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Abstract

Dark matter is a motivation to search for physics beyond the Standard Model.In this project-report,We discuss

briefly about the Inert Scalar Triplet Model(ITM) to find out the possibility of stable Dark Matter candidate

stabilized by Z2 extension of the standard Model and the constraints of the constants in the Lagrangian.Here we

can establish the relationship between relic density of the dark matter in the present day universe and

the mass of the expected dark matter candidate from the scattering cross-section calculation.It gives rise

to the plot between the two quantities mentioned above and from there we can easily determine the possible mass

range according to the relic density range of the dark matter.
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Chapter 1

The Standard Model

1.1 Introduction

We present here a primer on the Standard Model of the electroweak interaction.The pioneer attempt to incorporate

the V-A structure in a gauge theory for the weak interactions was made by Bludman in 1958.This model, based

on the SU(2) weak isospin group, also required three vector bosons.American Theoretical physicist Glashow in

1961 noticed that in order to accommodate both weak and electromagnetic interactions we should go beyond the

SU(2) isospin structure.He suggested that the gauge group SU(2)⊗U(1), where the U(1) was associated to the

leptonic hypercharge (Y) that is related to the weak isospin (T) and the electric charge through the analogous of

the ”Gell-Mann-Nishijima formula” (Q = T3 + Y/2). The theory now requires four gauge bosons: a triplet

(W 1,W 2,W 3) associated to the generators of SU(2) and a neutral field (B) related to U(1).Here The charged weak

bosons appear as a linear combination of W 1 and W 2, while the massless photon and a neutral weak boson Z0 are

both given by a mixture of W 3 and B.In 1967,Weinberg and independently Salam in 1968, employed the idea of

spontaneous symmetry breaking and the Higgs mechanism to give mass to the weak bosons and, at the same time,

to preserve the gauge invariance in this theory.The Glashow–Weinberg–Salam model is known, at the present

time, as the Standard Model of Electroweak Interactions, reflecting its impressive success.

1.2 Right and Left Handed Fermions

Before the introduction of the Standard Model, let us make an interlude and discussion some properties of the

fermionic helicity states. At high energies (i.e. for E ≫ m), the Dirac spinors

u(p,s) and v(p, s) = CuT (p, s) = iγ2u
∗(p, s)

are the eigenstates of the γ5 matrix.

It is convenient to define the helicity projectors:

L = 1
2 (1− γ5) and R = 1

2 (1 + γ5)

For the conjugate spinors we have,

1



ΨL = (LΨ)†γ0 = Ψ
†L†γ0 = Ψ

†Rγ0 = ΨR

ΨR = ΨL

First of all, here we notice that fermion mass term mixes right and left handed fermion components,

ΨΨ = ΨRΨL +ΨLΨR

On the other hand, the electromagnetic current, does not mix those components, i.e.

Ψγµ
Ψ = ΨRγ

µ
ΨR +ΨLγ

µ
ΨL

Finally, the (V-A) fermionic weak current can be written in terms of the helicity states as,

ΨLγ
µ
ΨL = ΨRγµLΨ = ΨγµL2

Ψ = ΨγµLΨ = 1
2Ψγµ(1− γ5)Ψ

what shows that only left–handed fermions play a role in weak interactions.

1.3 Choosing the Gauge Group

We see that the weak current, for a generic lepton l, is given by,

J†
µ = lγµ(1− γ5)ν = 2lLγµνL

If we introduce the left–handed isospin doublet (T = 1/2),

R = lR, L =

(
νL

lL

)
(1.1)

where the T3 = +1/2 and T3 = −1/2 components are the left handed parts of the neutrino and of the charged

leptons respectively.

The charged weak current can be written in terms of leptonic isospin currents:

J i
µ = Lγµ

τ i

2 L

where τ i are the three well known Pauli Matrices.In an explicit form we get,

J1
µ = 1

2 (lLγµνL + νLγµlL)

J2
µ = i

2 (lLγµνL − νLγµlL)

J3
µ = 1

2 (νLγµνL + lLγµlL)

Therefore, the weak charged current, that couples with intermediate vector boson W †
µ , can be written in terms of

J1 and J2 as,

J†
µ == 2(J1

µ − iJ2
µ)

2



Hypercharge current:

JY
µ = −(νLγµνL + lLγµlL + 2lRγµlR)

Electromagnetic current:

Jem
µ = J3

µ +
1

2
JY
µ

For the Gauge Group SU(2)L ⊗ U(1)Y ,the next step is to introduce gauge fields corresponding to each generator,

that is,

SU(2)L → W 1
µ ,W

2
µ ,W

3
µ

U(1)Y → Bµ

Here the Lagrangian for the Gauge field becomes,

Lgauge = −1

4
W i

µνW
iµν − 1

4
BµνBµν

For the leptons, we write the free Lagrangian,

Lleptons = liðl + νiðν

The next step is to introduce the fermion-gauge boson coupling via the covariant derivative, i.e.

L ⇒ ∂µ + i g2τ
iW i

µ + i g′2 Y Bµ

R ⇒ ∂µ + i g′2 Y Bµ

Left handed part of the Lagrangian becomes,

LL
leptons = −gLγµ( τ

1

2 W 1
µ + τ2

2 W 2
µ)L− gLγµ τ3

2 LW 3
µ − g′

2 Y LγµLBµ

The first term is charged and can be written as

L
L(±)
leptons = − g

2
√
2
[νγµ(1− γ5)lW

+
µ + lγµ(1− γ5)νW

−
µ ]

reproduces exactly the (V-A) structure of the weak charged current.From here we can get the definition of charged

gauge bosons as,

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ)

From low-energy phenomenology we get that,GW =
g

2
√
2
and also we can conclude that

g

2
√
2
=

√
M2

W
GF√
2

Now let us treat the neutral piece of Lleptons that contains both left and right fermion components,

L
(L+R)(0)
leptons = −gJµ

3 W
3
µ − g′

2 J
µ
Y Bµ

3



In order to obtain the right combination of fields that couples to the electromagnetic current, let us make the

rotation in the neutral fields, defining the new fields A and Z by,

W 3
µ = sinθWAµ + cosθWZµ

Bµ = cosθWAµ − sinθWZµ

where θW is the ’Weinberg Angle’.

So,the relation between coupling constants and the Weinberg angle are given by ,

sinθW =
g′√

g2 + g′2
cosθW =

g√
g2 + g′2

We easily identify the electromagnetic current coupled to the photon field Aµ and the electromagnetic charge as,

e = gsinθW = g′cosθW

The Standard Model introduces a new ingredient, weak interactions without change of charge, and make a specific

prediction for the vector (V) and axial (A)-couplings of the Z to the fermions,

giV = T i
3 − 2Qisin

2θW and giA = T i
3

Up to now we have in the theory:

•4 massless gauge fields i.e, W i
µ, Bµ

•2 massless fermions i.e,ν,l

1.4 The Higgs Mechanism and W and Z mass

In order to apply the Higgs mechanism to give mass to W± and Z0, let us introduce the scalar doublet as

Φ =

(
φ+

φ0

)
(1.2)

We introduce the Lagrangian here

Lscalar = ∂µΦ
†∂µ

Φ− V (Φ†
Φ) (1.3)

where

V (Φ†
Φ) = µ2

Φ
†
Φ+ λ(Φ†

Φ)2

In order to maintain the Gauge invariance we can get the new covariant derivative here,

∂µ → Dµ = ∂µ + ig τ i

2 W
i
µ + i g′2 Y Bµ

4



We can choose the vacuum expectation value of the Higgs field as,

< Φ >0=




0
v√
2


 (1.4)

where

v =

√
−µ2

λ

Since we want to preserve the exact electromagnetic symmetry to maintain the electric charged conserved, we

must break the original symmetry group as,

SU(2)L ⊗ U(1)Y → U(1)em

In this case the corresponding gauge boson, the photon, will remain massless,here the operator Q annihilates the

vacuum,i.e, Q < Φ >0= 0

The other gauge bosons, corresponding to the broken generators T1, T2, and (T3−Y/2) = 2T3−Q should acquire

mass.

Φ = exp(i
τ i

2

χi

v
)




0
v +H√

2


 (1.5)

or,

Φ =




iw+

v +H − iz0√
2


 (1.6)

where w± and z0 are the Goldstone bosons.The quadratic terms in the vector fields, are,

g2v2

4
W+

µ W−µ +
g2v2

8cos2θW
ZµZµ

When compared with the usual mass terms for a charged and neutral vector bosons,

M2
WW+

µ W−µ + 1
2M

2
ZZµZ

µ

5



So we can easily identify,

MW =
gv

2
and MZ =

gv

2cosθW

We can see from that no quadratic term in Aµ appears, and therefore, the photon remains massless, as we could ex-

pect since the U(1)em remains as a symmetry of the theory.We obtain for the vacuum expectation value v = 246GeV

and the mass of the W and Z bosons as MW ∼ 80GeV and MZ ∼ 90GeV .We assumed a experimental value for

sin2θW ∼ 0.22.We can learn from that one scalar boson, out of the four degrees of freedom, is remnant of the

symmetry breaking. The search for the so called Higgs boson, remains as one of the major challenges of the

experimental high energy physics.It gives rise to terms involving exclusively the scalar field H, namely,

− 1
2 (−2µ2)H2 + 1

4µ
2v2(

4

v3
H3 +

H4

v4
− 1)

We can also identify the Higgs boson mass term with MH =
√

−2µ2

In spite of predicting the existence of the Higgs boson, the Standard Model does not give a hint on the value of

its mass since µ2 is a priori unknown.

1.5 Introducing the quarks

In order to introduce the strong interacting particles in the Standard Model we shall first examine what happens

with the hadronic neutral current when the Cabibbo angle is taken into account.

JH
µ (0) = uγµ(1− γ5)u+ cos2θCdγµ(1− γ5)d+ sin2θCsγµ(1− γ5)s+ cosθCsinθC [dγµ(1− γ5)s+ sγµ(1− γ5)d]

We should notice that the last term generates flavor changing neutral currents (FCNC), i.e. transitions like

d + s ↔ d + s In 1970, Glashow, Iliopoulos, and Maiani proposed the GIM mechanism.They consider a fourth

quark flavor, the charm (c), already introduced by Bjorken and Glashow in 1963.Therefore, the charged weak cou-

plings quark-gauge bosons, is given by,

L±
quarks =

g

2
√
2
[uγµ(1− γ5)d′+ cγµ(1− γ5)s′]W+

µ + h.c

The neutral current interaction of the quarks become,

L
(0)
quarks = − g

2cosθW
ΣΨqγ

µ(gqV − gqAγ5)ΨqZµ

6



1.6 The Standard Model Lagrangian

1.6.1 Gauge-boson+Scalar

Lgauge + LScalar = −1

4
FµνF

µν

− 1

2
W+

µνW
−µν+

+M2
WW+

µ W−µ − 1

4
ZµνZ

µν

+M2
ZZµZ

µ +
1

2
∂µH∂µH − 1

2
M2

HH2

+W+W−A+W+W−Z +W+W−AA+W+W−ZZ +W+W−AZ

+W+W−W+W− +HHH +HHHH +W+W−H +W+W−HH + ZZH + ZZHH

1.6.2 Leptons+Yukawa

Lleptons + Ll
yuk = Σll(ið−ml)l

+ Σνl
νl(ið)νl + llA

+ νllW
+ + lνlW

− + llZ

+ νlνlZ + llH

1.6.3 Quarks+Yukawa

Lquarks + Lq
yuk = Σqq(ið−mq)q

+ qqA+ ud′W+ + d′uW−

+ qqZ + qqZ

1.7 Beyond Standard Model

1.7.1 Links with Physics Beyond the Standard Model

In the present day universe,according to Planck’s recent paper,we can say the universe is constituted by only 4

percent of real matter.But within the remaining part,there is about 26 percent matter which accounts to dark

matter which cannot be explained by Standard Model. So,it is necessary to study the physics beyond the standard

model.

From recent Planck paper,we can conclude that,

1.7.2 Evidence of Dark Matter

The Galactic Scale

The most convincing and direct evidence for dark matter on galactic scales comes from the observations of the

rotation curves of galaxies, namely the graph of circular velocities of stars and gas as a function of their distance

7



Figure 1.1: The abundance of dark matter in present universe

from the galactic center.

Rotation curves are usually obtained by combining observations of the 21cm line with optical surface photome-

try. Observed rotation curves usually exhibit a characteristic flat behavior at large distances, i.e. out towards, and

even far beyond, the edge of the visible disks.

In Newtonian dynamics the circular velocity is expected to be,

v(r) =

√
GM(r)

r

where, as usual,M(r) = 4π
∫
ρ(r)r2dr and and ρ(r) is the mass density profile, and should be falling ∝ 1√

r
beyond

the optical disc. The fact that v(r) is approximately constant implies the existence of an halo with M(r)∝r and

ρ ∝ 1
r2
.

Among the most interesting objects, from the point of view of the observation of rotation curves, are the so-called

Low Surface Brightness (LSB) galaxies, which are probably everywhere dark matter-dominated, with the observed

stellar populations making only a small contribution to rotation curves. Such a property is extremely important

because it allows one to avoid the difficulties associated with the deprojection and disentanglement of the dark and

visible contributions to the rotation curves.

8



Figure 1.2: Rotation curve of the typical spiral galaxy M 33 (yellow and blue points with errorbars) and the predicted
one from distribution of the visible matter (white line). The discrepancy between the two curves is accounted for
by adding a dark matter halo surrounding the galaxy

Figure 1.3: Here’s the rotation curve which comes from the Doppler shift measurements of the 21.1 cm line

9



Chapter 2

Introduction to cosmology and

Equilibrium thermodynamics in the

expanding universe

2.1 Introduction

In this chapter,at first we discuss about some basic introduction to the Cosmology and then we discuss about the

thermodynamics in the early universe.Hot Big-BangModel or the Friedmann-Robertson-Walker Cosmological

Model is the most discussed Model about the structure of the Present Universe.The model is becoming so successful

that it is known as the ”The Standard Cosmological Model”.

2.2 Introduction to Cosmology

2.2.1 Robertson-Walker Metric

The distribution of matter and radiation in the observable universe is homogeneous and isotropic. The universe

is spatially homogeneous and isotropic on scales as large as the Hubble Volume.This is known as the ”Cosmological

Principle”. Here we can introduce the maximally symmetric Robertson-Walker metric,

ds2 = dt2 −R2(t){
dr2

1− kr2
+ r2dθ2 + r2sin2θdφ2} (2.1)

Here k can be taken as +1,-1 and 0 for the surfaces with constant positive,negative and zero spatial curva-

ture,respectively.The spatial part of the metric is denoted by,

−→
dl2 = hijdx

idxj

Here,three-dimensional tensorial notations can be treated as,

Riemann tensor: 3Rijkl
=

k

R2(t)
(hikhjl − hilhkj)

Ricci tensor: 3Rij
=

2k

R2(t)
hij

Ricci scalar: 3R =
6k

R2(t)
Although general relativity allows one to formulate the laws of physics using arbitrary coordinates, some coordinate

10



choices are more natural (easier to work with). Comoving coordinates are an example of such a natural coordinate

choice. They assign constant spatial coordinate values to observers who perceive the universe as isotropic. Such

observers are called ”Comoving” observers because they move along with the Hubble flow.

Particle Kinematics

|−→v0 | = |−→v1 |
R(t1)

R(t0)

Kinematics of the RW Metric can be written as,

λ1

λ0
=

R(t1)

R(t0)

From the CMB radiation and the equation above we can conclude that the ”Universe is Expanding”

Red shift: 1 + z =
λ0

λ1

Hubble’s Constant: H0 =
1

R(t0)

dR(t0)

dt

Deceleration constant: q0 = − 1

RH2
0

d2R

dt2

Hubble’s Law: H0dL = z + 1
2 (1− q0)z

2 + · · ·

Galaxy count-Red Shift Relation:
1

z2
dNgal

dzdΩ
= (H0R0)

−3nc(z)[1− 2(q0 + 1)z + · · · ]

Angular diameter-Red Shift Relation: H0dA = z − 1

2
(3 + q0)z

2 + · · ·

2.2.2 Standard Cosmology

In the Standard cosmology,the well-known Einstein equation from the General Theory of Relativity is,

Rµν − 1

2
Rgµν = Gµν = 8πGTµν + Λgµν (2.2)

where Gµν is the Einstein tensor,Tµν is the Field-Energy tensor for all the fields present and Λ is the cosmological

constant.

Einstein-Hilbert Action: SE−H = − 1

16πG

∫
d4x

√−g(R+ 2Λ)

Matter Action: SM =
∑

fields

∫
d4x

√−gLfields

The relation between energy density and R can be summarized as,

For a simple equation of state,p = wρ,so then if we consider w is independent of time,then

ρ ∝ R−3(1+w)

RADIATION ⇒ (p =
1

3
ρ), thenρ ∝ R−4 (2.3)

MATTER ⇒ (p = 0), thenρ ∝ R−3 (2.4)

V ACUUMENERGY ⇒ (p = −ρ), thenρ = const. (2.5)

From the zeroth component of the tensorial quantities,we can get the Friedmann equation,as

1

R2
(
dR

dt
)2 +

k

R2
=

8πG

3
ρ

Recasting Friedmann equation,

k

H2R2
= Ω− 1

11



where,Ω =
ρ

ρc
and ρc =

3H2

8πG

Expansion Age of The Universe

(
1

R0

dR

dt
)2 +

k

R2
0

=
8πG

3
ρ0

R0

R
(2.6)

(
1

R0

dR

dt
)2 +

k

R2
0

=
8πG

3
ρ0(

R0

R
)2 (2.7)

2.3 Equilibrium Thermodynamics

Today the radiation,or relativistic particles,in the universe is comprised of the 2.75K microwave photons,and the 3

cosmic seas of 1.96K relic neutrinos.

Numberdensity, n =
g

(2π)3

∫
f(−→p )d3p (2.8)

Energydensity, ρ =
g

(2π)3

∫
f(−→p )E(−→p )d3p (2.9)

Pressure, p =
g

(2π)3

∫
f(−→p )

(|−→p |)2

3E
d3p (2.10)

where,f(−→p ) = [exp(
E − µ

T
)± 1]−1 is the familiar Fermi-Dirac and Bose-Einstein distribution function.

In the relativistic limit,i.e,T ≫ m,

ρ =
π2

30
gT 4(forBosons) and ρ =

7

8

π2

30
gT 4(forFermions)

n =
ς(3)

π2
gT 3(forBosons) and n =

3

4

ς(3)

π2
gT 3(forFermions)

p =
ρ

3
For degenerate Fermions,

ρ =
1

8π2
gµ4

n =
1

6π2
gµ3

p =
1

24π2
gµ4

For relativistic Bosons or fermions for which |µ| ≪ T

n = exp(
µ

T
)
g

π2
T 3

ρ = exp(
µ

T
)
3g

π2
T 4

n = exp(
µ

T
)
g

π2
T 4

In non-relativistic limit,i.e,m ≫ T

n = g(
mT

2π
)

3

2 exp[−m− µ

T
]

ρ = mn

p = nT ≪ ρ

12



If the reaction particle+ antiparticle ↔ γ + γ are occuring rapidly then the net fermion number will be,

n+ − n− =
gT 3

6π2
[π2(

µ

T
) + (

µ

T
)3](forT ≫ m) and

n+ − n− = 2g(
mT

2π
)

3

2 sinh(
µ

T
)exp(− µ

T
)(forT ≪ m)

The total energy density and pressure of all species in thermal equilibrium is,

ρR = T 4
∑

i=allspecies(
Ti

T
)4

gi
2π2

∫∞
xi

(u2 − x2
i )

1

2u2du

exp(u− yi)± 1

pR = T 4
∑

i=allspecies(
Ti

T
)4

gi
6π2

∫∞
xi

(u2 − x2
i )

3

2 du

exp(u− yi)± 1

where xi =
mi

T
and yi =

µi

T
For relativistic species,

ρR =
π2

30
g∗T

4

and

pR =
π2

90
g∗T

4

where g∗ = total no of effective massless degrees of freedom =
∑

i=bosons gi(
Ti

T
)4 +

7

8

∑
i=fermions gi(

Ti

T
)4

During the early radiation-dominated epoch,

H = 1.66g
1

2

∗
T 2

mpl

and

t = 0.301g
− 1

2

∗
mpl

T 2

Figure 2.1: The evolution of g∗(T ) as a function of temperature in the SU(3)C ⊗ SU(2)L ⊗ U(1)Y
3
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2.3.1 Entropy

In thermal equilibrium,the entropy per comoving volume,S,is constant i.e,d{
(ρ+ p)V

T
} = 0

where we want to introduce a new quantity,entropy density

s =
S

V

The entropy density is dominated by the relativistic particles,so to a good approximation,we get,

s =
2π2

45
g∗sT

3

where,g∗s = g∗ ∗ (
T

Ti

)

Conservation of entropy implies that,s ∝ R−3,Number of some species in comoving volume is equal to number

density divided by the entropy density = N = R3n =
n

s
In thermal equilibrium,we can get

N =
45ς(3)g

2π4g∗s
for T ≫ m,µ

N =
45g

4
√
2π5g∗s

(
m

T
)

3

2 exp(−m

T
+

µ

T
) for T ≪ m

Temperature of universe evolves as

T ∝ g
− 1

3

∗s R−1

Distribution function for a massless particle species remains self-similar as the universe expands,with the tempera-

ture red-shifting as,

T = TD

RD

R
∝ R−1

Distribution function for a massive particle species remains self-similar as the universe expands,with the temperature

red-shifting as,

T = TD(
RD

R
)2 ∝ R−2

Again some important facts are there as,
T

Tν

= (
11

4
)

1

3 = 1.40 (today)

Again for today’s universe we get that, g∗ = 3.36 and g∗s = 3.91

Not only that,the other physical quantities are, ρR = 8.09 ∗ 10−34 g cm−3,ΩRh
2 = 4.31 ∗ 10−5,s ≃ 2970cm−3 and

nγ = 422cm−3

2.4 Thermodynamics in The Expanding Universe

2.4.1 The Boltzmann Equation

To a good approximation,we can say that the most of the ingredients of the early universe are in thermal equilib-

rium.But,some notable departures from the equilibrium conditions i.e,neutrino decoupling,decoupling of background

radiation,Primordial nucleosynthesis,inflation,baryogenesis,Decoupling of relic WIMPs etc.

The criterion of any species to be coupled or decoupled involves the comparison of the interaction rate of the

particle Γ and the expansion rate of the Universe H i.e,

14



Γ ≥ H (coupled)

Γ ≤ H (decoupled)

Boltzmann equation can be written as

L̂[f ] = C[f ]

where L̂ is the Liouville operator,C is the collision operator.

The Liouville operator in non-relativistic form is,L̂NR =
d

dt
+−→v .

−→
▽ x +

−→
F

m
.
−→
▽ v The covariant,relativistic gener-

alisation of the Liouville operator is

L̂ = pα
∂

∂xα

− Γ
α
βγp

βpγ
∂

∂pα

At last Boltzmann-equation can be written as in the form,

dn

dt
+

3n

R

dR

dt
=

g

(2π)3

∫
C[f ]

d3p

E
(2.11)

The collision term of the process,ψ + a+ b+ · · · · · · ↔ i+ j + · · · · · · we get that,

g

(2π)3

∫
C[f ]

d3pψ
Eψ

= −
∫

dπψdπadπb · · · dπidπj · · · (2π)
4δ4(Pψ + Pa + Pb · · ·− Pi − Pj − · · · )

[(|M |)2ψ+a+b···→i+j+···fafb · · · · · · fψ(1± fi)(1± fj) · · ·

− (|M |)2i+j+···→ψ+a+b+···fifj · · · · · · (1± fa)(1± fb) · · · (1± fψ)]

where fi is the phase-space densities of the i-th species and dπ =
g

(2π)3
d3p

2E
There are two well-motivated approximations,i.e,one is T or CP invariance of the (|M |)2 term and the second

assumption is the use of Maxwell-Boltzmann Statistics instead of Fermi-Dirac or Bose-Einstein Statistics.So we can

write the Bolzmann equation in more familiar form as,

dnψ

dt
+ 3Hnψ = −

∫
dπψdπa · · · dπidπj · · · (2π)

4(|M |)2δ4(Pi + Pj · · ·− Pψ − Pa − · · · )[fafb · · ·− fifj · · · ] (2.12)

If we define the relic abundance as Y =
nψ

s
,then we can write the Boltzmann-equation as,

dnψ

dt
+ 3Hnψ = s

dY

dt
(2.13)

Introducing the independent variable,x =
m

T
which we can call as relativistic-non-relativistic measure.

2.4.2 Freeze Out:Origin of Species

If we want the creation and annihilation process in the equation,ψψ ↔ XX

dY

dx
=

−x〈σψψ↔XX |v|〉s
H(m)

(Y 2 − Y 2
EQ) (2.14)

So,here thermally averaged cross-section times velocity is actually,

〈σψψ↔XX |v|〉 = (nEQ
ψ )−2

∫
dπψdπψdπXdπX(2π)4δ4(Pψ + Pψ − PX − PX)(|M |)2exp(−Eψ

T
)exp(−

Eψ

T
) (2.15)
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According to relativistic and non-relativistic regime,we can get two different relics there,

Hot Relics

In this case freeze-out occurs when the species is still relativistic(xf ≤ 3) and the YEQ is not changing with time.As

the YEQ is constant with time,so the final value of Y is very much insensitive to the details of freeze-out.The equi-

librium value of freeze-out is given by,

Y∞ = YEQ(xf ) = 0.278
geff

g∗s(xf )

The abundance of ψ’s today is nψ0 = 2970Y∞cm−3 Again,from here we get that,ρψ0 = 2.97 ∗ 103Y∞(
m

eV
) eV cm−3

and

Ωψh
2 = 7.83 ∗ 10−2[

geff
g∗s(xf )

](
m

eV
)

From here we can get that,mν ≤ 91.5 eV,so this cosmological bound for the stable,light neutrino species is often

referred as Cowsik-McClelland bound.

Examples of hot relic species include light photino and light gravitino etc.

Cold Relics

It is the more difficult case than the previous one,here freeze-out occurs when the particle species becomes non-

relativistic(xf ≥ 3) and YEQ is decreasing exponentially with x.Here the Boltzmann-equation becomes,

dY

dx
= −λx−n−2(Y 2 − Y 2

EQ)

where,

λ = 0.264(
g∗s

g
1

2

∗

)mplmσ0

YEQ = 0.145(
g

g∗s
)x

3

2 e−x

From here,after solving the integration perfectly,we can find that,

xf = ln[0.038(n+ 1)(
g

g
1

2

∗

)mplmσ0]− (n+
1

2
)lnln[0.038(n+ 1)(

g

g
1

2

∗

)mplmσ0] (2.16)

Y∞ =
3.79(n+ 1)xn+1

f

(
g∗s

g
1

2

∗

)mplmσ0

(2.17)

Ωψh
2 = 1.07 ∗ 109

(n+ 1)xn+1
f GeV −1

(
g∗s

g
1

2

∗

)mplσ0

(2.18)

I use these three equations 16,17,18 for the calculation of the project of mine which is discussed in the next chapter.

From there,we can calculate that,mν ≥ 2GeV,It is known as Lee-Weinberg Bound.
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Chapter 3

ITM for the Scalar Dark Matter

3.1 Introduction

There are strong evidences for the non-baryonic Dark Matter which according to Planck satellite constitute more

than 0.26 of energy density in the universe.WIMP’s as a relic remnants of the early universe are the most plausible

candidates for the Dark Matter.Since the Standard Model cannot explain Dark Matter evidences,there is a strong

motivation to extend Standard Model in a way to provide suitable Dark matter candidate.Singlet scalar or Fermion

fields are preferred as simple candidates of Dark Matter.So,here one of the simplest models for a scalar dark matter

is ITM(Inert Triplet Model).In this model,a scalar SU(2)L triplet is odd under Z2 symmetry so that they can

directly couple to the SM particles and the neutral components of the triplets play role of Dark Matter.

After a few decades of expectations,the LHC has found a Standard Model like Higgs Particle with a mass of

125 GeV.Since the Higgs boson can participate in DM-nucleon scattering and DM annihilation,current analysis of

the LHC data and measurements of its decay rates would set limit on any beyond SM that provides a DM candidate.

In this chapter,I shall review Inert Triplet Model (ITM) which provide candidate for Dark Matter particles and

so on.

In this project we discuss about the Inert Scalar Triplet Model to explain the possible Dark Matter candidate

stabilized by Z2 extension of the Standard Model with the constraints of the constants.Here we determine the range

of possible mass in the suitable range of the current relic density of the dark matter in the present universe.

To determine the range of the mass in this model,we can proceed in this following way,which is followed by some

steps discussed below,

1.At first,we determine some dark-matter particle self annihilation processes from the Lagrangian depicted in

this model.

2.Then,we determine the cross-section of the all possible processes,and then sum them all up to determine the

total cross-section of the all scattering processes.

3.Then,from there we can get the relic density of the dark matter particle using the 16,17,18 equations discussed

in the last chapter.
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4.from there,we can get the relation between the relic density and the mass of the Dark Matter particle

species,then after matching the relic density range,we can determine the mass range of the possible dark mat-

ter species.

3.2 About the model

In ITM,the matter content of SM is extended with a SU(2)L triplet scalar with the hypercharge Y = 0 or

Y = 2.These additional fields are odd under Z2 symmetry condition while all the SM fields own even eigen-

values.The Z2 symmetry is not spontaneously broken since the triplet does not develop a vacuum expectation

value.The triplet T for Y = 0 has V EV = 0 and the SM Higgs doublet H and the triplet T scalars are defined as,

T =




1√
2
T 0 −T+

−T− − 1√
2
T 0


 (3.1)

〈H〉 = 1√
2

(
0

v

)
(3.2)

where v = 246GeV .

The relevant Lagrangian which is allowed by Z2 symmetry can be given by:

L = |DµH|2 + tr|DµT |
2 − V (H,T ) (3.3)

and

V (H,T ) = m2|H|2 +M2tr[T 2] + λ1|H|4 + λ2(tr[T
2])2 + λ3|H|2tr[T 2] (3.4)

In this case Y = 0,ITM has three new parameters compared to the Standard Model.We require that Higgs

potential is bounded from the below,which leads to the following conditions on the parameters of the potential:

λ1,λ2 ≥ 0, (λ1λ2)
1

2 − 1

2
|λ3| > 0 (3.5)

The conditions for the local minimum are satisfied if and only if m2 < 0,v2 = −m2

2λ1
and 2M2 + λ3v

2 > 0.The

masses of triplet scalars can be written as,

mT 0 = mT± =

√
M2 +

1

2
λ3v2 (3.6)

Here,we can note that at the tree level,masses of neutral and charged components are the same,but at the loop

level the T± are slightly heavier than T 0.The scalar and gauge interactions of ITM have been extracted in terms

in terms of real fields.In case Y = 0,the Z2 symmetry ensures that the T 0 can decay to SM fermions and can be

considered as cold DM candidate.

In case Y = 2 the SU(2)L triplet can be parametrized with the five new parameters.But it is excluded in my

project.The ITM with Y = 2 is already excluded by the limits from direct detection experiments.So,there won’t be

any use to study the case in this regard.
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Here,in the Relic density calculation I can say that,the relic density of DM is well measured by WMAP and

Plancks’s experiments and the current value is :

ΩDMh2 = 0.1199± 0.0027

where I am using the value,

h = 0.67± 0.012

It is the scaled current Hubble parameter in units of 100km/s.Mpc.In,the following,i am using this value as

upper bound on the contribution of ITM in production of DM.

3.3 From the Lagrangian

From the Lagrangian,we can get,

m2|H|2 = m2H+H (3.7)

M2tr[T 2] = M2[2[T+]2 + (T 0)2] (3.8)

λ1|H|4 = λ1(H
+)2H2 (3.9)

λ2(tr[T
2])2 = λ2[2[T

+]2 + (T 0)2]2 (3.10)

λ3|H|2tr[T 2] = λ3(H
+H)[2[T+]2 + (T 0)2] (3.11)

Not only that,we can define the terms as,

Dµ = ∂µ − ig[W a
µ

σa

2
]− ig′Y

2
Bµ (3.12)

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ) (3.13)

Zµ = cWW 3
µ − sWBµ (3.14)

Aµ = sWW 3
µ + cWBµ (3.15)

After a big calculation on the tr |DµT |
2 in the Lagrangian using the upper-mentioned definitions we can get the

final expression as,

tr(|DµT |)
2 = (∂µT0)

2 − g′2
4
(cWZµ + sWAµ)

2T 2
0 − g2

4
(cWZµ − sWAµ)

2T 2
0 − g2

4
(W+

µ )2T 2
0 − g2

4
(W−

µ )2T 2
0 (3.16)
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Here,we can say that from the all terms with the T 0 − T 0 self-interactions,the possible scattering processes are

2-four point gauge interactions as T 0T 0 go to ZµZν and T 0T 0 go to W+
µ W+

µ as well as two scattering processes as

T 0T 0 go to standard model fermion-antifermion pair via Z-boson and Higgs exchange.

3.4 Possible Feynman Diagrams

Figure 3.1: Possible Feynman Diagrams

3.5 Calculation of the Scattering cross-sections

3.5.1 Some important formulae to calculate cross-section

Here for the determination of scattering-cross-section we can get,

dσ =
1

2EA2EB |vA − vB |
(Πf

d3Pf

(2π)3
1

2Ef

)|M |2(2π)4δ4(PA + PB − ΣPf ) (3.17)

∫
dπa = (Πf

d3Pf

(2π)3
1

2Ef

)(2π)4δ4(P − ΣPf ) (3.18)

For the special case of two particles in the final state,we can simplify the expression by partially evaluating the

phase-space integrals in the C.M frame,

∫
dπ2 =

∫
dP1P

2
1 dΩ

(2π)32E12E2
(2π)δ(Ecm − E1 − E2) =

∫
dΩ

1

16π2

|P1|

Ecm

(3.19)

For reactions symmetric about the collision axis,

∫
dπ2 =

∫
d(cosθ)

1

16π

2|P1|

Ecm

(3.20)
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At last,we can say,the differential cross-section becomes,

(
dσ

dΩ
)CM =

1

2EA2EB |vA − vB |

|P1|

(2π)24Ecm

|M |2 (3.21)

and here,

|P1| =
EA + EB

2
(1−

m2
f1

+m2
f2

(EA + EB)2
) (3.22)

Then,by integrating over the angular variables θ and φ we can get the required scattering cross-section.

3.5.2 T 0T 0 ↔ f + f via Z-boson exchange ⇒

iM = {g
cos2θW
2cosθW

(PA − PB)
µ}{

−igµν
k2 −M2

Z

}[u
ig

cosθW
γν(gfV − gfAγ5)v] (3.23)

then,

|M |
2
=

g4cos22θW
4cos4θW

(PA − PB)
µ(PA − PB)

ρ{
−igµν

k2 −M2
Z

−igρσ
k2 −M2

Z

}(uγν(gfV − gfAγ5)v)(uγ
σ(gfV − gfAγ5)v)

+ (3.24)

From there we can get,with the help of trace calculation,in the non-relativistic limit,

〈σ|v|〉 = 3g4cos22θW
32π2cos4θWxf

(gfV )
2 + (gfA)

2

(4M2
DM −M2

Z)
2
(M2

f −M2
DM )(1−

M2
f

2M2
DM

)
1

2 (3.25)

here,we can consider fermion f as all the leptons i.e,electron,muon,tauon and their corresponding neutrinos as

well as all the quarks i.e,up,down,charm,strange,top and bottom quarks.

3.5.3 T 0T 0 ↔ f + f via Higgs exchange ⇒

iM = − i

2
g
M2

h

MW

{
i

P 2 −M2
h

}(−i
g

2

Mf

MW

) (3.26)

then,

|M |
2
=

1

16
g4

M4
hM

2
f

M4
W (P 2 −M2

h)
2

(3.27)

From there we can get,with the help of trace calculation,in the non-relativistic limit,

〈σ|v|〉 = 1

2048π2M3
DM

(4M2
DM − 2M2

f )
1

2 g4
M4

hM
2
f

M4
W (4M2

DM −M2
h)

2
(3.28)

3.5.4 T 0T 0 ↔ ZµZν
⇒

iM = {
i

2
(
gcos2θW
cosθW

)2gµν}ǫ
µǫ∗ν (3.29)
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then,

|M |
2
=

1

4
(
gcos2θW
cosθW

)4[16 + 8
k2

M2
W

+
k4

M4
W

] (3.30)

From there we can get,with the help of trace calculation,in the non-relativistic limit,

〈σ|v|〉 = 1

256
√
2π2M3

DM

(2M2
DM −M2

Z)

1

2 (
gcos2θW
cosθW

)4[16 + 8
k2

M2
W

+
k4

M4
W

] (3.31)

3.5.5 T 0T 0 ↔ W+
µ
W−

ν
⇒

iM = {
i

2
g2gµν}ǫ′µǫ∗ν (3.32)

then,

|M |
2
=

25

4
g4 (3.33)

From there we can get,with the help of trace calculation,in the non-relativistic limit,

〈σ|v|〉 = 25g4

512M3
DMπ2

(4M2
DM − 2M2

W )
1

2 (3.34)

Now,I can plot some graphs individually as well as combiningly,then we get some plots,which are given below.And

the significance of the plots are discussed in the ”Conclusion” part.
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Chapter 4

Results,Plots and Conclusions

4.1 Introduction

In this chapter,we summarize all the discussions and work done so far in this project about the calculation of the

correct mass range of the possible scalar dark matter according to the range of correct relic density of the dark

matter in the present day universe.Then,we discuss some modifications on the work done so that the work done so

far can be done more preciously and also discuss the significance of the plots given in the 3rd chapter under the

section ”Plots” coming from the gnuplot here.

4.2 Plots
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Figure 4.1: u-quark contribution

For the plots 1 to 10,we get the plots for the individual contribution of the fermions i.e,leptons and quarks.Here

actually we know that,from Standard Model we know that the masses of the fermions are ranging a lot.It can be

listed below,

Mu = 0.0024,Md = 0.0048,Ms = 0.104,Mc = 1.27,Mb = 4.2,Mt = 174.0,Melectron = 0.0005,Mmuon =

0.106,Mtauon = 1.8,Mνe
= 0.0,Mνµ

= 0.00017,Mντ
= 0.015

Here,all are expressed in the GeV unit.So,from there we also note that,from the two terms (1−
M2

f

2M2
DM

)
1

2 as well

as (4M2
DM − 2M2

f )
1

2 appearing in the cross-section calculation of the first two processes,so from there we get,for a

real decay process to be held the following condition must be satisfied by the Dark matter mass as well as Fermion

mass i.e,

MDM �
Mf√
2

So,we get that,all the fermion channels are not opened simultaneously.They are opened with respect to their

consecutive masses and after that sometime comes,when they are dominated by the greater mass fermions.These

type of behaviour we can see from the combined plots from 11 to 14 plots.

This is the plot of the total cross-section times the thermally-averaged relative velocity coming from the all

possible feynman diagrams vs the mass of the scalar dark matter setting logscale in the y-axis i.e,in the cross-

section axis.It is a very common curve showing the behaviour that,the cross-section is inversely proportional to the

relic density i.e, ΩDMh2
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Figure 4.2: d-quark contribution

There is a lot to say about these plots i.e,from 4.16 to 4.18.Actually the plot is plotted between the total relic

density of the Dark Matter in the present universe and the mass of the Dark matter.Here the first plot is plotted

with the y value ranging from 0.0001 to 1. And as the range of the relic density differs from the value from 0.1176

to 0.1226 so,I am choosing in the 2nd plot the y value ranging from 0.1 to 1 from the more clearer view.This is

the most important graph in my project work.
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Figure 4.3: c-quark contribution

So,from this figure we can easily say that,the mass range of the dark matter ranging from approximately 8220

GeV to 8420 GeV according to my possible feynman diagrams.

4.3 Future aspects

After the project completion,we want to say that some modifications should be made to get the better result in this

context.These are follows consequently,

1.we are using for the calculation of the Feynman amplitude as well as the scattering cross-section times the

thermally averaged relative velocity the notions of triple Higgs and goldstone interactions in stead of all the pure

scalar triplet and Higgs or Z-boson interaction.They are not the same,but we can use that so that they can produce

approximately the same answer.

2.Here we are also using values of the coupling constants from the standard table,if there is discrepancy from

the real value,then some modifications should be made for the better result.

3.Gnuplot cannot combine all the values for the programming with so many points,so if more efficient compiler

as well as plotting programme can be used then it is more efficient to determine the actual values of the mass range.
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Figure 4.4: s-quark contribution

Figure 4.5: t-quark contribution
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Figure 4.6: b-quark contribution

Figure 4.7: electron contribution
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Figure 4.8: muon contribution

Figure 4.9: tauon contribution
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Figure 4.10: tau-neutrino contribution

Figure 4.11: fermion contribution when x-range is taken 0 to 130 GeV
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Figure 4.12: fermion contribution when x-range is taken 0 to 10 GeV

Figure 4.13: fermion contribution when x-range is taken 0 to 2 GeV
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Figure 4.14: fermion contribution when x-range is taken 0 to 0.1 GeV

Figure 4.15: plot of total cross-section vs mass of dark matter
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Figure 4.16: plot of total relic density vs mass of dark matter

Figure 4.17: plot of total relic density vs mass of dark matter with the y range 0.1 to 1
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Figure 4.18: plot of total relic density vs mass of dark matter with the y range 0.1 to 1
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