1‖ = 0, ‖M2ψ2‖2 = p2(ψ2) = 1.

case 1. (ψ1) ⊥ (ψ2):Let H1 = span(|ψ1〉).
Then H can be written as H = H1 ⊕ span(|ψ1〉).⊥

Let M1 = |ψ1〉〈ψ1|. Then M1 is the orthogonal projection onto the span of ψ1.

let M2 = |ψ2〉〈ψ2|. Then M2 is the orthogonal projection onto the span of ψ2. Note that

M2
1 = M∗1M1 = M1 andM2

2 = M∗2M2 = M2. (2.5)

Let M3 = I −M1 −M2. which is the projection onto the span of {ψ1, ψ2}.⊥ note that

M2
3 = M∗3M3 = M3. (2.6)
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Hence,

‖M1ψ1‖2 = 〈M1ψ1|M1ψ1〉

= 〈ψ1|ψ1〉

= 1.

‖M1ψ2‖ = 〈M1ψ2|M1ψ2〉 = 0.

‖M2ψ1‖ = 0. and

‖M2ψ2‖ = 1.

Therefore, we can distinguish with certainty.
case 2. If states ψ1 and ψ2 are not orthogonal to each other then there is no Quantum measurements capable
of distinguish the states.
Consider the Quantum states |ψ1〉 = |0〉, |ψ2〉 = α|0〉+ β|1〉, where α, β both are not equal to zero.
If a measurement is performed then ψ1 is projected to |0〉 with probability 1 and ψ2 is also projected to |0〉
with the probability α 6= 0.

So,If the outcome is |0〉, then it is impossible to say whether state is |ψ1〉 or |ψ2〉.
Hence non orthogonal states can not be distinguished with certainty.

Remark 2.2.3. Given states {ψ1, ..., ψn}which are linearly independent,there exists a measurement systems
M1, ...,Mn such that if ith occurs, then state ψi is received.

2.3 Composite system

As described in Postulate 4 that the state of a composite system is tensor product of the state space of compo-
nent system. If the state space of composite systems are H1, H2, ..,Hn and let ith component be in state ψi,
then state of composite system is ψ1 ⊗ ...⊗ ψn.

Example 2.3.1. Suppose we have two systems.State of the first system is given by 1√
2
|0〉 + 1√

2
|1〉 and the

second is given by 1√
2
|0〉 + ι 1√

2
|1〉.Then state space of the composite system is C2 ⊗ C2 ∼= C4 and state is

given by:

1√
2
|0〉+

1√
2
|1〉 ⊗ 1√

2
|0〉+ ι

1√
2
|1〉 =

|0〉 ⊗ |0〉+ |0〉 ⊗ ι|1〉+ |1〉 ⊗ |0〉+ |1〉 ⊗ ι|1〉
2

=
|00〉+ ι|01〉+ |10〉+ ι|11〉

2
.

where |00〉 = |0〉 ⊗ |0〉, |01〉 = |0〉 ⊗ |1〉, |10〉 = |1〉 ⊗ |0〉, |11〉 = |1〉 ⊗ |1〉
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2.3.1 Measurements in Composite systems

Tensor product of operators:

Given R : H → H,T : K → K, there exists a unique operator

R⊗ T : H ⊗K → H ⊗K

given by

R⊗ T (

n∑
i=1

hi ⊗ ki) =

n∑
i=1

(Rhi)⊗ (Tki), wherehi ∈ H, ki ∈ K for 1 ≤ i ≤ n.

Properties of tensor product of operators.

Theorem 2.3.2. (i) If Ri : H → H, Ti : K → K, for i = 1, 2. then

(R1 ⊗ T1)(R2 ⊗ T2) = (R1R2)⊗ (T1T2.)

(ii) (R⊗ T )∗ = R∗ ⊗ T ∗.

Proof. (i) let hi ∈ H, ki ∈ K.Then

(R1 ⊗ T1)(R2 ⊗ T2)(
n∑
i=1

hi ⊗ ki) = (R1R2 ⊗ T1T2)(
n∑
i=1

hi ⊗ ki).

Ri ⊗ Ti : H ⊗K → H ⊗K ,for i = 1, 2 then,

(R1 ⊗ T1)(R2 ⊗ T2) : H ⊗K → H ⊗K.

and

(R1 ⊗ T1)(R2 ⊗ T2)(

n∑
i=1

hi ⊗ ki) = (R1 ⊗ T1)(

n∑
i=1

R2hi ⊗
n∑
i=1

T2ki)

=

n∑
i=1

(R1R2hi ⊗ T1T2ki)

= (R1R2 ⊗ T1T2)(

n∑
i=1

hi ⊗ ki).

Proof. (ii) Let h1, h2 ∈ H and k1, k2 ∈ K. Then,

〈h1 ⊗ k1|(R⊗ T )∗(h2 ⊗ k2)〉 = 〈(R⊗ T )(h1 ⊗ k1)|h2 ⊗ k2)〉

= 〈Rh1 ⊗ Tk1|h2 ⊗ k2〉

= 〈Rh1|h2〉H .〈Tk1|k2〉K
= 〈h1|R∗h2〉H .〈k1|T ∗k2〉K
= 〈h1 ⊗ k1|(R∗ ⊗ T ∗)(h2 ⊗ k2)〉.

Hence, (R⊗ T )∗ = R∗ ⊗ T ∗.
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2.4 Quantum gates

Classical Computer circuit consists of Logic gates. Logic gates perform manipulation of informa-
tion converting it from one to another. Quantum analog of logic gates are unitary operator which
is represented by matrices. quantum gates in the form of linear operator interacts with qubit or
multiple qubits through tensor product operation.

Note 2.4.1. Firstly we will describe quantum gates which acts on single qubit and then we move to the
quantum gates which act on multiple qubits/Quantum register.

2.4.1 Quantum gates

• Pauli X gate: It is Quantum equivalent of ‘NOT’gate.It maps |0〉 to |1〉 and |1〉 to |0〉. It is represented
by Pauli X matrix.

X =

[
0 1

1 0

]
.

• Pauli Y gate: It maps |0〉 to ι|1〉 and |1〉 to −ι|0〉. It is represented by Pauli Y matrix:

Y =

[
0 −ι
ι 0

]
.

• Pauli Z gate: It leaves the basis state |0〉 unchanged and maps |1〉 to −|1〉. It is represented by Pauli
Z matrix:

Z =

[
1 0

0 −1

]
.

• Hadamard gate: It maps |0〉 to |0〉+|1〉√
2

and |1〉 to |0〉−|1〉√
2
. It is represented by Hadamard matrix.

H =
1√
2

[
1 1

1 −1

]

• Swap gate: It acts on two or more qubits. Multiple qubits are obtained by taking tensor product of
single qubits. Swap gate maps

|0〉 ⊗ |0〉 = |00〉 7→ |00〉

|0〉 ⊗ |1〉 = |01〉 7→ |10〉

|1〉 ⊗ |0〉 = |10〉 7→ |01〉

|1〉 ⊗ |1〉 = |11〉 7→ |11〉.
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If we consider above as standard ordered basis then swap gate can be represented by the matrix.

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


• Controlled Gate: It acts on two or more qubits where one or more qubit acts as a control for some

operation.

Example 2.4.2. Controlled NOT gate: It performs the ‘NOT’operation on second qubit only when
first qubit is 1 otherwise it leaves it as it is. It maps

|00〉 7→ |00〉

|01〉 7→ |01〉

|10〉 7→ |11〉

|11〉 7→ |10〉.

This is represented by the matrix.

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


Taffoli gate: It acts on 3-qubits. It is also called ‘CCNOT’gate. It performs the NOT operation on
third qubit if first two qubits are 1. It maps

|000〉 7→ |000〉

|010〉 7→ |010〉

|100〉 7→ |100〉

|110〉 7→ |111〉

|001〉 7→ |001〉

|011〉 7→ |011〉

|101〉 7→ |101〉

|111〉 7→ |110〉
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It is represented by the matrix.

CCNOT =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0


2.5 Quantum cloning

Definition 2.5.1. Quantum cloning is a process that takes an arbitrary unknown quantum state and make
a copy of it without altering the original state.

Example 2.5.2. Consider the CNOT gate. Let this gate be represented by unitary operator U .Then U :

C2 → C2 is given by

U(|0〉 ⊗ |0〉) = |0〉 ⊗ |0〉

U(|0〉 ⊗ |1〉) = |0〉 ⊗ |1〉

U(|1〉 ⊗ |1〉) = |〉 ⊗ |0〉

U(|1〉 ⊗ |0〉) = |1〉 ⊗ |1〉

From the last equation, It follows that CNOT can clone.Note that states given in last equation are orthogonal
to each other.

No cloning:

It prevents in producing further copies of an arbitrary Quantum state.

Example 2.5.3. Let ψ = αe0 + βe1 = α|0〉+ β|1〉. Let CNOT be represented by unitary operator U.Apply
U to ψ ⊗ e0, we get

U(ψ ⊗ e0) = U(αe0 + βe1)⊗ e0 = U(αe0 ⊗ e0) + U(βe1 ⊗ e0.) (2.7)

Suppose U can clone ψ. Then Eq. (2.7) should be equal to ψ ⊗ ψ.
But Eq. (2.7) turns out to be α2e0 ⊗ e0 + αβ(eo ⊗ e1 + e1 ⊗ e0) + β2e1 ⊗ e1. If αβ 6= 0, then U can not
clone ψ. The only case when U can clone ψ is either ψ = e0 or ψ = e1.

Hence, In general it is impossible to have a universal unitary operator that can clone any arbitrary quantum
state. This gives a motivation for ‘No cloning theorem’.
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No cloning Theorem:

Theorem 2.5.4. An arbitrary Quantum state can not be cloned.

Proof. Let ψ ∈ H be any arbitrary state and U be a unitary operator that can clone ψ. Then for all
ψ ∈ H.we have,

U(ψ ⊗ φ) = (ψ ⊗ ψ).

Also,

U((−ψ)⊗ φ) = U(−ψ)⊗ (−ψ) = ψ ⊗ ψ (2.8)

Then,

U((−ψ)⊗ φ) = U(−(ψ ⊗ φ))

= −U(ψ ⊗ φ)

= −(ψ ⊗ ψ).

which is a contradiction.

2.6 Quantum Parallelism

Consider the Hadamard gate which is represented by

H =
1√
2

[
1 1

1 −1

]
.

Let e0 and e1 be orthonormal basis for H..Then,

He0 =
e0 + e1√

2
=
|0〉+ |1〉√

2

We write
He0 ⊗He0 ⊗ ...⊗He0︸ ︷︷ ︸

n times

as

Hn(e0 ⊗ e0...⊗ e0) = (He0)⊗ (He0)⊗ ...⊗ (He0)︸ ︷︷ ︸
n times

=
e0 + e1√

2
⊗ e0 + e1√

2
⊗ ...⊗ e0 + e1√

2︸ ︷︷ ︸
n times

.
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When n = 2, we have,

e0 + e1√
2
⊗ e0 + e1√

2
=
e0 ⊗ e0 + e0 ⊗ e1 + e1 ⊗ e0 + e1 ⊗ e1

(
√

2)2
= (

1

(
√

2
)2
∑
i,j∈Z2

(ei ⊗ ej) (2.9)

In general,
Hn(e0 ⊗ e0...⊗ e0) = ( 1√

2
)n

∑
i,j∈Zn

2

(ei ⊗ ej)

2.7 Applications of Quantum Mechanics

(i) The biggest application of a quantum computer is its ability to factorize a very large number
into product of two prime numbers. Most of the popular public key ciphers are based on the
difficulty of factoring integers or the discrete logarithm problem, which can both be solved
by Shor’s algorithm

(ii) Atomic clocks are the most accurate time and frequency standards known and are used as
primary standards for International distribution services. Inaccuracy of Atomic clock is due
to Quantum noise.

(iii) Quantum cryptography describes the use of quantum computation and quantum communi-
cation to perform cryptographic tasks or to break cryptographic systems.
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Chapter 3

Mathematical approach to Quantum
mechanics

3.1 Introduction

This chapter deals with mathematical analogy of quantum mechanics. It accomplishes two tasks,
firstly, it gives information about quantum system using density operator, even if state of the sys-
tem is not known. Secondly, it provides information about component system using the definition
of partial trace. We start with defining density operator. We will see that every idea of quantum
mechanics can be studied in terms of density operator. Based on this formulation, we will refor-
mulate the postulates of quantum mechanics. We study about partial trace and reduced density
operator. We close this chapter with some applications of density operator.

Definition 3.1.1. Consider a composite system made up of two component system. Let ψ be the state of the
composite system such that ψ can not be written as tensor product of states of component systems. Then this
phenomenon is called entanglement and state of the system is called entangled state.

Example 3.1.2. Consider the two qubit state and ψ = |00〉+|11〉√
2

. We will prove that ψ is an entengled state
that is ψ can not be written as tensor product of states of component system. There does not exist single
qubit |a〉 and |b〉 such that ψ = |a〉 ⊗ |b〉 = |ab〉. On the contrary, assume that there exists two single qubit

|a〉 =

[
a11

a21

]
and |b〉 =

[
b11

b21

]
. then

|ψ〉 =
|00〉+ |11〉√

2
=


1

0

0

1



|ψ〉 =


a11b11

a11b21

a21b11

a21b21
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After equating the corresponding entries of above two matrices, we get

a11b11 = 1

⇒ a11 and b11 are both nonzero.

a11b21 = 0

⇒ b21 = 0

a21b11 = 0

⇒ a21 = 0

a21b21 = 1

⇒ a21 and b21 are both nonzero.

First two equations give a21b21 = 0. This is a contradiction.
Hence, state ψ is in entangled state.

3.2 Density operator

Definition 3.2.1. An ensemble denoted by, {pi, ψi} is a set of states ψi together with the probabilities pi ≥ 0

and
l∑
i=1

pi = 1.

Note 3.2.2. Given a measurement system {Mα}, the probability of outcome α given this ensemble is,

pα({pi, ψi}) =

l∑
i=1

pi‖Mα(ψi)‖2. (SeeSec(1.2)) (3.1)

Definition 3.2.3. Consider an ensemble of states {pi, ψi}, then
density operator for this ensemble is defined as

ρ =

l∑
i=1

pi|ψi〉〈ψi| (3.2)

Remark 3.2.4. Let ρ be the density operator arises from ensembles {ψi, pi}. Let en denote an orthonormal
basis of H . Then the matrix representation of density operator with respect to given orthonormal basis is:

ρmn =
∑
i

pi(〈em|ψi〉)(〈ψi|en〉).

This matrix is called density matrix.

Example 3.2.5. Evolution of density operator for a closed quantum system: Suppose the evolution of
a closed system is described by a unitary operator U. Let {pi, ψi} be the ensemble of states. Density operator
corresponding to this ensemble is:

ρ =

l∑
i=1

pi|ψi〉〈ψi|. (3.3)
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After evolution,state of the system is U(|ψi〉). Then the corresponding density operator is given as

ρ′ =

l∑
i=1

pi(U |ψi〉)(U |ψi〉)∗ (3.4)

=

l∑
i=1

piU |ψi〉〈ψi|U∗ (3.5)

= U(

l∑
i=1

pi|ψi〉〈ψi|)U∗ (3.6)

= UρU∗. (3.7)

Measurement in terms of Density operator: Suppose we perform a measurement described by a measure-
ment operator Mm.Let ψi be the initial state of the system. Let p(i) denotes the probability of getting state
|ψi〉. Then probability of getting result m when initial state is ψi is

p(m/i) = 〈ψi|M∗mMm|ψi〉 (3.8)

= tr(M∗mMm|ψi〉〈ψi|). (3.9)

It follows from equation (1.4)
By the law of total probability, probability of getting result m is

p(m) =
∑
i

p(|ψi〉)p(m|i) (3.10)

=
∑
i

p(i)p(m|i) (3.11)

=
∑
i

p(i)tr(M∗mMm|ψi〉〈ψi|) (3.12)

= tr(
∑
i

p(i)(M∗mMm|ψi〉〈ψi|)) (3.13)

= tr(M∗mMm

∑
i

p(i)|ψi〉〈ψi|) (3.14)

= tr(M∗mMmρ). (3.15)

We will calculate the density operator of the system after obtaining the measurement result m. This formula
gives an elegant expression to calculate the density operator of the system if outcome m and the density
operator corresponding to the ensemble of state before measurement is known.
If the initial state of the system is |ψi〉, then the state after obtaining the result m is

|ψm〉 =
Mm|ψi〉
‖Mm|ψi〉‖

(3.16)

=
Mm|ψi〉√

tr(M∗mMm|ψi〉〈ψi|
. (3.17)
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Let ρm be the density operator after the measurement m.Then,

ρm =
∑
i

p(i/m)|ψm〉〈ψm|. (3.18)

By the law of probability

p(i/m) = p(i,m)/p(m) (3.19)

p(i,m) = p(m/i)p(i) (3.20)

= tr(M∗mMm|ψi〉〈ψi|)p(i). (3.21)

Substitute the value of p(i,m) (Refer equation(3.20)) and value of p(m) (Refer equation (3.15)) in equation
(3.19), we get,

p(i/m) =
tr(M∗mMm|ψi〉〈ψi|)p(i)

tr(M∗mMmρ)
. (3.22)

Substituting the value of |ψm〉, 〈ψm|, p(i/m) in equation (3.18) we get,

ρm =
∑
i

(Mm|ψi〉〈ψi|M∗m)tr(M∗mMm|ψi〉〈ψi|)p(i)
tr(M∗mMm|ψi〉〈ψi|)tr(M∗mMmρ)

. (3.23)

=
MmρM

∗
m

tr(M∗mMmρ)
. (3.24)

Note 3.2.6. A quantum system whose state is exactly known is called pure state. Density operator for such
system is, ρ = |ψ〉〈ψ|. Otherwise, ρ is in mixed state of ensembles.

Note 3.2.7. Consider a quantum system is prepared in the state ρi with probability pi. Then this system
may be described by density matrix

ρ =
∑
i

piρi.

Justification: Suppose that ρi arises from ensembles {pij , ψij} (i is fixed). Let pi denotes the probability
that system is in state ψi. Then the probability that the state of the system is ψij is pipij . Then,

ρ =
∑
i

∑
j

pipij |ψij〉〈ψij〉

=
∑
i

pi
∑
j

pij |ψij〉〈ψij〉

=
∑
i

piρi
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3.2.1 Properties of Density operator

Characterization of Density operator: An operator ρ is the density operator associated to some ensembles
{pi, ψi} iff it satisfies the following conditions:

1. (Trace condition) ρ has trace equal to 1.

2. (Positivity condition) ρ is a positive operator.

Proof. Assume that ρ =
∑
i

pi|ψi〉〈ψi| be the density operator associated to ensembles {pi, ψi}.

tr(ρ) = tr(
∑
i

pi|ψi〉〈ψi|)

=
∑

pitr(|ψi〉〈ψi|)

=
∑

pi = 1.

Hence, Tr(ρ) = 1.

We will prove that ρ is a positive operator. let ψ be any state vector. Consider,

〈ψ|ρ|ψ〉 = 〈ψ|(
∑
i

pi|ψi〉〈ψi|)|ψ〉

= 〈ψ|
∑
i

pi|ψi〉〈ψi|ψ〉 (It follows from the definition of outer product.)

=
∑
i

pi〈ψ||ψi〉〈ψi|ψ〉

=
∑
i

pi|〈ψ|ψi〉|2 ≥ 0.

Hence ρ is a positive operator.
Conversely, Suppose that ρ is any operator satisfying Trace and positivity condition. We will show
that ρ is a density operator.
By hypothesis ρ positive. By Spectral decomposition theorem , ρ can be written as

ρ =
∑
j

λj |ej〉〈ej |

where |j〉 are orthogonal to each other. Since ρ is positive so λj ≥ 0∀ j. From trace condition,∑
j

λj = 1. Therefore a system in state |j〉 with probability λj will have density operator ρ. that is

ensemble {λj , ej} gives rise to density operator ρ.

3.2.2 Density operator for composite ensembles

Consider two physical system A and B with state space HA and HB respectively. Let {pi, ψi}
be an ensemble in system A and {qj , φj} be an ensemble in system B. Then composite system is
represented by a density operator on HA ⊗HB .

Suppose that systems A and B are in state ψi and φj with probability pi, qj respectively. Then
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Postulate 4 says that {piqj , ψi ⊗ φj} is an ensemble in composite system. Then density operator for
composite system is given by:

ρcomposite =
∑
i,j

piqj |ψi ⊗ φj〉〈ψi ⊗ φj | (3.25)

=
∑
i,j

piqj(|ψi〉〈ψi|)⊗ (|φj〉〈ψj |). (3.26)

Note 3.2.8. Above theorem characterizes the density operator. We can define a density operator to be a
positive operator whose trace is equal to 1. This characterization allows us to rephrased the Basic postulates
of Quantum mechanics in terms of density operator. It has nothing to do with state of the system. Here Basic
unit is density operator.

3.2.3 Reformulation of postulates:

Postulate 1. Associated to any physical system is a complex Hilbert space known as state space of the
system. State of the system is completely described in terms of density operator, which is a positive operator
with trace 1 acting on the state of the system. If a Quantum system is in state ρi with probability pi then
density operator for this system is

∑
i

piρi.Postulate 2: The evolution of closed Quantum system is described

by Unitary transformation. That the density operator ρ of the system at time t1 is related to density operator
ρ′ of the system at time t2 where t1<t2 by

ρ′ = UρU∗.

Postulate 3: Quantum measurements are described by a collection Mm of Measurement operators. These
are the operators acting on the state space of the system being measured. The index m refers to the outcome.
If the state of the Quantum system is ρ immediately before the experiment then probability that outcome will
be m is given by:

p(m) = tr(M∗mMmρ).

and the state of the system after the measurement is

MmρM
∗
m

tr(M∗mMmρ)
.

The measurement operator satisfy the completeness relation∑
M∗mMm = I.

Postulate 4: The state space of the composite physical system is the tensor product of state space of the com-
ponent physical systems. Further, If we have system numbered 1 through n and state of the system number
i is ψi then state of the composite system is ψ1 ⊗ ψ2 ⊗ ...⊗ ψn.

Example 3.2.9. Criterion to decide if a state is mixed or pure: Let ρ be a density operator then show
that tr(ρ2) ≤ 1 and it is an equality if ρ is a pure state.
justification: If system is in mixed state:
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we will prove that tr(ρ2) ≤ 1.

ρ is a diagonalizable operator So, it is similar to a diagonal matrix D say = diag(p1, p2, ...pn) and each

pi > 0 then ρ2 is similar to D2. Hence,tr(ρ2) =
n∑
i=1

p2i .

n∑
i=1

pi = 1, Square both sides,we get

(

n∑
i=1

p2i ) =

n∑
i=1

p2i + ( some positive terms) = 1

n∑
i=1

p2i = 1− ( some positive terms)<1.

Hence,tr(ρ2) ≤ 1

If system is in pure state ψ say, then ρ = |ψ〉〈ψ|
Hence, Tr(ρ2) = ‖ρ‖2 = 1.

Note 3.2.10. Two different ensembles of Quantum states can give rise to same density operator as shown in
following example:

Example 3.2.11. Suppose that a Quantum system with density operator is

ρ =
3

4
|0〉〈0|+ 1

4
|1〉〈1|.

Then system is in state |0〉 with probability 3/4 and it is in state |1〉 with probability 1/4. Define

|a〉 =

√
3

4
|0〉〈0|+

√
1

4
|1〉〈1|

and

|b〉 =

√
3

4
|0〉〈0| −

√
1

4
|1〉〈1|.

A Quantum system is prepared in the state |a〉 with probability 1/2 and in state |b〉 with probability 1/2.
Then corresponding density operator is

ρ =
1

2
|a〉〈a|+ 12|b〉〈b| = 3

4
|0〉〈0|+ 1

4
|1〉〈1|.

that is these two different ensembles give rise to same density operator. Above discussion leads to a Question
that which class of ensembles give rise to same density matrix. it motivates the following theorem

Remark 3.2.12. The sets ˜|ψi〉 and ˜|φj〉 gives the same density operator if and only if

˜|ψi〉 =
∑
j

uij ˜|ψi〉.
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3.3 Trace

Identify L(Cn) as Mn.Let A(aij) ∈Mn. Then

tr(A) =

n∑
i=1

aii =

n∑
i=1

〈ei|Aei〉.

Proposition 3.3.1. Let {u1, u2, ..., un} be an orthonormal basis for Cn. Then,

tr(A) =

n∑
i=1

〈ui|Aui〉.

Remark 3.3.2. Let R ∈ HA, T ∈ HB then R⊗ T ∈ HA ⊗HB . defined as

R⊗ T (
∑
i

hi ⊗ ki) =
∑
i

(Rhi ⊗ Tki).

Proposition 3.3.3. Let R ∈ HA, T ∈ HB then tr(R⊗ T ) = tr(R)tr(T ).

Proof. Let {e1, e2, ..., en} and {f1, f2, ..., fm} be orthonormal basis forHA andHB respectively. Then

{ei ⊗ fj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

is an orthonormal basis for R⊗ T. Therefore,

tr(R⊗ T ) =

n∑
i=1

m∑
j=1

〈(ei ⊗ fj)|(R⊗ T )(ei ⊗ fj)〉

=

n∑
i=1

m∑
j=1

〈(ei ⊗ fj)|(Rei)⊗ (Tfj)〉

=

n∑
i=1

m∑
j=1

〈ei|Rei〉HA
〈fj |Tfj〉HB

= (

n∑
i=1

〈ei|Rei〉)HA
(

m∑
j=1

〈fj |Tfj〉)HB

= tr(R)tr(T ).

Proposition 3.3.4. Let HA and HB be two finite dimensional Hilbert spaces then τ : L(HA)⊗ L(HB)→
L(HA ⊗HB)is an isomorphism.

Proof. Let dim(HA) = m and dim(HB) = n then
dimL(HA) = m2, dimL(HB) = n2 Hence, dim(L(HA)⊗ L(HB)) = m2n2.

dim(L(HA ⊗HB)) = m2n2. Hence dimensions of both spaces are equal.

To show that τ is an isomorphism, it is enough to show that τ is injective.
we will show that ker(τ) = {0}.
Identify L(HB) as Mn which has a basis {Eij : 1 ≤ i, j ≤ n.}
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Chose an orthonormal basis {f1, f2, ..., fn} for HB such that

Eijfl =

fi, j = l

0, j 6= l

Given X ∈ ker(τ). Then from proposition (1.10.5) there exists unique Xij ∈ L(HA) such that

X =

m∑
i,j=1

Xij ⊗ Eij .
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claim: X = 0.

X = 0 if and only if Xij = 0∀1 ≤ i, j ≤ m.

It is enough to prove that Xij = 0∀1 ≤ i, j ≤ m
τ(X) : HA ⊗HB → HA ⊗HB

τ(X)(h⊗ l) =

m∑
i,j=1

(Xij ⊗ Eij)(h⊗ l)

=

m∑
i,j=1

(Xijh)⊗ (Eij l)

Above equation is true for all h ∈ HA, l ∈ HB .

pick l = fl. Then,

0 = τ(X)(h⊗ fl)

=

n∑
i,j=1

(Xijh)⊗ (Eijfl)

=

n∑
i=1

(Xilh)⊗ (fi)

that is Xilh = 0∀1 ≤ i ≤ n and ∀h ∈ H. This implies Xil = 0∀i. Repeat this process for all l and get
Xil = 0 for all l. Therefore,X = 0.

Note 3.3.5. Above theorem is useful in defining partial trace.

Note 3.3.6. Recall from chapter 1.Let HA and HB be two finite dimensional Hilbert spaces with dimensions
m and n. Then

HA ⊗HB
∼= HA ⊕ ...⊕HA(n copies).

HA ⊗HB
∼= HB ⊕ ...⊕HB(m copies).

Proposition 3.3.7. LetHA andHB be two finite dimensional Hilbert spaces with dimensionsm and n.Then

L(HA ⊗HB) ∼= L(HA ⊕ ...⊕HA)(n copies).

L(HA ⊗HB) ∼= L(HB ⊕ ...⊕HB)(m copies).

3.4 Partial Trace

We will use proposition (3.3.4) in defining Partial trace.

Definition 3.4.1. Suppose we have Physical systems A and B with corresponding state spaces are HA and
HB . Then Partial trace over system B, denoted as trB is defined by

trB : L(HA ⊗HB)→ L(HA)
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We define this map as follows:
Identify L(HA ⊗HB) ∼= L(HA)⊗ L(HB).
Given

X =
∑
i

Ri ⊗ Ti. Then,

trB(X) =
∑
i

tr(Ti)Ri.

Define,
A : L(HA)× L(HB)→ L(HA)

such that
(R, T ) 7→ tr(T )R

Then, A is a bilinear mapping.By universal property of Tensor product,there exists a linear mapping Ã :

L(HA)⊗ L(HB)→ L(HA) such that

Ã(R⊗ T ) = A(R, T ).

map Ã coincides with the map trB(X). Hence it is well defined. Given X ∈ L(HA ⊗ HB). We write
XB = trA(X) ∈ L(HA).

Similarly,
trB : L(HA)× L(HB)→ L(HA)

such that
(R, T ) 7→ tr(R)T

Given X ∈ L(HA ⊗HB). We write XA = trB(X) ∈ L(HB).

3.4.1 Another way to define partial trace

We will give an explicit formula to calculate the partial trace trB and trA with the assumption that HA and
HB are finite dimensional Hilbert space. Let dim(HA) = m and dim(HA) = n.

Identify L(HB) ∼= Mn which has a basis {Eij : 1 ≤ i, j ≤ n.}
Chose an orthonormal basis {f1, f2, ..., fn} for HB such that

Eijfl =

fi, j = l

0, j 6= l

Given X ∈ ker(τ). Then from ?? there exists unique Xij ∈ L(HA) such that

X =

m∑
i,j=1

Xij ⊗ Eij
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Then,Partial traces are given by:

trB(X) = trB(

m∑
i,j=1

Xij ⊗ Eij)

=

n∑
i,j

Xijtr(Eij)

=

n∑
i

Xii ∈ L(HA)

trA(X) = trA(

m∑
i,j=1

Xij ⊗ Eij)

=

n∑
i,j

Eijtr(Xij)

=

n∑
i,j

Eijtr(Xij) ∈ L(HB)

3.4.2 Reduced density operator

The biggest application of density operator is to provide a tool to get information about subsystems of com-
posite system.

Definition 3.4.2. Suppose A and B be two physical system and ρAB be the density operator for composite
system. Then reduced density operator for system A is denoted by,ρA is:

ρA = trB(ρAB)

where trB is the partial trace over system B. Reduced density operator ρA describes completely all properties
of component system A when system B is left unobserved.

3.5 Applications

(i) Superdense coding is surprising application of Quantum Information theory. This technique is used
to send two bits of classical information using only one qubit. Entanglement is used to accomplishes
this task.

(ii) A Quantum Computer is a device that makes direct use of Quantum mechanics Phenomenon such as
superpositions, entanglement and Quantum Parallelism, to perform operations on data.

33



Chapter 4

Positive matrices

4.1 Introduction

Chapter 4 focuses on basic definitions and crucial results regarding positive definite matrices. It includes
some equivalent conditions of a positive definite matrix. We study about block matrices and contractions.
This section includes equivalent conditions for a block matrix to be positive in terms of contraction maps.
These result will be used very frequently in later chapters.

Throughout, we assume the scalar field is C. Let Mn(C) denotes the space of all n × n matrices over
C. We consider finite dimensional Hilbert space throughout the chapter. we denote them by H,H1 and H2

etc. Let L(H) denotes the space of all linear operators on Hilbert space H. If H = Cn, then Mn(C) can be
identified with B(H).

Definition 4.1.1. A matrix A ∈ B(H) is called

1. positive if 〈Ax, x〉 ≥ 0 forall x ∈ H.

2. strictly positive if 〈Ax, x〉 > 0 forall x ∈ H, x 6= 0.

Note 4.1.2. If A is a positive matrix, then we denote it by A ≥ 0 and if A is strictly positive matrix, then
we denote it by A > 0.

Theorem 4.1.3. Let A ∈Mn(C). Then,

1. (a) A ≥ 0⇔ A = A∗ and all its eigenvalues are non-negative.

(b) A > 0⇔ A = A∗ and all its eigenvalues are positive .

2. (a) A ≥ 0⇔ A = A∗ and all its principal minors are non negative.

(b) A > 0⇔ A = A∗ and all its principal minors are positive.

3. (a) A ≥ 0⇔ A = B∗B for some matrix B ∈Mn(C).

(b) A > 0⇔ A = B∗B where B ∈Mn(C) is non-singular.

4. (a) A ≥ 0⇔ A = T ∗T for some upper triangular matrix T .

(b) A > 0⇔ A = T ∗T for a unique upper triangular matrix T .
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5. (a.) A ≥ 0⇔ there exists x1, x2, ..., xn ∈ Cn such that

aij = 〈xi, xj〉.

(b.) A > 0⇔ there exists linearly independent vectors x1, x2, ..., xn ∈ H such that

aij = 〈xi, xj〉.

4.2 Examples

1. If A is a diagonal matrix with all its entries are positive, then A is a positive matrix.

2. Let A ∈Mn(C) be a positive matrix. Then, X∗AX is positive for any X ∈Mn(C).

3. Let λ1, λ2, ..., λm be positive real numbers. Then, the matrix A = aij , where,

aij =
1

λi + λj

is positive matrix and is called Cauchy matrix. Since,

aij =

∫ ∞
0

e−(λi+λj)tdt

if we define fi(t) = e−λit, 1 ≤ i ≤ m. then, aij = 〈fi, fj〉.
By axiom (5)(a) of theorem (4.1.3) above, A is positive.

If λ1, λ2, ..., λm are complex numbers with positive real parts, then the matrix A = (aij) where,

aij =
1

λ̄i + λj

is positive.

Definition 4.2.1. 1. Let A = (aij) and B = (bij) ∈ Mn(C). Then, the Schur product of A and B is
defined by (A ◦B)ij = (aijbij).

2. The symmetrized product of A and B is the matrix S = AB +BA.

Definition 4.2.2. LetK be a subspace of a Hilbert spaceH and P be an orthogonal projection ontoK.Define
an operator V : K → H such that V is the injection ofK intoH. Then, an operatorA ∈ B(H) can be written
in block matrix form[

A11 A12

A21 A22

]

the operator, V ∗AV = A11 is called compression of A onto K. Similarly, Other Block matrices Aij can
be obtained by defining the operator V accordingly.
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Proposition 4.2.3. A matrix A is positive if and only if all its compressions are positive.

Proof. Every compression of A is of the form V ∗AV for some V ∈ B(K). Hence, result follows by
(2) of example (4.2). Thus, all principal submatrices are positive.
Conversely, let all principal submatrices are positive. Clearly A is hermitian and one calculation
shows that coefficients of characteristic polynomial alternate in signs. Hence, By Descartes rule all
roots of A are non-negative. Therefore, A is positive, by 1(a) of theorem (4.1.3).

4.3 Properties

1. Sum of two positive definite matrices is again positive definite.

Proof. Let A,B ∈Mn(C) be two positive matrices. Consider x ∈ Cn.
Then, we have,

〈(A+B)x, x〉 = 〈Ax, x〉+ 〈Bx, x〉 ≥ 0.

Hence, A+B is positive.

2. Tensor product of two positive matrices is positive.

Proof. Let A,B ∈Mn(C) be two positive matrices. Consider
x⊗ y ∈ Cn ⊗ Cn. Then,

〈(A⊗B)x⊗ y, x⊗ y〉 = 〈Ax, x〉.〈By, y〉 ≥ 0.

Hence, A⊗B is positive.

3. Hadamard product of two positive matrices is positive.

Proof. It directly follows from proposition 4.2. Since, A ◦B is compression of A⊗B, which is
positive. Hence, A ◦B is positive.

Remark 4.3.1. 1. Multiplication of two positive matrices need not be positive.

2. Symmetrized product of two positive matrices need not be positive.

Let

A =

[
1 0

0 2

]
.

and

B =

[
1 1

1 1

]
.
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Then, It can be seen that their Symmetrized product is not positive but A and B are positive.

Proposition 4.3.2. Let A and B be hermitian and suppose A is strictly positive. If the symmetrized product
S = AB +BA is positive (strictly positive) then B is positive (strictly positive).

Proof. Since, B is hermitian So, there exists an orthonormal basis such that B = diag(λ1, λ2..., λn),
the diagonal matrix with diagonal entries (λ1, λ2..., λn). Then, sii = 2λiaii. Since, all the diagonal
entries of a positive matrix are positive and S∗ = S Hence, λi ≥ 0. Therefore, B is positive.

Proposition 4.3.3. If A and B are positive and A > B, then A1/2 > B1/2.

Proof. We have the identity

X2 − Y 2 =
(X + Y )(X − Y ) + (X − Y )(X + Y )

2

If X and Y are strictly positive then X + Y is strictly positive. So, if X2 − Y 2 is strictly positive
then, X − Y is positive by proposition (4.3.2).

Definition 4.3.4. Let A and B ∈ B(H). We say that A is congruent to B and write A ∼ B, if there
exists an invertible operator X ∈ B(H) such that B = X∗AX . If X is unitary, we say that A is unitarily
equivalent to B.

Definition 4.3.5. Let A = A∗, then inertia of A is the triples of non-negative integers

In(A) = (π(A), ψ(A), ν(A))

where π(A), ψ(A), ν(A) denote the number of positive, zero and negative eigenvalues of A.

Remark 4.3.6. Two hermitian matrices are congruent if and only if they have the same inertia.

Remark 4.3.7. Two hermitian matrices are unitarily equivalent if and only if they have same eigenvalues
(counted the multiplicity).

4.4 Block Matrices

A 2n× 2n matrix of the form[
A B

C D

]

is called block matrix where A,B,C,D ∈Mn(C).

Before proceeding, we will fix some notations for Block matrices.

Theorem 4.4.1. Let A ∈ B(H). Then, ∃ a unitary operator U ∈ B(H) and a positive operator P such that
A = UP

Theorem 4.4.2. Let A ∈ B(H). Then, ∃ unitary operators U, V ∈ B(H) and a diagonal operator S which
consists all singular values of A such that A = USV .
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Definition 4.4.3. Let A ∈ B(H). Then, norm of A, denoted as ||A|| and is defined as:

||A|| = sup
||x||=1

||Ax||

Remark 4.4.4. Let A,B ∈ B(H). Then,

1. ||AB|| ≤ ||A||.||B||.

2. ||A|| = ||A∗||.

3. ||A|| = ||UAV || for all unitaries U and V.

4. ||A∗A|| = ||A||2.

Definition 4.4.5. An operator A is said to be contractive if ||A|| ≤ 1.

Proposition 4.4.6. The operator A is contractive if and only if the operator[
I A

A∗ I

]

is positive.

Proof. We will prove it by induction on dimH. If dimH = 1 then theorem says that if a ∈ C if and
only if the matrix[

1 a

ā 1

]

is positive. To prove the theorem for general case, we will use singular value decomposition of
matrix A. Let A = USV Then,

[
I A

A∗ I

]
=

[
I USV

V ∗SU∗ I

]

[
U 0

0 V ∗

]
×

[
I S

S I

]
×

[
U∗ 0

0 V

]

This matrix is unitarily equivalent to[
I S

S I

]

which in turn is unitarily equivalent to the direct sum[
1 s1

s1 1

]
⊕

[
1 s2

s2 1

]
⊕ ...⊕

[
1 sn

sn 1

]
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These 2× 2 matrices are all positive if and only if s1 ≤ 1 that is ||A|| ≤ 1.

Proposition 4.4.7. Let A,B ∈Mn(C) be positive. Then[
A X

X∗ B

]

is positive if and only if X = A1/2KB1/2 for some contraction K.

Proof. Assume that A and B are strictly positive. Then,

[
A X

X∗ B

]
∼

[
A−1/2 0

0 B−1/2

]
×

[
A X

X∗ B

]
×

[
A−1/2 0

0 B−1/2

]
=

[
A−1/2XB−1/2 0

B−1/2X∗A−1/2 I

]

Let K = A−1/2B−1/2. Then by proposition (4.4.6 ), above block matrix is positive if and only if K
is a contraction.

Proposition 4.4.8. Let A and B be two n× n strictly positive matrices then[
A X

X∗ B

]

is positive if and only if A ≥ XB−1X∗.

Proof. We have,[
A X

X∗ B

]
∼

[
I −XB−1

0 I

]
×

[
A X

X∗ B

]
×

[
I 0

−B−1X∗ 0

]
=

[
A−XB−1X∗ 0

0 B

]

Clearly, above block matrix is positive if and only if A ≥ XB−1X∗.

Proposition 4.4.9. An n× n matrix A is positive if and only if[
A A

A A

]

is positive.

Proof. Above block matrix can be written as:

[
A A

A A

]
=

[
A1/2 0

A1/2 0

]
×

[
A1/2 A1/2

0 0

]
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Now, proof directly follows from axiom (3) of theorem (4.1.3) by taking

B =

[
A1/2 A1/2

0 0

]
.

Corollary 4.4.1. Let A be any n× n matrix. Then,[
|A| A∗

A |A∗|

]

is positive.

Proof. We will use the polar decomposition of A. Write A = UP . Then,

[
|A| A∗

A |A∗|

]
=

[
P PU∗

UP UPU∗

]
=

[
I 0

0 U

]
×

[
P P

P P

]
×

[
I 0

0 U∗

]

Now, proof directly follows from proposition (4.4.9) and example 4.2(ii).

Corollary 4.4.2. Let A ∈Mn be a normal matrix. Then,[
|A| A∗

A |A|

]

is positive.

Proof. If A is normal then, |A| = |A∗|. Proof directly follows from corollary (4.4.1)

4.5 Norm on the Schur Product

Let A,B ∈Mn(C) Define SA : Mn(C)→Mn(C) by

SA(X) = A ◦X for all X ∈Mn(C).

where A ◦X denotes the schur product of A and X. Then,

||SA|| = sup
||X||=1

||SA(X)|| = sup
||X||≤1

||SA(X)||.

Theorem 4.5.1. (Schur) Let A = aij be a positive matrix. Then,

||SA|| = max aii

.
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Proof. Let ||X|| ≤ 1. Then, by proposition (4.4.6)[
I X

X∗ I

]

is positive and by proposition (4.4.9)[
A A

A A

]

is positive. Hence, Schur product of above two block matrices is positive that is[
A ◦ I A ◦X

(A ◦X)∗ A ◦ I

]

is positive. So, by proposition (4.4.7) , A ◦ X = (A ◦ I)1/2K(A ◦ I)1/2 for some contraction K.
Hence, ||(A ◦X)|| ≤ ||(A ◦ I)|| = max aii.

Therefore, ||SA|| = max aii.

Note 4.5.2. For each matrix X , Let ||Xc||= maximum of Euclidean norms of columns of X. It defines a
norm on Mn(C) and ||Xc|| ≤ ||X||.

Theorem 4.5.3. Let A ∈Mn be any matrix. then,

||SA|| ≤ inf {||XC ||||YC || : A = X∗Y }.

Proof. Let A = X∗Y. Then,[
X∗X X∗Y

Y ∗X Y ∗Y

]
=

[
X∗ 0

Y ∗ 0

]
×

[
X Y

0 0

]

is positive. Let Z ∈Mn(C) such that ||Z|| ≤ 1. Then, by proposition (4.4.6)[
I Z

Z∗ I

]

is positive. Hence, Schur product of above two block matrices is positive that is[
(X∗X) ◦ I (X∗Y ) ◦ Z

(X∗Y ◦ Z)∗ Y ∗Y ◦ I

]

is positive . So, by proposition (4.4.7) , X∗Y ◦Z = (X∗X ◦ I)1/2K(Y ∗Y ◦ I)1/2 for some contraction
K. Thus,

||A ◦ Z|| ≤ ||X∗X ◦ I||1/2||Y ∗Y ◦ I||1/2 = ||X||c||Y ||c.

Therefore,
||SA|| ≤ inf {||XC ||||YC || : A = X∗Y.}
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Chapter 5

Positive Linear maps

5.1 Introduction

Chapter 5 deals with the concept of positive linear maps. First few sections include the definition of positive
linear maps, basic examples and properties. Kadison’s inequality, Choi’s inequality, Choi’s theorem
and The Russo-Dye theorem are the main results of this chapter.

5.2 Representation

Definition 5.2.1. A linear map Φ : Mn(C) → Mk(C) is called representation if it satisfy the following
properties:

1. preserves product that is Φ(AB) = Φ(A)Φ(B) for all A,B ∈Mn(C).

2. preserves adjoint that is Φ(A)∗ = Φ(A∗) for all A ∈Mn(C).

3. preserves the identity that is Φ(I) = (I).

5.2.1 Examples

1. Let U ∈Mn(C) be such that UU∗ = U∗U = I . Define a map

Φ : Mn(C)→Mn(C)

by
Φ(A) = U∗AU, for all A ∈Mn(C).

Then, Φ is a representation on Mn(C)

Definition 5.2.2. Let A ∈ B(H) then spectral radius of A denoted as r(A) is

r(A) = sup{|λ| : λ ∈ σ(A)}.

where σ(A) denotes the spectrum of A.
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Note 5.2.3. Let A ∈ B(H) be a self-adjoint operator. Then,

1. ||A|| = r(A).

2. ||A∗A|| = ||A||2.

3. r(Φ(A)) ≤ r(A) where Φ is a representation.

5.2.2 Properties

1. Every representation has norm 1.

Proof. Let Φ : Mn(C)→Mk(C) be a representation.
Then,

||Φ(A)||2 = ||Φ(A)∗Φ(A)||

= ||Φ(A∗A)

= rΦ(A∗A)

≤ r(A∗A)

= ||A∗A||

= ||A2||

Thus, ||Φ(A)|| ≤ ||A|| for all A. Since, Φ(I) = (I). It follows that , ||Φ|| = 1.

2. A representation carries orthogonal projection to orthogonal projection, unitaries to unitaries and it
preserves unitary conjugation.

5.3 Positive maps

Definition 5.3.1. A linear map Φ : Mn(C)→Mk(C) is called

1. positive if Φ(A) ≥ 0 for all A ≥ 0.

2. strictly positive if Φ(A) > 0 for all A > 0.

3. unital if Φ(I) = I.

Remark 5.3.2. A positive linear map is strictly positive if and only if Φ(I) > 0.

5.3.1 Examples

1. Every projection is positive.

Proof. Let P be a projection. Then, P = P ∗ = P 2. Then, for all x ∈ H we have,
〈Px, x〉 = 〈P 2x, x〉 = 〈Px, Px〉 = ||Px||2 ≥ 0.
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2. Let Φ : Mn(C)→ C defined by
Φ(A) = tr(A)

where tr(A) denotes the trace of the matrix A.

3. Every representation is positive.

Proof. Let Φ : Mn(C) → Mk(C) be a representation. Let A ∈ Mn(C) be positive. Then, A can
be written as A = B∗B for some B ∈Mn(C). Then,

Φ(A) = Φ(B∗B) = Φ(B∗)Φ(B) = Φ(B)∗Φ(B). (5.1)

Hence, by theorem (4.1.3), Φ(A) is positive.

4. Φ : Mn(C)→Mn(C) defined by
Φ(A) = Atr

where Atr denotes the transpose of A.

5. Let Φ : Mn(C)→ C defined by

Φ(A) =
∑
i,j

aij .

Proof. Let e = (1, 1, ...1) ∈ Cn Then, Φ(A) = 〈e,Ae〉. Since, A ≥ 0, we have, Φ(A) ≥ 0. Hence,
Φ is a positive linear functional.

6. Let X ∈Mn×k(C). Then, the map Φ : Mn(C)→ C defined by

Φ(A) = X∗AX, for all A ∈Mn(C)

is a positive linear map.

7. Let B ∈Mn(C) be a positive matrix. Then,the map defined by Φ : Mn(C)→Mn2(C) defined by

Φ(A) = A⊗B for all A ∈Mn(C)

is positive linear map. Hence,the map

Φ : Mn(C)→Mn(C)

defined by
Φ(A) = A ◦B

is positive.

8. we have proved that sum of two positive matrices is positive and space of positive matrices is closed
under multiplication by a positive scalar. Hence, any positive linear combination of positive matrices
is positive. Any convex combination of positive unital map is positive and unital.
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5.3.2 Properties

Theorem 5.3.3. Let Φ : Mn(C)→Mn(C) be a positive linear map. Then, Φ(A∗) = Φ(A)∗.

Theorem 5.3.4. (Kadison’s inequality:) Let φ : Mn(C) → Mn(C) be a positive and unital map. Then, for
every hermitian matrix A, we have,

Φ(A)2 ≤ (Φ(A2)).

Proof. By the Spectral theorem,we have

A =

n∑
j=1

λjPj and
n∑
j=1

Pj = I. (5.2)

where λj′s are eigenvalues of A and Pj′s are mutually orthogonal projections. Therefore, A2 =
n∑
j=1

λ2jPj . Hence,

Φ(A) =
∑
j

λjΦ(Pj), Φ(A2) =
∑
j

λ2jΦ(Pj) and
∑
j

Φ(Pj) = I.

Note that Φ(Pj) is positive. Consider,

[
Φ(A2) Φ(A)

Φ(A) I

]
=


∑
j

λ2jΦ(Pj)
∑
j

λjΦ(Pj)∑
j

λjΦ(Pj)
∑
j

Φ(Pj)



=
∑
j

 λ2jΦ(Pj) λjΦ(Pj)

λjΦ(Pj)
∑
j

Φ(Pj)



=
∑
j

[
λ2j λj

λj 1

]
⊗
(

Φ(Pj)
)
.

which is positive. Now, proof follows directly from proposition (4.4.8 ) by takingX = Φ(A). Hence,

Φ(A)2 ≤ Φ(A2).

Theorem 5.3.5. Let Φ : Mn(C) → Mn(C) be positive and unital linear map. Then, for every normal
matrix A. we have,

Φ(A)Φ(A∗) ≤ Φ(A∗A) and Φ(A∗)Φ(A) ≤ Φ(A∗A).

Proof. The proof follows in the similar lines of the proof of previous theorem. From equation 5.2,
we have ,

A∗ =

n∑
j=1

λ̄jPj
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and

A∗A =

n∑
j=1

λ2jPj ,
∑

Pj = I.

Consider,

[
Φ(A2) Φ(A)

Φ(A) I

]
=

n∑
j=1

[
|λj |2 λj

λj 1

]
⊗
(

Φ(Pj)
)
.

The above matrix is positive and rest of the proof directly follows by taking X = Φ(A) in
theorem (4.4.8). Hence, Φ(A)Φ(A∗) ≤ Φ(A∗A).

Remark 5.3.6. 1. A positive linear map carries hermitian matrices to hermitian matrices and unitaries
to contractions.

2. If A is normal, then Φ(A) need not be normal.

Example 5.3.7. Let Φ : M2(C)→M2(C) be defined by

Φ

[
a b

c d

]
=

[
d b

c a

]

where a, b, c, d ∈ C.
Clearly, Φ is positive. Let

A =

[
0 1

i 0

]

Here, A is normal. But Φ(A) is not normal.

Theorem 5.3.8. Let Φ be strictly positive and unital. Then, for every strictly positive matrix A, we have

Φ(A)−1 ≤ φ(A−1).

Proof. Proof follows by theorem (5.3.4).

Theorem 5.3.9. (The Russo- Dye Theorem:) If Φ is positive and unital,then ||Φ|| = 1.

Corollary 5.3.3. Let Φ be a positive linear map.Then, ||Φ|| = ||Φ(I)||.

In the next section, we ask three questions regarding positive linear maps. They are:

1. corollary (5.3.3) of The Russo-Dye theorem says that every positive linear map attains its norm at iden-
tity. Is the converse true, that is if a Linear map attains its norm at identity, then must it be positive?
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2. We restrict the linear map on a subspace of Mn(C). Then, do we still have the theorem like Russo-Dye
theorem?

3. By Hahn- Banach theorem, we can say that every linear functional on a linear subspace of Mn(C)

can be extended to a linear functional on Mn(C). So, we may ask the similar question that whether
a positive linear functional on an operator system S of Mn(C) can be extended to a positive linear
functional on Mn(C) ?

In answer to question 1, we present some examples of linear maps which attain their norm at identity but
they are not positive. We present a result which says that the converse of The Russo-Dye theorem is true
for every linear functional.

Definition 5.3.10. A linear subspace S of Mn(C) is called an operator system if it is closed under the
operation ∗ and it contains identity I.

Example 5.3.11. 1. The space of all symmetric matrices

2. space of all skew-symmetric matrices and

3. space of all diagonal matrices are operator system of Mn(C).

Note 5.3.12. 1. Let T : H → H be a linear operator. Then T can be written as T = A + iB where A
and B are self adjoint operators. This is called the cartesian decomposition of T .

2. Every hermitian matrix A on an operator system can be written as difference of two positive definite
matrices.

Lemma 5.3.13. Let S be an operator system of Mn(C) and

Φ : S →Mk(C)

be a positive linear map. Then, Φ(A∗) = (Φ(A))∗.

Theorem 5.3.14. Let Φ : S →Mk(C) be a positive linear map. Then,

1. ||Φ(A)|| ≤ ||Φ(I)||.||A|| for all A ∈ Ss.a where Ss.a is the space of all self-adjoint operators on S.

2. ||φ(T )|| ≤ 2||Φ(I)||||T || for all T ∈ S.

Moreover, If Φ is unital then,

||Φ(A)|| ≤ ||A|| for all A ∈ Ss.a. and ||φ(T )|| ≤ 2||T || for all T ∈ S.

Proof. Note that if P ∈ S be positive. Then, 0 ≤ P ≤ ||P ||I that is ||P ||I − P ≥ 0.

Let A be a hermitian matrix. Then, A = P+ − P− where P+ and P− ≥ 0.

Since, ||A|| ≤ max{||P+||, ||P−||}, we have,

||Φ(A)|| ≤ max{||Φ(P+)||, ||Φ(P−)||}

= max{||P+||, ||P−||}||Φ(I)||.
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Second part can be proved by using the Cartesian decomposition of A and then part(I).

Theorem 5.3.15. Let φ be a positive linear functional on operator system S. Then, ||φ|| = ||φ(I)||.

Theorem 5.3.16. Let φ be a linear functional on operator system S such that ||φ|| = φ(I). Then, φ is
positive.

Theorem 5.3.17. (The Krein extension Theorem:) Let S be an operator system in Mn(C). Then, every
positive linear functional on S can be extended to a positive linear functional on Mn(C).

Theorem 5.3.18. Let Φ : S →Mk(C) be a unital linear map such that ||Φ|| = 1. Then, Φ is positive.
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Chapter 6

Completely Positive maps

6.1 Introduction

Chapter 6 deals with the study of completely positive maps which are particular class of positive linear maps.
We start with the definition and examples of completely positive maps. Choi’s Theorem the Stinespring
dilation theorem are the main results of this thesis. They give a characterization of all completely positive
maps in various settings.

Definition 6.1.1. Let Mm(Mn) be the space of all m × m block matrices [[Aij ]] whose (i, j) entry is an
element of Mn(C). Every linear map Φ : Mn(C) → Mk(C) includes a linear map Φm : Mm(Mn(C)) →
Mm(Mk(C)) defined as

Φm[[Aij ]] = [[Φ(Aij)]] , [[Aij ]] ∈Mm(Mn(C)).

we say that the map Φ is

1. m-positive if Φm is positive.

2. completely positive if Φm is positive for all m ∈ N.

Example 6.1.2. 1. Every representation is completely positive.

Proof. Let Φ : Mn(C)→Mk(C) be a representation. Consider, Φm : Mm(Mn(C))→Mm(Mk(C))

defined as
Φm[[Aij ]] = [[Φ(Aij)]].

We will prove that Φm is positive. Since,Φm is unital and has norm 1. Hence, Φm is positive.
Therefore, Φ is completely positive.
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2. Let V ∈ Cn×k and Φ : Mn(C)→Mk(C) be defined by

Φ(A) = V ∗AV ,A ∈Mn(C).

Then, Φ is completely positive.

Proof. We will prove that Φm : Mm(Mn(C))→Mm(Mk(C)) defined by

Φm[[Aij ]] = [[Φ(Aij)]] = [[V ∗AijV ]] ≥ 0.

It is enough to prove that

〈[[Φ(Aij)]]xj , xi〉 ≥ 0 for all xi ∈ Ck.

Consider,

〈[[Φ(Aij)]]xj , xi〉 = 〈[[V ∗(Aij)V ]]xj , xi〉

= 〈Aij(V (xj), (V (xi))〉 ≥ 0.

Theorem 6.1.3. Let Φ : Mn(C)→Mm(C) be a linear map. Then, Φ is completely positive if and only if Φ

is of the form Φ(A) =
∑
i

V ∗i AVi for all A ∈Mn(C) and Vi ∈Mn×m(C).

In next section, we will consider linear maps whose domain is the linear subspace S of Mn(C) and whose
range is Mk(C). we will give a bijective correspondence between L(Mk(S),C) and L(S,Mk(C)). We will
establish this correspondence now.

Let Φ : S →Mk(C) is given. Then, define φ : Mk(S)→ C by

φ[[Sij ]] =
1

k

k∑
i,j=1

[Φ(Sij)]i,j , Sij ∈ S. (6.1)

where [A]i,j denotes the (i, j)th entry of the matrix A.

Conversely, Let φ : Mk(S)→ C be given. Then, define Φ : S →Mk(C) by

[Φ(A)]i,j = kφ(Eij ⊗A) (6.2)

where Eij , 1 ≤ i, j ≤ k are unit matrices in Mk(C).

Theorem 6.1.4. Let S be an operator system in Mn(C) and Φ : S → Mk(C) be a linear map. Then,the
following conditions are equivalent:

1. Φ is completely positive.

2. Φ is k-positive.

3. the functional φ defined in (6.1) is positive.
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Proof. (1.)⇒ (2.) is clear. Since, a completely positive map is m-positive for all m ∈ N.
(2.)⇒ (3.) Let {ej : 1 ≤ j ≤ k} be a basis for Ck. Consider a vector x = e1 ⊕ e2 ⊕ ...ek ∈ Ck2 . Then,

φ[[Sij ]] =
1

k

k∑
i,j=1

[Φ(Sij)]i,j (6.3)

=
1

k

k∑
i,j=1

〈ei, [[Φ(Sij)]]ej〉 (6.4)

=
1

k
〈x, [[Φ(Sij)]]x〉 (6.5)

we will prove that φ : Mk(S) → C is positive. Let (Sij) be a positive element of Mk(S) where
(Sij) ∈Mn(C) ∀ 1 ≤ i, j ≤ k. Then, It is clear from equation (6.3) that φ is positive.

(3.) ⇒ (1.) Assume that the functional φ is positive. We will prove that the linear map Φ is
completely positive. Since S is an operator system of Mn(C). So, Mk(S) is an operator system
of Mk(MnC). Since φ : Mk(S) → C be a linear functional. By The Krein Extension Theorem, φ
can be extended to the entire space Mk(Mn(C). Let φ̃ : Mk(Mn(C)) → (C) be the extended linear
functional. Then, there exists a linear map Φ̃ : Mn(C) → Mk(C). Clearly, Φ̃ is an extension of Φ. It
is enough to prove that Φ̃ is completely positive. Let m be a positive integer. Consider,

Φ̃m : Mm(Mn(C))→Mm(Mk(C))

. We will prove that Φ̃m is positive. Every positive element of Mm(Mn(C)) can be written as
sum of matrices [[A∗iAj ]] where Aj , 1 ≤ j ≤ m are elements of Mn(C). It is enough to prove that
[[Φ̃(A∗iAj)]] ∈Mmk(C) is positive. Let x ∈ Cmk.. Then, x can be written as x = x1⊕x2⊕ ...xm, xj ∈

Ck and xj =
k∑
p=1

ψjpep. Consider,

〈x, [[Φ̃(A∗iAj)]]x〉 =

m∑
i,j=1

(6.6)

= 〈xi, Φ̃(A∗iAj)xj〉 (6.7)

=

m∑
i,j=1

k∑
p,q=1

ψ̄ipψjqkφ̃(Epq ⊗A∗iAj) (By Equation (6.2).) (6.8)

For 1 ≤ i ≤ m, let Xi ∈Mk(C) such that


ψi1 ψi2 . . . ψik

0 0 . . . 0
...

...
...

0 0 . . . 0
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Then

[X∗i Xj ]pq = ψ̄ipψjq (6.9)

=

k∑
p,q=1

ψ̄ipψjqEpq. (6.10)

So, equation (6.6) can be written as

〈x, [[Φ̃(A∗iAj)]]x〉 = k

m∑
i,j=1

Φ̃(X∗i Xj ⊗A∗iAj)

= kΦ̃

(( m∑
i=1

Xi ⊗Ai
)∗(( m∑

i=1

Xi ⊗Ai
)

) ≥ 0. Since φ̃ is positive.

Hence, Φ is positive.

6.2 Banach algebra

Definition 6.2.1. Let A be a nonempty set then A is called an algebra if

1. (A,+, .) is a vector space over F.

2. (A,+, ◦) is a ring.

3. (αa) ◦ b = α(a ◦ b) = a ◦ (αb). for all α ∈ F and a, b ∈ A

Definition 6.2.2. An algebra A is said to be:

1. real or complex according to the field F = R or F = C respectively.

2. Commutative if (A,+, ◦) is commutative.

3. unital if (A,+, ◦) has a unit.

Definition 6.2.3. If A is an algebra and ||.|| is a norm on A satisfying ||ab|| ≤ ||a||.||b|| for all a, b ∈ A.
Then, (A, ||.||) is called a normed algebra. A complete normed algebra is called Banach algebra.

Definition 6.2.4. LetA be a complex algebra. A map a 7→ a∗ is called an involution map onA if it satisfies:

1. (a∗)∗ = a.

2. (ab)∗ = b∗a∗.

3. (αa+ βb)∗ = ᾱa+ β̄b ∀a, b ∈ A and α, β ∈ C.

Definition 6.2.5. A C∗− algebra is a Banach algebra with an involution map ∗ satisfying ||a∗a|| = ||a||2

for all a ∈ A.

Definition 6.2.6. LetA be an algebra and B ⊆ A then B is called a sub-algebra ofA if B itself is an algebra
with respect to operations of A.

52



Example 6.2.7. 1. LetA = C. Then, with respect to usual addition and multiplication and the modulus
A is a commutative, unital Banach algebra.

2. Let K be a compact hausdroff space and A = C(K) then with respect to point wise multiplication of
functions, A is a commutative, unital algebra and with the norm ||f ||∞ = Supt∈K |f(t)| is a Banach
algebra and with the involution map f∗(x) = ¯f(x), it is a C∗− algebra.

3. LetH be a Hilbert space then B(H) is a C∗− algebra with its usual operator norm and involution map
is T 7→ T ∗.

The Gelfand Naimark Theorem 6.2.8. For every C∗− algebraA there exists a Hilbert spaceH such that
A is C∗− isomorphic to a C∗− subalgebra of B(H).

Stinespring Dilation theorem 6.2.9. Let A be a C∗− algebra with a unit and H be a Hilbert space. Let
Φ : A → B(H) be a linear function.Then, a necessary and sufficient condition that Φ have the form

Φ(A) = V ∗π(A)V for all A ∈ A.

where V : H → K be a bounded operator and π : A → B(K) is a ∗- representation, is that Φ be completely
positive.

Before discussing the proof of above theorem, we will recall some results that are needed to understand
the proof completely.

Lemma 6.2.10.

(Cauchy Schwartz inequality:) Let K be a sub field of C and V be a semi inner product space over K.Then,

|〈x, y〉|2 ≤ 〈x, x〉.〈y, y〉 for all x, y ∈ V.

Lemma 6.2.11. Let A be a C∗-algebra. Then, a∗b∗ba ≤ ||b||2a∗a for all a, b, c ∈ A.

Proof. It is enough to show that

a∗||b||2a− a∗b∗ba = a∗(||b||2 − b∗b)a ≥ 0.

We will use Gelfand Naimark Theorem, If A is a unital C∗ -algebra. Then, A is isometrically ∗−
isomorphic to a concrete C∗− algebra, that is A can be embedded in B(H) for some Hilbert space
H.
We know that if T ∈ B(H). Then, T ∗T ≤ ||T ||2I.
Now, theorem follows directly from above result.

Now, we are all set to give a proof of Stinespring Dilation theorem.

Proof. Suppose that φ is a completely positive map. We need to show the existence of a Hilbert
space K, a unital ∗− isomorphism π : A → B(K) and a linear operator V : H → K such that

Φ(A) = V ∗π(A)V for all A ∈ A.

53



Consider the vector space A ⊗ H, the algebraic tensor product of A and H. For, ξ =
∑
i

ai ⊗ xi

and η =
∑
i

bi ⊗ yi in A⊗H define a sesquilinear map [., .] on A⊗H by

[ξ, η] =
∑
i

〈Φ(b∗i ai)xi, yi〉 (6.11)

Since, Φ is assumed to be completely positive. It follows that

〈ξ, ξ〉 =
∑
i,j

〈Φ(A∗jAi)xi, xj〉 ≥ 0.

Hence, [.,.] is positive semi definite and positive semi definite form satisfy the Cauchy schwarz
inequality. Define,

N := {u ∈ A⊗H : [u, u] = 0}.

By the Cauchy-schwarz inequality, we can show that

N = {u ∈ A⊗H : [u, v] = 0 for all v ∈ A⊗H}.

N is a subspace of semi inner product space A⊗H. Define a map on quotient space A⊗H/N
by 〈u+N , v +N〉 = [u, v].

Then, [.,.] is an inner product on quotient space A⊗H/N . Let K be the completion of this space to
Hilbert space. For any element a in A, define

π(a) : A⊗H → A⊗H

by

π(a)

( l∑
i=1

ai ⊗ xi
)

=

l∑
i=1

(aai)⊗ xi.

Clearly, π is linear and it satisfies the following inequality,

[π(a)u, π(a)u] ≤ ||a||2[u, u]. (6.12)

Observe that,π(a)

(∑
j

aj ⊗ xj
)
, π(a)

(∑
i

ai ⊗ xi

) =
∑
i,j

〈Φ(a∗i a
∗aaj)xj , xi〉

≤ ||a||2
∑
i,j

〈Φ(a∗i aj)xj , xi〉

≤ ||a||2
(∑

j

Aj ⊗ xj
)
,

(∑
i

ai ⊗ xi

) .
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It follows from inequality (6.12) that null space of Π(a) contains N . Hence, Π(a) can be viewed as
a linear operator on A⊗H/N , and we denote it by π(a) again.
Inequality (6.12) shows that Π(a) is a bounded linear operator onK. Therefore, it extends a bounded
linear operator on K. We will denote it by π(a).

Define a map, π : A → B(K) by

a 7→ π(a), for all a ∈ A.

Then, π is a unital ∗− homomorphism.
Define, V : H → K by V (x) = 1⊗ x+N .

Clearly, V is linear. we have , for all x ∈ H,

||V x||2 = 〈1⊗ x+N , 1⊗ x+N〉

= [1⊗ x, 1⊗ x]

= 〈Φ(1)x, x〉

= 〈Φ(1)1/2x,Φ(1)1/2x〉

= ||Φ(1)1/2x||2.

Hence, ||V ||2 = ||Φ(1)1/2||2 = ||Φ(1)||. We need to show that V ∗π(a)V = Φ(a).

For all x, y ∈ H, we have

〈V ∗π(a)V x, y〉H = 〈π(a)1⊗ x, 1⊗ y〉K
= 〈π(a)x, y〉H for all x, y ∈ H.

Hence, V ∗π(A)V = Φ(A.)

Conversely, assume that Φ(A) = V ∗π(A)V. We will prove that Φ is completely positive.
It is enough to prove that,

∑
i,j

〈Φn[[(Aij)]]xi, xj〉 =
∑
i,j

〈[[Φ(Aij)]]xi, xj〉

=
∑
i,j

〈V ∗π(Aij)V xi, xj〉

=
∑
i,j

〈π(Aij)(V xi), (V xj)〉 ≥ 0 for allxi ∈ H.

Since π is a ∗− and every representation is completely positive. Hence, above assertion follows
directly.
Therefore, Φ is completely positive.
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