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0.1 Curse of dimensionality

Nowadays data are getting more and more complex adding more features or dimension to
the data. Evolution of new data types such as images, videos and audio force us to work with
data in high dimension, thus leading us to deal with the so called Curse of Dimensionality,
a term that has come to refer to the unnatural things happening in high dimension.

Breaking the term Curse of Dimensionality into two components, Dimensionality refers
to the dimension of the data set and curse refers to the difficulty that arises when dimension
increases. It is used to refer to the counter-intuitive challenges faced in high dimension.
Working with data become more difficult with increasing dimensions, since we are not able
to visualize the high dimensional data points as we no longer have the aid of paper and
pencil. This lack of visualisability is only one aspect of the CoD.

There are many aspects of CoD and their effects are still not well explored and huge
amount of research is still going on. Some of the well-known aspects of CoD are

(i) Combinatorial explosion in Search Space, where the search space grows exponentially
due to the increase in the number of variables,

(ii) Need for greed - which refers to the need for atleast a sub-exponential growth in the
number of data points as dimension increases for many of the data analysis algorithms
to be consistent, see for instance, [Pestov(2013)], for more details,

(iii) Relationship Among Dimensions, which refer to the intrinsic and embedding dimen-
sionalities of the data and their influence on the algorithms,

(iv) Relevance of Dimensions, which again refers to the presence of irrelevant features that
interfere with the performance of similarity queries.

(v) Hubness Phenomenon [Radovanovic et al.(2010)Radovanovic, Nanopoulos, and Ivanovic],
which refers to the formation of hubs i.e. points which more popular as nearest neigh-
bors than other data points.

One major aspect of Curse of Dimensionality that has recently come to the fore is the
Concentration of Norms phenomenon, which will form the main focus of this Master’s thesis.
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0.2 Concentration of Norm(CoN): An Introduction

0.2.1 What is CoN?

Concentration of Norms(CoN) refers to the inability of distances in high dimensions to dis-
tinguish points well. To measure the closeness between any two objects/points we need
some distance function, but as the dimension increases all the points appear to be approx-
imately at the same distance, hence the distance function loses its discriminative power.
This phenomenon is called Concentration of distances.

Let X = {x̄1, x̄2, ..., x̄n} ⊂ Rm be a set of n data points from the m-dimensional Eu-
clidean space. Let q̄ ∈ Rm be a query point and consider a distance function ρ to calculate
the distances between points in X - for instance, ρ could be the Euclidean distance. Let x̄−

and x̄+ be the nearest and farthest point to q̄, i.e.,

x̄− = arg min
x̄i∈X

ρ(x̄i, q̄) ,

x̄+ = arg max
x̄i∈X

ρ(x̄i, q̄) .

As a consequence of concentration of distances, as the dimension m → ∞, one finds
that ρ(q̄, x−) ≈ ρ(q̄, x+), which means that the distance of a query to the farthest point
approaches the distance of the query to its nearest point.

Since ρ(q̄, x̄−) ≤ ρ(q̄, x̄i) ≤ ρ(q̄, x̄+) for 1 ≤ i ≤ n, all distances to q̄ are concentrating
and confined to a small domain. In other words, we can say that all the points in X are
almost at the same distance to q̄. Thus the distances become less precise as the dimension
grows because the distance between any two points converges.

0.2.2 An Empiricial Illustration

Since CoN is a counter-intuitive phenomenon, to have a practical insight into CoN, we
will explain some results and graphically show the CoN effect for the Euclidean distance
function. The following experiment will help in understanding the CoN phenomenon in high
dimension.

What we want to do? On an average, we want to compare the Nearest Neighbour(NN) dis-
tance of a query point with the average of other pairwise distances.

How do we do it? Let us generate N data points say X = {x̄1, x̄2, ..., x̄N} uniformly from
an m-dimensional bounded domain, say X ( [−1, 1]m. Now we calculate four parameters
denoted as follows:

• αi denotes the Nearest Neighbor (NN) distance of xi for each i = 1 to N .

• Ymax = max{αi : 1 ≤ i ≤ N}, denotes the maximum of the NN distances.

• Ymin = min{αi : 1 ≤ i ≤ N}, denotes the minimum of the NN distances.

• Yavg =
1

N

∑
1≤i≤N

αi, denotes the average of the NN distances.

• YX =
2

N(N − 1)

∑
1≤i<j≤N

ρ(x̄i, x̄j), denotes the average of all pairwise distances in X.

Let us now consider the following indices, which are denoted and defined as follows:

4



(a) The indices kM (−−), km(−), kA(− · −) for the Euclidean norm in dimensions m =
1, . . . , 10

(b) The indices kM (−−), km(−), kA(− · −) for the Euclidean norm in dimensions m =
10, . . . , 100

Figure 1: Concentration phenomenon exhibited by Euclidean norm when moving from low
to high dimensions

• kM =
Ymax

YX
denotes the normalised maximum NN distance w.r.to the average of all

pairwise distances.

• km =
Ymin

YX
denotes the normalised minimum NN distance w.r.to the average of all

pairwise distances.

• kA =
Yavg

YX
denotes the normalised average NN distance w.r.to the average of all pair-

wise distances.
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Figure 2: Concentration phenomenon clearly exhibited by Euclidean norm in high dimen-
sions, where m = 100, . . . , 1000

In Figures 1 and 2 we plot the above three indices for N = 1000 data points generated for
varying dimensions, m = 1, . . . , 1000. The plots allow us to make the following observations:

• In low dimensions, we see that km � 1 and there is enough separation between km
and kM , i.e., we can say that enough contrast is present between the points and hence
points are well separated (see Fig. 1(a)).

• In medium dimensions, i.e. up to 100 dimensions, 0 � km < kA < kM , which means
that the minimum NN distances are beginning to increase and one can already see the
presence of the CoN phenomenon (see Fig. 1(b)).

• However, as dimension increases, km → 1, kM ∼ kA and km ∼ kA, i.e., average
maximum NN distances and average minimum NN distances both converge to the
average NN distances. There is not much dispersion or contrast present between the
distances, i.e., all the distances are concentrating around the average of the distances.
Hence all points become almost equidistant to each other (see Fig. 2).

0.2.3 Why is CoN important?

In this section let us look into some applications where CoN plays an affecting role. It turns
out that in many applications, the distance functions which are useful in low dimensions
are no longer relevant in high dimensions. There are many domains where data are high
dimensional and CoN poses a serious threat to their applicability to real life.

CoN and Similarity Searches

One of the main areas affected by the CoN phenomenon is the searching algorithms in
computer science. The goal in these type of applications is either

• to find objects whose features are similar to the query object, or
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• to find objects whose feature values lie in a particular range of values nearer that of
the query object.

The basic aim of search is to find an object or a set of objects similar to the given query
object. Searching is the most fundamental task used in every stream.

For instance, in face recognition, one needs to search for a picture that is similar to the
given query face in a database of images. A picture is made up of thousand of pixels and
hence is a high dimensional object.

Similarity searching methods, typically employ some kind of a distance function to mea-
sure the closeness between two objects. However, as shown above, due to the high dimen-
sionality of the data, all pairwise distances can converge and hence our search might return
a lot of candidates similar to our query object. This clearly puts a question mark on the
usefulness of distance functions in high dimensions.

Is NN query meaningful?

Clearly, CoN has a serious effect on similarity searching in high dimensions. Consider yet
another appliication domain that Graphical Information Systems (GIS ), where we need
to find the nearest city closest to one’s location. It is same the as asking for the nearest
neighbor to a query.

Nearest neighbor searching can already be quite computationally inefficient in high di-
mensions. However, it is made even more difficult by CoN. In fact, CoN raises the issue of
whether or not the nearest neighbor is meaningful in high dimension!!
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0.3 Studies on the CoN Phenomenon

Effective solution to a problem requires a deep and thorough understanding of the problem.
The research studies done on CoN, so far, can be broadly classified into the following three
types:

(i) Studies that have theoretically proven the existence of CoN,

(ii) Studies that have proposed indices or functions to illustrate or measure the CoN in
specific settings,

(iii) Studies that attempt to proposing new distance functions to defeat / mitigate the
CoN phenomenon.

0.3.1 Fixing the notation

Before, we begin to review the current literature on CoN, we first establish certain notations
and definitions which will be required in the sequel.

• The triple (Ω, ρ, µ) will denote a measurable metric space, where Ω is the domain, ρ
is the metric on Ω and µ is a probability measure Ω.

• Further, with the measure µ, we associate a distribution R which will be used to
obtain a finite sample of n-points X = {x1, x2, . . . , xn} ⊂ Ω. We will then write both
X ∼ R and x ∼ R, interchangeably, to denote that the data set X ⊂ Ω has been
generated using the distribution R. Often the quadruple (Ω, X, ρ, µ) is termed as a
Similarity Workload.

• Let I ⊂ N be a, possibly countably infinite, index set. If {(Ωi, ρi, µi)} is a sequence
of measurable metric spaces for i ∈ I, then for a finite fixed m ∈ N, one can obtain
an m-dimensional measurable metric space (Ωm, ρm, µm) as follows:

Ωm = Ω1×Ω2× . . .×Ωm, the Cartesian product of the domains Ωi, ρ
m and µm

are the product metric and product measure on Ωm.

