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ABSTRACT

Keywords: multi-modal biometrics; fingerprints; iris; iris fibers; face; signature; de-

duplication; de-noising; support vector machines; principle component analysis; online

dictionary learning; slap fingerprint segmentation; iris classification; kernel transfor-

mation learning; cross-sensor fingerprint recognition.

The objective of this work is to explore approaches to create unique identities by

the de-duplication process using multi-modal biometrics. Various government sectors

in the world provide different services and welfare schemes for the benefit of the people

in the society using an identity number. A unique identity (UID) number assigned for

every person would obviate the need for a person to produce multiple documentary

proofs of his/her identity for availing any government/private services. In the process

of creating unique identity of a person, there is a possibility of duplicate identities as

the same person might want to get multiple identities in order to get extra benefits from

the Government. These duplicate identities can be eliminated by the de-duplication

process using multi-modal biometrics, namely, iris, fingerprint, face and signature.

De-duplication is the process of removing instances of multiple enrollments of the

same person using the person’s biometric data. As the number of people enrolled

into the biometric system runs into billions, the time complexity increases in the de-

duplication process. In this thesis, three different case studies are presented to address

the performance issues of de-duplication process in order to create unique identity of

a person.

In the first de-duplication case study, Government of Andhrapradesh undertook the

de-duplication of ration cards using 52 million people iris codes over 6.26 quadrillion iris

matches performed to remove duplicate enrollments in 61 days which is not a scalable

solution. In this thesis, we propose an approach for classification of iris images based



on sparse representation of Gabor features using dictionary learning for large-scale de-

duplication applications. Also, an iris adjudication process is illustrated by comparing

the matched iris-pair images side-by-side to make the decision on the identification

score using color coding. Iris classification and adjudication framework is proposed in

iris de-duplication architecture to speed-up the identification process and reduce the

identification errors.

In the second de-duplication application, Government of Orissa collected a total

of 1.8 million slap fingerprint images of 0.6 million citizens as part of targeted pub-

lic distribution system (TPDS) process. The slap fingerprint images had some noisy

data due to some external factors which affect the calibration process of the finger-

print device. While doing the segmentation of these slap fingerprints, some of the

fingerprint images are improperly segmented because of the noise present in the data

and as a result there is a reductionc in the performance of de-duplication process. A

de-noising approach is proposed to remove the noise present in the data using binariza-

tion of slap fingerprint image and region labeling of desired regions with 8-adjacency

neighborhood. A new algorithm is proposed using feature transformation learning in

kernel space in order to improve the accuracy of cross-sensor fingerprint matching.

The kernel learning uses the distance kernel matrix for optimization using similar and

dissimilar class constraints. These constraints reduces the sensor mismatch problem

when the matching is performed for cross-sensor in the transformed domain. Also,

a semi-automated latent fingerprint identification is proposed to markup fingerprint

landmarks manually using the image enhancement filters which will further improve

the identification performance.

In the third de-duplication scenario, Government of Andhrapradesh has issued

around 22 million ration cards in which there are few ration cards created in an unau-

thorized manner in order to mislead the benefits of beneficiaries. We propose a method

for de-duplication of face photographs based on color histograms. Also, the issue of

degraded face recognition with non-uniform illumination conditions is addressed in

face photograph de-duplication, especially in outdoor environment. A new method is

iv



proposed for face recognition to address the issue of non-uniform illumination using

convolutional neural networks (CNN). The symmetry of facial information is exploited

to improve the performance of the face recognition system by considering the horizontal

reflections of facial images.

Also, the thesis addresses some issues related with biometric data acquisition and

storage while creating a persons’ identity in the E-Society. The best practices for bio-

metric data acquisition and identity creation is presented using multi-modal biometrics

fingerprints, iris, face and signature. In order to store the signature biometric on a

smart card, a novel algorithm is proposed for reducing the size of data.

In summary, this thesis proposes new methods for the de-duplication of person’s

identity at various stages using multi-modal biometrics. In iris de-duplication process,

an approach for iris classification and iris adjudication process is proposed using on-line

dictionary learning. The methods explored in the fingerprint de-duplication process

are de-noising fingerprint images for accurate fingerprint segmentation, improvement in

the fingerprint matching performance using kernel transformation learning and a semi-

automated latent fingerprint identification system. In face/photograph de-duplication

process, an illumination invariant face recognition system is proposed using convolu-

tional neural networks (CNN). And also, an approach for photograph de-duplication

is proposed in targeted public distribution system. Finally, the thesis presents an

e-Society application in the context of multi-modal biometrics.
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CHAPTER 1

INTRODUCTION TO DE-DUPLICATION OF

BIOMETRICS

Government of India provides different services and welfare schemes for the benefit

of the people in the society. Some of these services include issuance of birth cer-

tificate, voter identity card, driving license, and passport etc. Also, welfare schemes

like targeted public distribution system (TPDS), national rural employment guarantee

system (NREGS), health insurance, old age pensions etc. for the economic and social

upliftment of the people. A unique identity (UID) number assigned for every citizen

would obviate the need for a person to produce multiple documentary proofs of his/her

identity for availing any Government service, or private services like opening of a bank

account. The unique identity (UID) number would remain a permanent identifier

right from birth to death of every citizen in the country. UID would enable Govern-

ment to ensure that benefits under various welfare programmes reach the intended

beneficiaries, prevent cornering of benefits by a few section of people and minimize

frauds. UIDs are also expected to be of help in law and order enforcement, effective

implementation of the public distribution system, define social welfare entitlements,

financial inclusion and improve overall efficiency of the government administration.

The biometrics play a key role in providing unique identity of a person. Recent survey

on biometrics market indicates that the funding for the Government biometric based

projects such as, national ID Program, biometric drivers license, biometric passports

& visas, is expected to be about 21.9 Billion US$ by 2020.
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Fig. 1.1: Multi-biometrics: Face, fingerprint, iris, retina, palmprint and hand geometry are
physiological characteristics. Gait and signature are some of the behavioral characteristics.

There are different biometrics such as iris, fingerprints, face, hand geometry, signa-

ture, voice patterns etc... which are being used by the industry all over the world for

an extensive array of highly secure identification and personal verification solutions.

Fig. 1.1 illustrates two different categories of biometrics. One category of biomet-

rics related to physiological characteristics which include face, fingerprint, iris, retina,
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palm-print and hand geometry. The other type of biometrics have the behavioral char-

acteristics which include gait and signature. Each biometric has their own advantages

and disadvantages which should be considered before designing/developing a biometric

recognition system.

1.1 BIOMETRIC RECOGNITION SYSTEM

Biometric recognition system can be used to accomplish either identification or verifi-

cation, and the selection and implementation of the technology and related procedures

are closely tied to this objective. In general, different processing steps involved in

biometric recognition system are explained in Fig. 1.2.

Fig. 1.2: Biometric recognition system.

1.1.1 Biometric identification

Biometric identification means the comparison of a test biomietric sample against a

database of previously enrolled biometric samples. It can be represented as the relation

1:many or 1:n comparisons.
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1.1.2 Biometric verification

Biometric verification means the validating a test biomietric sample against previously

enrolled biometric sample of the same individual. It can be represented as the relation

1:1 comparison. Almost all the biometric authentication systems use the biometric

verification.

1.1.3 De-duplication of biometrics

De-duplication is the process of removing instances of multiple enrollments of the

same person using the person’s biometric data. During de-duplication, matching the

biometrics of a person is done against the biometrics of other persons to ensure that

the same person is not enrolled more than once. This will ensure that each person

will have a unique identity. The de-duplication process can be both online as well as

offline, where the online de-duplication process is called as centralized de-duplication

and the offline process is called as de-centralized de-duplication.

1.2 MULTI-MODAL BIOMETRICS

Multimodal biometrics means combining two or more biometric modalities in the de-

velopment of a single biometric identification system. Biometric recognition systems

based solely on uni-modal biometrics which can not meet the desired biometric per-

formance requirements in large-scale biometric applications due to the problems such

as noisy biometric information, failure to enroll rate, spoof attacks, unacceptable error

rates and environmental conditions. These biometrics have their own advantages and

applications to which they are effective.

The main reason for adopting multi-modal biometric is to introduce certainty in

the biometric recognition process, minimal effort for de- duplication process, real time

identification and reduced spoof biometric spoof attacks.

Advantages of using multi-modal biometrics are:
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• Even though the cost of the enrollment process using multi-modal biometrics

increases about 5 - 10% marginally higher when compared with a single/dual

biometric enrollment, the total cost of the biometric solution using multi-modal

biometrics will be reduced significantly due to the reduced cost of de-duplication

during biometric enrollments.

• The failure to enroll (FTE) rate is high for single individual biometrics (due to

scars, aging or illegible in case of fingerprints).

The biometrics used in this thesis are explained briefly as follows:

1.2.1 Face

The face can be considered as the most convenient biometric to acquire without user

cooperation for recognizing the people. Face recognition [2] has gained much attention

from the research groups of pattern recognition and machine learning since the early

1990s. Face recognition is a difficult task due to the issues with illumination variance

which affects the identification rate. Facial recognition system can not distinguish

between identical twins. Facial recognition uses 9 geometric points for recognizing a

person with false acceptance rate of 1%.

1.2.2 Signature

Signature [3] is a behavioral biometric. It can be collected in two different ways.

First one is the off-line mode, where the users write their signature on paper and then

capture it using an optical scanner or camera. The other one is the on-line mode, where

the users write their signatures on digital signature tablets. Signature recognition has

a false accept rate of 1 in 5000.
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1.2.3 Fingerprint

A fingerprint consists of ridges and valleys on the surface of the finger. The unique-

ness of a fingerprint can be determined by the minutiae points. Minutiae points are

the local ridge features which are identified by a ridge bifurcation or a ridge ending.

Fingerprint is a physical biometric which is mainly used in forensic analysis as well

as civilian identification.Fingerprints play an important role in forensic analysis for

criminal identification using the clues collected from the crime scene. Fingerprint-

based identification has been known and used for a very long time. The fingerprint

impressions which are left on the articles by the offenders at the crime scene are called

as chance prints. There are three ways of forming the chance prints, namely, visible

prints, semi-visible prints and latent prints. The visible prints are the fingerprints

which are collected and covered with ink, blood, dust, paint, etc. Semi-visible prints,

also known as plastic prints are the fingerprints which are collected by applying some

pressure on the surface such as soap, wax, melted candle, etc. The latent prints are the

fingerprints which are collected by leaving the finger impressions formed with sweat

from fingers. The latent prints have the poor quality of ridge impressions and partial

fingerprint area. First two cases need no further development for analysis and identi-

fication of suspects as the ridge information is clear for identification, where as latent

fingerprints need developments and enhancements to identify the suspects. The ad-

vantages of fingerprints are cost effectiveness at the time of fingerprint authentication

systems which uses low cost fingerprint scanners.

1.2.4 Iris

The iris is an annular region between pupil and sclera. The sclera means the white

region which combines the tissue and blood vessels near iris. The pupil region is the

darker region which is located at the center of eye and its size depends on the specular

reflections. The iris consists of texture information like furrows, ridges, and pigment

spots. The iris biometric is stable in the lifetime of a person. The texture information
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of iris do not change with external environmental factors. Even the left eye of a person

is unique when compared to right eye of the same person. One of the most important

advantages of using iris as a biometric is the lower effort, lesser infrastructure required

for de-duplication.

Almost all of the currently deployed iris recognition systems use the data acquired

at near infra-red (NIR) wavelengths. These systems are believed to be more accurate

among all the existing biometric recognition systems. There have been recent efforts to

develop visible wavelength based iris recognition techniques in order to eliminate the

NIR radiation hazards and the limitations of existing iris recognition systems. In this

context, the iris pigmentation plays an important role while acquiring images under

visible wavelengths. The concentration of melanin pigment is more in dark colored iris

which can be acquired with greater texture details under near infra-red illumination.

The color of iris can be determined by considering the variable proportions of the two

molecules, namely, enumelanin (brown/black) and pheomelanin (red/yellow). The

appearance of dark colored iris is not very clear under visible illumination since it has

more enumelanin molecules which absorbs the visible illumination deeply. In order

to ensure enhanced texture details under visible wavelengths, the power of visible

illumination should be increased which can be uncomfortable to the users. Also, the

external environmental illumination can add more noise to the visible iris images in

terms of shadows, specular and diffuse reflections. These factors should be considered

before selecting an image acquisition setup especially under visible wavelengths.

1.2.5 Performance evaluation of biometrics

A comparative study of the performance of multiple biometrics done by the centre for

mathematics and scientific computing, national physical laboratory (NPL) of UK is

given in the Table 1.1, in terms of different error rates, namely, false acceptance rate

(FAR), false rejection rate (FRR), equal error rate (EER) and failure to enroll rate

(FER). A true acceptance (TA) means when the system verifies, an identity claim, and
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the claim is true. A false acceptance (FA) means when the system verifies an identity

claim, but the claim is false. A true rejection (TR) occurs when the system does not

verify an identity claim and the claim is false. A false rejection (FR) occurs when the

system does not verify an identity claim, but the claim is true.

Table 1.1: Metrics used to evaluate a biometric [1]

Biometric FAR FRR (%) FER (%) Scalability Stability

Iris 1:1.2 million 0.1 - 0.2 0.5 1: all search Very stable

Fingerprint 1:100000 2.0 - 3.0 1.0 - 2.0 1: 1 match Changes

Facial recognition 1:100 10 0.0 1:1 match Changes

Signature 1:5000 15 - 25 0.0 1:1 match Changes

Biometric recognition system is not 100% accurate due to the trade-offs between

the error rates. Based on the requirement of the applications like, high security, foren-

sics or civilian, the thresholds on error rates should be fixed properly. The matching

accuracy for the biometric recognition system can be evaluated using the performance

measures, namely, equal error rate (EER), receiver operating characteristic (ROC)

curve, cumulative match characteristic (CMC) curve and the decidability index (DI).

The equal error rate (EER) is where the false rejection rate equals the false ac-

ceptance rate. The ROC curve plots the genuine acceptance rate on the Y -axis and

the false acceptance rate on the X-axis, or, alternatively, the false rejection rate on

the Y -axis and the false acceptance rate on the X-axis. The point on the ROC curve

indicates the equal-error rate (EER). The CMC curve plots the percentage of correctly

identified on the Y -axis and the cumulative rank considered as a correct match on the

X-axis. The decidability index (d
′
) can be defined as

d
′
=
|µA − µI |√
1
2
(σ2

A + σ2
I )
, (1.1)

where µA and µI are the means of authentic and impostor distance score distribu-

tions, respectively, and σA and σI are the standard deviations of the two distributions,

respectively.
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1.3 ISSUES ADDRESSED IN THIS THESIS

Though biometric systems are successfully implemented in large-scale applications

like Aadhaar and e-KTP, there are two main factors contribute to the complexity of

biometric recognition system, namely, matching accuracy and scalability of the system

as explained in the following subsections. These two issues are addressed in this thesis

in the context of large-scale de-duplication applications.

Accuracy: An ideal biometric system should always provide the correct identity

decision when a biometric sample is presented. However, a biometric system seldom

encounters a sample of a user’s biometric trait that is exactly the same as the template.

This results in a number of errors as discussed in section 1.2.5 and there by limits the

system accuracy. The main factor affecting the accuracy of a biometric system is noisy

biometric data.

Scalability: In the case of a biometric verification system, the size of the database

(i.e. number of enrolled users in the system) is not an issue because each authentication

attempt basically involves matching the query with a single template. In the case

of large scale identification systems where N identities are enrolled in the system,

sequentially comparing the query with all the N templates is not an effective solution

due to two reasons. Firstly, the throughput of the system would be small if the value

of N is quite large. For example, if the size of the database is 1 million and if each

match requires an average of 100 microseconds, then the throughput of the system will

be less than 1 per minute. Furthermore, the large number of identities also affects the

false match rate of the system adversely. Hence, there is a need to efficiently scale the

system. This is usually achieved by a process known as filtering or indexing where the

database is pruned based on extrinsic (e.g., gender, ethnicity, age, etc.) or intrinsic

(e.g., fingerprint pattern class) factors and the search is restricted to a smaller fraction

of the database that is likely to contain the true identity of the user.
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1.4 ORGANIZATION OF THE THESIS

An overview of the existing approaches in biometric recognition system is pre-

sented in Chapter 2. Some research issues are identified in the de-duplication process

of biometric recognition system which are addressed in this thesis. In Chapter 3, an

approach to classification of iris images is proposed based on sparse representation of

Gabor features using dictionary learning for large-scale de-duplication applications.

Also, an iris adjudication process is illustrated by comparing the matched iris-pair

images side-by-side to make the decision on the identification score using color cod-

ing. A de-noising approach was proposed in Chapter 4 for accurate slap fingerprint

segmentation to improve the accuracy of fingerprint de-duplication. Also, a cross-

sensor fingerprint recognition is proposed using kernel transformation learning. In

Chapter 5, a semi-automated latent fingerprint identification is proposed to markup

fingerprint landmarks manually using the image enhancement filters which will further

improve the identification performance. A new method is proposed in Chapter 6, for

face recognition to address the issue of non-uniform illumination using convolutional

neural networks (CNN). A new approach for photograph de-duplication was proposed

using color histograms to eliminate the duplicate ration cards in targeted public dis-

tribution system. In Chapter 7, the best practices for biometric data acquisition and

identity creation were presented using multi-modal biometrics (fingerprints, iris, face

and signature) in order to minimize the data storage on a smart card. Chapter 8 sum-

merizes the research work carried out as part of this thesis, highlights the contributions

of the work and discusses directions for future work.
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CHAPTER 2

OVERVIEW OF APPROACHES FOR DE-DUPLICATION

OF BIOMETRICS

De-duplication can be defined as the process of removing duplicate identities of a

person using multi-modal biometrics, namely iris, fingerprints and face. During de-

duplication, matching the biometrics of a person can be done against the biometrics of

other persons to ensure that the same person is not enrolled more than once. This will

ensure that each person will have a unique identity. This chapter reviews some of the

existing approaches of biometric recognition systems used in the de-duplication pro-

cess. Different steps involved in iris recognition system and the related work is briefly

described in Section 2.1. In Section 2.2, the existing approaches for all the components

of fingerprint recognition system are reviewed. Early work in facial recognition system

is presented in Section 2.3. Some research issues arising out of the review of existing

methods are identified, which are addressed in this thesis.

2.1 IRIS RECOGNITION SYSTEM

The iris is an annular region between pupil and sclera [4] as shown in Fig. 2.1. The

sclera means the white region which combines the tissue and blood vessels near iris.

The pupil region is the darker region which is located at the center of eye and its

size depends on the specular reflections. The iris consists of texture information like

furrows, ridges, and pigment spots. The iris biometric is stable in the lifetime of a

person. The texture information of iris do not change with external environmental

factors. Even the left eye of a person is unique when compared to right eye of the
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same person. [5].

Fig. 2.1: Sample iris image

2.1.1 Early history of iris biometrics

Flom and Safirs concept patent: The automatic iris recognition system is well

known in recent days, however this idea exists over 100 years old. Flom and Safir

[6] have taken a patent for the concept of automatic iris recognition system in 1987.

In 1992, Johnston [7] have investigated that the iris biometrics can be used in iris

identification and verification systems, but the results are not published.

Daugman’s approach: Daugman’s work [8], [9] is very significant in the early his-

tory of iris biometrics. Daugman’s 1994 patent [10] gives the operational details of iris

recognition system. Now, the Daugman’s approach is the standard reference model in

the field of iris biometrics. Almost all existing commercial iris biometric technologies

use Daugman’s work because of the patents taken by Flom Safir and Daugman. Daug-

man’s patent states that the system acquires through a video camera a digitized image

of an eye of the human to be identified. A deformable template was specified by a set

of parameters and allowed knowledge about the expected shape of an eye to guide the

detection process [11]. The pupillary and limbic boundaries [12] of an iris image are
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approximated as circles using three parameters: the radius r, and the coordinates of

the center of the circle, x0 and y0. The integrodifferential operator [9] used for iris

segmentation is:

max(r, x0, y0)Gσ(r) ∗ ∂

∂r

∫
r,x0,y0

I(x, y)

2πr
ds, (2.1)

where Gσ(r) is a smoothing function and I(x, y) is the image of the eye.

Even though the pupillary and limbic boundaries are considered as circular, in few

cases the boundaries are not circular. Daugman proposed an alternative segmentation

approach in [13] to address the this issue and also to eliminate the noisy iris region

occluded by eyelids or eyelashes. All iris images are of not in same size due to the

problems like, the distance between camera and iris and the illumination can cause

the iris dilations or contractions. In order to solve this problem, the extraction of

iris region is transformed into a normalized iris image where every pixel is defined

by two coordinates, namely, radial angle ranges from 0 to 360 and radial coordinate

that ranges from 0 to 1. The iris contractions and dilations stretches iris linearly. The

pupillary boundary appears on the bottom of the normalized image where as the limbic

boundary appears on the top of the image. The rotation of iris region is considered

in the matching phase of iris recognition system. Daugman uses 2-D Gabor filters to

extract the texture information from the normalized iris image [10].

The texture information is analyzed and represented as iris template and is matched

against the stored iris templates. In large scale iris recognition systems, the comparison

between two iris images should be very fast. So, Daugman selected the quantization

of filter phase response into pair of binary bits in the iris texture representation. The

complex coefficient was transformed into a two bit binary code where the first bit equals

to one if the real part of the complex coefficient was +ve, otherwise it equals to zero

and the second bit equals to one if the imaginary part of the complex coefficient was

+ve, otherwise it equals to zero. After analyzing the iris texture, the resultant binary

information was represented as a binary iris code of size 256 bytes (2048 bit). These
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binary codes can be compared using bitwise operations in efficient manner. Daugman

defined a normalized Hamming distance which calculates the fraction of bits disagree

in both the binary iris codes. The rotation invariance was achieved by shifting the bi-

nary iris code for different orientations in the angular coordinate. The minimum value

of normalized Hamming distance was considered as the final matching score between

two iris codes. These steps are summerized into different modules of an iris biometrics

system as shown in Fig. 2.2.

Fig. 2.2: Major steps in iris biometrics processing.

Wildes’ approach: Wildes [14] developed an iris biometric recognition system at

Sarnoff Labs. The approach is technically different from Daugman’s iris recognition

system. The iris image acquisition in Daugman’s approach uses ”an LED-based light

source with a standard video camera,” where as Wildes’ approach uses ”a diffuse

source and polarization in conjunction with a low light level camera.” The iris boundary
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detection in Daugman’s algorithm uses an integro-differential operator which responds

at maximum to circular boundary. By contrast, Wildes’ algorithm computes the binary

edge map and a Hough transform to detect iris circular boundary. Daugman’s approach

uses the normalized Hamming distance to compute the dissimilarity measure between

two iris codes, where as Wildes’ approach uses a Laplacian of Gaussian filter at multiple

scales to produce a template and computes the normalized correlation as a similarity

measure.

2.1.2 Iris segmentation

As mentioned earlier, Daugman’s approach to iris segmentation uses an integro-differential

operator, and Wildes [14] uses a method involving edge detection and a Hough trans-

form. Different variations of the Hough transform and edge detection approach have

been used my many researchers. Most of the iris segmentation research have been

carried out by improving the Wildes’ iris segmentation approach. Huang et al. [15]

suggested the modification of first finding the iris boundaries in a rescaled image to

reduce computational complexity. Liu et al. [16] assumed the pupillary and limbic

boundaries as two concentric circles and applied Canny edge detection and a Hough

transforms. Sung et al. [17] use histogram equalization and high-pass filtering in order

to detect the collarette boundary apart from the traditional methods for finding the

iris boundaries.

2.1.3 Iris texture analysis and representation

Many approaches have been suggested for iris texture analysis and representation.

Sun et al. [18] proposed an approach for iris feature extraction using a Gaussian filter.

The gradient vector field of an iris image is convolved with a Gaussian filter, yielding a

local orientation at each pixel in the unwrapped template. Similar ideas were presented

in [19] from the same research group. A dyadic wavelet transform of a sequence of

1-D intensity signals around the inner part of the iris is used by Ma et al. [20] to
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create binary iris code. Similar work is described in [21]. Chenhong and Zhaoyang

[22] and Chou et al. [23] proposed iris feature extraction using Laplacian-of-Gaussian

filter which finds ”blobs” in the image that are relatively darker than surrounding

regions.Yao et al. [24] presented the feature extraction using modified log-Gabor filters

because the log-Gabor filters are ”strictly bandpass filters where as the Gabor filters

are not.” They have mentioned that Gabor filter would represent the high frequency

components in natural images. Monro et al. [25] use the discrete cosine transform for

feature extraction. They apply the DCT to overlapping rectangular image patches

rotated 45 degrees from the radial axis.

2.1.4 Matching iris representations

In biometrics, it has been found that using multiple samples for enrollment and compar-

ing the probe to multiple gallery samples will result in improved performance [26–28].

Several papers show that this is also true for iris recognition. Du [29] performs exper-

iments using one, two, and three images to enroll a given iris. The resulting rank-one

recognition rates are 98.5%, 99.5%, and 99.8%, respectively. Liu and Xie [30] present

an algorithm that uses direct linear discriminant analysis (DLDA). Algorithms that

use multiple training samples to enroll an image must decide how to combine the scores

from multiple comparisons. In 2003, Ma et al. [31] suggested analyzing multiple images

and keeping the best-quality image. In their 2004 paper [20], it is stated that when

matching the input feature vector with the three templates of a class, the average of

the three scores is taken as the final matching distance. Krichen et al. [32] represent

each subject in the gallery with three images so that for each client and for each test

image, the minimum value of its similarity measure to the three references images of

the client is considered, which is more appropriate when there are large ”outlier” type

errors in the scores rather than considering the average of similarity scores in [20].

Almost all of the currently deployed iris recognition systems use the data acquired

at near infra-red (NIR) wavelengths. These systems are believed to be more accurate
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among all the existing biometric recognition systems. There have been recent efforts

to develop visible wavelength based iris recognition techniques in order to eliminate

the NIR radiation hazards and limitations of existing iris recognition systems. In this

context, the iris pigmentation plays an important role while acquiring images under

visible wavelengths. The concentration of melanin pigment is more in dark colored iris

which can be acquired with greater texture details under near infra-red illumination.

The color of iris can be determined by considering the variable proportions of the two

molecules, namely, enumelanin (brown/black) and pheomelanin (red/yellow). The

appearance of dark colored iris is not very clear under visible illumination since it

has more enumelanin molecules which absorb the visible illumination deeply. In order

to ensure enhanced texture details under visible wavelengths, the power of visible

illumination should be increased which can be uncomfortable to the users. Also, the

external environmental illumination can add more noise to the visible iris images in

terms of shadows, specular and diffuse reflections. These factors should be considered

before selecting an image acquisition setup especially under visible wavelengths.

2.1.5 Issues addressed in iris recognition system

Government of Andhrapradesh [33] undertook the de-duplication of ration cards using

52 million people iris codes in order to ensure that the benefits under various welfare

programs reach the intended beneficiaries, prevent cornering of benefits by a few sec-

tions of people and minimize frauds. There are over 6.26 quadrillion (6,262,668,889,152,

840) iris matches performed in de-centralized manner to remove duplicate enrollments

in 61 days with high-end blade servers equipment which is not a scalable solution.

The scalability issue of iris de-duplication process is addressed in the context of tar-

geted public distribution system (TPDS) in order to reduce the search time drastically

thereby providing the scalable iris de-duplication solutions. We propose an approach

for classification of iris images based on sparse representation of Gabor features using

dictionary learning for large-scale de-duplication applications. Also, an iris adjudica-
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tion process is illustrated by comparing the matched iris-pair images side-by-side to

make the decision on the identification score using color coding. Iris classification and

adjudication framework is proposed in iris de-duplication architecture to speed-up the

identification process and reduce the identification errors.

2.2 FINGERPRINT RECOGNITION SYSTEM

Fingerprint recognition is a complex pattern recognition problem since it is difficult

to design accurate matching algorithms which extracts minutia features, especially in

poor quality fingerprint images. The steps involved in fingerprint recognition system

are illustrated in Fig. 2.3.

Fig. 2.3: Major steps in fingerprint recognition system.

A fingerprint [34] consists of ridges and valleys on the surface of the finger. The

uniqueness of a fingerprint can be determined by the minutiae points. Minutiae points

are the local ridge features which are identified by a ridge bifurcation or a ridge ending.

One way of acquiring fingerprints is to capture the slap fingerprint. Slap fingerprints

are taken by pressing four fingers simultaneously onto a slap fingerprint scanner. In

general, the capturing process will take place in the fashion of 4-4-2 fingers, means

capture left four fingers at one time, followed by all right four fingers and then fol-
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lowed by two thumb fingers. The captured slap fingerprints go for the slap fingerprint

segmentation [35] which splits the individual fingers from the slap image. The left four

fingers slap can be segmented as in the sequence of left little (LL), left ring (LR), left

middle (LM) and left index (LI). The right four fingers slap can be segmented as in the

sequence of right index (RI), right middle (RM), right ring (RR) and right little (RL).

The two thumb fingers can be segmented as left thumb (LT) and right thumb (RT).

The finger positions are the position codes defined in Table 12 of ANSI/NIST-ITL

1-2007 [36].

The methods described in [37] - [38], use different filtering techniques to enhance

the significant details of single fingerprint images. Fingerprint segmentation using

block-wise grey-level variance or local histogram of ridge orientations are described

in [39]. In some techniques the Gabor filters are used to divide fingerprint into fore-

ground and background. The United States Patent 7072496 [40] presented the seg-

mentation algorithm using edge detection and convex hull calculation by segmenting

the image into different disconnected regions. In 2004, NIST organized a contest called

slap fingerprint evaluation 2004 (SlapSeg04) [35]. Thirteen segmentation algorithms

were evaluated within the contest. One algorithm which is accessible publicly is the

NISTs own algorithm called NIST fingerprint segmentation algorithm (NFSEG) [41].

The other twelve algorithms are the intellectual property of different companies. NF-

SEG algorithm first pre-process the slap input images and then binarises. In 2008,

NIST again conducted the contest called slap fingerprint segmentation evaluation II

(SlapSegII). The difference between the two contests is the metrics used for successful

slap fingerprint segmentation. SlapSeg04 [42] used the fingerprint matching algorithm

to determine the accuracy of slap fingerprint segmentation. SlapSegII used the ground

truth data which has hand marked segmentation boxes as baseline using NFSEG al-

gorithm.

Manvjeet Kaur [43] have introduced the methods combined to create minutia ex-

tractor and minutia matcher. Mana Tarjo-man [44] introduced structural approach

to fingerprint classification by using the directional image of fingerprints instead of
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singularities. Singularities detection is used to increase the accuracies. Lie Wei [45]

Proposed a method for rapid singularities searching algorithm which used delta field

Poincar index and a rapid classification algorithm to classify the fingerprint into five

classes. The detection algorithm searches the direction field which the larger direction

changes to get the singular points. Singular point detection is used to improve the

accuracy. Alessandra Lumini and Loris Nanni [46] developed a method for minutia

based fingerprint and its approach to the problem as two-class pattern recognition.

The obtained feature vector by minutia matching is classified into genuine or imposter

by Support Vector Machine resulting remarkable performance improvement.

Anil K Jain [47] proposed latent fingerprint matching based on Local minutia

matching and Global minutia matching computed matched pair based similarity mea-

sure to compute the similarity between latent and rolled/plain fingers. Linag Li [48]

have proposed improved cross matching algorithm for the fingerprint images captured

from different sensors technology optical, capacitive and thermal sensors shown the

results with multiple sensors. Some researchers proposed fingerprint identification

techniques using a gray level watershed method to find out the ridges present on a

fingerprint image by directly scanned fingerprints are inked impressions.

The majority of the algorithms developed for automated fingerprint matching are

based on minutiae [49], [50] and [51]. Several recent studies on fingerprint matching

have focused on the use of local minutiae descriptors [52], [49], [53], [54]. Some

algorithms combine ridge orientation with minutiae information either at feature level

by including ridge orientation information in local minutiae descriptors [55], [56] or at

score level by combining scores from minutiae matching and global orientation field

matching [56], [57]. The latent matching accuracy is improved by using the features

which are located manually from the latents’ [58], [59], [60], [61]. However, marking

extended features (orientation field, ridge skeleton, etc.) in poor quality latents’ is very

time-consuming and might be only feasible in rare cases. However, only a small portion

of latents can be correctly identified using this approach. There have also been some

studies on fusion of multiple matchers [62] or multiple latent prints [50]. NIST has
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been conducting a multi-phase project on evaluation of latent finger-print technologies

(ELFT) to evaluate latent feature extraction and matching techniques [63]. Jain et.

al. have proposed a latent matcher for automatic identification of suspects by using

the extended features, namely, singularity, ridge quality map, and ridge flow map [47],

[64]. The latent fingerprint image quality is measured by spectral image validation and

verification (SIVV)-based metric [65] and the latent fingerprint image quality (LFIQ)

metric based on triangulation of minutiae points [66].

2.2.1 Issues addressed in fingerprint recognition system

Government of Orissa collected a total of 1.8 million (approximately) slap fingerprint

images of 0.6 million (approximately) citizens as part of targeted public distribution

system (TPDS) process. The fingerprint device which is used to collect the slap fin-

gerprint images has inbuilt real time feedback on the quality of the slap fingerprints

being captured. However, the slap fingerprint images have some noisy data due to

some external factors which affect the calibration process of the fingerprint device.

While doing the segmentation of slap fingerprints, some of the fingerprint images are

improperly segmented because of the noise present in the data and as a result the de-

duplication accuracy was reduced. The issue of de-duplication accuracy is addressed

in this thesis. A de-noising approach is proposed to remove the noise present in the

data using binarization of slap fingerprint image and region labeling of desired regions

with 8-adjacency neighborhood.

Also, due to the increasing demand for fingerprint biometrics, new fingerprint

scanners are being deployed for scanning fingerprint images and the old fingerprint

scanners are being frequently upgraded. The user enrollment is very expensive and

time-consuming especially in large scale de-duplication applications. However, upgrad-

ing with new fingerprint scanners for cross-sensor matching where the test fingerprint

data is verified with the data enrolled with different fingerprint scanner often lead

to reduced fingerprint matching performance. The issue of cross-sensor fingerprint
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matching performance degradation is also addressed in this thesis. In order to im-

prove the accuracy of cross-sensor fingerprint matching, a new algorithm is proposed

using feature transformation learning in kernel space. The kernel learning uses the

distance kernel matrix for optimization using similar and dissimilar class constraints.

These constraints reduces the sensor mismatch problem when the matching performed

for cross-sensor in the transformed domain. Also, a semi-automated latent fingerprint

identification is proposed to markup fingerprint landmarks manually using the image

enhancement filters which will further improve the identification performance.

2.3 FACE RECOGNITION SYSTEM

Face recognition [67] has gained much attention from the research groups of pattern

recognition and machine learning since the early 1990s. Face recognition is a difficult

task due to the issues with illumination variance which affects the identification rate

[68]. A fuzzy Fisher-face approach was proposed for face recognition [69] using Fisher

discriminant analysis and principle component analysis. Face recognition is used in

applications like access control and surveillance [2]. A new framework for face recog-

nition and feature extraction is proposed with kernel fisher discriminant analysis and

fisher linear discriminant analysis [70]. Wiskott et. al. [71] proposed face recognition

algorithm by using labeled elastic bunch graphs matching based on Gabor wavelet

transform. A face verification algorithm was proposed [72] for training a very large

and unknown data of different categories.

Variations in ambient lighting produces significant degradation in face recognition

performance [2]. Thermal infrared (thermal IR) has been used in facial recognition

systems with some success against the ambient illumination. Near infrared (NIR) has

the potential to overcome the problems associated with visible [73] and thermal IR face

recognition which is more robust against illumination variations and face detection

[74]. NIR is useful for face detection as the bright eye effect [75] allows the eyes to

be localized and skin reflectance properties at just above and below 1.4 microns which
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highlights the face regions clearly [74]. Over the last decade, convolutional neural

networks [76] is widely used for various computer vision tasks [77].

The modeling of face images under varying illumination can be based on a sta-

tistical model or physical model. For statistical modelling, no assumption concerning

the surface property is needed. Statistical analysis techniques, such as PCA (Eigen

face) and LDA (Fisher face), are applied to the training set which contains faces under

different illuminations to achieve a subspace which covers the variation of possible illu-

mination. In physical modeling, the model of the process of image formation is based

on the assumption of certain object surface reflectance properties such as Lambertian

reflectance.

Belhumeur et al. [78] explored an illumination invariant face recognition using a

method of 3D linear subspace. Three or more images are taken from the same face

using different lighting conditions which construct 3D basis in the method of 3D linear

subspace. The face recognition can be done by comparing the test face image with

each linear subspace of all the gallery face images belonging to all the identities. A

new method called Fisher linear discriminant [78] is proposed in order to maximize

the intra-class scatter and inter-class scatter of all the face images and to improve

the face recognition performance. Belhumeur and Kriegman [79] presented that the

convex illumination cone can be formed using an object which is having a convex and

Lambertian surface illuminated at same and different viewpoints simultaneously. The

dimensions for this kind of illumination cone is the number of different surface normals.

Pan et al. [80] proposed a new approach for face recognition using hyper-spectral

face images. Gao and Leung [81] presented a face recognition algorithm using line

edge map. Lee et al. [82] gives a novel approach for face recognition using face im-

ages acquired with a configuration of nine directions of light sources. Chen et al. [83]

proposed an illumination invariant face recognition by proving the discriminative func-

tions are not illumination invariant even for Lambertian objects. Zhao and Chellappa

[84] proposed a novel approach for illumination invariant face recognition using the

symmetric properties of shape from shading.
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2.3.1 Issues addressed in face recognition system

Face is one of the most widely used biometric in security systems. Despite its wide

usage, face recognition is not a fully solved problem due to the challenges associated

with varying illumination conditions. Government of Andhrapradesh has issued around

22 million ration cards in which there are few ration cards created in an unauthorized

manner in order to mislead the benefits of beneficiaries. The issue related to de-

duplication of face photograph images is also addressed in this thesis. We propose a

method for de-duplication of face photographs based on color histograms.

The illumination while capturing the face photographs plays an important role

especially in out-door environment in the process of unique identity creation using de-

duplication process. The issue of illumination invariant face recognition is addressed

in this thesis. A new method is proposed for face recognition to address the issue of

non-uniform illumination using convolutional neural networks (CNN). The symmetry

of facial information is exploited to improve the performance of the face recognition

system by considering the horizontal reflections of facial images.

2.4 SUMMARY

This chapter reviewed some of the existing approaches to biometric recognition system,

namely, iris recognition system, fingerprint recognition system and face recognition

system. Different steps involved in iris recognition system and the related work is

briefly described. Also, the existing approaches for all the components of fingerprint

and face recognition systems are reviewed. Some research issues arising out of the

review of existing methods are identified, which are addressed in this thesis.

24



CHAPTER 3

IRIS CLASSIFICATION BASED ON SPARSE

REPRESENTATIONS USING DICTIONARY LEARNING

FOR LARGE-SCALE IRIS DE-DUPLICATION

APPLICATIONS

Various government sectors in the world provide different services and welfare schemes

for the benefit of the people in the society. For instance, Government of India provides

different services and welfare schemes for the benefit of the people in the society.

Some of these services include issuance of birth certificate, voter identity card, driving

license, and passport etc. Also, welfare schemes like targeted public distribution system

(TPDS), national rural employment guarantee system (NREGS), health insurance,

old age pensions etc. for the economic and social upliftment of the people. A unique

identity (UID) number assigned for every citizen would obviate the need for a person to

produce multiple documentary proofs of his/her identity for availing any Government

service, or private services like opening of a bank account.

De-duplication of biometrics plays a key role in providing unique identity of a

person. De-duplication is the process of removing instances of multiple enrollments

by the same person using the person’s biometric data. As the number of people

enrolled into the biometric system runs into billions, the time complexity increases

in the de-duplication process while creating a unique identity for every individual.

There is a need for biometric de-duplication architecture which is scalable in large-

scale databases.

This chapter is organized as follows: Introduction for iris classification is explained
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in Section 3.1. Section 3.2 describes the motivation for the proposed iris classification

approach by illustrating the complexity involved in de-duplication of large scale iris

databases. Section 3.3 gives the details of sparse representation and on-line dictionary

learning. In Section 3.4, the proposed iris classification and adjudication framework

is presented. Experimental results of the proposed classification and adjudication

framework are given in Section 3.5.

3.1 IRIS CLASSIFICATION FOR LARGE-SCALE DE-DUPLICATION

APPLICATIONS

De-duplication of iris biometrics is not scalable while creating a unique identity for

every individual among the large population. The scalability issues can be addressed

using the iris classification approach in order to speed up the de-duplication process.

Few researchers already explored iris classification techniques based on hierarchical

visual codebook [85], block-wise texture analysis [86] and color information [87]. So

far, there are no approaches for classification of iris images based on the pre-defined

iris classes in the existing work. In this chapter, we propose an iris classification

based on sparse representation of Gabor features using on-line dictionary learning

(ODL). Three different iris classes based on iris fiber structures, namely, stream, flower,

jewel and shaker, are used for faster retrieval of identities in large-scale de-duplication

applications.

3.2 ARCHITECTURE OF IRIS DE-DUPLICATION SYSTEM

During de-duplication process, matching the biometrics of a person is done against the

biometrics of other persons to ensure that the same person is not enrolled more than

once. This will ensure that each person will have a unique identity. The de-duplication

complexity is demonstrated using two different enrollment scenarios, namely, enroll-

ment using a centralized manner and enrollment using a decentralized manner which
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are discussed in the following subsections.

3.2.1 Enrollment using a centralized iris de-duplication system

The enrollment in a centralized iris de-duplication system matches the irises of a person

against the irises of all the existing enrolled persons. If there is match found, the person

will not be enrolled into the system. In order to illustrate the time complexity of the

centralized iris de-duplication system, an example considered for 200 million already

enrolled persons where a new person waiting for the enrollment. Also, there is an

assumption that the system uses 10 blade servers with a total iris comparison capacity

of 200 million per second. The number of iris matches performed for different iris

images and the time taken for the matching process is shown in the Table 3.1.

In the first scenario, the time taken for matching a single iris against the corre-

sponding iris of the previously enrolled persons is 1 second and the number of matches

are 200 million. In the second scenario, the 2 irises of persons are matched against

the respective irises of all the previously enrolled persons and observed that the time

complexity and comparisons are increased 2 times. In the third scenario, the compar-

isons are done in a cross comparison manner which means all the 2 irises are matched

against all the irises of all the previously enrolled persons. It is observed that the

number of comparisons and the time taken for matching are increased to 4 times.

3.2.2 Enrollment using a de-centralized iris de-duplication system

In the case of enrollment using a decentralized manner, the biometrics of persons

captured during a certain period have to be matched against the unique identity en-

rollment database of all the previously enrolled persons. The matching has to be

done by aggregating the data from each of the decentralized enrollment stations and

matching against the de-duplicated biometrics of all the previously enrolled persons.

To illustrate the complexity of a decentralized de-duplication system, let us consider

a case where 200 million persons have already been enrolled, and data of 1 million
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Table 3.1: Complexity of a centralized iris de-duplication system

Number of Time

Scenario Matches (seconds)

(millions)

1 If 1 iris (say left iris) is matched against all left

eyes of previously enrolled persons 200 1

2 If 2 irises are matched against the respective irises

of all the previously enrolled persons 400 2

3 If 2 irises are matched against 2 irises of all the

previously enrolled persons 800 4

persons has been aggregated from the enrollment stations. The data of the 1 million

persons will have to be matched against the 200 million persons to avoid multiple

enrollments. Also, it is assumed that there are 10 blade servers with a total matching

capacity of 200 million per second. The number of iris matches across different irises

to be performed and the time taken for matching the irises is shown in the Table 3.2.

In the first scenario, the time taken for matching a single iris against the cor-

responding iris of the previously enrolled persons is 11.57 days and the number of

matches are 200 trillion. In the second scenario, the 2 irises of person are matched

against the respective irises of all the previously enrolled persons and observed that

the time complexity and comparisons are increased around 2 times. In the third sce-

nario, the comparisons are done in a cross comparison manner which means all the 2

irises are matched against all the irises of all the previously enrolled persons. It can be

observed that the time complexity and the comparisons are increased around 4 times.

Motivation behind this work: The state government of Andhrapradesh [33] in

India undertake the responsibility to identify the eligible households/beneficiaries and

issue a ration card which enables them to avail the prescribed quantity of food grains

and/or other commodities. Households can get the government benefits based on their
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Table 3.2: Complexity of a de-centralized iris de-duplication system

Number of Time

Scenario Matches (days)

(trillions)

1 If 1 iris (say left iris) is matched against all left

eyes of previously enrolled persons 200 11.57

2 If 2 irises are matched against the respective irises

of all the previously enrolled persons 400 23.15

3 If 2 irises are matched against 2 irises of all the

previously enrolled persons 800 46.30

annual income as part of the targeted public distribution system (TPDS). Identification

of eligible beneficiaries and ensuring delivery of food grains and other commodities to

them effectively and efficiently is the main goal of TPDS. The government sectors in

India also incur a huge expenditure on food subsidy to meet the difference between

the economic cost of food grains and the issue price fixed for TPDS. A study done by

planning commission of India (2005) has indicated that about 58% of the subsidized

food grain allocated by the central government to the states/union territories does not

reach the beneficiaries because of identification errors and non transparent operations

in the implementation of TPDS.

Government of Andhrapradesh [33] undertook the de-duplication of ration cards

using 52 million people iris codes, in order to ensure that the benefits under vari-

ous welfare programs reach the intended beneficiaries, prevent cornering of benefits

by a few sections of people and minimize frauds. There are over 6.26 quadrillion

(6,262,668,889,152,840) iris matches performed in de-centralized manner to remove

duplicate enrollments in 61 days with high-end blade servers equipment which is not a

scalable solution. This is the motivation for the proposed classification approach which

reduces the search time drastically and provide the scalable de-duplication solutions.

The proposed de-duplication architecture is shown in Fig. 3.1. In the processing
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stage, an iris image is segmented and normalized. Then iris templates are extracted

using Gabor filters. The de-duplication engine or iris matcher improves the speed of

de-duplication by adding multiple blade servers. All the enrolled iris templates are

loaded into each blade server and the iris templates are compared in ”1 : all” manner

in N blade servers simultaneously. For example, if there are N query iris templates to

be processed, then each query iris template goes to a blade server for de-duplication.

If there are more than N query images, the delta of the iris templates keep on waiting

in a queue till any of the blade servers are free. Increasing the blade servers is not

an optimal solution, especially in large-scale iris databases. There should be another

layer for iris classification to reduce the search space in the de-duplication engine.

So, we propose an iris classification based on sparse representation of Gabor features

using on-line dictionary learning (ODL). Also, an iris adjudication process is done by

comparing the matched iris-pair images side-by-side to know the confidence-level on

the matching score based on color coding.
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Fig. 3.1: Iris de-duplication architecture

3.3 SPARSE REPRESENTATION AND DICTIONARY LEARNING

Sparse representation has received a lot of attention from researchers in signal and

image processing. Sparse coding involves the representation of an image as a linear

combination of some atoms in a dictionary [88]. It is a powerful tool for efficiently rep-

resenting data in non-traditional ways. This is mainly due to the fact that signals and

images of interest tend to enjoy the property of being sparse in some dictionary. These
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dictionaries are often learned directly from the training data. Several algorithms like

on-line dictionary learning (ODL) [89], K-SVD [90] and method of optimal directions

(MOD) [91] have been developed to process training data. Sparse representation is

used to match the input query image with the appropriate class. Etemand and Chel-

lappa [92] proposed a linear discriminant analysis (LDA) based selection and feature

extraction algorithm for classification using wavelet packets. In [93], a method for

simultaneously learning a set of dictionaries that optimally represent each cluster is

proposed. This approach was later extended by adding a block incoherence term in

their optimization problem to improve the accuracy of sparse coding. Recently, simi-

lar algorithms for simultaneous sparse signal representation have also been proposed

[94], [95]. An on-line dictionary learning based on sparse representation is used for

classification of images. For a given N number of classes, we design N dictionaries

to represent the classes. Each image associated with a dictionary provides the best

sparsest representation. For every image in the given set of images {yi}ni=1, on-line dic-

tionary learning is used to seek the dictionary D that has the sparsest representation

for the image. We define l(D̂, Φ̂) as the optimal value of the l1 -lasso sparse coding

problem [96]. This is accomplished by solving the following optimization problem:

l(D̂, Φ̂) = arg min
D,Φ

1

N

N∑
i=1

1

2
‖Yi −DΦi‖22 subject to ‖Φi‖1 ≤ λ, (3.1)

where Y is the matrix whose columns are yi and λ is the sparsity parameter.

D denotes the learned dictionary, Φ represents the sparse representation vectors, N

denotes the number of classes and Y represents the training database. The online

dictionary learning algorithm alternates between sparse coding and dictionary update

steps. Several efficient pursuit algorithms have been proposed in the literature for

sparse coding [91], [97]. The simplest one is the l1 -lasso algorithm [96]. Main advantage

with on-line dictionary learning algorithm is its computational speed as it uses l1 -lasso

algorithm for sparse representation. In sparse coding step, dictionary D is fixed and

representation vectors Φi are identified for each example yi . Then, the dictionary is

updated atom by atom in an efficient way.
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3.4 PROPOSED IRIS CLASSIFICATION AND ADJUDICATION FRAME-

WORK

The proposed iris classification approach uses three different classes of iris images [98],

namely, stream, flower, and jewel-shaker as illustrated in Fig. 3.2. The iris structure

can be determined by the arrangement of white fibers radiating from the pupil. In

stream iris structure, these fibers are arranged in regular and uniform fashion. The

arrangement of fibers is irregular in the flower iris structure. In jewel iris structure,

the fibers have some dots. The shaker iris structure have both the characteristics of

flower and jewel iris structures. The arrangement of iris fibers are illustrated in Fig.

3.3.

(a) (b) (c)

Fig. 3.2: Iris classes: (a) stream, (b) flower and (c) jewel-shaker structures.

(a) (b) (c) (d)

Fig. 3.3: Iris fibers: (a) stream, (b) flower, (c) jewel and (d) shaker.

The following are the steps involved in the proposed iris classification and adjudi-

cation framework:

Step 1: Iris segmentation and normalization : The pupillary and limbic boundaries
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[12] of an iris image are approximated as circles using three parameters: the

radius r, and the coordinates of the center of the circle, x0 and y0. The inte-

grodifferential operator [9] used for iris segmentation is:

max(r, x0, y0)Gσ(r) ∗ ∂

∂r

∫
r,x0,y0

I(x, y)

2πr
ds, (3.2)

where Gσ(r) is a smoothing function and I(x, y) is the image of the eye.

After applying the operator, the resultant segmented iris image is as shown in

Fig. 3.4. The segmented iris image is then converted to a dimensionless polar

coordinate system based on the Daugman Rubber Sheet model [9] as shown in

Fig. 3.5.

Step 2: Feature extraction [12]: The feature vector of size 240×20 is extracted from

the normalized iris image of size 120×20. The resultant feature vector is con-

verted to a single column vector by column major ordering. From each class,

the training iris images are selected to express as a linear weighted sum of the

feature vectors in a dictionary belonging to three different classes of iris.

Step 3: Iris classification using ODL: An on-line dictionary learning (ODL) algo-

rithm is used to classify the iris data into three different classes to reduce the

search space. The weights associated with feature vectors in the dictionary

are evaluated using ODL algorithm, which is a solution to l1 optimization for

over-determined system of equations. The feature vectors which belong to a

particular iris class carry significant weights which are maximum of non-zero

values.

The class C = [C1, . . . ,CN ] consists of training samples collected directly from

the image of interest. In the proposed sparsity model, images belonging to the

same class are assumed to lie approximately in a low dimensional subspace. Let

N be the training classes, the pth class has Kp training images {yNi } i=1,. . . ,

Kp and b be an image belonging to the pth class which is represented as a linear
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combination of these training samples:

b = DpΦp , (3.3)

where Dp is a dictionary of size m×K p, whose columns are the training samples

in the pth class and Φp is a sparse vector.

The following are the steps involved in the proposed classification method:

1. Dictionary construction: Construct the dictionary for each class of train-

ing images using on-line dictionary learning algorithm [89]. Then, the

dictionaries D = [D1, . . . ,DN ] are computed using the equation:

(D̂i, Φ̂i) = arg min
Di,Φi

1

N

N∑
i=1

1

2
‖Ci −DiΦi‖22 + λ‖Φi‖1,

satisfying Ci = D̂iΦ̂i, i = 1,2, . . . ,N.

2. Classification: In this classification process, the sparse vector Φ for given

test image is found in the test dataset B = [b1, . . . , bl ]. Using the dictio-

naries of training samples D = [D1, . . . ,DN ], the sparse representation Φ

satisfying DΦ=B is obtained by solving the following optimization prob-

lem:

Φj = arg min
Φ

1

2
‖bj −DΦj‖22; (3.4)

subject to ‖Φj‖1 ≤ T1, and î = arg mini ‖bj −Dδi(Φ
j)‖22, j = 1, · · · , t.

where δi is a characteristic function that selects the coefficients. Then bj is

assigned to Ci associated with the i th dictionary. It means, finding the sparsest

dictionary for a given test data using l1 -lasso algorithm. Then, test data is

assigned to the class associated with this sparsest dictionary.

Step 4: Iris adjudication: The matched iris pairs are compared using the adjudication

process to illustrate the match-ability of iris images based on the similarity of iris
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regions marked with three different colors, namely, green, yellow and red. The

green, yellow and red colors indicate good, poor and bad match, respectively.

The normalized iris image is divided into different regions and the confidence-

level of matching for each region is verified and assigned a color code using the

dissimilarity measurement.

Fig. 3.4: Iris image segmentation

Fig. 3.5: Normalized iris image

3.5 EXPERIMENTAL RESULTS

To enable the effective test of the proposed classification strategy, three standard iris

image databases are used, namely, CASIA1 database [99], IITD iris database [100],

[101], and UPOL iris database [102], [103], [104].

The CASIA database is by far the most widely used for iris biometric purposes.

However, its images incorporate few types of noise, related with eyelid and eyelash

obstruction. The database consists of 108 subjects, three instances of left iris and

four instances of right iris are collected from each subject. So, there is a total of 756

iris images in the database, all are having the image dimensions 320×280 gray-scale

images. For testing, 216 iris images are used and the remaining iris images are used

for training.
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The IITD iris database consists of 224 subjects’ data, both left and right iris

images. There are 10 instances for each iris image. So, there is a total of 2,232

iris images in the database, all are having the image dimensions 320×280 gray-scale

images.

The UPOL [104] iris data is collected from 64 subjects, with three samples each

of left and right eyes from each subject resulting in a total of 384 iris images. Each

iris image is of 24 bit RGB color space with a high resolution image size, 768×576.

The images were captured using the optical device (TOPCON TRC50IA) which is

connected to a Sony DXC-950p 3CCD camera.

Experiments are performed using the following iris classification approaches:

Approach-1: SVM-4Class-PCA-Kmeans

Approach-2: ODL-4Class-PCA-Kmeans

Approach-3: SVM-3Class-IrisFibers

Approach-4: ODL-3Class-IrisFibers

The results of the above approaches are compared and explained as follows to demon-

strate the efficacy of the proposed classification approach in the iris de-duplication

architecture.

Approach-1. SVM-4Class-PCA-Kmeans classification: This classification ap-

proach uses the support vector machine (SVM) as a classifier. The classes are defined

by applying the k-means clustering on the iris feature vectors whose dimensions are

reduced to a size by considering the 100 principle components using principle compo-

nent analysis (PCA). This approach is applied on three standard iris databases, where

2
3
rd of the each database is used for training and remaining data is used for testing.

Approach-2. ODL-4Class-PCA-Kmeans classification: In this classification

approach, the sparsity-based on-line dictionary learning (ODL) is used as a classifier.

The k-means clustering is applied to define the classes on the iris feature vectors whose
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dimensions are reduced by considering the 100 principle components using PCA. This

approach is applied on three standard iris databases, where 2
3
rd of the each database

is used for training and remaining data is used for testing.

Approach-3. SVM-3Class-IrisFibers classification: This classification approach

uses SVM as a classifier. The classes are defined by manual labeling of three iris cate-

gories [98] using the iris fiber structures. This approach is applied on UPOL standard

iris database, where 2
3
rd of the database is used for training and remaining data is

used for testing.

Approach-4. ODL-3Class-IrisFibers classification: Sparsity-based on-line dic-

tionary learning (ODL) is used in this iris classification approach. This classification

approach is used in the proposed iris de-duplication framework. The classes are defined

by manual labeling of three iris categories using the iris fiber structures. The experi-

ments are conducted on UPOL standard iris database, where 2
3
rd of the database is

used for training and remaining data is used for testing.

Experiment-1 In iris classification approaches 1 and 2, the experiments are con-

ducted using the three databases, namely, CASIA1, IITD and UPOL iris databases

with template sizes 120 × 20. Four classes are identified using k-means clustering

algorithm using the correlation-based distance metric. Table 3.5 describes the details

of the number of images in each class and in three different databases.

Table 3.3: Iris classes defined based on k-means clustering and PCA

# of Images in CASIA1 IITD UPOL

Class-1 196 525 81

Class-2 203 500 114

Class-3 196 595 69

Class-4 161 580 120
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The experimental results are illustrated as shown in Fig. 3.6. It is observed

that the ODL-4Class-PCA-Kmeans classification approach gives better classification

performance due to the effectiveness of sparsity.

Fig. 3.6: Experimental results for the classification
approaches SVM-4Class-PCA-Kmeans and ODL-4Class-PCA-Kmeans for the three
iris databases namely, CASIA1, IITD and UPOL

Experiment-2 In iris classification approaches 3 and 4, the experiments are con-

ducted using the UPOL iris database with template sizes 240×20. Three classes are

manually identified in these proposed iris classification approaches using the iris pat-

terns stream, flower and jewel-shaker as shown in Table 3.5. In this experiment, the

other two databases are excluded as it was difficult to mark the class labels due to the

less clarity to manually identify the iris fiber structures.

The experimental results for the UPOL database are compared using SVM and

ODL and illustrated as shown in Fig. 3.7. It is observed that the classification accuracy

is better in the ODL-related classification approaches.

Detailed analysis on the proposed classification approach : ODL-3Class-

IrisFibers In order to evaluate the performance of proposed classification approach

using on-line dictionary learning, the database is split into three sets: training set,

testing set and validation set. The distribution of all the three sets are taken in such a

way that the 2 samples of each iris image is allotted to the training set and validation

set, and the remaining iris sample is given to the test set. The training set consists of
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Fig. 3.7: Experimental results for all the proposed classification approaches on UPOL
iris database

Table 3.4: Iris classes based on the iris fibers Stream, Flower and Jewel-Shaker

Class # of images Subject Ids

(% )

Class-1 192 (50%) 001,006,007,008,011, 013,014,016,018,019,

(Stream) 020,021,023,024,026, 027,028,033,041,042,

044,045,050,051,052, 053,058,059,060,061,

062,064

Class-2 102 (26.56%) 002,009,010,015,017, 022,031,036,037,040,

(Flower) 043,047,048,049,054,

056,063

Class-3 90 (23.44%) 003,004,005,012,025, 029,030,032,034,035,

(Jewel-Shaker) 038,039,046,055,057

224 images where 112 images are from Class-1 (Stream), 60 images are from Class-2

(Flower) and 52 images are from Class-3 (Jewel-Shaker). The number of test images

selected from Class-1, Class-2 and Class-3 are 64, 34 and 30, respectively. A set of 32

iris images is assigned to validation set where 16 images belong to Class-1, 8 images

belong to Class-2 and 8 images belong to Class-3.

The experiments were conducted in three different ways of choosing test sets (sys-

tematically selecting first, second or third samples of each iris) where the performance

is almost similar. The classification performance is shown in Tables 3.5, 3.5 and 3.5,
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for the test data set with different dictionary sizes 60, 90 and 120, respectively.

Table 3.5: Classification performance (in %) on test data set for dictionary size = 60

Residual Parameter

Class 0.5 0.05 0.005

Class-1 (Stream) 90.5 97 93.83

Class-2 (Flower) 91.18 94.12 88.2

Class-3 (Jewel-Shaker) 100 100 100

Table 3.6: Classification performance (in %) on test data set for dictionary size = 90

Residual Parameter

Class 0.5 0.05 0.005

Class-1 (Stream) 95 100 98.5

Class-2 (Flower) 94.12 100 97.06

Class-3 (Jewel-Shaker) 100 100 100

Table 3.7: Classification performance (in %) on test data set for dictionary size = 120

Residual Parameter

Class 0.5 0.05 0.005

Class-1 (Stream) 95 100 98.5

Class-2 (Flower) 91.18 100 96.06

Class-3 (Jewel-Shaker) 100 100 100

In Table 3.5, the classification accuracy for the validation data set is given. It is

observed that 100% classification accuracy is achieved for the dictionary sizes, 90 and

120 with residual error value 0.05 as shown in Fig. 3.8. The confusion matrix for both

test data and validation data sets are shown in Table 3.5.

The adjudication results for genuine iris matches are illustrated in Fig. 3.9 and

for the impostor iris matches are given in Fig. 3.10. The normalized images shown
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Table 3.8: Classification performance on validation data set for dictionary sizes 60,
90 and 120

Dictionary Sizes

Class 60 90 120

Class-1 (Stream) 91.66 100 100

Class-2 (Flower) 100 100 100

Class-3 (Jewel-Shaker) 100 100 100

Table 3.9: Confusion matrix for both test data and validation iris data sets

Class Testing set Validation set

C1 C2 C3 C1 C2 C3

C1 64 0 0 16 0 0

C2 0 34 0 0 8 0

C3 0 0 30 0 0 8

on these figures are taken from CASIA database for better illustration of adjudication

process.

Fig. 3.9: Iris adjudication: side-by-side comparison of genuine iris matches with
hamming distances (a) 0.21, (b) 0.19, (c) 0.16, (d) 0.15, (e) 0.19
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Fig. 3.8: Classification accuracy for three different dictionary sizes 60, 90 and 120

Fig. 3.10: Iris adjudication: side-by-side comparison of impostor iris matches with
hamming distances (a) 0.48, (b) 0.46, (c) 0.43, (d) 0.51, (e) 0.37

3.6 SUMMARY

In this chapter, an iris classification is proposed based on sparse representation of

Gabor features using on-line dictionary learning (ODL) for large-scale de-duplication

applications. Three different iris classes based on iris fiber structures, namely, stream,
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flower, jewel and shaker, are used for faster retrieval of identities. Also, an iris adju-

dication process is illustrated by comparing the matched iris-pair images side-by-side

to make the decision on the identification score using color coding. The efficacy of

the proposed classification approach is demonstrated on the standard iris database,

UPOL, and it is achieved 100% classification accuracy with dictionary size 90 and

residual error 0.05. It is evident that the proposed iris de-duplication architecture can

improve the performance of de-duplication process in real time applications.
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CHAPTER 4

DE-NOISING SLAP FINGERPRINT DATA FOR

ACCURATE FINGERPRINT SEGMENTATION IN

LARGE-SCALE DE-DUPLICATION APPLICATIONS

This chapter focuses on the accuracy of fingerprint de-duplication in de-centralized ar-

chitecture. Fingerprint images can have some noisy data while capturing them using

slap fingerprint scanners. This noise causes improper slap fingerprint segmentation.

The de-duplication requires the plain quality fingerprints. While doing the segmenta-

tion of slap fingerprints, some of the fingerprint images might be improperly segmented

because of the noise present in the data. As a result, the de-duplication accuracy will

be decreased. In this chapter, an attempt is made to remove the noise present in the

data using binarization of slap fingerprint image, and region labeling of desired regions

with 8-adjacency neighborhood. The distinct feature of this technique is to remove the

noise present in the data for accurate slap fingerprint segmentation as well as improve

the de-duplication accuracy.

Also, due to the increasing demand for fingerprint biometrics, new fingerprint

scanners are being deployed for scanning fingerprint images and the old fingerprint

scanners are being frequently upgraded. The user enrollment is very expensive and

time-consuming especially in large scale de-duplication applications. However, upgrad-

ing with new fingerprint scanners for cross-sensor matching where the test fingerprint

data is verified with the data enrolled with different fingerprint scanner often lead to

reduced fingerprint matching performance. In this chapter, a new sensor adaptation

algorithm is proposed for fingerprint biometrics using kernel transformation learning
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in order to improve the fingerprint matching performance.

This chapter is organized as follows: Introduction for fingerprint de-duplication

system is explained in Section 4.1. Section 4.2 describes the motivation for the pro-

posed fingerprint matching and de-noising algorithms by illustrating the complexity

involved in de-duplication of large scale fingerprint databases. Section 4.3 gives the de-

tails of noise removal method for slap fingerprint image segmentation. In Section 4.4,

the proposed sensor adaptation algorithm in kernel space is presented. Experimental

results of the proposed fingerprint matching and de-noising algorithms are given in

Section 4.5.

4.1 FINGERPRINT DE-DUPLICATION SYSTEM

The de-duplication process of fingerprint images is presented in the context of targeted

public distribution system (TPDS). The TPDS is a mechanism for ensuring access and

availability of food grains and other essential commodities at subsidized prices to the

households. Identification of eligible beneficiaries and ensuring delivery commodities

to them effectively and efficiently is the basic challenge for TPDS. The major goal of

the TPDS process to find the duplicate identities by using fingerprint de-duplication.

A fingerprint [34] consists of ridges and valleys on the surface of the finger. The

uniqueness of a fingerprint can be determined by the minutiae points. Minutiae points

are the local ridge features which are identified by a ridge bifurcation or a ridge ending.

One way of acquiring fingerprints is to capture the slap fingerprint. Slap fingerprints

are taken by pressing four fingers simultaneously onto a slap fingerprint scanner. In

general, the capturing process will take place in the fashion of 4-4-2 fingers, means

capture left four fingers at one time, followed by all right four fingers and then fol-

lowed by two thumb fingers. The captured slap fingerprints go for the slap fingerprint

segmentation [35] which splits the individual fingers from the slap image. The left four

fingers slap can be segmented as in the sequence of left little (LL), left ring (LR), left

middle (LM) and left index (LI). The right four fingers slap can be segmented as in the
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sequence of right index (RI), right middle (RM), right ring (RR) and right little (RL).

The two thumb fingers can be segmented as left thumb (LT) and right thumb (RT).

The finger positions are the position codes defined in Table 12 of ANSI/NIST-ITL

1-2007 [36].

As part of the targeted public distribution system in India, a total of 1.8 mil-

lion (approximately) slap fingerprint images of 0.6 million (approximately) citizens

are collected to provide the household cards. To capture slap fingerprint images, TP-

LSMULTI-4100 fingerprint scanner is used. This device has inbuilt real time feedback

on the quality of the slap fingerprints being captured. However, the slap fingerprint

images have some noisy data due to some external factors which affect the calibra-

tion process of the fingerprint device. All the captured slap fingerprints undergo slap

fingerprint segmentation which is given by a third party vendor. In the process of

slap fingerprint segmentation, 22% of the total slap fingerprint images are improperly

segmented because of noise present in the data. Moreover, the noise present in the slap

fingerprint images are segmented as individual fingers instead of splitting the actual

finger.

4.2 DE-DUPLICATION COMPLEXITY OF FINGERPRINT DATA

De-duplication is the processing of the biometric data of citizens to remove instances

of multiple enrollments by the same citizen. During de-duplication, matching the

biometrics of a citizen is done against the biometrics of other citizens to ensure that

the same person is not enrolled more than once. This will ensure that each person will

have a unique identity. De-duplication will be a necessary component in the targeted

public distribution system. De-duplication complexity is discussed in the context of

the two different enrollment scenarios which are given below.
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4.2.1 Enrollment using a centralized fingerprint de-duplication system

The enrollment in a centralized fingerprint de-duplication system matches the finger-

prints of a person against the fingerprints of all the existing enrolled persons. If there

is match found, the person will not be enrolled into the system. In order to illustrate

the time complexity of the centralized fingerprint de-duplication system, an example

considered for 200 million already enrolled persons where a new person waiting for

the enrollment. Also, there is an assumption that the system uses 10 blade servers

with a total fingerprint comparison capacity of 5 million per second. The number of

fingerprint matches performed for different fingerprint images and the time taken for

the matching process is shown in the Table 4.1.

In the first scenario, the time taken for matching a single fingerprint against the

corresponding fingerprint of the previously enrolled persons is 40 seconds and the

number of matches are 200 million. In the second scenario, the 10 fingerprints of

citizen are matched against the respective fingerprints of all the previously enrolled

citizens. It is observed that the time complexity of de-duplication and the number of

comparisons are increased 10 times. In the third scenario, the comparisons are done

in a cross comparison manner where all the 10 fingerprints are matched against all

the fingerprints of all the previously enrolled citizens. It is observed that the time

complexity of de-duplication and the number of comparisons are increased 100 times.

4.2.2 Enrollment using a decentralized fingerprint de-duplication system

In the case of enrollment using a decentralized manner, the biometrics of citizens

captured during a certain period have to be matched against the unique identity en-

rollment database of all the previously enrolled citizens. The matching has to be

done by aggregating the data from each of the decentralized enrollment stations and

matching against the de-duplicated biometrics of all the previously enrolled citizens.

To illustrate the complexity of a decentralized de-duplication system, let us consider

a case where 200 million citizens have already been enrolled, and data of 1 million

48



Table 4.1: Complexity of centralized fingerprint de-duplication system

Number of Time taken

Scenario Matches (seconds)

(millions)

1 If 1 finger (say left thumb) is matched against

all left thumbs of previously enrolled persons 200 40

2 If all 10 fingers are matched against the respective

fingers of all the previously enrolled persons 2000 400

3 If all the 10 fingers are matched against all the

fingers of all the previously enrolled persons 20000 4000

citizens has been aggregated from the enrollment stations. The data of the 1 million

citizens will have to be matched against the 200 million citizens to avoid multiple

enrollments. The assumption to assess the de-duplication complexity, we assume 10

blade servers with a total matching capacity of 5 million per second. The number of

fingerprint matches across different fingerprints to be performed and the time taken

for matching the fingerprints is shown in the Table 4.2.

In the first scenario, the time taken for matching a single fingerprint against the

corresponding fingerprint of the previously enrolled persons is 463 days and the num-

ber of matches are 200 trillion. In the second scenario, the 10 fingerprints of citizen

are matched against the respective fingerprints of all the previously enrolled citizens.

It is observed that the time complexity of de-duplication and the number of com-

parisons are increased 10 times. In the third scenario, the comparisons are done in

a cross comparison manner where all the 10 fingerprints are matched against all the

fingerprints of all the previously enrolled citizens. It is observed the time complexity

of de-duplication and the number of comparisons are increased 100 times.
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Table 4.2: Complexity of de-centralized fingerprint de-duplication system

Number of Time taken

Scenario Matches (days)

(trillions)

1 If 1 finger (say left thumb) is matched against

all left thumbs of previously enrolled persons 200 463

2 If all 10 fingers are matched against the respective

fingers of all the previously enrolled persons 2000 4630

3 If all the 10 fingers are matched against all the

fingers of all the previously enrolled persons 20000 46300

4.3 NOISE REMOVAL METHOD FOR SLAP FINGERPRINT IMAGE

SEGMENTATION

The noise removal method uses the noisy slap images. Fig. 4.1 represents the

sample noisy four-finger slap image which has the dimensions of 500dpi resolution and

1600×1500 image size. Generally, images are two-dimensional arrays of bytes which

represent pixels. Each pixel has a grey-scale value which is ranging from 0 to 255. The

low grey-scale values represent darker shades and the high grey-scale values represent

lighter shades.

Fig. 4.1: Noisy slap fingerprint image

The approach to noise removal process is as follows:
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1. Binarization of slap image.

2. Foreground and background segmentation of slap image.

3. Resampling and region labeling of slap image with 8-adjacency neighborhood.

4. Reconstruction of the original data for the larger labeled regions of the slap

image.

In the following subsections, each of the above steps is explained in detail:

4.3.1 Binarization of slap image

Image binarization is a method of replacing the pixel grey-scale values with a ’0’ if the

pixel grey-scale value is less than the threshold value and replace the pixel grey-scale

value with a ’255’ if the pixel grey-scale value is greater than or equal to the threshold

value. Most of the noise which is formed due to the device calibration problem has

grey-scale values ranging from 50 to 255. These grey-scale values are replaced with 255

in a way which is similar to binarization. The histogram of the noisy slap fingerprint

image is illustrated as shown in Fig. 4.2 This process of binarization is applied in two

different phases: in the phase-I, the noise is medium and in phase-II, the noise is high.

In the phase-I, the threshold is fixed as 100 (empirically) and the binarization process

is carried out on the left over 22% of the slap fingerprint images in targeted public

distribution system. In the phase-2, the remaining slap fingerprints images which could

not be segmented in phase-I are treated as high noise slap fingerprint images. The

threshold value for phase-II is fixed as 50 (empirically) and the binarization process is

carried out on the remaining slap fingerprint images in phase-1. Experimental results

are discussed in Section 4.5.

4.3.2 Foreground and background segmentation of slap image

In a fingerprint image, the background regions have a very low grey-scale variance

value, whereas the foreground regions have a very high variance. In [38], a method
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Fig. 4.2: Histogram of noisy slap image

based on variance threshold is used to perform the segmentation of foreground and

background on the binarized slap fingerprint. In this method, the slap image is divided

into blocks and the grey-scale variance is calculated for each block in the image. If the

variance is less than the global threshold, then the block belongs to the background

region; otherwise, it is assigned to be part of the foreground. The grey-level variance

for a block of size W×W is defined as:

V (k) =

[
1

W 2

]W−1∑
r=0

W−1∑
c=0

(I(r, c)−M(k))2 , (4.1)

where V (k) is the variance for block k, I(r, c) is the grey-level value at pixel (r, c),

and M(k) is the mean grey-level value for the block k. The resultant images are

processed using a block size of 16×16 and a variance threshold of 100 which gave

better performance when compared to other thresholds.
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4.3.3 Resampling and region labeling of slap image with 8-adjacency

The resultant slap image after separation of foreground and background is resampled

to 160×150 size to reduce the time complexity. The region labeling process starts

with the resampled slap fingerprint image. A region in an image is called connected

if any pixel in the region can be reached by moving from one neighboring pixel to

the next. The pixels p and q are 8-adjacency [105] if q is in the set N8(p), where

N8(p) = {N(p − 1, q − 1), N(p − 1, q), N(p − 1, q + 1), N(p, q − 1), N(p, q), N(p, q +

1), N(p+ 1, q− 1), N(p+ 1, q), N(p+ 1, q+ 1)} and N(p, q) is the seed point or central

pixel. The resultant images are scanned until a foreground pixel is found. An unlabeled

foreground pixel is marked with a new label and its position is pushed on to a stack.

While the stack is not empty, the pixels on the stack are marked with the label and

the neighbor pixels are pushed on to the stack. When the stack is empty, the search

continues for the next seed point for the region labeling process. Here, the starting

label value is 1 and incremented for each and every next seed point. At the same

time, one dimensional array of label count is calculated where the index of the array

represents label number.

4.3.4 Reconstruction of the original data for the larger labeled regions

In the process of binarization, the slap image will lose some genuine data. In order to

get the original data, select the labeled regions which have the count threshold greater

than 15000 pixels (empirically) from the one dimensional array of label counts array.

The threshold value is fixed empirically. The slap image is scanned until the larger

region is found. Then, replace all the pixel values in the region identified by the same

label value with the corresponding pixel value from the original image.

The proposed de-noising approach removes the noise present in the fingerprint data

for accurate slap fingerprint segmentation as well as improve the fingeprint matching

performance thereby the de-duplication accuracy. There are fingerprint matching per-

formance issues while upgrading the fingerprint scanners with new ones for matching
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cross-sensor fingeprint images. A framework is proposed to improve the fingerprint

matching performance for cross-sensor adaptation using kernel learning which is dis-

cussed in next section.

4.4 CROSS-SENSOR FINGERPRINT RECOGNITION USING KER-

NEL LEARNING

There is huge demand for fingerprint biometrics in civilian identity applications. The

need for scanner upgradation and new scanners is essentially required to acquire qual-

ity fingerprints time-to-time. However, scanner upgration might lead to performance

degradation while comparing cross-sensor fingerprint images. A framework is pro-

posed to improve the matching performance for cross-sensor adaptation [106] in two

different phases. In the first phase, few training samples are selected from three differ-

ent fingerprint scanners. These samples are used to learn the adaptation parameters

from optimized kernel matrix using the initial kernel matrix calculated with similar-

ity measures of all selected samples. A convex optimization problem is formulated to

minimize the logDet divergence [107] between the initial kernel matrix and adapted

kernel matrix. The sensor adaptation parameters are calculated by imposing the dis-

tance preserving constraints [108] and application-specific constraints. The distance

constraints are chosen as 20th percentile of similar class distances and 85th percentile of

dissimilar class distances. In the second phase, these parameters are incorporated while

fingerprint matching in transformed domain. The steps involved in this framework are

explained below:

Step 1: Initially, a similarity measurement matrix S is computed for all the training

fingerprint images T = {Ii, I2, ... IN} chosen equally from three different sen-

sors. S(Ii, Ij) represents the (i, j)th element in matrix S and it is the similarity

measure between the fingerprint templates Ii and Ij.
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Step 2: The similarity matrix is iteratively updated until convergence using kernel

learning. For this, a convex optimization problem is formulated as,

KA = arg min ζl(K,S),∀T (4.2)

subject to the constraints C ≥ du, for similar classes, and C ≤ dl, for dissimilar

classes, where KA is the adapted kernel matrix, ζl is the logDet divergence, C

= ζe(φ(Ii), φ(Ii)) + ζe(φ(Ij), φ(Ij)) − 2ζe(φ(Ii), φ(Ij)), du is the upper limit of

same class distances and dl is the lower limit of different class distances. φ(Ii)

represents the transformed fingerprint template of Ii and ζe is the Euclidean

distance between the transformed fingerprint templates.

Step 3: The adaptation parameters are calculated using the following formula:

Σ = (S)−1(KA − S)(S)−1, (4.3)

where each element in Σ is represented by σij which have the contribution of

(i, j)th constraint imposed on kernel matrix KA.

Step 4: These adaptation parameters are used for adapting the cross-sensor finger-

print properties (means, adaptation among the sensor-1, sensor-2 and sensor-3)

in testing phase.

KA(Is1, Is2) = S(Is1, Is2) +
∑
ij

σijS(Is1, Ii)S((Ij, Is2), (4.4)

where Is1 is the probe fingerprint template selected from sensor-1 and Is2 is the

gallery fingerprint template selected from other sensors.

Step 5: Now fingerprint matching can be done in the transformed domain using the

following formula:

ζe(φ
A(Ii), φ

A(Ij)) = KA(Is1, Is1) +KA(Is2, Is2)− 2KA(Is1, Is2), (4.5)

where ζe is the squared Euclidean distance between the transformed fingerprint

templates. If the distance is less than a fixed threshold, it can be treated as a

match, otherwise it is a non-match.
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4.5 EXPERIMENTAL RESULTS

The slap fingerprint database which is collected as part of the targeted public distribu-

tion system (TPDS) is used for the experiments. This database consists of 1.8 million

slap fingerprint images. The image size is 1600×1500 with resolution of 500dpi. It is

observed that the correct segmentation rate before noise removal process is 78%, and

after noise removal process, the correct segmentation rate is 89% in phase-I and it is

99% in phase-II. These results are presented in Table 4.3.

Table 4.3: Fingerprint segmentation statistics

Segmentation

Accuracy (%)

Before noise removal process 78

After noise removal process (phase-I) 89

After noise removal process (phase-II) 99

The images shown in Figs 4.3(a), 4.3(c), 4.3(d), 4.3(e), 4.3(f), 4.3(k), 4.4(a),

4.4(c), 4.4(d), 4.4(e) and 4.4(f) belong to Slap-Group-1 and Figs 4.3(b), 4.3(g),

4.3(h), 4.3(i), 4.3(j), 4.3(l), 4.4(b), 4.4(g), 4.4(h), 4.4(i) and 4.4(j) belong to

Slap-Group-2. It is observed that in the Slap-Group-1, Fig 4.3(a) represents the slap

with high noise. Figs 4.3(c), 4.3(d), 4.3(e) and 4.3(f) are the segmented fingers of

the slap with high noise, which has the NIST fingerprint image quality (NFIQ) scores

3, 5, 4 and 5, respectively. NFIQ score ranges on the scale 1 to 5, where lesser quality

score represents good quality and higher quality score represents poor quality. Fig

4.3(k) is the resultant image after binarization as well as foreground and background

segmentation of the slap fingerprint image. Fig 4.4(a) shows the noise-free fingerprint

image with recovered original data, and Figs 4.4(c), 4.4(d), 4.4(e) and 4.4(f) are

the corresponding segmented fingers with NFIQ scores 1, 1, 1 and 3, respectively.

Similarly, for the Slap-Group-2, it is observed that the accuracy of the slap fingerprint

segmentation is improved. These details are given in the Table 6.3, where seg-fin-1,
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seg-fin-2, seg-fin-3 and seg-fin-4 are the four segmented fingers from left to right on

the slap fingerprint image.

Table 4.4: NFIQ scores for segmented fingerprints

Slap-Group-1 Slap-Group-2

Before After Before After

Seg-Fin-1 3 1 5 3

Seg-Fin-2 5 1 4 2

Seg-Fin-3 4 1 4 2

Seg-Fin-4 5 3 5 1

The results shown in Figs 4.5 and 4.6 illustrate the levels of segmented fingerprint

image NFIQ scores of before noise removal process and after noise removal process of

the entire dataset respectively. The NFIQ scale values from 1 to 5 are represented as

NFIQ-1, NFIQ-2, NFIQ-3, NFIQ-4 and NFIQ-5 respectively. The X-axis shows the

finger positions in the sequence of right thumb (RT), right index (RI), right middle

(RM), right ring (RR), right little (RL), left thumb (LT), left index (LI), left middle

(LM), left ring (LR) and left little (LL). The Y-axis represents the percentage of

segmented fingers with NFIQ scores. The correct segmentation is defined by fixing a

threshold on NFIQ score as 4 for all the segmented fingers. It is observed that the

segmentation failure in before noise removal process for the two thumbs is 4%, the

failure for the left four fingers slap is 11%, and it is 7% for the right four fingers slap as

shown in Fig 4.5. The correct segmentation rate for the entire dataset is significantly

improved to 99% as shown in Fig 4.6.
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(a) (b)

(c) (d) (e) (f) (g) (h) (i) (j)

(k) (l)

Fig. 4.3: Illustration of sequence of steps of de-noising slap fingerprints for accurate
slap fingerprint segmentation: (a) slap with high noise, (b) slap with low noise,
(c,d,e,f) are segmented fingers of the slap with high noise, (g,h,i,j) are segmented
fingers of the slap with low noise, (k) foreground-background separation of high noisy
slap, (l) foreground-background separation of low noisy slap.
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(a) (b)

(c) (d) (e) (f) (g) (h) (i) (j)

Fig. 4.4: Illustration of sequence of steps of de-noising slap fingerprints for accurate
slap fingerprint segmentation: (a) noise-free slap of high noise, (b) noise-free slap of
low noise, (c,d,e,f) are segmented fingers of noise-free slap of high noise, and (g,h,i,j)
are segmented fingers of noise-free slap of low noise.
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Fig. 4.5: Levels of fingerprint image NFIQ scores for the entire dataset - before noise
removal process

Fig. 4.6: Levels of fingerprint image NFIQ scores for the entire dataset - after noise
removal process

Fig. 4.7: De-duplication statistics of targeted public distribution system
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Fig 4.7 shows the de-duplication statistics for the dataset of 0.6 million fingerprint

data in the de-centralized architecture. The X-axis represents the 3 scenarios of de-

centralized de-duplication, scenario-1 means ”if 1 finger (say left thumb) is matched

against all left thumbs of previously enrolled persons”, scenario-2 means ”if all 10

fingers are matched against the respective fingers of all the previously enrolled persons”

and scenario-3 means ”if all the 10 fingers are matched against all the fingers of all

the previously enrolled persons”. And the Y-axis represents the number of duplicates

found in the entire dataset of 0.6 million fingerprint data. It is observed that the

de-duplication accuracy is improved up to 0.5% after denoising the slap fingerprint

data.

The cross-sensor fingerprint matching experiments are conducted using the database

collected with three different live-scanners (Biomini, Cogent and Upek). The plain fin-

gerprint data consists of all the 10 fingerprints of 30 subjects captured at 5 different

instances. The proposed cross-sensor fingerprint matching algorithm is evaluated and

compared with NIST Bozorth algorithm [41]. Table 4.5 shows that the performance

of Bozorth algorithm and the proposed cross-sensor fingeprint matching algorithm.

It can be observed that the proposed approach performance very well even with the

fingerprint images captured using the cross-sensor fingerprint authentication devices.

Experimental results show that the proposed technique achieves the equal error rate

(EER) at 0.02 whereas the existing NIST open source Bozorth matching algorithm

has the EER is at 0.15.

Table 4.5: Equal error rates (EER) of cross-sensor fingerprint recognition using kernel
adaptation

Cross comparisons NIST Bozorth (Proposed) Adapted

EER (%) EER (%)

BioMini vs. Rest 0.1 0.001

Cogent vs. Rest 0.2 0.005

Upek vs. Rest 0.9 0.001
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4.6 SUMMARY

In this chapter, we addressed the issues related to fingerprint de-duplication accuracy

in de-centralized architecture. Improper slap fingerprint segmentation often lead to re-

duced fingerprint matching performance. As a result the de-duplication accuracy will

be decreased. In order to improve the slap fingerprint segmentation rate, a de-noising

approach is proposed for slap fingerprint images using binarization of slap fingerprint

image, and region labeling of desired regions with 8-adjacency neighborhood. The dis-

tinct feature of this technique is to remove the noise present in the data for accurate

slap fingerprint segmentation as well as the improvement in the de-duplication accu-

racy. Also, due to the increasing demand for fingerprint biometrics, new fingerprint

scanners are being deployed for scanning fingerprint images and the old fingerprint

scanners are being frequently upgraded. The user enrollment is very expensive and

time-consuming especially in large scale de-duplication applications. Upgrading with

new fingerprint scanners for cross-sensor matching where the test fingerprint data is

verified with the data enrolled with different fingerprint scanner often lead to reduced

fingerprint matching performance. A new sensor adaptation algorithm is proposed

for fingerprint biometrics using kernel transformation learning in order to improve the

fingerprint matching performance.
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CHAPTER 5

ENHANCEMENTS TO LATENT FINGERPRINT

IDENTIFICATION USING ISO 19794-2 FINGERPRINT

TEMPLATES

Latent fingerprint identification is a challenging task in criminal investigation due to

the poor quality of ridge impressions and less region of interest on the fingerprint. In

this chapter, we propose an automated latent fingerprint identification in lights-out

mode using the global and local adaptive binarization, and global minutia features

with ISO/IEC 19794-2 standard fingerprint templates. In the latent fingerprint iden-

tification, the fingerprints are matched with rolled fingerprint database from standard

law enforcement database. Also, the latent fingerprints are matched with the plain

fingerprints database from the data collected using live-scanners. The performance of

minutiae-based rank-100 matching is improved with the proposed latent fingerprint

identification system. Also, a semi-automated latent fingerprint identification is pro-

posed to markup fingerprint landmarks manually using the image enhancement filters

which will further improve the identification performance.

5.1 LATENT FINGERPRINT IDENTIFICATION IN FORENSICS

Fingerprints play an important role in forensic analysis for criminal identification using

the clues collected from the crime scene. Fingerprint-based identification has been

known and used for a very long time [109], [110], [111] and [112]. The fingerprint

impressions which are left on the articles by the offenders at the crime scene are called
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as chance prints. There are three ways of forming the chance prints, namely, visible

prints, semi-visible prints and latent prints. The visible prints are the fingerprints

which are collected and covered with ink, blood, dust, paint, etc. An example for the

visible prints is shown in Fig. 5.1(a). Semi-visible prints, also known as plastic prints

are the fingerprints which are collected by applying some pressure on the surface such

as soap, wax, melted candle, etc. as shown in Fig. 5.1(b). The latent prints are

the fingerprints which are collected by leaving the finger impressions formed with

sweat from fingers as shown in Fig. 5.1(c). The latent prints have the poor quality

of ridge impressions and partial fingerprint area. First two cases need no further

development for analysis and identification of suspects as the ridge information is clear

for identification, where as latent fingerprints need developments and enhancements

to identify the suspects.

(a) (b) (c)

Fig. 5.1: Chance prints: (a) visible prints, (b) semi-visible prints or plastic prints,
(c) latent prints

As shown in Fig. 5.2, there are three different types of finger acquisition, namely,

rolled, plain and latent prints. The rolled fingerprints can be acquired by placing

the fingerprint on the fingerprint sensor surface and moving it from nail to nail. The

plain fingerprints can be captured by simply placing the fingerprint on the sensor

surface. The latent fingerprints can be collected from the scene of crime as part of the

forensic analysis. The automatic extraction of genuine minutia points from the latent

fingerprints becomes difficult due to low fingerprint quality and less area of interest on

the fingerprint image.

The manual latent identification process also known as ACE-V procedure [51]
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(a) (b) (c)

Fig. 5.2: Different fingerprint types: (a) rolled (b) plain and (c) latent prints

consists four steps, namely, analysis, comparison, evaluation, and verification.

1. Analysis: Assessment of quality of latent fingerprint and identification of the

ridge and minutia information can be done by a human expert.

2. Comparison: Determine the similarity or dissimilarity of fingerprint landmarks

using three levels of fingerprint features (level-1, level-2, and level-3) with a

referent rolled/plain fingerprint.

3. Evaluation: Decide whether the fingerprint pair is a match or non-match.

4. Verification: Re-examination of the results by another human expert to verify

the results of the first human expert.

The majority of the algorithms developed for automated fingerprint matching are

based on minutiae [49], [50] and [51]. Several recent studies on fingerprint matching

have focused on the use of local minutiae descriptors [52], [49], [53], [54]. Some

algorithms combine ridge orientation with minutiae information either at feature level

by including ridge orientation information in local minutiae descriptors [55], [56] or at

score level by combining scores from minutiae matching and global orientation field

matching [56], [57]. The latent fingerprint matching accuracy is improved by using the

features which are marked manually from the latent fingerprints [58], [59], [60], [61].

However, marking extended features (orientation field, ridge skeleton, etc.) in poor

quality latents’ is very time-consuming. Thus, some studies have concentrated on
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latent matching using a reduced amount of manual input, such as manually marked

region of interest (ROI) and singular points [113], [114]. However, only a small portion

of latents can be correctly identified using this approach. There have also been some

studies on fusion of multiple matchers [62] or multiple latent prints [50]. NIST has

been conducting a multi-phase project on evaluation of latent finger-print technologies

(ELFT) to evaluate latent feature extraction and matching techniques [63]. Jain et.

al. have proposed a latent matcher for automatic identification of suspects by using

the extended features, namely, singularity, ridge quality map, and ridge flow map [47],

[64]. The latent fingerprint image quality is measured by spectral image validation and

verification (SIVV)-based metric [65] and the latent fingerprint image quality (LFIQ)

metric based on triangulation of minutiae points [66].

In this chapter, we propose two approaches to automated latent fingerprint iden-

tification. The first approach uses the global and local adaptive binarization, and

global minutia features with ISO 19794-2 standard fingerprint templates. And, the

second approach is a semi-automated latent fingerprint identification system which

uses different imaging filters to enhance the latent print. The semi-automated latent

fingerprint identification system is more flexible for fingerprint forensics experts which

would allow them to acquire fingerprint latents captured with various devices from

crime scenes, falsified documents etc.

5.2 AUTOMATED LATENT FINGERPRINT IDENTIFICATION

The proposed automated latent fingerprint identification consists of different phases:

fingerprint enhancement, normalization of fingerprint image, feature extraction, spu-

rious minutia removal and matching which are explained in the following sections.

5.2.1 Fingerprint enhancement

A latent fingerprint image consists of more noise when compared to the plain finger-

prints due to the acquisition and environmental conditions at the crime scene. The

66



image enhancement is introduced as a preprocessing step to reduce the noise [115]

and to enhance visibility of ridge impressions. The steps involved in fingerprint en-

hancement are illustrated in Fig. 5.3. Each step is explained in detail in the following

subsections.

Fig. 5.3: Fingerprint image enhancement

5.2.2 Normalization, binarization and thinning

Normalization is a process of changing the range of pixel intensity values to enhance

the contrast on image. Let us consider an image,

I : {X ⊂ Rn} ⇒ {Min, ...,Max}, (5.1)

with intensity values in the range (Min,Max) and X is a set of all intensity values

in image I, and a new image

IN : {X ⊂ Rn} ⇒ {Minnew, ...,Maxnew}, (5.2)

with intensity values in the range (Minnew,Maxnew) whereMinnew is the minimum

intensity value and Maxnew is the maximum intensity value in the new image. The

linear normalization of a gray-scale image is computed using

IN = (I −Min)× Maxnew −Minnew
Max−Min

+Minnew. (5.3)

In general, the latent fingerprint images have less contrast which are to be enhanced

by adjusting the brightness and contrast of the image until the ridges are clear. The

image is then submitted to the binarization followed by K3M thinning [116] as shown in
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Fig. 5.4. The image binarization means changing the intensity levels from the original

256 (8-bit pixel) to 2 (1-bit pixel). Local adaptive thresholding [117] is applied instead

of choosing a single intensity threshold value in the image binarization process as all

the fingerprint images do not have the same contrast and brightness. The binarized

image is shown in Fig. 5.4.

5.2.3 Feature extraction

Thinned image is useful for extracting the minutiae features like end point and bifurca-

tion. The ISO template consists of three kinds of minutia, namely, end point, bifurca-

tion and undetermined. The end point is the point where the ridge ends abruptly and

the bifurcation is the point where the ridge bifurcates into two directions. From the

thinned image the minutia points can be extracted using the crossing number (CN)

concept. The ridge ending can be identified as the pixel point with only one neigh-

bor and the bifurcation can be identified as a pixel point with three neighbors. Each

minutia extracts the information like x − y coordinates, direction, type and quality.

The fingerprint image is divided into 16 × 16 blocks to compute the quality of each

block depending on the variance of the pixels in that particular block. The fingerprint

quality scale [41] is defined in the range from 1 to 5 depending on the variance differ-

ence. If the quality of the fingerprint information in a particular block is 1, then the

block has good fingerprint area and if the quality of fingerprint is 5 means the block

is in background area. The quality of fingerprint image is illustrated in Fig. 5.5.

5.2.4 Spurious minutia removal

The last stage in the feature extraction is the removal of spurious minutiae points.

There are different types of spurious minutiae, namely, minutia near the borders,

minutiae on short ridges, minutia due to bridges and minutia related to spurs. Minutiae

near to the border can be eliminated using the quality image, where the minutia

surrounding blocks are very poor. Spurs can be eliminated using a certain threshold on

68



the thinned image where the ridge is having both bifurcation and end point. Finally,

the minutiae details can be packed into the ISO/IEC 19794-2 format [118] which

is an international standard for fingerprint template to achieve the interoperability

among different vendor specific automated fingerprint identification systems. Table

5.2.4 illustrates essential fields defined in the template.

(a) (b) (c)

(d) (e) (f)

Fig. 5.4: Steps in latent fingerprint image enhancement and feature extraction: (a)
sample latent print, (b) image normalization, (c) de-noising image, (d) image bina-
rization, (e) image thinning, (f) feature extraction.

5.2.5 Matching

The proposed fingerprint matching algorithm uses ISO/IEC (International Organiza-

tion for Standards/International Electro-technical Commission) [118] templates. The

feature vector consists of the information; x−y coordinates, direction, type and quality
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Fig. 5.5: Rolled fingerprint image with the corresponding quality image

Table 5.1: ISO/IEC 19794-2 template data information

Field Size Information

Image height 2 bytes in pixels

Image width 2 bytes in pixels

Finger position 1 byte 0 to 10

Number of Minutiae n 1 byte 0 to 255

Type 2 bits 00=other, 01=termination, 10=bifurcation

Position x 14 bits in pixels

Position y 14 bits in pixels

θ: Direction 1 byte 0 to 255 (resolution 1.40625 degrees)

Quality 1 byte 1 to 100 (0=quality not reported)

of each minutia. Each edge consists of the information like the edge distance and di-

rectional difference between minutiae. The proposed algorithm is of rotation invariant

since it uses relative distances and angles between minutia points. The steps involved

in the global and local minutia matching algorithm are summarized in Algorithm 1.

5.3 SEMI-AUTOMATED LATENT FINGERPRINT IDENTIFICATION

The proposed semi-automated latent fingerprint identification system consists of differ-

ent phases, namely, fingerprint acquisition, finger markup & matching, results review

and evidence exhibits. The phases involved in the latent fingerprint recognition system
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Algorithm 1 : Latent fingerprint matching algorithm

Inputs: Query and reference ISO/IEC fingerprint templates.

Step 1. Get the details of each minutia from the template information, namely, x-y

coordinates, direction, type and quality.

Step 2. Compute the edge pair information for each minutia to all other minutia in

order to form quadruplets.

Step 3. Sort the edge pair information using distance.

Step 4. Compute the edge pair information for each minutia to all other minutia

based on quadruplets.

Step 5. Validate the matched minutia points to remove the falsely matched minutia

pairs.

Step 6. Compute the matching score.

are explained in the following sections.

5.3.1 Image acquisition

Images can be acquired through a control capture device such as a scanner or a fixed

focus camera. The image acquisition provides a perceived dpi (dots per inch) mea-

surement to adjust the image resolution. The image dpi captured using a live-scanner

is different from the image which is collected from the scene of crime. Typically, latent

fingerprint examiners tend to follow a practice of placing a physical scale next to the

latent fingerprint being photographed to give an idea to the user as well as systems to

relate to the actual size of the real latent. The dpi measurement tool allows the sys-

tem to determine the perceived dpi of the image using the ridge count or the distance

between each fingerprint ridge. The latent fingerprint can be scaled up/down to the

default fingerprint resolution, i.e., 500dpi, which improves the matching accuracy at

later stage.
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5.3.2 Image markup and matching

Image markup allows to analyze and markup fingerprint landmarks. The markup

provides image processing filters to enhance the image and to compose the desired

effect by layering various directional filters like Sobel filter [119], emboss filter [120],

lighting filter [119] and fingerprint skeletonization [116]. Basic image manipulations

such as rotation and flipping are useful to trace the landmarks on the image. A set of

tools to specify fingerprint landmarks are implemented which uses the proposed latent

fingerprint recognition algorithm to automatically generate markup points which can

be accepted by the user as valid points. The fingerprint matching algorithm used

in this identification system which is similar to the matching algorithm proposed in

automated identification system, i.e., Algorithm 1.

5.3.3 Result review/adjudication

The biometric recognition system allows few errors in the identification process. In

order to reduce the errors, fingerprint experts look for possible fingerprint matches and

enhance the fingerprints to compare the minutia features manually using fingerprint

adjudication process. Fingerprint adjudication means, comparison of two fingerprints

side-by-side to analyze the matched minutia features. The search results allow to view

the probe as well as the encounter candidate, side by side, with a template overlay.

There is a match point highlight capability to view the actual matching landmarks in

the system. A set of filters allow the user to enhance the images. The end objective

is to allow the user to make the decision and call one or multiple encounters as a ’hit’

for a particular case. The hit cases may be subjected to a peer review depending on

the deployment scenario.

5.3.4 Evidence exhibit/reporting

Once a set of encounters are marked as hit, the system generates an evidence exhibit,

detailing image matching regions. Fig. 5.6 illustrates the sample of evidence reporting

72



for a particular matched fingerprint pair. The left side image is known as probe

fingerprint or latent print and the right side image is known as candidate fingerprint

or plain/rolled fingerprint. The matched regions are illustrated in circles.

Fig. 5.6: Evidence exhibit of a particular matched fingerprint pair

5.4 EXPERIMENTAL RESULTS

The experimental results of latent fingerprint recognition are presented in lights out

mode. The standard NIST special database-27 [121] is used for the experiments

which contains latent fingerprints from crime scenes and their corresponding rolled

fingerprint mates. There are 258 latent cases, each case includes the latent image and

the corresponding ten print image. The database is divided into three groups LF-1,

LF-2 and LF-3, where the fingerprint qualities are good, bad and ugly, respectively.

There are 88 latent prints in LF-1 group, 85 latent prints in LF-2 group and 85 latent

prints in LF-3 group in SD27 database. Each image is of size 800×768 pixels and

scanned at 19.69 pixels per millimeter (ppmm)/ (500 pixels per inch (ppi)), quantized

to 256 levels of gray, and stored in an uncompressed format. All data files are formatted

according to the ANSI/NIST-ITL 1-2000 standard [36] using Type-1, 13, & 14 records.

The ISO/IEC 19794-2 templates are generated from latent and rolled fingerprints
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and then submitted for matching. The latent prints were matched against the plain

prints of 2258 images which are collected using live-scanner and the existing rolled

fingerprints from the SD27 database. As shown in table 5.4, the matching accuracy is

better in the group of LF-1 latent fingerprints where 60% of the cases are identified

in top 10 of search results, 30% of the cases are identified in top 100 search results

and around 10% are not identified. Similarly, in LF-2, latent fingerprints are identified

around 40% in top 10 search results, 30% in top 100 search results and the remaining

cases are not identified. LF-3 latent fingerprints around 70% are not identified. Figure

5.7 shows the CMC curves of the automated latent fingerprint identification for LF-

1 (Good), LF-2 (Bad), and LF-3 (Ugly) quality latent prints. It is observed that

the matching performance for LF-1 group latent fingerprint quality is significantly

improved when compared with the latent fingerprints belonging to the other two groups

LF-2 and LF-3. The results are compared with the existing method proposed by Anil

K Jain et. al. [47] and observed the improvement in rank-1 identification rate as shown

in Table 6.3 with the assumption that it will not be a big difference in the identification

rate even if we add 1758 images to SD27 dataset.

Table 5.2: Results of latent fingerprint matching

Latent-Group Top 10 Top 100 Not in Top 100

(%) (%) (%)

LF-1 (Good) 60 30 10

LF-2 (Bad) 40 30 30

LF-3 (Ugly) 10 20 70

The unsolved latent fingerprints need an experts’ manual intervention with semi-

automated latent fingerprint identification system. As shown in Figs. 5.8 & 5.9, the

latent fingerprints are enhanced to further submit in semi-automated identification

system using the image processing filters, namely, Sobel, lighting, emboss and color

filters. Fig. 5.8(a) is the portion of a sample latent print. The region of interest on

latent print is located as illustrated in Fig. 5.8(b). Figs. 5.8(c) and 5.8(d) illustrate
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Table 5.3: Comparison of rank-1 identification rate

Latent-Group Anil K Jain et. al. [47] Proposed method

(%) (%)

LF-1 (Good) 83 87

LF-2 (Bad) 74 78

LF-3 (Ugly) 65 72

Fig. 5.7: CMC curves for different quality latent prints (good, bad, and ugly)

the image enhancements using color, brightness and contrast adjustments. The Sobel

filter applied on the image with gradient directions 00, 900, 1800 and 2700 are shown

in the Figs. 5.8(e), 5.8(f), 5.8(g) and 5.8(h), respectively. The emboss filter applied

on the image with gradient directions 00, 900, 1800 and 2700 are shown in the Figs.

5.9(a), 5.9(b), 5.9(c) and 5.9(d), respectively. Similarly, the Sobel filter applied on

the image with gradient directions 00, 900, 1800 and 2700 are shown in the Figs.

5.9(a), 5.9(b), 5.9(c) and 5.9(d), respectively. After these enhancements, the ridge

information is highlighted to easily distinguish the hidden minutia points on the latent

fingerprint image. It is observed that the matching accuracy improved to around 79%

after the latent fingerprint enhancements using the semi-automated latent fingerprint
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identification system.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.8: Finger markup filters: (a) sample latent print from NIST SD-27, (b) region
of interest marking, (c) enhance image with color filters, (d) brightness and contrast
enhancements, (e) Sobel filter applied with gradient direction 00, (f) Sobel filter
applied with gradient direction 900, (g) Sobel filter applied with gradient direction
1800, (h) Sobel filter applied with gradient direction 2700.

5.5 SUMMARY

In this work, two methods of latent fingerprint identification systems are proposed,

namely, automated and and semi-automated latent fingerprint identification systems.

The automated latent fingerprint identification algorithm is proposed in lights-out

mode where the standard ISO/IEC 19794-2 templates are considered. The proposed

algorithm reduces the manual intervention of the fingerprint experts in identifying the

suspects. The semi-automated latent fingerprint identification system have the image

enhancement filters, namely, Sobel, emboss, and lighting. The matching performance

for LF-1 group latent prints is significantly better than those for the latent prints
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.9: Finger markup filters: (a) emboss filter applied with gradient direction
00, (b) emboss filter applied with gradient direction 900, (c) emboss filter applied
with gradient direction 1800, (d) emboss filter applied with gradient direction 2700,
(e) lighting filter applied with gradient direction 00, (f) lighting filter applied with
gradient direction 900, (g) lighting filter applied with gradient direction 1800, (h)
lighting filter applied with gradient direction 2700.

belonging to the other two groups LF-2 and LF-3. The matching performance is

improved to around 79% after the latent fingerprint enhancements using the semi-

automated latent fingerprint identification system.
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CHAPTER 6

DEDUPLICATION USING PHOTOGRAPH AND FACE

IMAGES

This chapter presents the de-duplication process using face biometrics. Face is one

of the most widely used biometric in security systems. Despite its wide usage, face

recognition is not a fully solved problem due to the challenges associated with varying

illumination conditions. The illumination while capturing the face photographs plays

an important role especially in out-door environment in the process of unique identity

creation using de-duplication process. The thesis addresses the effect of illumination

in face photographs as well as face images for de-duplication applications.

First we propose a method for de-duplication process of photographs is imple-

mented using content based image retrieval (CBIR). The CBIR technique uses color

histogram refinement feature. The photograph data is divided into different clusters

using k-means clustering algorithm. The clusters count depends on the number of

photographs in each district of the state. The photo de-duplication exercise was car-

ried out in a large photograph database which contains 22 million (approximately)

photograph images. Second, a new approach for illumination invariant face recogni-

tion using convolutional neural networks (CNN) [77]. The ability of a CNN to learn

local patterns from data is exploited for facial recognition. The symmetry of facial

information is exploited to improve the performance of the system by considering the

horizontal reflections of the facial images.
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6.1 PHOTOGRAPH DE-DUPLICATION FOR PUBLIC DISTRIBUTION

SYSTEM

The targeted public distribution system (TPDS) is a mechanism for ensuring access

and availability of food grains and other essential commodities at subsidized prices to

the households. Identification of eligible beneficiaries and ensuring delivery of com-

modities to them effectively and efficiently is the main challenge for TPDS. As part

of this, one department of civil supplies in India has issued around 22 million ration

cards covering around 80 million citizens and this process was decentralized. The

department noticed that there are some bogus ration cards and decided to execute

the de-duplication process on entire data. De-duplication is carried out in two differ-

ent ways, one is biometric-based and the other is photo-based. The reason to go for

photo-based de-duplication is that there are some ration cards without biometrics. An

attempt is made to explain the de-duplication process of photograph images.

Photo-based de-duplication means finding the duplicate ration cards based on the

family photograph in the large scale database. The operators generated some duplicate

ration cards using the family photographs of the already existing ration cards. They

manipulated the photographs in such a way that they edit the photograph in an image

editor tool, crop the corners of the photograph in rectangular shape, erase the corners

image data and finally zoom the photograph image into the actual photograph image

size.

The methods described in [122–124] are based on color histogram refinement tech-

nique using color coherent vectors, color and texture for content-based image retrieval.

An algorithm is proposed to de-duplicate photographs using histogram refinement for

content-based image retrieval (CBIR). Histogram refinement splits the pixels in a given

bucket into several classes based on some local property. Within the given bucket, only

pixels in the same class are compared. The equal error rate is fixed empirically at the

threshold of 1500 by observing the false accept rates and false reject rates on sample

training dataset which is created from the database of 22 million photographs.

79



The entire photographic data were divided into different groups in two levels,

one is district-level grouping and the other level uses k-means clustering. District-level

grouping means dividing the data into different clusters based on district names. There

may be chances that a family can have two or more ration cards in different districts.

The reason for not considering the state as single unit for the de-duplication process

is to speed up the process. There are 23 groups formed based on district name. The

next level of grouping is k-means clustering of district-level data which uses the color

and texture features of the photograph.

6.1.1 CBIR technique using color histogram refinement

The proposed CBIR method uses the family photograph images. Fig. 6.1 represents

the sample color photograph image which has the dimensions of 320×240 image size.

Generally, images are two-dimensional arrays of bytes which represent pixels. Each

pixel has a gray-scale value which is ranging from 0 to 255.

Fig. 6.1: Family photograph of a household ration card

The steps in de-duplication of photographs using CBIR are given below:

1. Extraction of color features from photograph image.

2. Clustering of photographs using k-means algorithm.

3. De-duplication of photographs.

In the following subsections, each of the above steps is explained below in detail.
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6.1.2 Extraction of features from photograph images

The color and texture features are extracted from the photograph images. Color

histograms are more popular to compare images. They are more suitable against

small changes in camera viewpoint. For example, Swain and Bellard [125] use color

histograms for analyzing the data. A color histogram is represented by a vector

H=< c0, c1, ...cn−1 > where n = 256 and cj contains the number of pixels of color

j in the image. Color images are reprented in RGB color space. Each image consists of

three color histograms, namely, Rh histogram, Gh histogram and Bh histogram. The

color histogram H is an average of Rh , Gh and Bh histograms. Images with same

histograms may have entirely different appearances which can be overcome by his-

togram refinement [126] technique which divides the color histogram into two different

histograms based on local features. The local feature (with diagonal line as the ref-

erence) is used to split the color histogram into two histograms, namely, left diagonal

histogram HL and right diagonal histogram HR. The resulting split histograms can

be compared using the Manhattan distance (L1-distance) measure. The left diagonal

color histogram is HL=< cL0, cL1, ...cLn−1 > and the right diagonal color histogram

is HR=< cR0, cR1, ...cRn−1 >. The number of pixels of color j in the image becomes

cj=cLj+cRj where Lj and Rj represent the jth bin of left diagonal histogram HL and

right diagonal histogram HR, respectively.

H = HL +HR =< cL0 + cR0, cL1 + cR1, ...cLn−1 + cRn−1 > (6.1)

The photograph images have pixels data of 2-D array of 320×240 which is in RGB

(red, green, blue) color space. The image is partitioned into 4×4 blocks. Each block

is represented with one feature vector, consisting of six features [127]. Three of them

are the average color components in a 4×4 block. The other three represent energy

in high frequency bands of wavelet transforms [128], that is, the square root of the

second order moment of wavelet coefficients in high frequency bands.

The RGB color space is only rarely used for querying as it does not correspond
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well to the human color perception. It seems reasonable to be used for photograph

images taken under almost identical conditions each time. Although the duplicate

photographs have the same capturing conditions as the original photograph, it may

be altered while editing by the operators. The photograph image is transformed from

RGB space to CIE Luv space [129], and then the features of the three color components

are calculated. The CIE Luv color space is a perpetually uniform. To obtain the other

three features, the Daubechies-4 wavelet transform is applied to the L component of

the image. After a one-level wavelet transform, a 4×4 block is decomposed into four

frequency bands as shown in Fig 6.2.

Fig. 6.2: Decomposition of images into frequency bands by wavelet transforms

Each band contains 2×2 coefficients. Without loss of generality, suppose the coef-

ficients in the HL band are (Ck,l, Ck,l+1, Ck+1,l, Ck+1,l+1). Then, one feature is

f =

[
1

4

1∑
i=0

1∑
j=0

C2
k+i,l+j

] 1
2

, (6.2)

and the other two features are computed similarly from the LH and HH bands.

Finally, compute the feature vector by taking the average of all the corresponding

feature vectors of 4800 blocks.

6.1.3 k-means clustering algorithm

The standard k-means algorithm [130] is in the family of prototype based clustering

algorithms. The general steps of the prototype based clustering are:
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1. Let x be the feature vector consisting of 6 features. Initialize the centers ci

arbitrarily where i = 1 to n where n is number of clusters.

2. For each feature vector x, compute its minimum distance with each center ci

and assign the data point to ith cluster.

3. For each center ci, recompute the new cluster center from all feature vectors x

belong to this cluster.

4. Repeat steps 2 and 3 until convergence.

The input for the k-means clustering algorithm is the feature vectors and the number

of clusters. Each vector has the length 6 (3-color components, 3-texture components).

The cluster count depends on the numbers of ration cards in the district. Once the

clustering is over, each cluster undergoes the de-duplication process which is explained

in section 6.1.4.

6.1.4 De-duplication process of photographs

There are two phases involved in the process of photograph de-duplication. In Phase-I,

the pre-processing steps for the de-duplication process is explained. In Phase-II, the

actual de-duplication process is explained.

Phase-I

Step 1. Resize the photograph images to 320×240 to reduce the computational com-

plexity.

Step 2. For each photograph image, apply the histogram refinement technique and

compute the histogram pair (HL, HR) where HL is the left diagonal histogram

and HR is the right diagonal histogram.

Step 3. For each photograph image, compute the feature vector of length 6, consisting

of 3 color and 3 texture components.

Step 4. Divide the entire data into 23 clusters based on district name.
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Step 5. Each district-level cluster is further clustered using the k-means clustering

algorithm. The input data for this algorithm is feature vector which is computed

in Step 3. Number of clusters depend on the total number of photographs in

each district.

Step 6. Apply de-duplication process for each cluster.

Phase-II (De-duplication for each cluster)

Step 1. Pick one histogram pair from the set of histograms pairs {(HL, HR)}, say

query histogram pair (HQL, HQR) which is not yet participated as a query

histogram pair.

Step 2. The similarity score (L1-distance) is calculated between the query histogram

pair and the set of all the histogram pairs which are not participated as query

histogram pair. The L1-distance between the pairs (HQL, HQR) and (HL, HR)

is defined as follows:

score =
n−1∑
i=0

(|HQi
L −H i

L|+ |HQi
R −H i

R|), (6.3)

where n is number of histogram bins.

Step 3. List the top 20 matches which have similarity scores less than or equal to

1500 (empirical threshold).

Step 4. The results are verified manually whether the results are correct or not. This

is required because there is no guarantee that all the results are true matches.

6.2 FACE RECOGNITION IN DE-DUPLICATION PROCESS

Face recognition [67] has gained much attention from the research groups of pattern

recognition and machine learning since the early 1990s. Face recognition is a diffi-

cult task due to the issues with illumination variance which affects the identification

rate [68]. The illumination varies while capturing the face photographs, especially
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in outdoor environment while creating person’s identity using de-duplication process

of face images. A fuzzy Fisher-face approach was proposed for face recognition [69]

using Fisher discriminant analysis and principle component analysis. Face recognition

is used in applications like access control and surveillance [2]. A new framework for

face recognition and feature extraction is proposed with kernel Fisher discriminant

analysis and fisher linear discriminant analysis [70]. Wiskott et. al. [71] proposed face

recognition algorithm by using labeled elastic bunch graphs matching based on Gabor

wavelet transform. A face verification algorithm was proposed [72] for training a very

large and unknown data of different categories.

Variations in ambient lighting produces significant degradation in face recognition

performance [2]. Thermal infrared (thermal IR) has been used in facial recognition

systems with some success against the ambient illumination. Near infrared (NIR) has

the potential to overcome the problems associated with visible [73] and thermal IR face

recognition which is more robust against illumination variations and face detection

[74]. NIR is useful for face detection as the bright eye effect [75] allows the eyes to

be localized and skin reflectance properties at just above and below 1.4 microns which

highlights the face regions clearly [74]. Over the last decade, convolutional neural

networks [76] is widely used for various computer vision tasks [77].

6.2.1 Illumination invariant facial recognition using convolutional neural

network

A convolutional neural network, capable of learning local features from input data

is used to discriminate facial images. A typical CNN classifier [131] consists of a

CNN with alternating sequence of convolution and sub-sampling layers for feature

extraction and a neural network in the last layer for classification. The architecture of

CNN classifier considered in this work is shown in Fig. 6.2.1.

The template size considered in convolution layers (C1, C2) and sub-sampling

layers (S1, S2) are 5×5 and 2×2, respectively. The facial images are down-sampled
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Fig. 6.3: Architecture of convolutional neural network

to images of size 28×32 and given as input to the CNN. The number of feature maps

considered in the first feature map set (F1) and the third feature map set (F3) are 6 and

12, respectively. The second feature map set (F2) and the forth feature map set (F4)

will have the same number of feature maps as F1 and F3, respectively. The output of

the CNN is traversed in a row major order to obtain a column vector (I) of dimension

240×1 which is used by the neural network to classify the input facial images into one

of the 30 output classes (O). The last two layers of the CNN classifier i.e., F4 and the

neural network shown in Fig. 6.2.1 are fully-connected. The CNN classifier is trained

using back-propagation algorithm in batch mode, to learn the convolution masks used

in C1, C2 and the connection weights between last two layers of the classifier. The

following section explains the experimental setup used to evaluate the performance of

the proposed approach.

6.3 EXPERIMENTAL RESULTS

Photograph de-duplication Table 6.3 shows the de-duplication results for face

photograph images in the targeted public distribution system of the household infor-

mation of 23 districts of Andhra Pradesh. The number of household cards in each

district is given with the corresponding duplicate household cards and the number

of clusters used in each district. The variation in number of classes depends on the

number of household cards in each district. The de-duplication process used two 64-
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bit windows 2000 servers having quadcore processor. Three 32-bit windows systems

were used to extract features and for clustering. For each server, two de-duplication

instances run, one instance is top-to-bottom de-duplication instance and the other is

bottom-to-top de-duplication instance. Each instance used 25 threads to compute the

similarity score using L1-distance. The photo de-duplication process was carried out in

a large scale photograph database having 22,916,243 images. The experimental results

show that there were 353,650 duplicate photographs. Fig 6.4(a), 6.4(c), 6.4(e), and

6.4(g) are the original photographs. Fig 6.4(b), 6.4(d), 6.4(f), and 6.4(h) are the

duplicate photographs.

87



Table 6.1: De-duplication results of photograph images

Household cards or family photographs

District # of Images Duplicates # of Classes

D-1 774074 12685 3

D-2 646537 10044 3

D-3 1226020 18616 5

D-4 1358529 22736 5

D-5 1041159 13658 4

D-6 1208362 22333 5

D-7 1390698 20251 5

D-8 858607 12737 3

D-9 833137 9330 3

D-10 1067074 29073 4

D-11 811924 10990 3

D-12 1116510 17864 4

D-13 1027658 13442 4

D-14 1066708 15067 4

D-15 1300346 14805 5

D-16 1262954 18207 5

D-17 725254 10604 3

D-18 627405 11038 3

D-19 704406 8270 3

D-20 1087370 18397 4

D-21 1037474 16599 4

D-22 756072 12097 3

D-23 987965 14807 4
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6.4: Duplicate household ration cards
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Face recognition using CNN The experiments were conducted on Extended Yale

Face Database B [78], [132] which consists of 168×192 gray scale facial images of 38

subjects under 9 poses and 64 illumination conditions. Five-fold cross validation is

used to evaluate the performance of the proposed approach on facial images captured

under varying illumination conditions. Similar to other existing approaches, the angle

between the direction of light source and the camera axis are considered in grouping

the facial images into 5 sets as shown in Table 6.3. We consider 62 illumination images

of 30 subjects (a total 1860 frontal face images) from Extended Yale B database, for

experimental evaluation of the proposed approaches. The typical distribution of facial

images across the five sets are shown in Fig. 6.5, where facial images in one row

correspond to one subset.

Table 6.2: Five sets of Extended Yale Database B

Set # 1 2 3 4 5

Lighting angle (deg) 0-12 13-25 26-50 51-77 >77

Fig. 6.5: Typical distribution of Extended Yale Face dataset B facial images across
the five sets (only 6 instances per subset are shown)

The CNN is trained using back-propagation algorithm in batch mode with a batch

size of 2 for 500 epochs and evaluated using 5-fold cross validation. The variation of
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classification error with the number of training epochs is given in Table 6.3. The plot

of classification performance against number of training epochs is shown Fig. 6.6. An

average classification performance of 89.05% is obtained for the proposed approach.

The recognition performance of sets #1 and #2 is better when compared to the other

sets and relatively low for #3, #4 and #5, which could be due to the inadequacy

of training data to capture the necessary discriminative information to recognize the

faces in test dataset.

Table 6.3: Misclassification error (%) of the proposed approach for the five sets

Set # 5 epochs 50 epochs 250 epochs 500 epochs

1 81.1 0.88 0.4 0.35

2 64.1 3.33 1.96 1.21

3 84.4 18.8 14.72 12.93

4 95 23.8 18.05 17.2

5 88.05 28.3 25.5 23.05

Fig. 6.6: Classification performance (%) on five sets of Extended Yale Face dataset B

The symmetry of facial information is considered along the vertical line passing

through the center of the face image inorder to address the issue. The training dataset
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is enhanced by including the horizontal reflection of facial images. This enhancement

will provide additional information to the classifier especially when there is a shadow

on one side of the face. During testing, for a given facial image, the maximum value

is considered among the evidences generated for each class to determine the output

class. The misclassification error of the proposed approach with this enhancement is

given in Table 6.3. Plot of classification performance against training epoch is shown

in Fig. 6.7.

Table 6.4: Classification performance (%) of the proposed approach on the enhanced
facial data

Set # 5 epochs 50 epochs 250 epochs 500 epochs

1 41.01 0.88 0.4 0.35

2 96.43 5.21 4.38 0.76

3 64.96 4.08 2.11 1

4 53.16 12.89 5.73 4.89

5 70.11 34.43 24.28 22.95

Fig. 6.7: Classification performance (%) including the horizontally reflected facial
images on five sets of Extended Yale Face dataset B

An average classification accuracy of 94.01% is obtained by the proposed approach
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on the enhanced facial data. It can be observed that the performance of the pro-

posed approach improves by 4.96% when horizontal reflections of the facial data are

considered in training.

The performances of existing approaches DT-CWT (dual-tree complex wavelet

transform) [133]- [134], LBP (local binary patterns) [135], SQI (self quotient image)

[136], LTV ( logarithmic total variation) [137], LWT (logarithmic wavelet transform)

[138], LNSCT (logarithmic nonsubsampled contourlet transform) [139] along with the

two proposed approaches for facial recognition are given in Table 6.3. The classification

performance of the existing methods and the proposed approach are shown in Fig. 6.8.

Table 6.5: Comparison of classification (%) performance with existing approaches

Set 1 Set 2 Set 3 Set 4 Set 5 Avg.

LBP 100 100 62.28 10.34 6.65 55.85

Curvelet 91.66 100 55.92 14.85 5.95 53.67

Contourlet 76.31 98.68 52.19 22.36 9.83 51.87

DT-CWT 98.68 99.34 76.75 38.91 13.85 65.49

SQI 100 98.68 71.27 69.37 63.98 80.66

LTV 100 99.78 78.51 75.75 82.41 87.29

LWT 100 100 82.01 81.95 70.77 86.95

LNSCT 100 100 83.33 87.96 84.34 91.126

Proposed

CNN 99.65 98.79 87.07 82.81 76.95 89.05

Proposed

CNN 99.65 99.24 99 95.11 77.05 94.01

(reflection)

The low classification accuracy for facial images in set-5 is due to the extreme

illumination conditions as shown in the last row of Fig. 6.5. It is assumed that the

performance of the proposed facial recognition approaches is unaffected by the inclusion

of additional subjects, due to the uniform distribution of subjects facial images across
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Fig. 6.8: Comparison of classification (%) performance with existing methods

all the five sets, thereby enabling the comparability of the proposed approach with

the existing approaches as shown in Table 6.3. Table 6.3 shows the effectiveness of

the proposed approaches for facial recognition. It is time consuming to train the

convolutional neural network as the input image size increases.

6.4 SUMMARY

In this chapter, a de-duplication process is implemented in large scale database of

photographs. In the proposed method, an attempt is made to eliminate the duplicate

ration cards from the database using histogram refinement technique. The proposed

method eliminated nearly 0.35 million (approximately) duplicate ration cards. Also, an

approach for illumination invariant facial recognition is proposed using convolutional

neural networks (CNN) especially in the context of de-duplication process on the face

images collected in out-door environment. CNN is used to learn the discriminative

local patterns to recognize subjects from their facial images. Experiments conducted

on Extended Yale Face Database B demonstrate the effectiveness of the proposed

approach.
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CHAPTER 7

UNIQUE IDENTITY CREATION USING MULTIMODAL

BIOMETRICS FOR E-SOCIETY APPLICATIONS

In this chapter, some issues related with biometric data acquisition and storage are

addressed while creating a persons’ identity in the e-Society. The best practices for bio-

metric data acquisition and identity creation is presented using multi-modal biometrics

(fingerprints, iris, face and signature). Assigning a permanent identification number

for every person in the E-Society would remove the need for a person to produce multi-

ple documentary proofs of his identity for availing any government or private services.

Multi-modal biometrics play an important role in creating unique identity for every

person. Multimodal biometrics means combining two or more biometric modalities

in the development of a single biometric identification system. Biometric recognition

systems based solely on uni-modal biometrics will not meet the desired biometric per-

formance requirements in large-scale biometric applications due to the problems such

as noisy biometric information, failure to enroll rate, spoof attacks, unacceptable error

rates and environmental conditions.

A fingerprint authentication approach is proposed for public distribution system

(PDS) using point of sale (PoS) device. The public distribution system finds the

genuine beneficiaries with the help of electronic fingerprint authentication system,

and aadhaar central identification repository (CIDR). However, due to the smartcard

storage constraints and cost-effectiveness, the utilization of data should be minimal.

So, there is a need for compression of the biometric data without loss of important

information or essential features of biometrics which are useful for identification. In

order to store the signature biometric on a smart card, a novel algorithm is proposed
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for reducing the size of data.

This chapter is organized as follows: Unique identity creation using compressed

biometric data is explained in Section 7.1. Section 7.2 presents an application of

biometrics in e-Governance using hand-held fingerprint units.

7.1 UNIQUE IDENTITY CREATION USING COMPRESSED BIOMET-

RIC DATA

Data compression [140] can be divided into lossy and lossless compression techniques.

Loss-less compression means the exact data can be reconstructed same as in original

image, whereas the lossy compression techniques allows some image quality degrada-

tion with high compression ratio [141], [142]. BMP is a bitmap image format which

has the image files of uncompressed raster graphics. JPEG (joint photographic experts

group) image format allows the adjustable compression which balances both the size

and quality of the image. In JPEG2000, the quality and adjustable compression ratio

is improved. WSQ (wavelet scalar quantization) is a compression algorithm imple-

mented for 8-bit grey-scale fingerprint images. GIF (graphics interchange format) is

a bitmap image format limited to 256 colors or 8-bit palette and it is ineffective for

detailed images. PNG (portable network graphics) is a lossless format, created to im-

prove upon and to be a replacement for GIF format. TIFF (tagged image file Format)

image format uses a lossless compression algorithm where the compression ratio is im-

proved with bi-level images. The comparison between these image formats are already

done in the context of biometric systems where the lossy compression techniques do

not give much degradation in the quality of biometric image data. The impact of

JPEG, JPEG2000, SPIHT (set partitioning in hierarchical trees), PRVQ (predictive

residual vector quantization), and fractal image compression on recognition accuracy

of selected fingerprint and face recognition systems is explained in [143]. Similarly,

[144] also relates JPEG, JPEG2000, and WSQ compression rates to recognition perfor-

mance of some fingerprint and face recognition systems. Few compression techniques
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are analyzed on standard iris databases [145]. A drawback of lossy techniques as

compared to lossless ones is their often significantly higher computational demand.

The lossless compression algorithms exploit the directional features in fingerprint

images caused by ridges and valleys. A scanning procedure and the direction of domi-

nant ridges are added to improve the lossless coding results as compared to JPEG-LS

and PNG [146]. Few lossless compression algorithms [147] are compared when applied

to multi-modal biometrics image data like fingerprints, hand data, face imagery, retina,

and iris. Based on several evaluations and the most relevant compression algorithms

for iris, fingerprints and face biometrics are Jp2 (JPEG2000), WSQ and JPEG image

formats, respectively. The compression algorithms are more optimal and reliable. A

new algorithm is proposed to compress the signature biometrics. And also, for better

compression ratio, the quality of biometrics is always important while capturing the

biometrics using biometric sensors. The best practices for acquiring the biometric data

are presented in this work.

7.1.1 Best practices for biometric enrollments

Enrollment of each person can be registered by capturing the 10 fingerprints (in 4-4-2

manner) using L1 TP-AGILE device, 2 Iris images using L1 Mobile Eyes, face image

using Canon digital camera and signature using Topaz signature pad as shown in Fig.

7.1. Quality assessment takes place while the capture process going on since there is

an inbuilt quality checks based on some international standards. Apart from these

quality checks, the operator at the enrollment station should take care some of the

best practices to get the quality biometric data captured.

Fingerprints: One way of acquiring fingerprints is to capture the slap fingerprint.

Slap fingerprints [115] are taken by pressing four fingers simultaneously onto a slap

fingerprint scanner. In general, the capturing process will take place in the fashion of 4-

4-2 fingers (as shown in Fig. 7.2), means capture left four fingers at one time, followed

by all right four fingers and then followed by two thumb fingers. The fingerprints
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Fig. 7.1: Enrollment station with biometric sensors

captured in this fashion reduces the time taken for capturing process. The captured

slap fingerprints go for the slap fingerprint segmentation which splits the individual

fingers from the slap image. The left four fingers slap can be segmented as in the

sequence of left little (LL), left ring (LR), left middle (LM) and left index (LI). The

right four fingers slap can be segmented as in the sequence of right index (RI), right

middle (RM), right ring (RR) and right little (RL). The two thumb fingers can be

segmented as left thumb (LT) and right thumb (RT). The quality of fingerprints can

be assessed by NFIQ (NIST Fingerprint Image Quality) score. NFIQ score ranges on

the scale 1 to 5, where lesser quality score represents good quality and higher quality

score represents poor quality.

The enrollment application should provide the feedback if captured images are of

bad quality. The application should have the capability of performing a sequence check

and also have the capability of indicating any wrong hand placement. The application

should also indicate mismatch between expected fingers based on amputation status

versus actual segmented finger count. Apart from these practices, the following are

the few things to take care while capturing fingerprints:

• Before capturing process initiates, if the finger is wet then make sure it is dry

by cleaning the fingers with a smooth cloth. Also, it should not be too dry.

98



• Place the finger flat on the scanner.

• Place the bulb area of fingerprint on the sensor surface and apply smooth pres-

sure.

• Operator need to be well trained to capture the fingers in proper sequence.

• The scanner need to be cleaned to avoid ghost fingers present on sensor surface

which are placed while capturing the previous fingers.

• For old age people, the finger might be in dry and/or shivering nature, then the

operator need to assist those people.

Fig. 7.2: 4-4-2 Fingerprints

Iris: The iris image can be captured both at a time using Mobile Eyes device. Apart

from the quality checks in device-level, operator should assist the user to open the eyes

properly in order to capture the iris image. The distance between the camera and iris

images should not be too long or too short. The sample images are shown in Fig. 7.3.

Fig. 7.3: Iris images
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Face: The face photograph should meet the international civil aviation organization

(ICAO) [148] standard. The enrollment station should allow at-least three attempts

in order to select best face image among the captured attempts. The quality of the

face image can be assessed based on the following parameters: no hair covering front

of face, eyes open, no portrait style images, eyes on same horizontal line, single color

background, face centered, no single flash or flash artifacts, no red-eye, no shadows

on background, no shadows on face, no sunglasses, no glare on glasses, remove hats,

no shadows on face from religious head gear, lower veil to expose center of face from

roughly crown to chin and ear to ear, no other face or partial face in image and no toys

or other objects in image. The sample photograph that meets all these parameters is

shown in Fig. 7.4.

Fig. 7.4: Face photograph

Signature: The image captured using Topaz signature pad is of size 500×150. It

is re-sampled to 168×44 image size in order to reduce the image size without loss

of essential information. In case of physically challenged people/illiterates, a default

single horizontal line should be assigned as the persons’ signature by the application.

Fig. 7.5: Signature
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7.1.2 Proposed compression algorithm for signature biometrics

The proposed compression algorithm is named as SIGN (signature data format). The

following are the steps involved in the proposed signature image compression algorithm:

1. Input for the compression algorithm is the signature image with size 500×150.

2. Re-sample the image to a smaller image whose dimensions are multiples of 4,

for example, the re-sampled image size is 168×44.

3. Extract the raw bytes from the image where each byte is the representation of

pixels in the image. Typically, each pixel has gray scale variations from 0 to

255.

4. Binarize the re-sampled image in the fashion of assigning the values 0 or 1 for

each raw byte with a threshold of 200.

5. Select all the consecutive 7 bytes from the binary array and represent the byte

values as a single byte which have the most significant bit (MSB) is one followed

by the 7 bytes, if the byte values contains at least one black pixel as shown in

Fig. 7.6.

6. If more white pixels, fill MSB=0 and consecutive number of white byte groups

as a single byte as shown in Fig. 7.6.

7. Output: Signature image of size 500×150 is compressed to 30 bytes.

7.2 BIOMETRICS IN E-GOVERNANCE USING HAND-HELD FIN-

GERPRINT UNITS

The fingerprints are mostly used in civilian applications due to its uniqueness and relia-

bility. There are several fingerprint-based applications in the fields of forensics, border

security, e-governance, academia and so on. Two different applications are presented

using hand-held fingerprint terminals in the fields of e-governance and academia. One

application is fingerprint-based on-line authentication approach for public distribution
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Fig. 7.6: Signature image compression

system (PDS) [149] using point of sale (PoS) device. After the implementation of

India’s large-scale aadhaar project, there is a growing demand for biometrics in public

distribution systems (PDS). The goal of aadhaar project is to provide a Unique IDen-

tity (UID) number for all the residents in India. A Unique IDentity number assigned

for every person would obviate the need for a person to produce multiple documentary

proofs of his/her identity for availing any government service. The unique identity

number would remain a permanent identifier right from birth to death of every person

in the country. UID would enable government to ensure that benefits under various

welfare programs such as PDS reach the intended beneficiaries, prevent cornering of

benefits by a few sections of people and minimize frauds. The main objective of the

PDS is to find the genuine beneficiaries with the help of electronic fingerprint authen-

tication system.

7.2.1 Aadhaar authentication

Aadhaar authentication is an on-line process of submitting aadhaar number along with

other attributes, including biometrics to the central identification repository. Aadhaar

authentication provides several ways in which a resident can authenticate themselves

using the system. At a high level, authentication can be demographic authentication
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and/or biometric authentication. During the authentication transaction, the resident’s

record is first selected using the aadhaar number and then the demographic/biometric

inputs are matched against the stored data provided by the resident during enroll-

ment/update process.

The point of sale (PoS) device is used in the proposed methods of fingerprint au-

thentication or verification which consists of the display module, communication mod-

ule, biometric module and printer. The communication modules are GPRS modem

and ethernet connection. The PoS device consists of the UID compatible application

interface for generating the request which is compatible with UID/Aadhaar authenti-

cation. The device will be placed at the fair-price-shop (FP shop) with the dealer. The

device is locked with the particular FP shop dealer to make sure the device is operated

by dealer only with his UID authentication. The PoS based on-line authentication

systems have lot of advantages over traditional smart card authentication systems

[150].

7.2.2 Fingerprint authentication approach using PoS units

The fingerprint authentication workflow for the public distribution system is explained

as follows:

1. The residents provide aadhaar number, necessary demographic and biometric

details at PoS terminals to an operator.

2. Each device is installed with the aadhaar authentication-enabled software which

packages the input parameters. The package will be encrypted and transmitted

to the authentication server using a broadband/mobile network.

3. Authentication server validates the package and adds necessary headers (license

key, transaction id, etc.), and passes the request to the central server (UIDAI

CIDR).

4. Aadhaar authentication server returns a yes/no based on the match-ability of

the input parameters.
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5. The operator proceeds with the transaction based on the response at the PoS

device.

The advantages of using PoS based biometric authentication system are:

1. Fast and efficient services are provided to the beneficiaries.

2. The commodities will be allocated to the FP shop based on the real time closing

balances.

3. The accountability and transparency is increased at FP-shop level.

4. Eligible beneficiaries can get the commodities without wastage.

The program requires UID number as primary authentication for distribution of

commodities. There is a secondary authentication method using mobile numbers for

the residents who are not having the aadhhar numbers. The PoS terminal generates a

one time password (OTP) and will be verified using the SMS received in the mobile.

If the user does not have UID as well as mobile number, a government supervisor will

authenticate on behalf of the beneficiary.

It is observed that the failure-to-capture rate exists for the people who works hard,

old aged, people with leprosy, very dry fingers, very wet fingers, people with shivering

hands. Nearly 60% of the people are able to authenticate in the first attempt, 30%

to 35 % people are able to authenticate with in 4 attempts and 0.5% are not able to

authenticate, mainly due to old age or leprosy.

7.3 EXPERIMENTAL RESULTS

Compressed biometric data The experiments are conducted using the sample

multi-modal biometric data collected in such a way that the 10 fingerprints (in 4-4-2

manner) using L1 TP-AGILE device, 2 iris images using L1 mobile eyes, face image

using canon digital camera and signature using topaz signature pad. Table 7.3 shows

different image sizes of raw biometric data.
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Table 7.1: The standard biometric image dimensions

Biometric Image Size Size

Image dimension (raw) (compressed)

Iris 640×480 301KB 80-120KB

Slap (4-4-2) 1600×1500 2.3MB NA

Two Finger 900×900 792KB NA

Single Finger Variable 200-800KB 10-20KB

Face 480×600 288KB 20-40KB

Signature 168×44 7.392KB 924 bytes

For creating a biometric-based identity, it should at least have the biometric infor-

mation of 2 iris images, 2 fingerprints, 1 face photograph and 1 signature. The space

required to store all these information in a smart card is around 1.365MB (minimum)

to 2.565MB (maximum). It is a huge memory to store in a smart card which should

be cost-effective. After compressing the biometric data using the relevant compression

algorithms like WSQ (for fingerprints), JPEG2000 (for iris), JPEG (for face) and SIGN

(for signature), the space required to store the compressed biometric information in

smart card is around 111-181KB.

PDS fingerprint authentication and its proof of concept The proof of con-

cept was implemented in 100 fair price (FP) shops in Andra Pradesh, India. As part

of this analysis, rural, urban and hamlet areas are chosen. Nearly 85 percent of the

beneficiaries have the UID numbers and remaining 15 percent beneficiaries have enroll-

ment Id (EID) numbers. The beneficiaries who have UID numbers are authenticated

using fingerprints captured from PoS unit. The beneficiaries with EID numbers are

authenticated using one time password (OTP) or authorized village servants’ UID on

behalf of the beneficiary. Initially, in the first month of implementation, 97 percent of

the beneficiaries are authenticated with their fingerprints and the remaining 3 percent

of the beneficiaries are mis-mapped their UIDs at the central server. In the second
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month, 99 percent of the beneficiaries are authenticated with their fingerprints and

rest of the beneficiaries were not able to authenticate due to the bad quality finger-

prints. The authentication accuracy is improved by fusing the matching scores of two

fingerprints.

Initially, the average number of authentications for each person was around two

attempts. Later, it is reduced to 1.3 attempts using the method of ’best finger detec-

tion’. The ’best finger detection’ method captures ten fingerprints of the beneficiary

and sends the data in the form of UID compliant packet to the central server. It pro-

cesses the request and gives the response of best fingers of the beneficiary on the rank

scale of 1 to 10. If the fingerprints are not matched with the existing fingerprints data

in the central server, the ’best finger detection’ method prompts the message ”recap-

ture fingerprints again’. The implementation check out nearly 5 percent of the bogus

cards and showed nearly 20 percent of savings to Government. The tests have been

conducted on nearly 70000 families. Each family consists of approximately 4 persons

and 85 percent of these families are having valid UID numbers.

7.4 SUMMARY

A unique identity (UID) creation for every person in the e-Society would obviate the

need for a person to produce multiple documentary proofs of his identity. A novel al-

gorithm for signature compression is proposed in order to compress the biometric data

in an efficient manner. Each pixel byte value in the proposed algorithm is transformed

as a single bit in the compressed signature data based on some empirical threshold.

Experimental results shows that the proposed compression algorithm is more optimal

and reliable. A fingerprint-based authentication approach is proposed for the applica-

tions in the field of e-Governance. The aadhaar authentication has been implemented

in the 100 fair price (FP)-shops in Andhra Pradesh, India. It is observed that the

process is faster than the traditional method of smart-card based authentication.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this thesis, we have proposed the methods to address two important issues in the

large-scale de-duplication applications, namely, the speed of the matching and the

accuracy of the matching. An iris classification approach was proposed based on

sparse representation of Gabor features using dictionary learning for large-scale de-

duplication applications. Also, an iris adjudication process was explained by compar-

ing the matched iris-pair images side-by-side to make the decision on the identification

score using color coding. The proposed iris de-duplication architecture did improve

the speed of identification process and reduce the identification errors in large-scale

de-duplication applications. A de-noising approach was proposed for accurate slap fin-

gerprint segmentation which improves the performance of de-duplication process. A

new cross-sensor adaptation algorithm is proposed for fingerprint biometrics using ker-

nel transformation learning in order to improve the fingerprint matching performance

while upgrading with new fingerprint scanners in large-scale applications which often

lead to reduced fingerprint matching performance. The facial enrollments under differ-

ent illumination conditions in outside environment produces degraded performance of

face recognition. A new method for face recognition was proposed using convolutional

neural networks in order to improve the identification performance in different illumi-

nation conditions. A new approach for photograph de-duplication was proposed using

color histograms to eliminate the duplicate ration cards in targeted public distribution

system. The best practices for biometric data acquisition and identity creation were

presented using multi-modal biometrics (fingerprints, iris, face and signature) in order

to minimize the data storage on a smart card.
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8.1 CONTRIBUTIONS OF THE WORK

In the first de-duplication case study, Government of Andhrapradesh undertook the

de-duplication of ration cards using 52 million people iris codes. The number of iris

comparisons are performed over 6.26 quadrillion times to remove duplicate enrollments

in 61 days which is not a scalable solution. In this thesis, we propose an approach

for classification of iris images based on sparse representation of Gabor features using

dictionary learning for large-scale de-duplication applications. Sparse coding involves

the representation of an image as a linear combination of some atoms in a dictionary.

The signals and images of interest tend to enjoy the property of being sparse in some

dictionary. These dictionaries are often learned directly from the training data. Iris

classification and adjudication framework is proposed in iris de-duplication architecture

to speed-up the identification process and to reduce the identification errors.

In the second de-duplication application, Government of Orissa collected a total

of 1.8 million slap fingerprint images of 0.6 million citizens as part of targeted public

distribution system (TPDS) process. The slap fingerprint images had some noisy data

due to some external factors which affect the calibration process of the fingerprint de-

vice. While doing the segmentation of these slap fingerprints, some of the fingerprint

images are improperly segmented because of the noise present in the data and as a

result, there is a reduction in the performance of de-duplication process. A de-noising

approach is proposed to remove the noise present in the data using binarization of slap

fingerprint image and region labeling of desired regions with 8-adjacency neighbor-

hood. A framework is proposed to improve the fingerprint matching performance for

cross-sensor adaptation in two different phases. In the first phase, few training sam-

ples were selected from three different fingerprint scanners. These samples are used to

learn the adaptation parameters from optimized kernel matrix using the initial kernel

matrix calculated with similarity measures of all selected samples. A convex optimiza-

tion problem was formulated to minimize the logDet divergence between the initial

kernel matrix and adapted kernel matrix. The sensor adaptation parameters were
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calculated by imposing the distance preserving constraints and application-specific

constraints. These constraints reduces the sensor mismatch problem when the match-

ing performed for cross-sensor in the transformed domain. In the second phase, these

parameters are incorporated while fingerprint matching in transformed domain. Also,

a semi-automated latent fingerprint identification is proposed to markup fingerprint

landmarks manually using the image enhancement filters which will further improve

the identification performance.

In the third de-duplication scenario, Government of Andhra Pradesh has issued

around 22 million ration cards in which there are few duplicate ration cards created in

an unauthorized manner in order to mislead the benefits of beneficiaries. We propose

a method for de-duplication of face photographs based on color histograms. Also,

the issue of degraded face recognition rate with non-uniform illumination conditions is

addressed in face photograph de-duplication, especially in outdoor environment. A new

method is proposed for face recognition to address the issue of non-uniform illumination

using convolutional neural networks (CNN). The symmetry of facial information is

exploited to improve the performance of the face recognition system by considering

the horizontal reflections of facial images.

Also, the thesis addresses some issues related with biometric data acquisition and

storage while creating a persons’ identity in the e-Society. The best practices for bio-

metric data acquisition and identity creation is presented using multi-modal biometrics

(fingerprints, iris, face and signature). In order to store the signature biometric on a

smart card, a novel algorithm is proposed for reducing the size of data.

8.2 DIRECTIONS FOR FUTURE RESEARCH

In this thesis, we have proposed the methods to address two important issues in the

large-scale de-duplication applications, namely, the speed of the matching and the

accuracy of the matching. An iris classification approach was proposed based on sparse

representation of Gabor features using on-line dictionary learning (ODL) for large-
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scale de-duplication applications. Also, an iris adjudication process was illustrated

by comparing the matched iris-pair images side-by-side to make the decision on the

identification score using color coding. The proposed iris de-duplication architecture

did improve the speed of identification process and reduce the identification errors

in large-scale de-duplication applications. The data used for iris classification was

collected under visible illumination. Most of the iris recognition systems use the data

acquired at near infra-red (NIR) wavelengths. These systems are more accurate among

all the existing biometric recognition systems. It is very to hard to label the iris classes

in the available standard near infra-red databases. The same experimental setup should

be executed for the near infra-red iris database which have more texture information

to distinguish the iris labels.

A de-noising approach was proposed for accurate slap fingerprint segmentation

which improved the performance of de-duplication process. Even though there exists

different fingerprint classification approaches to speed up the identification process,

integrating both proposed denoising approach and existing fingerprint classification

with fingerprint de-duplication architecture might further improve the de-duplication

performance. A new sensor adaptation algorithm was proposed for fingerprint biomet-

rics using kernel transformation learning in order to improve the fingerprint matching

performance in the context of large-scale fingerprint de-duplication system. The kernel

dimensionality reduction may be explored for the fingerprint biometrics using the pro-

posed framework and also different domain adaptation algorithms should be explored.

Similar cross-sensor adaptation algorithms for multi-modal biometric recognition sys-

tems will also be considered in the future.

The face enrollments under different illumination conditions in the outside envi-

ronment degrade the performance of face recognition. A new method was proposed for

face recognition under non-uniform illumination using convolutional neural networks.

The experiments were conducted using the standard face dataset. In order to study

this illumination invariant face recognition especially in surveillance applications, the

data should be collected at-a-distance and execute the experiments using CNN.
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APPENDIX A

SPARSE REPRESENTATIONS

Suppose that there are K iris classes, and each iris class has a set of N iris images.

Let a d-dimensional feature vector be extracted from each iris image. Let Ak be a d×N

matrix of feature vectors of the kth class, where the column akn = [akn1akn2...aknd]
T

denotes the d-dimensional feature vector of the nth iris image belonging to the kth

class.

Ak = [ak1ak2...akn...akN ] ∈ Rd×N (A.1)

An iris dictionary A can be dened as follows:

A = [A1A2...Ak...AK ] ∈ Rd×KN (A.2)

where K represents some of the feature vectors from three different iris classes.

Let y ∈ Rd be an observed feature vector extracted from a test iris image. The y can

be expressed as a linear weighted sum of columns of iris dictionary A as

y =
K∑
k=1

N∑
n=1

xknakn (A.3)

where the scalar xkn is the weight associated with the column akn. The above

equation can also be written in the matrix form as

y = Ax (A.4)

and the residual can be written as

r(y) = y − Ax (A.5)



The observation vector y belongs to a particular class meaning that it is approx-

imately comes in the linear span of the training vectors of that iris class. In other

words, the coefficients of the weight vector x that does not belong to that particular

iris class are very close to zero and also x gives more sparsity with very few nonzero

coefficients. The given system of linear equations in (A.4) is underdetermined, since

the size of the feature vector (d) is much greater than the number of feature vectors

concatenated in the iris dictionary. The sparsest solution can be obtained from the

infinitely many solutions by solving the following optimization problem

minx||x||0 subject to y = Ax, (A.6)

where ||x||0 is zero norm of weight vector x which mean the number of nonzero

coefficients in weight vector x. There were many iterative algorithms proposed like

matching pursuit (MP), and orthogonal matching pursuit (OMP) to address the above

optimization problem [10]. In the proposed iris classication methodology, OMP algo-

rithm is chosen to calculate the approximate sparse weight vector x [3]. The main

goal of the algorithm is to identify sparse weight vector x which gives a few nonzero

coefficients. These coefficients will determine the few columns of A that participate in

the representation of observation vector y. The algorithm chooses those columns in a

greedy fashion. The following are the steps involved in OMP algorithm [3].

1. The sparse weight vector x is initialized with zero, (x0 = 0). The initial resid-

ual is, r0(y) = yAx0 = y. The solution support is initialized with S0 =

Support{x0} = φ

2. Since the residual error depends on ||y||2, a fraction of ||y||2 can be used as error

threshold, i.e., θ0 = λ||y||2, where 0 < λ < 1. The value should not be very high

or very low. If the value is very high, it may not capture the iris class-specic

characteristics. On the other hand, a low value of λ may spoil the sparsity of

the weight vector x while minimizing the residual error.

3. The first iteration of the algorithm starts with k = 1.
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4. The errors are computed for all columns of A using θ(c) = minzc||aczc− rk−1||22,

where c represents the column index and zc = aTc r
k−1/||ac||22.

5. Among all the column errors, find a minimizer c0 from θ(c) in such a way that the

column should not be an element in previous solution support and θ(c0) ≤ (c).

Update the solution support Sk by adding the minimizer c0 to previous solution

support Sk−1.

6. Based on the updated solution support Sk, compute the sparse weight vector

xk by solving the min||y − Ax||22.

7. The residual is again computed for the current iteration using rk = bAxk.

8. If the l2 norm for the updated residual is below the predefined error thresh-

old θ0, then xk becomes the solution. Otherwise, repeat the steps from 4, by

incrementing k by 1.
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APPENDIX B

SUPPORT VECTOR MACHINES

The support vector machine (SVM) is a linear machine pioneered by Vapnik. The main

idea of an SVM is to construct a hyperplane as the decision surface in such a way that

the margin of separation between positive and negative examples is maximized. The

notion that is central to the construction of the support vector learning algorithm is the

innerproduct kernel between a support vector xi and a vector x drawn from the input

space. The support vectors constitute a small subset of the training data extracted by

the support vector learning algorithm. The separation between the hyperplane and

the closest data point is called the margin of separation, denoted by ρ. The goal of

a support vector machine is to find a particular hyperplane for which the margin of

separation ρ is maximized. