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Abstract—Shannon’s rate-distortion theory provides an
asymptotic analysis, where delays are allowed to grow unbounded.
In practice, real-time applications, such as video streaming
and network storage, are subject to certain maximum delay.
Accordingly, it is imperative to develop a finite-delay framework
for analyzing the rate-distortion limit. In this backdrop, we
propose an intuitive generalization of Shannon’s asymptotic
operational framework to finite block codes. In view of the
extreme complexity of such framework, we obtain insight by
specializing to the symmetric binary hamming problem. Even
upon such specialization, the proposed framework is computa-
tionally so intensive that accurate evaluation of the finite-delay
rate-distortion function is practical only upto a block length of
three. In order to obtain further insight, we then propose a
lower-complexity lower bound, based on the partition function
of natural numbers, whose computation is practical upto a block
length of six. Finally, using a simple combinatorial argument, we
propose an upper bound to localize the desired rate-distortion
function between our lower and upper bounds.

Keywords—Finite block codes, Rate-Distortion function, Huff-
man coding, Binary source, Hamming distortion.

I. INTRODUCTION

Since several decades, Shannon’s rate-distortion (R-D) the-
ory has been providing guidance for design of lossy source
coding algorithms [1], including JPEG and MPEG [2]. How-
ever, such guidance has often been indirect, and limited to
supplying the notion of R-D tradeoff, rather than concrete
numerical values as reference. This happens because, while
Shannon’s analysis allows unbounded delay, practical appli-
cations are often sensitive to the coding delay. In fact, real-
time applications come with strict delay constraints, and hence
cannot directly use Shannon’s R-D theorem as a theoretical
basis. In fact, with the exponential growth in the use of
network storage and communication, fast real-time lossless
coding algorithms such as LZ4 has become indispensable [3].
However, much less effort has been directed at developing
analogous real-time lossy algorithms, with vast potential for
applications such as video streaming. Anticipating and with a
view to facilitating the advent of such algorithms, in this paper
we seek to create a benchmarking framework. In particular,
we propose a plausible notion of finite-block-length (finite-
delay) R-D function that is consistent with Shannon’s theory
in the asymptotic regime. We further analyze its complexity,
which turns out to be prohibitively high, and propose lower-
complexity lower and upper bounds. Finally, we study such
bounds, and identify various desired improvements.
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Real-time extension of Shannon’s information theory has
been attempted by various authors. In the channel coding
front, Sahai proposes a notion of any time capacity, indicating
the ability of the encoder and the decoder to correct past
errors and continuously improve upon older estimates [4].
Specifically, the decoding error probability is assumed to be
an exponentially decaying function of block length. Various
flavors of source and joint source-channel coding problems
have also attracted substantial attention. In Table I, we provide
a comparative summary of various approaches reported in the
literature.

In particular, the existence and the structure of optimal
real-time encoding techniques have been extensively studied.
Witsenhausen took a control-theoretic viewpoint, and proved
the existence of the optimal encoder for Markov sources for the
finite-horizon sequential quantization problem [5]. Specifically,
for any k-th order Markov source, such encoder depends on at
most k previous symbols and the current state of the decoder.
Later Piret studied causal sliding-block encoders, and obtained
optimal schemes for both binary memoryless and binary first-
order Markov sources [6]. Subsequently, Walrand and Varaiya
studied a problem related to the Witsenhausen problem, where
first-order Markov sources are communicated over noisy chan-
nels using encoders with finite as well as unbounded memory
[7]. Neuhoff and Gilbert investigated causal sequential codes as
well as causal block codes with unbounded block lengths [8].
In the process, they define optimum performance theoretically
attainable function, analogous to Shannon’s operational rate-
distortion function. Borkar et al. formulated a stochastic con-
trol problem equivalent to the sequential vector quantization
of a Markov source, and employs Markov decision theory for
designing an encoder with finite memory [9]. Using large-
deviations theory, source coding exponents for zero-delay
finite-memory coding of memoryless sources were obtained
by Merhav and Kontoyiannis [10]. Mahajan and Teneketzis
also analyzed a problem closely related to those due to Wit-
senhausen, and to Walrand and Varaiya [11]. Specifically, real-
time communication of a Markov source over noisy channel is
performed with the help of finite encoder memory. Here they
formulate a control-theoretic problem that jointly optimizes the
encoder, the decoder as well as the memory update strategy.
Optimal source coders with knowledge of finite number of fu-
ture source symbols (lookahead), available only to the encoder,
has been studied by Asnani and Weissman [12]. Lower bounds
on the distortion in case of lossy source coding are derived
by Leibowitz and Zamir [13]. Most of their effort is directed
towards generalization of Shannon’s mutual information as
a rate measure so as to retain certain desirable properties.



Encoding Encoder

framework Source model Causality Feedback Encoding memory
Witsenhausen [5] source Markov causal yes sequential finite
Piret [6] source Markov/memoryless causal yes sequential finite
Neuhoff and Gilbert [8] source memoryless causal no sequential/block unbounded
Walrand and Varaiya [7] source/channel Markov causal yes sequential finite/unbounded
Borkar et al. [9] source Markov causal no sequential unbounded
Merhav and Kontoyiannis [10] source memoryless causal no sequential finite
Mahajan and Teneketsis [11] source/channel Markov causal no sequential finite
Asnani and Weissman [12] source/channel memoryless limited lookahead yes/no sequential unbounded
Leibowitz and Zamir [13] source/channel memoryless block causal no block Zero
Proposed source memoryless block causal no block Zero

TABLE I: Summary of literature survey on real-time (finite-delay) source and source-channel coding.

However, such rate measure is not operationally motivated.
Recently, Kostina and Verdu [17] derived acheivability bounds
for finite block lengths; however, their distortion measure is not
deterministic as they use excess distortion probability as the
criterion. Pilc [18] obtained lower and upper bounds for rate-
distortion function for finite alphabet source, asymptotically
for large n based on the error exponent [18].

In a nutshell, three main approaches have so far been taken
towards real-time source and source-channel coding problems.
In one, the information-theoretic problem is mapped to a
control/decision problem, and the tools and the knowledge
from latter are exploited[ [5], [7], [11]]. Secondly, search for
new functionals that still exhibit desirable properties of known
information-theoretic quantities is carried out [13]. Finally,
rate-distortion function for finite block lengths is investigated
in [18], [17]. In contrast, limited effort has been directed
at extending Shannon’s operational approach to the real-time
scenario. In this paper, we attempt to fill this gap. Specifically,
we propose an operational framework that seamlessly extends
Shannon’s to finite block lengths. We refine the usual measure
of rate as log-cardinality to Hufman code rate, which is
more accurate in the finite horizon scenario. In the face of
extreme complexity, we explore the underlying combinatorial
problem for the symmetric binary hamming specialization.
Even upon such specialization, the proposed framework is
computationally so intensive that accurate evaluation of the
finite-delay rate-distortion function is practical only upto a
block length of three. In order to obtain further insight, we
then propose a lower-complexity lower bound, based on the
partition function of natural numbers, whose computation is
practical upto a block length of six. Finally, we propose
a simple upper bound to localize the desired rate-distortion
function between our lower and upper bounds. The proposed
bounds are based on combinatorial properties.

This paper is organized as follows. In Section II, we revisit
Shannon theory, and recast Shannon’s formulation so as to
allow seamless transition to a consistent real-time framework.
Building on such formulation, we make certain refinements
based on Huffman coding, and propose a real-time definition
of achievability in Section III. In Section IV, we anticipate high
complexity, and specialize to the symmetric binary hamming
problem. In such special case, we provide an in-depth analysis
of the proposed finite-delay R-D function, and propose lower
and upper bounds. Simulation results are given in Section V.
Finally, Section VI concludes the paper.
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Fig. 1: Point-to-point source coding.

II. SHANNON THEORY REVISITED

Consider i.i.d. copies X1, Xa, ..., X;,, ... of random variable
X ~ px taking values in discrete alphabet X'. As depicted
in Figure 1, encode X" = (X;, Xo,...,X,,) using encoder
mapping f, : X™ — U,, where U,, indicates the set of encoded
indices, and decode the resulting encoded index using decoder
mapping g, : U, — X" under a bounded distortion measure
d: X xX — [0,dmax] (dmax < o0). In this framework,
Shannon’s celebrated rate-distortion theorem was enunciated
based on a notion of e-achievability.

Definition 2.1: A rate-distortion pair (R, D) is said to be
achievable if, for any € > 0, there exist sufficiently large n
and mapping pair (f,,gn) such that

1
—loglU,] < R+e (D
n

1 n .

=3 B(d(Xy, Xy) <
"=

where X" = gvn(fn(X”)) = (Xl,Xz,...,Xn). Further, the
achievable set A is defined by the closure of set of achievable
(R, D) pairs.

Theorem 2.2: [1] The asymptotjc rate-distortion (R-D)
function (i.e., the lower envelop of A) is given by R*(D) =
min I(X; Z), where (X,Z) ~ px(x)pzx(z|lr) such that
E(d(X,Z)) < D, and the minimization is over pz|x’s.

D +e, 2)

In the above, I(-;-) indicates the mutual information. Shan-
non’s notion of e-achievability provides the basis for his
asymptotic Theorem 2.2, but in its current form neither (i)
finitely bounds the block length n, nor (ii) provides a straight-
forward translation to finite block length (delay) scenarios.
Accordingly, we now turn to rewriting Definition 2.1 to make
such translation seamless.

Definition 2.3: Al = conv({(R, D) : 3(fn,gn) so that
k=n .
Lloglthy| < R+¢€,L > E(d(Xy, Xy)) < D+ €}), where
1

k=
“conv(.S)” indicates the convex hull of set S.



Proposition 2.4: A = U A, where A, = AW,
n>1

Sketch of proof: We first claim

A= U AY. 3)

e>0n>1

Ignoring “conv(-)” in Definition 2.3 temporarily, (3) follows
f{om Definition 2.1 in a straightforward manner. Further, since
A is known to be convex (by a time sharing argument [14]),
(3) continues to hold, even when we consider “conv(-)”. Next,
it can be verified that [J'* , A'9 viewed as doubly indexed
by (€, ng), is uniformly convergent as ¢ — 0 and ng — o0
[15]. Accordingly, it is permitted to interchange the order of
the intersection and the union in (3). Finally, the proof is
completed via a continuity argument. (]

III.  PROPOSED REAL-TIME FRAMEWORK

Notice that Proposition 2.4 describes A in terms of in-
creasing block-length n but does not require €. Consequently,

one may truncate at a finite n = [, and meaningfully use a
l

quantity similar to flgl = U A, as the achievable set upto

delay [. However, we still re?]uilre certain refinements. The first
refinement involves the rate measure when the delay is finite.
In (1), log |U,,| measures the rate required to encode f,(X™).
This, while asymptotically tight as n — oo, can be tightened
for finite n to Rpygyer(fn(X™)), the rate when Huffman (the
optimal) code is used. Specifically, we now define A,, by thus
refining Definition 2.3 of /ln (.e., A&f) at e = 0).

Deﬁnition 3.1 A” = COHV({(R, D) : 3(fnvgn) so that
k=n R
Ry (fa(X™) < R, 3 ];1 E(d(Xy, Xp)) < D}).

We call A,, the achievable set with delay n. Clearly, the
lower envelop of the set A, completely specifies it. Now,
each extreme point of A,, corresponds to some mapping pair
(fn,gn). Non-extreme points on the lower envelop of A,
are obtained via suitable time sharing [14]. Interestingly, in
Definition 3.1, one may restrict g, to be one-to-one without
loss of generality. To see this, consider an encoder mapping
fn» which completely specifies the minimum achievable rate.
So, for any many-to-one decoder mapping g,, clearly, one can
instead find some one-to-one mapping g/, such that the average
distortion does not increase.

. [
Definition 3.2: A<; := conv ( U .An>.
n=1

Here convexification is meaningful because, while each A,,
is convex, their union need not be.

Property 3.3: lim Ag = A
l—woo

We leave to the reader the proof, which can be completed
using the property that Huffman coding achieves a rate within
one bit of entropy [14]. Here we call A<; the achievable
set upto delay [. This nomenclature is justified by Property
3.3, i.e., as delay [ increases, A<; approaches (upto closure)
Shannon’s asymptotic achievable set A.
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Fig. 2: Encoder and decoder mappings.

To avoid technical complications, we shall adopt compact
versions of the proposed sets that preserve the lower envelop.
Clearly, one incurs distortion D = Dy = mingecy E(d(X, 2)),
when rate R = 0. Further, rate R = 1 Ry,s(X™) allows
lossless reconstruction, i.e., D = 0. Thus, assuming mono-
tonicity, the lower envelop of A,, always remains inside the
box By, = [0, L Rygyr(X™)] % [0, Do)

1
Definition 3.4: A, = A, N B,; A<; := conv ( U An>.
n=1

Of course, the lower envelop of A<; coincides with that of
A<;. Henceforth, we shall use the compactified versions A,
and A<, respectively, instead of 4,, and A<;, which we retire
at this point. Note that A,, is not necessarily increasing in n;
however, A<; is always increasing in /. Our main goal is to
study the lower envelop of A<, i.e., the R-D function upto
delay .

IV. SYMMETRIC BINARY HAMMING SPECIALIZATION

At this point, let us revisit Figure 2, and look closely at
the source coding mechanism. Any (possibly many-to-one)
encoder mapping f,, divides X" into an exhaustive collection
of disjoint subsets, and assigns to each such subset an index.
Set of such indices is called U,,. Finally, the decoder mapping
gn, Which, as earlier argued, can be assumed one-to-one with-
out loss of generality, assigns to each such index a sequence
from X". In other words, the composite mapping g, o f,
assigns to each aforementioned subset a representative from
X'™. Note that f,, completely determines vector of probabilities
of occurrence of the associated subsets, and hence the corre-
sponding rate of Huffman coding. Hence, given f,,, the optimal
gn would chose the aforementioned representative sequence
of each subset such that the expected distortion due to such
representation is minimized. In this setting, it appears unlikely
that lower envelop of A<; with finite [ admits a general
characterization analogous to that given in Shannon’s Theorem
2.2. Accordingly, to obtain insight, we shall specialize to the
symmetric binary hamming problem, and obtain lower and
upper bounds.

A. R-D function
In particular, consider binary alphabet X = {0, 1}, sym-

metric distribution px = (3, 1) (i.e., equally likely symbols),
. . . N 0, Ve=1z
and hamming distortion measure d(z, ) = 1, Vr+#2,

(x,z) € {0,1} x {0,1}. Interestingly, for the symmetric
binary X, we have ©Rpu(X") = Ryu(X) = 1 and

Dy = 0.5, ie., B" = [0,1] x [0,0.5] for any n. Now we



turn to constructing A,, for arbitrary n, i.e., equivalently, the
R-D function with delay n. Note that X™ consists of 2"
binary sequences of length n, each occurring with probability
zi Consequently, the occurrence probability vector associated
with encoder subsets depends only on the cardinalities of
such subsets. Further, since Huffman coding is agnostic to
permutation, the rate is completely determined by the cor-
responding partition of 2". However, while computing the
expected distortion, one needs to consider specific sequences in
each subset into account, i.e., take each of the (2”)(2 ) encoder
mappings f, into account. Huffman coding of f,,(X™) is of
complexity O(2™ x log(2™)) since the probability vector might
be unsorted. For each such f;,, the optimal decoder mapping g,
is chosen based on a table of incurred distortions between pairs
of sequences from X™. Clearly, this table has 27.2" = 227
entries, and needs to be computed only once; however, to
optimize g,, one requires to consider each entry of the table.
Thus the ench)ding and decoding process entails a complexity
of O((27)#"22ram l0g(2m)) = O(n2"(2"+3)). Hence the
complexity of constructing A<, is bounded by O(122/(2'+3)),
In view of the extremely high complexity, we seek low-
complexity lower and upper bounds on the corresponding
finite-delay R-D functions.

B. Lower bound

First we propose a lower bound. Towards this, consider
arbitrary subset G C X" which is mapped by ¢, o f, to a
representative sequence 2" € X" (see Fig. 2). The minimum
expected distortion contributed by G is given by

e > dah), k), @
zneG k=1

d"(G) =

where " is the optimal representative that minimizes the right
hand side.
Lemma 4.1: For any G C X",

n

1

n.2n
m=0

d"(@) > M.k, 5)

m—1
where kg = 1, k,, = max (O,min (:i)m— > kt)>),
i=0

m=1,2,....,n, and = |G| > 0. Further, for any 0 < r < 2"
and any sequence & € X", there exists G', with |G’| = r and
optimal representative 2", which satisfies (5) with equality for
G=G"

Proof: We shall first prove the second part of the assertion.
Towards this, construct a subset G C X™ with |G"| = r
as follows. Arrange all sequences such that a sequence with
lower hamming weight precedes one with higher weight;
the order in which the sequences with the same weight is
arranged is immaterial. Of course, there are (:1) sequences of
weight m, m = 0,1, ...,n. Now, include the first » sequences
in G”. Clearly, G” contains k,, sequences of weight m,
m = 0,1,...,n. Hence, taking the all-zero sequence as the
representative, one incurs the expected distortion given by the
right hand side (RHS) of (5). One can verify that the all-zero
sequence is a possibly nonunique, but optimal, representative.
Correspondingly, we have d(G”) given by the RHS of (5).
Next, obtain subset G’ by adding 2" modulo two to each

sequence in G” symbolwise. Clearly, such G’ has &™ as the
optimal representative, with d(G’) given by equality in (5).

To prove the first part, denote by z" the optimal repre-
sentative of G. Further, construct G’ with |G| = |G| = r,
as above. Clearly, one can transform G’ to G by a series of
operations, each of which replaces a sequence z'" € G' \ G
by a sequence z" € G \ G'. However, by construction,
d(z'",2") < d(2",&") for any such (2'",2™) pair. This
proves (5).

Denoting §™(r) = ‘gl‘in d"(G), by Lemma 4.1, 6"(r) is

given by the RHS of (5). Hence we immediately obtain:

Theorem 4.2: Consider encoder mapping f, partitioning
X™ into k disjoint subsets G1, G, ...G}, with respective cardi-
nalities 71, 12, ...r;. No decoder mapping g,, achieves expected

k

distortion lower than Dy, = > 6™ (r).
i=1

In Theorem 4.2, apart from the said lower bound Dj
on distortion D, the rate R is found by Huffman coding
the probability vector (&, 52%,..., 5&). We vary f, over all
possible choices, construct set A% of resulting (R, Dz) pairs,
and propose its lower convex envelop as a lower bound on
the R-D function with delay n. Clearly, only the collection
{r1,72,...,r;}, which is a partition of 2", determines the rate.
However, this bound is not necessarily tight, as simultaneous
achievement of all 6" (r;), ¢ = 1,2, ..., k, is not guaranteed.

Clearly, we require O(P(2")) operations to compute all
such partitions, where P(NN) denotes the number of partitions
of integer N. One can generate such partitions such that
ry > 19 > ... > 1, and divide each r; by 2" to obtain
the probability vector for Huffman encoding, which has linear
complexity for ordered probability masses. This entails a worst
case complexity of O(2"), as k < 2™. For each partition, one
also computes distortion, requiring one table lookup for each
subset, which is also O(2") as above and the evaluation of

distortion between two sequences of length n has a complexity
of O(n). Thus, using the approximation P(N) = cjvﬁ [16],

%—n))

and setting N = 2", generation of partitions is 0(2(2

As a result, the complexi}y of lower bound comp}}tation with

delay 7 is at most O(2(2? =™ x 2" x n) = O(222).n). Also,

the lower convex envelop of |J .AZ provides a lower bound
1<n<l

on the R-D function upto delay /, and its complexity is at most

0(12222)),

C. Upper bound

Turning to upper bound, notice that we need the lower
convex envelop of a set of achievable (R, D) pairs. Of course,
we have seen that irrespective of n, (R,D) = (1,0) and
(0,0.5) are both trivially achievable. To obtain a meaningful
upper bound, we require an achievable point that depends on
n, and lies below the line joining the above two points.

Theorem 4.3: The pair (R,D) = (1 257(2"71)) is
achievable with delay n.
Proof: First consider odd n, and collect all sequences of

hamming weight less than or equal to 25! into subset Gj.
Referring to the proof of Lemma 4.1, G; has the form of
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Fig. 3: Bounds on finite-delay R-D function.

G”, and achieves minimum distortion §™(2"~'). Similarly,
the subset Gy = X™ \ (i1, consisting of all sequences with
weight greater than or equal to ”TH, also achieves distortion
dm(2"~1). Further, G; and G5 are equally likely, i.e., lead to
probability vector (3, 3), which needs one bit for Huffman
coding. Thus one achieves a per-symbol rate of R = %, and
distortion D = 26™(2"~1), as stated. For even n, populate Gy
with all sequences with hamming weight upto % — 1 and half
of those with weight equal to %, and construct G5 as before.
As earlier, this construction demonstrates the achievability of
the said (R, D) pair. O

Now define AY = {(1,0),(0,0.5),(L,25™(2""1))}.
Clearly, the R-D function with delay n is upper bounded by
the lower convex envelop of Aﬁ{ . With some effort, one can

obtain the closed-form expression

11— L1 (m2)), nodd
gy = { 30 mm () ©)
71— ﬁ(ﬂ)), n even.

2

Since all functions involved are known to be O(n), so is
the complexity of the present upper bound. Further, the R-
D function upto delay [ is upper bounded by the lower convex
envelop of |J AY, whose complexity is at most O(I2).
1<n<li
To help comparative appreciation of complexities involved in
computing finite-delay R — D functions and the proposed
lower and upper bounds, we provide the required number
of operations upto a multiplicative factor in Table II. Direct
computation is impractical beyond delays greater than three,
while lower bounds can be computed till delays upto six. Next
we turn to comparing the effectiveness of the proposed bounds.

Exact RD function [ Lower bound [ Upper bound
delay
m =m <m =m <m =m <m
1 32 32 4 4 1 1
2 32768 32800 40 44 2 3
3 2.5770E+10 2.5770E+10 528 572 3 6
4 3.0223E+23 3.0223E+23 14784 15356 4 10
5 2.3945E+53 2.3945E+53 1335840 1351196 5 15
6 6.1974E+121 6.1974E+121 6.66E+8 6.66E+8 6 21

TABLE II: Comparing number (upto a factor) of operations
required for computing finite-delay R-D functions and bounds.

V. SIMULATION RESULTS

The lower and upper bounds on R-D function with delay
n as well as upto delay n, n = 1,2, ..., 6, are plotted in Figure
3. As a reference we also plot Shannon’s (asymptotic) R-D
function R(D) = 1+ Dlog D + (1 — D)log(1 — D)). Note
that either bound for delay n is not monotone in n, as expected,
whereas each such bound upto delay n is monotone.

Next we plot both the lower and upper bounds upto delay
n on the same graph in Figure 4. Notice that both bounds
coincide for delays upto n < 1,2,3. While for n < 1,2,
both bounds are the same trivial straight line joining (0, 1) and
(0.5,0), we obtain a nontrivial function for n < 3. Of course,
as both bounds coincide, the resulting function is the exact R-
D function, which we also verify by exhaustive enumeration.
For n < 4,5,6 the bounds do not coincide, and the gap
between the bounds increase with n, which appeals to intuition.
However, as shown in Table II, it is impractical to evaluate the
exact R-D function for these n’s.

Clearly, computation of even the lower bound for larger n
becomes prohibitively expensive. A lower bound, ideally with



0.25 03 035 04 0.45 05
Distortion

(@n<1,23.

-A- Upper Bound n<4
0.8 : ~—Lower Bound n:
—— Shannon Limit

0.6 4

Rate

0.4 4

0.2F 4

I I I
02 025 03 035 04 045 05
Distortion

(b)y n < 4.

Upper Bound n:

0.8 Lower Bo

0.6F 4

Rate

0.4F 4

0.35 04 045 0.5

-4-Lower Bound n < 6|
-+ Upper Bound n < 6|
Limit

I I I I I I o
025 03 035 0.4 045 05
Distortion

(dn<6.

Fig. 4: Upper and lower bounds upto delay n.

polynomial complexity, is desirable. Further, as n increases,
the cumulative upper bound only adds extreme points to the
right of existing ones, while the corresponding lower bound
adds extreme points more uniformly. In other words, while
it remains unclear whethere the lower bound is asymptotically
tight, the upper bound is clearly not asymptotically tight. Thus,
while the low complexity of the upper bound is appealing, it
may not be useful as n grows.

VI. DISCUSSION

In this paper, we attempt at creating a framework for real-
time R-D theory that seamlessly extends Shannon’s asymptotic

framework. To gain insight we specialize to the symmetric
binary hamming problem, and propose lower and upper bounds
based on intuitive combinatorial results. We find that the exact
computation of the proposed R-D function is impractical.
Further, for large n, our lower bound is too complex, and our
upper bound too inaccurate to be of practical use. Accordingly,
in future, we require a lower-complexity lower as well as a
higher-accuracy upper bound. We believe that combinatorics
and algebraic coding theory would play an important role in
such analysis.
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