• Similarly, if Ri are the distributions associated with µi for i ∈ I, then Xi ∼ Ri and
Xi = {xi1, xi2, . . . , xin}.

• Further, one can obtain the m-dimensional data set Xm = {x̄m1 , x̄m2 , . . . , x̄mn }, where
each x̄mj , j = 1, 2, . . . , n is an m-dimensional vector such that x̄mj = (x1j, x2j, . . . , xmj).
Thus we would also write Xm ∼ Rm or x̄m ∼ Rm.

For example, let m = 3 and Ω3 = Ω1×Ω2×Ω3 such that Ω1 = [0, 1],Ω2 = [−1, 1],Ω3 =
R. Similarly X3 = {x̄3

1, x̄
3
2, . . . , x̄

3
10}, is a finite sample of n = 10 points, where x̄3

i =
(x̄i1, x̄i2, x̄i3), and the first component x̄i1 of each of the points is distributed as x̄i1 ∼
U [0, 1], and similarly, x̄i2 ∼ U [−1, 1], x̄i3 ∼ N (0, 1) for every i = 1, . . . , n.

• When no confusion is possible, and when the context makes it clear, we use the simpler
notation Ω instead of the cumbersome Ωm to still denote the domain of dimension m.
Accordingly, ρ, µ are the metric and measure on the corresponding spaces. In fact, we
will employ the vector representation for the elements of Ω, since from now on we will
implicitly assume that Ω is a multi-dimensional space as explained above.

• We assume that there always exist a 0̄ ∈ Ω designated as the origin of the domain Ω.
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• By ‖ · ‖ we denote a real valued function on Ω, i.e, ‖ · ‖ : Ω → R, which is taken to
measure the distance of an x̄ ∈ Ω to the origin 0̄ ∈ Ω, i.e., ‖x̄‖ = ρ(x̄, 0̄).

• The parameter 0 < p <∞ is an arbitrary constant and plays the role of an exponent
in the considered distance functions.

• By Dm
max we denote the maximum of the norms in a given data set Xm, i.e., the

distance of the farthest point in Xm to the origin w.r.to the metric ρ.

Dm
max = max{‖x̄mi ‖ = ρ(x̄mi , 0̄) : 1 ≤ i ≤ n, x̄mi ∈ Xm} .

• Similarly, by Dm
min we denote the minimum of the norms in a given data set Xm, i.e.,

the distance of the farthest point in Xm to the origin w.r.to the metric ρ.

Dm
min = min{‖x̄mi ‖ = ρ(x̄mi , 0̄) : 1 ≤ i ≤ n, x̄mi ∈ Xm} .

• E[Z] and var[Z] will denote the expectation and variance of a random variable Z.

Definition 0.3.1 (Convergence in Probability). A sequence of random variables {An} con-
verges in probability to random variable A, if for all ε > 0,

lim
n→∞

P [|An − A| ≤ ε] = 1 .

It is denoted as An
P→ A.

0.3.2 Existence of CoN: Theoretical Analysis

Distance functions are known to be sensitive to the dimension of data and hence reduces
the efficiency of the search. While searching for the nearest neighbour the obvious approach
is to search the database and compute the distance of every data to our query data and
then to compare the distances. Not only is this naive approach computationally expensive
with very large databases, the CoN phenomenon now adds another level of discomfort, since
almost all points become equidistant to the query point, i.e., almost all points appear to be
the nearest neighbours to the query data, thus questioning the very existence of meaningful
nearest neighbours in high dimension.

Beyer et. al. were the first to point out that nearest neighbor searching may not always
be meaningful when the ratio of the variance of the distance between any two random
points, drawn from the data and query distributions, and the expected distance between
them converges to zero as dimension goes to infinity by proving the following result.

Theorem 0.3.2 (Beyer et. al., [Beyer et al.(1999)Beyer, Goldstein, Ramakrishnan, and Shaft]).
Let (Ωm, ρm, µm) be an m-dimensional measurable metric space, let Xm = {x̄m1 , x̄m2 , . . . , x̄mn }
be a finite sample of n points such that x̄m ∼ Rm and Dm

max, D
m
min are as explained above.

Further, let E[||x̄m||p] and var[||x̄m)||p] be finite and E[||x̄m||p] 6= 0. If

lim
m→∞

var

(
‖x̄m‖p

E‖x̄m‖p

)
= 0 , (1)

then for all ε > 0,

lim
m→∞

P [Dm
max ≤ (1 + ε)Dm

min] = 1 . (2)
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Thus, this result shows that under some pre-conditions on the data distribution and
distance function the difference between the maximum and minimum distances become
very small compared to the minimum distance in high dimension. This means all points
are almost equidistant to the query point. Thus all the dimensionality issues can be traced
back to the lack of contrast between the points.

Theorem 0.3.2 clearly discusses only a sufficient condition for concentration, i.e., the
distance to the nearest neighbor and the distance to the farthest neighbor tend to converge,
in a probabilistic sense, as the dimension m increases. In other words, we get a poor contrast
if the spread between the points tends towards 0. However, the question of whether this
condition is also necessary was not known. Almost after a decade after the work of Beyer
et al., the converse of Theorem 0.3.2 was proved by Durrant and Kabán in 2009.

Theorem 0.3.3 ( Durrant and Kabán, [Durrant and Kabán(2009)]). Let (Ωm, ρm, µm)
be an m-dimensional measurable metric space, let Xm = {x̄m1 , x̄m2 , . . . , x̄mn } be a finite sample
of n points such that x̄m ∼ Rm and Dm

max, D
m
min are as explained above. Let the number of

points n be large enough such that

E[||x̄m||p] ∈ [(Dm
min)p, (Dm

max)p ] .

If for any ε > 0,
lim
m→∞

P [Dm
max ≤ (1 + ε)Dm

min] = 1 ,

then

lim
m→∞

var

(
‖x̄m‖p

E‖x̄m‖p

)
= 0 .

This result, in a sense, tries to answer the question when is nearest neighbour meaningful
in high dimensions.
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0.4 Study of Concentration of Minkowski-type Norms

: Some Indices

Theorem 0.3.2 and Theorem 0.3.3 provided a necessary and sufficient condition on a general
distance function to suffer from concentration in high dimensions. Thus, subsequently,
researchers began investigating some indices, which were derived out of these results, for
different types of distance functions. The most common among them being the classical
Euclidean metric and its generalisations.

0.4.1 Minkowski Norms (Lp norms) :

Minkowski Norms are the family of p-norms parametrized by exponent p ∈ (0,∞) which
are defined as follows, for an x̄ = (x1, . . . , xm) ∈ Rm:

‖x̄‖p =
(∑

|xi|p
) 1
p

.

• For p = 1, it is called the Manhattan norm and is denoted as L1 norm.

• For p = 2, it corresponds to the Euclidean norm and is denoted as L2 norm.

• In the limiting case, as p → ∞, it becomes the L∞-norm or the sup-norm or the
Chebyshev metric.

• For 0 < p < 1 , triangle inequality does not hold for Lp. Hence they are not norms
but are called prenorms. An Lp-norm, with 0 < p < 1, is called a Fractional norm
and is denoted by Fp.

0.4.2 Some Indices to Illustrate the CoN phenomenon: An Em-
pirical Measure

Theorem 0.3.2 led to researchers proposing two indices to illustrate the presence of concen-
tration. The first of them is given in the following definition.

Definition 0.4.1. Let us consider a similarity workload, (Ω, X, ρ, µ). The Relative Contrast
with exponent p is defined as

ξmp =
Dm

max −Dm
min

Dm
min

,

where Dm
max and Dm

min are as defined earlier.

While Beyer et al. studied the CoN phenomenon for arbitrary norms, the first result for
concentration of norms was studied for the Euclidean norms by Demartines in his doctoral
thesis, who presented the following imporant theorem.

Theorem 0.4.2 ( Demartines, 1994, [Demartines(1994)]). let X ( Rm be an m-dimensional
data set, where each dimension is distributed in an i.i.d. fashion, i.e., each Xi ∼ R and ρ
is the Euclidean L2 norm. Then,

E(ρ(x̄, 0̄)) = E (‖x̄‖) =
√
am− b+O

(
1

m

)
,

V ar(ρ(x̄, 0̄)) = V ar (‖x̄‖) = b+O

(
1√
m

)
,

where a and b are some constants independent of the dimension m.
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This theorem shows that expectation of the distances to the origin increases as dimension
increases, but the variance remains a constant. Thus, when the dimension is very large, the
variance will still be small as compared to the expected distance, hence the points will be
closely packed.

The above can be seen from Fig. 3, where we plot the relative contrast ξm2 for the
Euclidean distance metric L2. It is clear that no matter what distribution data follow,
either uniform (as in Fig. 3(a)) or Gaussian (as in Fig. 3(b)), the Euclidean distances
quickly concentrate in high dimensions.

(a) Relative contrast for the Euclidean norm for data obtained from Uniform distri-
bution

(b) Relative contrast for the Euclidean norm for data obtained from Gaussian distri-
bution

Figure 3: Relative contrast for the Euclidean norm where data are generated from Uniform
and Gaussian distributions, respectively, showing the degrading separation between points
with increase in dimensions.
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The result of Demartines was generalised to any Lp norm by Hinneburg et al..

Theorem 0.4.3 ( Hinneburg et. al., [Hinneburg et al.(2000)Hinneburg, Aggarwal, and Keim]
). Let X = {x̄m1 , x̄m2 , ..., x̄mn } be n m-dimensional i.i.d. random vectors, ρ be any of the
Minkowski norms Lp with exponent p. Then there exists a constant Cp, independent of the
underlying distribution R of x̄mi , such that

Cp ≤ lim
m→∞

E

(
Dm

max −Dm
min

m
1
p
− 1

2

)
≤ (n− 1)Cp . (3)

Theorem 0.4.3 says that the ratio of contrast to m
1
p
− 1

2 is bounded by Cp that depends
on the exponent p. Based on (3) Hinneburg et al. have made the following observations on
the exponent p:

• For Lp norm (p ≥ 3), the relative contrast rapidly goes to 0 as m increases. It
means that the distance function has lost its discriminative power for p ≥ 3 in high
dimensions.

• For the Euclidean L2 norm (p = 2), contrast remains constant.

• For the Manhattan L1 norm (p = 1), contrast increases as
√
m increases.

• This tends to imply that the L1 norm is more preferable than the L2 norm for high
dimensional data as it provides a better contrast than L2 norm.

This result motivated some researchers to consider the Minkowski norms where the
exponent p ∈ (0, 1), i.e., the Fractional norms Fp. Aggarwal et al. further extended Theo-
rem 0.4.3 to study the concentration of Fractional norms.

Theorem 0.4.4 ( Aggarwal et al., [Aggarwal et al.(2001)Aggarwal, Hinneburg, and Keim]
). X = {x̄m1 , x̄m2 , ..., x̄mn } be n m-dimensional i.i.d. random vectors uniformly distributed over
[0, 1]m. Then there exists a constant C, independent of p and m, such that

C

√
1

2p+ 1
≤ lim

m→∞
E

(
Dm

max −Dm
min

Dm
min

)
.
√
m ≤ (n− 1).C

√
1

2p+ 1
. (4)

From (3), it is clear that the constant C may be independent of p but the bounds for

relative contrast depend largely on

√
1

2p+ 1
. Hence, they concluded that on an average

fractional norms provide better contrast then Minkowski norms. Fig. 4 does seem to confirm
the suspicions of Aggarwal et al. The relative contrast for the F0.04 norm shown in Figs. 4(a)
and (b), compared to the relative contrast for L2 norm in Figs.3(a) and (b) is better. This
indicates that fractional norms can provide much wider separation between points than the
Euclidean norm.

Note, however, that as m increases the bounds on either side of the relative contrast
tend to zero and hence Fp norms will also concentrate with the increasing dimensionality
of the data space. This can be seen from Fig. 4(a). Note that, while Theorem 0.4.4
is proven only for uniformly distributed data, one finds that even when the data are not
uniformly distributed, the conclusions of the above result still seem to be true, see, for
instance, Fig. 4(b).
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(a) Relative contrast for Fractional norm from Uniform distribution

(b) Relative contrast for Fractional norm from Gaussian distribution

Figure 4: Relative contrast for F0.04 norm where data are generated from Uniform and
Gaussian distributions, respectively, showing the degrading separation between points with
increasing dimensions.

0.4.3 Some Indices to Illustrate the CoN phenomenon: A Theo-
retical Measure

While ξmp is a good empirical measure to illustrate whether a norm concentrates or not, it is
not amenable to theoretical analysis. This motivated François et al. error [François et al.(2007)François, Wertz, and Verleysen]
to introduce a more theoretical index to measure the concentration in a similarity workload
(Ω, X, ρ, µ). Note that this index is also derived from the result of Beyer et al., Theo-
rem 0.3.2.

Definition 0.4.5 (François et al. [François et al.(2007)François, Wertz, and Verleysen], pg.
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877). Given a similarity workload, (Ω, X, ρ, µ), where Ω is m- dimensional, the relative
variance of ρ(x̄, 0̄) = ‖x̄‖ is defined as:

γmp =

√
V ar (‖x̄m‖p)
E (‖x̄m‖p)

.

(a) Relative Variance for Euclidean norm from Uniform distribution

(b) Relative variance for Fractional norm from Uniform distribution

Figure 5: Relative variance for Euclidean norm and the Fractional Norm with p = .04,
where data are from Uniform distribution. It is clear that both of them tend to zero in high
dimensions, however the rate of convergence to zero does vary.

The relative variance γmp illustrates the concentration of distances by comparing the
spread of points with the expectation. If γmp has small value then it indicates that norms
are concentrated and a large value for γmp denotes a good amount of spread between the
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points. In some sense it is similar to ξmp as ξmp also compares the measure of spread to
measure of location.

In fact, Theorems 0.3.2 and 0.3.3 can be restated as follows based on the above indices:
If the relative variance is not tending to zero then the relative contrast will also not converge
to zero and therefore one does obtain a good separation between points.

For a fixed but large dimension m, François et al. also determined the explicit rela-
tion between γmp and p as follows (see [François et al.(2007)François, Wertz, and Verleysen],
Theorem 6):

γmp =

√
V ar‖x̄m‖p
E‖x̄m‖p

≈ 1

p

(
σp

νp

)
, (5)

where νp = E(|Xi|p) and σp = V ar(|Xi|p) .
The above relation (5) shows that for a fixed large m, as p decreases the relative variance

γmp increases and thus explains why an Fp norm (0 < p < 1) gives better contrast than other
Lp norms where p ≥ 1. This can also be seen by comparing the relative contrast for F0.04

in Figs. 4(a) and (b) to those of L2 in Figs. 3(a) and (b).
However, François et al. also showed that for any fixed p ∈ (0,∞), as m→∞, γmp → 0.

In fact, using relative variance as an index to measure concentration, François et al. proved
that all Minkowski-type norms concentrate (see [François et al.(2007)François, Wertz, and Verleysen],
Theorem 5) and showed that concentration is indeed an intrinsic property of Minkowski-
type norms, though the rate of concentration may vary depending on the exponent p, as
illustrated in Figs. 5(a) and (b).

For yet another illustration of the same, let us consider the indices km, kA, kM as discussed
in Section 0.2.2 for the same similarity workload. Comparing Fig. 6(a) with Fig. 1(b) we see
that all the indices km, kA, kM grow moderately in medium dimensions for the F0.04 norm
as against those for the L2 norm. However, comparisons between Fig. 6(b) and Fig. 2 show
that in high dimensions, all Minkowski-type norms do concentrate.

0.4.4 An Index to Measure the CoN phenomenon

While ξmp and γmp illustrate the concentration phenomenon well, they do not give any in-
formation on the rate at which a norm concentrates. Recently, Pestov [Pestov(2000)] intro-
duced a more general mathematical function to measure concentration.

Definition 0.4.6 (Pestov, [Pestov(2000)]). Let us be given a measurable metric space
(Ω, ρ, µ). The concentration function αΩ : R≥0 → [1

2
, 1] is defined as follows:

αΩ(ε) =

{
1− inf{µ(Oε(A)) : A ⊆ Ω is Borel & µ(A) ≥ 1/2} , if ε > 0 ,
1
2
, if ε = 0 ,

where
Oε(A) = {x ∈ Ω : for some a ∈ A, ρ(x, a) < ε} .

The value αΩ(ε) gives an upper bound on the measure of the complement to the ε-
neighborhood Aε of every subset A of measure greater than or equal to 1

2
.

To gain a better understanding, let us calculate and plot the concentration function for
some measurable metric spaces (Ω, ρ, µ) and show that αΩ does, indeed, measure the rate of
concentration, i.e., how fast a given distance ρ concentrates in a domain of interest Ω with
respect to the data distribution obtained from the measure µ.
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(a) The indices kM (−−), km(−), kA(− · −) for the Fractional Norm with p = .04 in
dimensions m = 10, . . . , 100

(b) The indices kM (−−), km(−), kA(− · −) for the Fractional Norm with p = .04 in
dimensions m = 100, . . . , 1000

Figure 6: Concentration phenomenon exhibited by Fractional norms when moving from
low to high dimensions

Example 0.4.7. Let us consider the space (Ω1, ρ, µ), where Ω1 = [0, 1] ∪ [2, 3], ρ is the
usual metric on R, viz., the L1 norm and µ is the counting measure. Table 1 shows the
steps involved in the calculation of αΩ1 for a few values of ε = 0.1, 0.5, 1.5. The final
concentration function αΩ1 (– • –) is plotted in Fig. 7.

Example 0.4.8. Let us consider the same space as in Example 0.4.7, but with the domain
Ω2 = [0, 1] ∪ [1.1, 2.1], while ρ, µ remain the same. Once again, Table 0.4.4 shows the
steps involved in the calculation of αΩ2 for a few values of ε = 0.1, 0.5, 1.1 and the final
concentration function αΩ2 (– –) is plotted in Fig. 7.
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S.No. ε A µ(A) Oε(A) µ(Oε(A)) αΩ(ε)

1 [0,1] 0.5 [0,1] 0.5
2 0.1 [2,3] 0.5 [2,3] 0.5 0.5
3 [0,0.6] ∪[2,2.8] 0.7 [0,0.7] ∪ [2,2.9] 0.7
4 Ω1 1 Ω1 1
1 [0,1] 0.5 [0,1] 0.5
2 0.5 [2,3] 0.5 [2,3] 0.5 0.5
3 [0,0.6]∪[2,2.8] 0.7 [0,1]∪ [2,3] 1
4 Ω1 1 Ω1 1
1 [0,1] 0.5 [0,1] ∪ [2,2.5] 0.75
2 1.5 [2,3] 0.5 [0.5,1] ∪ [2,3] 0.75 0.25
3 [0,0.6]∪[2,2.8] 0.7 [0,1] ∪ [2,2.1] ∪ [2,3] 1
4 Ω1 1 Ω1 1

Table 1: Calculating concentration function for Ω1

S.No. ε A µ(A) Oε(A) µ(Oε(A)) αΩ(ε)

1 [0,1] 0.5 [0,1] 0.5
2 0.1 [1.1,2.1] 0.5 [1.1,2.1] 0.5 0.5
3 [0,0.6]∪[1.1,1.8] 0.65 [0,0.7]∪[1.1,1.9] 0.75
4 Ω2 1 Ω2 1
1 [0,1] 0.5 [0,1]∪[1.1,1.5] 0.7
2 0.5 [1.1,2.1] 0.5 [0.6,1]∪[1.1,2.1] 0.7 0.3
3 [0,0.6]∪[1.1,1.8] 0.65 [0,1]∪ [1.1,2.1] 1
4 Ω2 1 Ω2 1
1 [0,1] 0.5 [0,1] ∪ [1.1,2.1] 1
2 1.1 [1.1,2.1] 0.5 [0,1] ∪ [1.1,2.1] 1 0
3 [0,0.6]∪[1.1,1.8] 0.65 [0,1] ∪ [2,2.1] 1
4 Ω2 1 Ω2 1

Table 2: Calculating concentration function for Ω2

Example 0.4.9. As a final example, let us consider the same space as in Example 0.4.7,
except now the domain Ω3 = [−0.6,−0.1] ∪ [0, 1] ∪ [1.1, 1.6], while ρ, µ remain the same.
Once again, Table 0.4.4 shows the steps involved in the calculation of αΩ2 for a few values
of ε = 0.1, 0.2, 0.6 and the concentration function αΩ3 (– + –) is plotted in Fig. 7.

From Tables 1, 0.4.4 and 0.4.4 and Fig. 7 we see that αΩ is a decreasing function of ε.
The smaller the value of ε the faster the norm concentrates. In fact, the rate at which αΩ

decreases is illustrative of the fact that the pairwise distances, as measured by ρ, concentrate
near their mean/median value.

0.4.5 New Distance measures to mitigate CoN

Let (Ω,≤) be a poset with a special element 0̄ ∈ Ω. A ρ : Ω×Ω→ R≥0 is called a distance
function if it satisfies the following :

• ρ(x̄, ȳ) = ρ(ȳ, x̄) , for all x̄, ȳ ∈ Ω ,

• ρ(x̄, ȳ) =⇔ x̄ = ȳ , for all x̄, ȳ ∈ Ω ,
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S.No. ε A µ(A) Oε(A) µ(Oε(A)) αΩ(ε)

1 [0,1] 0.5 [0,1] 0.5
2 0.1 [-0.6,-0.1]∪ [1.1,1.6] 0.5 [-0.6,-0.1]∪ [1.1,1.6] 0.5 0.5
3 [0,1]∪[1.1,1.2] 0.55 [0,1]∪[1.1,1.3] 0.6
4 Ω3 1 Ω3 1
1 [0,1] 0.5 [-0.2,-0.1]∪[0,1]∪[1.1,1.2] 0.6
2 0.2 [-0.6,-0.1]∪ [1.1,1.6] 0.5 [-0.6,-0.1]∪[0,0.1]∪[0.9,1]∪ [1.1,1.6] 0.6 0.4
3 [0,1]∪[1.1,1.2] 0.55 [-0.2,-0.1]∪[0,1]∪[1.1,1.3] 0.8
4 Ω3 1 Ω3 1
1 [0,1] 0.5 [-0.6,0.1]∪ [0,1] ∪ [1.1,1.6] 1
2 0.6 [-0.6,-0.1]∪ [1.1,1.6] 0.5 [-0.6,0.1]∪ [0,1] ∪ [1.1,1.6] 1 0
3 [0,1]∪[1.1,1.2] 0.55 [-0.6,0.1]∪ [0,1] ∪ [1.1,1.6] 1
4 Ω3 1 Ω3 1

Table 3: Calculating concentration function for Ω3

Figure 7: Concentration functions αΩ1(−−• – ) , αΩ2(−−−), αΩ3(−+−) vs ε

• if it is monotonic on a chain i.e. ,

x̄ ≤ ȳ ≤ z̄ =⇒ ρ(x̄, ȳ) ≤ ρ(x̄, z̄) , for all x̄, ȳ, z̄ ∈ Ω .

Further, a distance function ρ is said to be

• a metric if it satisfies the triangle inequality, i.e.,

ρ(x̄, ȳ) ≤ ρ(x̄, z̄) + ρ(ȳ, z̄) , for all x̄, ȳ, z̄ ∈ Ω .

• unbounded on a bounded domain Ω if there exists an x̄0 ∈ Ω such that lim
x̄→x̄0

‖x̄‖ =∞,

where ‖x̄‖ = ρ(x̄, 0̄).

• translation invariant on a domain with well-defined addition of elements, denoted +,
if x̄, ȳ ∈ Ω and for any z̄ ∈ Ω such that x̄+ z̄, ȳ + z̄ ∈ Ω the following equality holds:

ρ(x̄+ z̄, ȳ + z̄) = ρ(x̄, ȳ) .
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In [Jayaram and Klawonn(2012)] the authors did a rigorous math analysis on the fac-
tors in a distance function that lead to their concentration. Their study indicated that
unbounded measures seem more preferable and that, while triangle inequality and transla-
tion variance are desirable properties for a distance function ρ, they also contribute towards
its concentration. Further, they proved the following result:

Theorem 0.4.10 (Jayaram & Klawonn, [Jayaram and Klawonn(2012)]). Given a bounded
metric space (Ω, ρ), with a suitable ordering ≤ and a well-defined addition +, a distance
function ρ can have atmost two of the following properties:

• Unboundedness

• Translation invariance

• Triangle Inequality

Towards illustrating that such unbounded distance functions which have the desirable
properties to fight the concentration phenomenon do exist, they have introduced two new
distance functions as defined below:

Definition 0.4.11. Consider the poset (Ω,≤), where Ω = [−1, 1]m and with componentwise
ordering and let x̄ = (x1, x2, . . . , xm), ȳ = (y1, y2, . . . , ym) ∈ Ω. For any p > 1, the following
functions Jp,Kp : Ω× Ω→ [0,∞] are valid distance functions:

Jp(x̄, ȳ) =

(
m∑
i=1

∣∣∣∣ |xi|1− |xi|
− |yi|

1− |yi|

∣∣∣∣p
) 1

p

, (6)

Kp(x̄, ȳ) =

(
m∑
i=1

∣∣∣∣ xi − yi
1− |xi − yi|

∣∣∣∣p
) 1

p

. (7)

Note that a complete and thorough investigation of the stability of the above distance
functions Jp,Kp and their suitability in applications is yet to be done, though some partial
studies are available in [Jayaram and Klawonn(2012)].
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0.5 Motivation for and the Objectives of our current

work

0.5.1 Studying the Newly Proposed Distances like Jp,Kp
As noted already in Section 0.4.5, a complete and thorough investigation of the stabil-
ity of the above distance functions Jp,Kp and their suitability in applications is yet to be
done. Theoretical analysis and results in [Jayaram and Klawonn(2012)] indicate that these
functions are better prepared to fight concentration compared to, say the Euclidean norm.
Hence, we would like to take up deeper investiagations of the same and study their perfor-
mance vis-á-vis the existing distance functions both w.r.to the different indices, like γmp and
ξmp , and also in typical applications.

0.5.2 γmp , ξmp and αΩ: Some Drawbacks

From the above, it is clear that there exist three main and strong indices to catch hold of
concentration, namely, ξmp , γmp and αΩ(ε). However, these indices do have some drawbacks.

• We know γmp and ξmp can deal with concentration in more general way but however, it
is not always easy to find variance and expectation of norms for arbitrary distribution
and distances.

• Given an m-dimensional data set of size N , drawn i.i.d. from Rm, given a metric ρ
and an ε > 0, what is P [Dm

max ≤ (1 + ε)Dm
min]? In other words, how likely it is that

in an arbitrary sample of size N the largest distance would be no more than 1 + ε
distance away from the smallest one?

• While one could get an estimate of γmp from the data set, how small should that be
to conclude that the above probability is large?

• Although γmp and ξmp are strong indices to measure concentration, in some workloads,
they may be very time consuming and difficult to calculate. For example, computing
the Euclidean distance between two points in a high-dimensional space, say m, requires
m multiplication operations and m − 1 addition operations, as well as a square root
operation.

• Similarly while the concentration function αΩ is a general and theoretical concept,
often it is difficult to determine the concentration function for given metric and dis-
tribution.

• Calculating concentration function empirically and applying to synthetic data sets can
be very dry. It includes taking the ε-neighbourhood of a set and then calculating its
infimum, which can be done theoretically for simple sets but empirically may be too
complicated.
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0.6 Objectives of this study:

Based on the above discussions and observations on the CoN phenomenon, our objectives
for this study are as follows:

Objective 1: Study the stability of norms, especially the newly proposed Jp,Kp with re-
spect to existing indices and also in applications.

Objective 2: Propose simpler indices that would (i) measure the rate of concentration and
(ii) allow being applied in emprical settings.

0.7 Analysis of Jp and Kp
Since Jp and Kp are newly introduced distance functions, not much have been explored
about them neither theoretically nor empirically. In this section, we present some empirical
results done on Jp and Kp norms for p = 2 to show how they behave in higher dimension.
We document our findings in the following sections.

0.7.1 Jp, Kp and Nearest Neighbour Distances

The concentration phenomenon for the Euclidean L2 norm was shown in Section 0.2.2 by
discussing the normalised minimum / average / maximum NN distance w.r.to the average
of all pairwise distances. A similar study was conducted by us on exactly the same dataset
used to analyse the indices km, kA, kM for the L2 and F0.04 distance functions. We present
the results in Fig. 8.

From Fig. 8(a) we see that, for the J2 distance function, the index km is very close to 0
even in high dimensions as it should be, while kA ≈ 0.5, indicating that even average NN
distances are much below the average pairwise distances, once again even in high dimensions.
The values of kM were far greater than 1, in every repeated trial, and hence is not plotted here
to retain a sense of proportion. This indicates that the maximum NN distances far exceeded
the average pairwise distances, which augurs very well when it comes to distinguishing points
in high dimensions.

From Fig. 8(b) we see that, for the K2 distance function, the indices km < kA < kM � 1
showing that all of the NN distances are much below the average pairwise distances, thus
ensuring exceptional contrast between the points.

0.7.2 Jp, Kp and the Relative Contrast

Considering Ω = [−1, 1]m we generated two data sets each containing N = 100, 000 points
which were distributed as follows, for each of the dimensions m = 100, . . . , 1000:

(i) Xm ∼ U ((−1, 1)m),

(ii) Xm ∼ N ((0, 0.3)m).

We then plotted the relative contrasts ξm2 of the J2 norm for these data sets with query
point taken to be the origin of Ω, i.e., q̄ = 0̄, in which case

J2 (x̄, q̄) = J2 (x̄, 0̄) = ‖x̄‖J = K2 (x̄, 0̄) = ‖x̄‖K .

Thus the plots of relative contrast for the J2 and K2 norms coincide.
From Figs. 9(a) and (b), one can make the following two observations:

22



(a) The indices km(−), kA(− · −) for the J2 norm

(b) The indices kM (−−), km(−), kA(− · −) for the K2 norm

Figure 8: The indices kM , km, kA for the J2 and K2 norms for data generated from uniform
distributions on [−1, 1]m for dimensions m = 100, . . . , 1000

(i) The plots for ξm2 show that there is no tendency to decrease to a particular value.
Thus we see that the J2 and K2 norms buck the trend shown by Lp and Fp norms.

(ii) Further, at first glance, it does appear that the values of ξm2 are too close to zero for
comfort. However, a closer inspection shows that the scale is of the order 105 and
hence the separation between points is excellent.

Note that these were the identical data sets used to calculate the relative contrasts of L2

and F0.04 norms in Figs. 3 and 4.
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(a) Relative contrast for J2 norm from Uniform distribution

(b) Relative contrast for J2 norm from Gaussian distribution

Figure 9: Relative contrast for the J2 norm where Ω = [−1, 1]m for dimensions m =
100, . . . , 1000. (a) Xm ∼ U ((−1, 1)m) (b) Xm ∼ N ((0, 0.3)m)

0.7.3 Jp, Kp and the Relative Variance

Once again, for the same datasets as presented above, we calculated the relative variance
γm2 of the J2 norm, which, once again, is equal to that of the relative variance of the K2

norm.
Figs. 10(a) and (b), once again show that the relative variance γm2 of the J2 norm

(i) bucks the decreasing tendency shown by the Minkowski-type norms, and

(ii) the values are far greater than zero,

thus providing confidence on the separation powers of the newly proposed Jp and Kp norms.
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(a) Relative variance for J2 norm from Uniform distribution

(b) Relative variance for J2 norm from Gaussian distribution

Figure 10: Relative variance for the J2 norm where Ω = [−1, 1]m for dimensions m =
100, . . . , 1000. (a) Xm ∼ U ((−1, 1)m) (b) Xm ∼ N ((0, 0.3)m)

From the above empirical results it is clear that new distance functions Jp and Kp behave
better than the Minkowski-type norms in high dimensions.
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0.8 Need for Efficient Emperical Indices

There were three main indices proposed by the researchers to measure concentration viz.
Relative contrast, Relative variance and Concentration function. But these indices comes
with the problem that some are not comfortable with the empirical settings while some are
not suitable for theoretical study. For example, Concentration function (αΩ) is a theoretical
index. It can be studied theoretically and as well as measures the rate of concentration
but it is very difficult to compute αΩ for a empirical settings. Where as Relative Contrast
is an empirical index but it cannot be studied theoretically. Since Relative Contrast and
Relative variance have been studied in detail in the previous section, so the studies done
ahead mainly focuses on αΩ.

0.8.1 Advantages and Drawbacks of αΩ

Recalling from Section 0.5.2, we see that despite the fact that αΩ is a pure theoretical
tool and is not so difficult to calculate for smaller set with pen and paper, it does have its
drawbacks. For instance,

1. What if we do not know the underlying distribution of a particular dataset a priori?
Then we do not know µ and hence cannot determine αΩ.

2. Also, for large sets calculating αΩ is very cumbersome as we need to find every subset
of Ω with measure at least half. In other words, given a set with cardinality n, the
number of subsets with measure greater than 1

2
is equal to

n∑
k=n

2

nCk = 2n−1 .

So, αΩ may prove to be computationally inefficient if we move to empirical settings.

The above questions poses the problem of stability of workloads and the usefulness of αΩ

in empirical settings. Given a similarity workload, we want to know whether it is stable or
not? In the next sections, we discuss these in detail and come up with an empirical index
that upper bounds αΩ and is also comparitively easier to calculate than αΩ.
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0.9 Stability of Distance Functions

This section mainly discusses the stability of a range queries and establishes the setting in
which we can discuss the stability of distance functions.

0.9.1 Stability of a Query

Let (Ω,X , ρ, µ) be a given similarity workload. Given a query q ∈ Ω and an ε ∈ R̄+ we need
to find the set of all points in X that are within ε units away from q, i.e., we need to find
the following subset of X :

S = {x ∈ X : ρ(x, q) ≤ ε} .

Note that S = N(q, ε) ⊂ X and hence the problem of finding S is also known as the
range-query.

In [Beyer et al.(1999)Beyer, Goldstein, Ramakrishnan, and Shaft], the authors discuss
when a range-query is stable by defining the stability of a range-query as follows:

Definition 0.9.1. Given a query point q ∈ Ω, a range-query is said to be ε-unstable if

]{x ∈ X : ρ(q, x) ≤ (1 + ε) ∗ δ} ≥ ]X

2

where, δ = min{d(q, x) : x ∈ X}, the nearest neighbor distance of the query point q.

In other words, if half of the data set is covered within the ε-δ sphere of the query q,
then the range-query is said to be unstable.

Taking a cue from Definition 0.9.1, we define the stability of a particular workload and
propose an index that can overcome the drawbacks of αΩ. We term the analysis done along
these lines as the g-δ Stability Analysis .

0.9.2 g-δ Stability Analysis

Let xi ∈ X and let δi denote the nearest neighbor distance of xi, i.e. δi = min{ρ(x, xi) : x ∈
X}. For any g ∈ R̄+, the g-δi neighborhood of xi is defined as :

Ngδi(xi) = Ng(xi, δi) = {x ∈ X : d(x, xi) ≤ g ∗ δi} .

By Nn we denote the first n natural numbers, i.e., Nn = {1, 2, . . . , n}. Let us define a
function Cg : X → Nn such that

Cg(xi) = ]Ng(xi) .

It counts the number of data points in the g-δi neighborhood of xi. In some sense it tells us
how closely a data set is distributed.

Consider a point xi and take its δi-neighborhood. Now dilate the δi neighborhood with
radius g ∗ δi. So counting the number of points lying in the dilated sphere will give the Cg
count for point xi. For example, let Cg(xi) = 5. This means that the point xi has 5 other
data points in its dilated g-δ sphere. If the Cg values of most of the x ∈ X is high, then
more points are lying in the dilated g-δ neighborhood of each x ∈ X and hence the data are
distributed very close to each other and the relative distances between the data points will
be small. So, in a way Cg does keep track of the concentration of points. Specifically, given
a dataset without the information of the distribution of the dataset, Cg is easily computable
and further analysis can be done easily.
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0.9.3 g-Compactness of a Dataset

Given a similarity workload, we want to look on the Cg values of the dataset and therefore
we discuss about the density function for Cg. As a result we have yet another definition.

Definition 0.9.2. Let ηg : Nn → Nn be a function such that

ηg(k) = ]{C−1
g (k)}

where C−1
g : Nn → P(X ) .

ηg expresses the cardinal number of data points in X that have their Cg values as k.
For instance, if ηg(k) = ` then it means ’`’ points in X have ’k’ other data points in their
dilated g− δ sphere. This afresh introduced index will be known as g-compactness of the
point xi such that Cg(xi) = k for a given k. Therefore, ηg(k) is just the density function for
Cg with Cg(xi) = k for some xi ∈ X .
Normalized probability mass function of Cg(xi) is given as :

η̃g =
ηg(k)

N

Properties of ηg

ηg is an indicator of the flow of the densities of Cg for different data points. If ηg is large
for large values of k, this means more number of points have more other members in their
dilated g − δ sphere leading to the concentrating of points. This condition is not desirable.
So k and ηg(k) should be inversely proportional to each other and hence with increasing
values of k, ηg(k) should be a decreasing function.

We abstract out the properties of ηg as follows:

(i) In other notation, ηg(k) =
n∑
i=1

I{Cg(xi) = k}

(ii) ηg is a decreasing function i.e. given n1, n2 ∈ Nn such that n1 ≤ n2 then, ηg(n1) ≤
ηg(n2) .

What can be more appealing is to look at the graph of η̃g for different k since we are
more interested in the density of Cg.

Definition 0.9.3. Let βX : [0, 1]→ (−∞,∞) be a function defined as:

βX (ε) = S1+ε(X ) = Sg(X )

where Sg(X ) =
E(η̃g−µη̃g )3

ση̃g
3 .

The function βX is called the skewness of η̃g .

From the Demartines results, we can see that βX will always be a decreasing function as
expectation depends on dimension whereas variance is independent of dimension. We want
the graph of η̃g to fall steeply with increasing k to have less concentration. Talking in terms
of density, density should be more on the left so that k is less and η̃g is large. Therefore, the
density of η̃g should be more on the left side and thus the graph of βX should be positively
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(a) Uniform Distribution with n = m = 1000

(b) Gaussian Distribution with n = m = 1000

Figure 11: Skewness Plots for Synthetic Data sets for different Distance Functions

skewed. As a result, we yearn βX ≥ 0 even if ε � 1 . The quicker the βX falls the quicker
the efficiency of distance functions to distinguish points well narrows. The rate of falling of
βX clearly demonstrates the degrading power of distance functions.
Now we can define the analogy between the stability of a point x with respect to the Cg
values for x . If Cg(x) ≥ ]X

2
i.e. x has more than half of the total number of points in its

g-δ neighborhood then x is said to be ε- unstable.

0.9.4 Empirical results of ηg and βX

So far we have seen that, it is very easy to understand all the terms Cg,η̃g and βX theoreti-
cally. Now in this section we want to justify our interpretation. Summarizing all the efforts
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(a) Uniform Distribution with n = m = 4000

(b) Gaussian Distribution with n = m = 4000

Figure 12: Skewness Plots for Synthetic Data sets for different Distance Functions

done up to now, tells that given a similarity workload, we need to check the density of ηg
values and measure the concentration.
What do we want to do?
Basically we want to measure the density of ηg, in turn we want the skewness of ηg. Density
lying more on left side is desirable for less concentration. It follows that well separated data
set will have positive skewness and perform better.
How do we do?
We pick a data set and calculate the skewness for different distance functions and do the
required analysis.
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(a) Movement Libras Data (b) Isolet Data

(c) Sensor Readings 24 Data (d) Madelon Training Data

Figure 13: Skewness Plots for Real Data sets as in Table 4 for different Distance Functions

Empirical results on Synthetic datasets

We generated some data sets from Uniform or Gaussian Distribution. Then computed
skewness values for various distance functions and plotted it all in one graph. The different
parameters used for the computation of skewness of ηg is enlisted as:

• Data from a single distribution either Uniform or Gaussian Distribution. Note that
in this study, we are not considering data from mixed distribution.

• We kept number of points to be same as number of dimension i.e., n = m, e.g.
n = 1000, 4000 = m.

• Different Distance Functions, mainly :

1. Minkowski distance function for p = 0.04, 0.25, 1, 2, 3 .

2. Cosine distance function.

Some of the plots is shown in the Figure 11 and 12 for different data sets and for all
the distance functions in one plot for a single distribution, as mentioned above.

Some observations made from Figure11 :
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Dataset Dimension Number of datapoints

Movement Libras Data 90 360
Isolet 618 7797
Gas Sensor Data 24 5456
Madelon Training Data 2000 500
Madelon Valid Data 600 500
Multiple Features with correlation coefficients 216 2000
Multiple Features with Fourier coefficients 76 2000
Multiple Features with Karhumen-Love coefficients 64 2000
Multiple Features with Morphological Features 6 2000
Multiple Features with Pixel Features 240 2000
Multiple Features with Zernike moments Features 47 2000

Table 4: Real Data sets

(i) We see that skewness was initially positive for very small value of ε and starts de-
creasing at a very rapid rate and soon hits 0 as the ε increases slowly. Almost every
distance function used for the experiment is affected in the same way.

(ii) Also, note that for ε ≈ 0.01 itself, the skewness has hit 0 for all the distance functions.

(iii) This clearly shows that these distance functions easily succumb to the concentration
effect. This effect is happening for both the distribution, Gaussian and Uniform.

Remark : αX just been presented as an illustrative index for the concentration effect of
the distance functions. It has not been identified as a comparative index for concentration
effect.

Empirical results on Real data sets

In this section, we show the different plots for βX , try to make conclusion for βX . Fig-
ures 13,14 and 15, shows the different graphs for different real data sets picked from UCI
Database as shown in Table 4. .

Some observations made from Figure 13,14 , 15 and 16 :

(i) We see that the skewness function decreases slowly with the increase in ε for almost
all data sets considered for the experiment.

(ii) Observe that βX was still positive when ε ≈ 5 for some data sets, while βX becomes
negative for some data sets as soon as ε ≈ 1.

So, βX help us in showing the concentration effect for some particular settings. It does
not measure the rate of concentration, this aspire us to define another index that can be
more indicative.
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(a) mfeat-fou data (b) mfeat-fac data

(c) mfeat-kar data (d) mfeat-mor data

Figure 14: Skewness Plot for Real Data sets as in Table 4 for different Distance Functions

0.10 Some Novel Empirical Indices to Measure Con-

centration

Through this section we want to define two new indices that are easy to compute, illustrates
the rate of concentration and finally make us able to relate it to concentration function αΩ.
We will also discuss the properties of these indices and see the empirical results for different
synthetic and real data sets.

When we work with synthetic data sets, we have some underlying assumptions about
the distribution of the datas that varies greatly when we change our domain from synthetic
data to real data sets. Some of the assumptions are :

(i) Its been presumed that data are coming from an independent distribution.

(ii) Data points do not have much interaction among themselves i.e. the correlation be-
tween the points is almost negligible.

(iii) The intrinsic dimension of the data is not insignificant in front of the embedded di-
mension.

But all these assumptions fails to hold for many real data sets. As a result, βX which
appears to be an excellent index to measure concentration fails to follow the trend for real
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(a) mfeat-pix data (b) mfeat-zer data

Figure 15: Skewness Plot for Real Data sets as in Table 4 for different Distance Functions

(a) Madelon Valid Data

Figure 16: Skewness Plot for Real Data sets as in Table 4 for different Distance Functions

data sets. This poses the problem to another level to find or modify the index. This pushes
us to find another index that can be applied to different data sets in empirical settings.

34



0.10.1 C∗g (xi)- Complement of the new index

In the previous section we were talking about the number of data points captured by the
dilated g− δi sphere of a point xi, but we could not come up with the results we wished for.
Whether discussing the other way round for Cg(xi) will help us?

Consider X be the data set. Define C∗g (xi) be the average number of points that the
point xi is not able to arrest through its g − δ neighborhood i.e.

C∗g (xi) =
]X − Cg(xi)

]X
= 1− Cg(xi)

n

. We observe that if Cg(xi) is large for a point xi then C∗g (xi) will be small. It implies
that vaguely we can say that C∗g (xi) is inversely proportional to the concentration of points.
Hence, small values of C∗g (xi) for almost every data point means more concentrating of the
points and vice versa.

One important thing to note that the above observation should be true for large number
of points then only it will hold. Lets say C∗g values is very large for 2 or 3 data points. It
does not mean that the distances are not concentrating. It may happen that these points
are outliers and rest of the data points that are not captured by these outliers are closely
packed. Therefore, we need to check the overall behavior of all the data points and thus we
move to the better index λ .

Based on the previous section, we have a more successful index that will help us to
accomplish our objective. C∗g is an indicator related to only to a single point xi, so we
generalize it to all the data points and the indicator of the overall effect is what we call λ .

0.10.2 Nomenclature

Let (Ω,D, ρ, µ) be our similarity workload where D = (x1, . . . , xn) . Let n = ]D, the number
of data points in D. Let us denote by

• R̄+ the set of all non-negative reals, i.e., R̄+ = R+ ∪ {0}.

• µc is the counting measure, i.e., if A 6= ∅ then µc(A) = ]A.

• If δ ∈ R̄+, then the δ neighbourhood of a point x ∈ D is given by

Nδ(x) = N(x, δ) = {y ∈ X : ρ(x, y) < δ}.

• C(x, δ) = ]{N(x, δ)} = µc(N(x, δ)) = µc(Nδ(x)).

• C∗(x, δ) = 1− C(x,δ)
n

= 1− ]{N(x,δ)}
n

= µc(N(x,δ))
n

= µc(Nδ(x))
n

.

• An n-dimensional vector δ̄ ∈ R̄n
+ in terms of its components will be written as δ̄ =

(δ1, δ2, . . . , δn), where R̄n
+ denotes the n-dimensional Cartesian product of R̄+.

• Let δ̄, γ̄ ∈ R̄n
+. We say that δ̄ ≤ γ̄ if δi ≤ γi for all i = 1, 2, . . . , n.

• If δ ∈ R̄+, then by δ̂ = (δ, . . . , δ) ∈ R̄n
+, we denote the n-dimensional vector with all

identical components.
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0.10.3 A New General Purpose Index : λ

Definition 0.10.1. Let D = {x1, . . . , xn} be the data set and µc the counting measure. We
define a function λD : [−1,∞)× R̄n

+ → [0, 1] as follows:

λD(ε, δ̄) = max
xi∈D
{C∗(xi, (1 + ε)δi)} , (8)

where ε ∈ [−1,∞) and δ̄ = (δ1, δ2, . . . , δn) ∈ R̄n
+.

The following properties of λ are immediate:

Lemma 0.10.2. Let λD be as defined in (8) of Definition 0.10.1.

(i) Let δ̄, γ̄ ∈ R̄n
+ be such that δ̄ ≤ γ̄. Then λD(ε, δ̄) ≥ λD(ε, γ̄).

(ii) Let ε, ε′ ∈ [−1,∞) such that ε ≤ ε′. Then, λD(ε, δ̄) ≥ λD(ε′ , δ̄).

In other words, λD is decreasing in both the variables.

Proof. (i) Let x ∈ D and ε ∈ [−1,∞) such that (1 + ε) > 0 .
Since δ̄ ≤ γ̄, we have that δi ≤ γi, for i = 1, 2, . . . , n. Hence, we have that

(1 + ε)δi ≤ (1 + ε)γi (∀i)
=⇒ N(x, (1 + ε)δi) ⊂ N(x, (1 + ε)γi) (∀i)
=⇒ ]N(x, (1 + ε)δi) ≤ ]N(x, (1 + ε)γi) (∀i)
=⇒ C(x, δi) ≤ C(x, γi) (∀i)

=⇒ 1− C(x, δi)

n
≥ 1− C(x, γi)

n
(∀i)

=⇒ C∗(x, δi) ≥ C∗(x, γi) (∀i)
=⇒ max

x∈D
{C∗(x, δi)} ≥ max

x∈D
{C∗(x, γi)}

=⇒ λD(ε, δ̄) ≥ λD(ε, γ̄)

(ii) Let δ̄ ∈ R̄n
+ and x ∈ D.

Since ε ≤ ε′

=⇒ (1 + ε)δi ≤ (1 + ε′)δi (∀i)
=⇒ N(x, (1 + ε)δi) ≤ N(x, (1 + ε′)δi) (∀i)
=⇒ C(x, 1 + ε)δi) ≤ C(x, (1 + ε′)δi) (∀i)

=⇒ 1− C(x, (1 + ε)δi)

n
≥ 1− C((1 + ε′)δi)

n
(∀i)

=⇒ C∗(x, (1 + ε)δi) ≥ C∗(x, (1 + ε′)δi) (∀i)
=⇒ max

x∈D
{C∗(x, (1 + ε)δi)} ≥ max

x∈D
{C∗(x, (1 + ε′)δi)}

=⇒ λ(ε, δ̄) ≥ λ(ε′, δ̄)

Hence Proved.
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0.10.4 Two Specific Measures based on λ : λ̃X and λ̂X

We introduce two new restricted functions based on λ and show how they help us in mea-
suring the concentration efficiently.

As soon as we fix X to be our data set, the distance of one point to other is fixed and
so λ become a function in one variable.

Definition 0.10.3. We define the nearest neighbor distance vector as :

(i) δ̃ = (δ1, . . . , δn) ∈ R̄n
+, where δi is the distance of point xi to the point that is closest

to it.

(ii) Let δ0 = max
xi∈X
{δi}. Then, δ̂0 = (δ0, . . . , δ0) .

On the basis of above nearest neighbor distance vector, we introduced two new functions
by restricting λ on X .

Definition 0.10.4. Defining two functions λ̃X , λ̂X : [−1,∞)→ [0, 1] as follows:

λ̃X (ri) = λ(ε, δ̃) = max
xi∈X
{C∗(xi, (1 + ε)δi} (9)

λ̂X (r) = λ(ε, δ̂0) = max
xi∈X
{C∗(xi, (1 + ε)δ0} , (10)

where r = (1 + ε)δ0 and ri = (1 + ε)δi .

Note that :

(i) For a fixed ε ∈ [−1,∞), λ̃X = λ̂X if δ̃ = δ̂ .

(ii) The motivation for defining λ̂X is Theorem 0.10.7.

From Lemma 0.10.2, the following result is straight forward:

Corollary 0.10.5. If λ̃X and λ̂X are the indices to measure concentration defined as above
then λ̃X and λ̂X are decreasing functions, i.e., given r1 ≤ r2 for r1, r2 ∈ [0,∞), λ̃X (r1) ≥
λ̃X (r2) and λ̂X (r1) ≥ λ̂X (r2) .

Lemma 0.10.6. Let λ̃X , λ̂X be the indices to measure concentration, then

λ̃X ≥ λ̂X for fixed ε ∈ [−1,∞)

Proof. Let δ̃ = (δ1, . . . , δn) then δ0 = max{δ1, . . . , δn} and hence δ̂0 = (δ0, . . . , δ0) .
Let ε ≥ −1 be any real number.
As, δi ≤ δ0 for i = 1 . . . n

=⇒ (1 + ε)δi ≤ (1 + ε)δ0 (∀i)
=⇒ C(x, (1 + ε)δi) ≤ C(x, (1 + ε)δ0) (∀i)

=⇒ 1− C(x, (1 + ε)δi)

n
≥ 1− C(x, (1 + ε)δ0)

n
(∀i)

=⇒ C∗(x, (1 + ε)δi) ≥ C∗(x, (1 + ε)δ0) (∀i)
=⇒ min

xi∈X
{C∗(x, (1 + ε)δi)} ≥ min

xi∈X
{C∗(x, (1 + ε)δ0)}

=⇒ λ̃X (r) ≥ λ̂X (r)

Since ε is arbitrary, so λ̃X ≥ λ̂X . Hence proved.
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0.10.5 αX vs λ̃X , λ̂X

Comparison between λ̃X , λ̂X and αX :

(i) αX is a purely theoretical index so calculating it even for a smaller set is very cum-
bersome. Earlier also we said that if the data set is high dimensional then αX is very
improper for empirical settings. This is the advantage our index λ̃X and λ̂X gives over
other αX . Given a small set we can easily find the λ̂X with paper and pen.

(ii) λ̃X is computationally efficient than αX . Recalling that to find subsets with measure
greater than 1

2
requires

n∑
k=n

2

Ck ≈ 2n−1

computations while to evaluate λ̃X or λ̂X we just need to work with n subsets. In
simpler way, to find λ̃X only n nearest neighbor distances are evaluated instead of
searching for the subsets that weighs at least half the total weight.

(iii) Since min,max and median is an statistical tool so the theoretical studies can also be
done smoothly by all these tools. They exihibits resembling results only.

From the above comparison, we get the impression that λ̃X and λ̂X may be more indica-
tive and sharper than αX . Although αX is a strong index to work theoretically but it is
very complex for experimental studies. We were curious whether we can give any relation
between λ̃X , λ̂X and αX . We are now stating a result that will show theoretically that λ̃X
and λ̂X are indeed more supreme to αX in experimental sense.

Theorem 0.10.7. Let (Ω,X , ρ, µ) be a given similarity workload. Let ε ∈ [−1,∞) and δ̃, δ0

be as defined in Definition 0.10.3. Let us denote by r = (1 + ε)δ0 and let ri = (1 + ε)δi.
Then,

αX (r) ≤ λ̂X (r) ≤ λ̃X (r) ≤ λ̃X (ri) . (11)

Proof. We prove this theorem in three steps, proving each inequality at every step.
Note that r is a function of ε and hence as ε varies from [−1,∞), we have that r varies

over [0,∞) = R+ and hence the domain of αΩ is R+ and is well-defined.

αX ≤ λ̂X :

Let ε ∈ [−1,∞) be arbitrary but fixed and r be as defined above. Let A be the
collection of all the subsets of X having measure greater than half, i.e.,

A =

{
A ⊂ X : µ(A) ≥ 1

2

}
.

Also, the r-neighborhood of A for r ≥ 0 is defined as :

Ar = {x ∈ X : ρ(x, a) ≤ r for any a ∈ A}

Since (1 + ε)δi ≤ (1 + ε)δ0 for every ε ∈ [−1,∞) and i = 1, 2, . . . , n. Therefore, for
any arbitrary but fixed A ∈ A and for every xi ∈ A, we have

N(xi, (1 + ε)δi) ⊂ N(xi, (1 + ε)δ0) ⊂ Ar

=⇒ µc(N(xi, (1 + ε)δi)) ≤ µc(N(xi, (1 + ε)δ0)) ≤ µc(Ar) (∀i)
=⇒ C(xi, (1 + ε)δi) ≤ C(xi, (1 + ε)δ0) ≤ µc(Ar) (∀i)
=⇒ CA = min

xi∈A
C(xi, (1 + ε)δ0) ≤ µc(Ar) .
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Now, since

inf
A∈A
CA = inf

A∈A

{
min
xi∈A

C(xi, (1 + ε)δ0)

}
= min

xi∈X
C(xi, (1 + ε)δ0) ,

we have the following implications:

min
xi∈X

C(xi, (1 + ε)δ0) ≤ inf
A∈A

µc(Ar)

=⇒ 1−

min
xi∈X

C(xi, (1 + ε)δ0)

n

 ≥ 1− inf
A∈A
{µc(Ar)}

=⇒ max
xi∈X

(
1− C(xi, (1 + ε)δ0)

n

)
≥ sup

A∈A
{µc(A

c

r)}

=⇒ max
xi∈X
{C∗(xi, (1 + ε)δ0)} ≥ sup

A∈A
{µc(A

c

r)}

=⇒ max
xi∈X
{C∗(xi, r)} ≥ sup

A∈A
{µc(A

c

r)}

=⇒ λ̂X (r) ≥ αX (r) ,

where µc is the normalized measure of µ.

λ̂X ≤ λ̃X : Second inequality is just Lemma 0.10.6.

λ̃X (r) ≤ λ̃X (ri): Since δ̃ ≤ δ̂0

=⇒ (1 + ε)δi ≤ (1 + ε)δ0 for any ε ∈ [−1,∞) and for every i = 1 . . . n
=⇒ ri ≤ r for any ε ∈ [−1,∞) and for every i = 1 . . . n

Also, from Corollary 0.10.5 we know that λ̃ is a decreasing function and hence λ̃(r) ≤
λ̃(ri) for any ε ∈ [−1,∞) .

From Thoerem 0.10.7, we have αΩ(r) ≤ λ̃X (r). As a result, λ̃X forms an upper bound

for αΩ. Hence if λ̃X is itself very small in magnitude for a given dataset then αΩ will be
small and concentration will be very large. Although, λ̃X is an upper bound for αX but if
λ̃X is very large then we cannot say anything for αX . Certainly a more tighter bound for
αX will help us, so this was the motivation behind defining λ̂X as it will be a more narrower
bound than λ̃X for αX (see Thoerem 0.10.7 ) .

0.10.6 Are these indices really useful?

Though we introduced a bunch of indices one after other but whether they serve our
purpose? Whether they just show concentration or really measure the rate of concentration?
If yes, then whether they really measure concentration well? Will we get the freedom to
classify a good distance function from a bad distance function on the basis of these indices.
Note that, by a good distance function we mean a distance function that concentrates less
i.e. comparatively it can distinguish points better than other distance functions. Can we
talk of stability of Similarity workloads with respect to these indices? and many more. . .
To discuss the above questions and check their performance, we divide the studies related
to these indices into two groups:

(i) Studies on Synthetic Data sets.
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S.No. Number of datapoints(N) Dimension(m)

1 100 10
2 1000 100
3 10000 10000

Table 5: Features of the synthetic data set

(a) Uniform (b) Gaussian

Figure 17: Plot for λ̂X for Uniform and Gaussian distribution with N = 100 and m = 10

(ii) Studies on Real Data sets.

Studies on Synthetic Datasets

We generated some synthetic data sets following a particular distribution and computed
the λ̂X values and plotted the curves for different distance functions. Then we ran k-
NN classification on the already generated Dataset and check if there is any correlation
between the λ̂X values and number of mismatches in k-NN. To see the behavior of λ̂X , we
generated n points in m dimension in the interval [-1,1] such that data is either coming from
Uniformly distribution or Gaussian distribution. Then we computed the pairwise distances
and calculated the λ̂X values for each distance functions.

The following are the parameters that we used during the computation of λ̂X :

(i) m- dimension of the data.

(ii) n - Number of data point. Usually n = 10 ∗m.

(iii) Different Distance Functions :

(a) Minkowski distance function for p = 0.04, 0.25, 1, 2, 3 .

(b) Cosine distance function for p = 2.

(iv) Distribution of the data set : We have generated Synthetic data from both Uniform
and Gaussian Distribution to find that not much deviation can be seen.
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(a) Uniform (b) Gaussian

Figure 18: Plot for λ̂X for Uniform and Gaussian distribution with N = 1000 and m = 100

(a) Uniform (b) Gaussian

Figure 19: Plot for λ̂X for Uniform and Gaussian distribution with N = 10000 and m = 1000

Table-5 gives the abstracted form of the features of the data set that we used during our
experiment.

Fig 17 , Fig 18 and Fig 19 shows the graph for different λ̂X values vs ε . The following
are the observations made by us from Fig 17 , Fig 18 and Fig 19.

(i) λ̂X is a decreasing function as expected.

(ii) λ̂X starts at 1 and slowly dies off to 0 as the epsilon increases.

(iii) The rate of falling of λ̂X does indicates the rate of concentration. The faster it falls,
the more is the concentration.

(iv) We can easily identify the good distance function from the bad distance function from
the figure ??.

(v) Cosine and Fractional distance functions are clearly emerging as the better distance
functions.
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(a) λ̂X for Movement Libras data (b) Classification rate for Movement Libras data

Figure 20: Plots for λ̂X and K-NN classification for data as described in Table 6

Dataset m N

Movement Libras Data 90 360
Isolet 618 7797
Gas Sensor Data 24 5456
Madelon Training Data 2000 500
Multiple Features with correlation coefficients(mfeat-fac) 216 2000
Multiple Features with Fourier coefficients(mfeat-fou) 76 2000
Multiple Features with Karhumen-Love coefficients(mfeat-kar) 64 2000
Multiple Features with Morphological Features(mfeat-mor) 6 2000
Multiple Features with Pixel Features(mfeat-pix) 240 2000
Multiple Features with Zernike moments Features(mfeat-zer) 47 2000

Table 6: Real Data sets

Thus, we see that λ̂X is amenable to our analysis for synthetic data set. Note that, λ̂X is
just an upper bound for αX , so we can only talk about the worst case for distance functions,
saying this means if the λ̂X values for a particular distance functions is very small then
surely the distances are concentrated for that distance function.

Studies on Real Datasets

In the previous section, we justified our intuition for synthetic data sets that λ̂X is indeed a
better index to measure the rate of concentration, where the synthetic data sets comes with
two of the main amenities: firstly the distribution of the sets was known to us and secondly
the data were independently generated. But when we change our domain to real data sets,
these amenities are lost and we have to work on these data sets without knowing its most
of the properties.
We did the same analysis here also, picking a real data set, computing its λ̂X values for
different distance functions and plotting the graph of the computed λ̂X values and then
running k-NN classification for the same data set and inspecting for any relationship between
λ̂X values and number of mismatches in k-NN. We further examine the classification rate
for different distance functions.
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Table 6 give a brief introduction to the features of the Real Data sets used for our studies
on λ̂X .

(a) λ̂X for Isolet Data (b) Classification rate for Isolet data

(c) λ̂X for Sensor Readings Data (d) Classification rate for Sensor Readings data

Figure 21: Plots for λ̂X and K-NN classification for data as described in Table 6

Observations made from fig 20, 21 , 22 , 23 and 24 are listed as:

(i) We observe that λ̂X is a decreasing function. For most of the real data sets, λ̂X goes
to 0 as ε ≈ 0.

(ii) λ̂X clearly measures the rate of concentration. The faster it falls the stronger is the
concentration.

0.11 Conclusion

In this work, we attempted to analyze two new distance function namely, Jp and Kp with
respect to existing indices Relative Contrast and Relative Variance and further we went on
to find a new index called λ̂X that can measure the concentration empirically and as well
as theoretically. Also, we have proved it theoretically that λ̂X can be used as a measure to
measure concentration. Then we presented some experimental results for λ̂X to validate our
findings.
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(a) λ̂X for mfeat-fac Data (b) Classification rate for mfeat-fac data

(c) λ̂X for mfeat-fou Data (d) Classification rate for mfeat-fou data

Figure 22: Plots for λ̂X and K-NN classification for data as described in Table 6

So far the theory of concentration of norms has been well studied and explored but
always in a non-positive way. From Sections 0.4.2 and 0.4.3, we see that Euclidean norms
and other Minkowski-type norms do not behave well in high dimension. In fact, we have
that all the Minkowski-type norms concentrate.

So, our future work includes studying the concentration in somewhat positive sense.
Instead of discussing when and whether a distance function concentrates, we would like to
investigate the stability of norms, i.e., when can we say that norms are stable even in high
dimensions. In other words we would like to determine similarity workloads that are stable.
Very few works have been done along such lines, see for instance, [Durrant and Kabán(2009)],
[Bennett et al.(1999)Bennett, Fayyad, and Geiger], where the investigations focus on for
what type of distributions the Minkowski norms do not concentrate. We would like to
extend this to more general settings and applications.
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(a) λ̂X for mfeat-kar Data (b) Classification rate for mfeat-kar data

(c) λ̂X for mfeat-mor Data (d) Classification rate for mfeat-mor data

Figure 23: Plots for λ̂X and K-NN classification for data as described in Table 6
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(a) λ̂X for mfeat-pix Data (b) Classification rate for mfeat-pix data

(c) λ̂X for mfeat-zer Data (d) Classification rate for mfeat-zer data

Figure 24: Plots for λ̂X and K-NN classification for data as described in Table 6
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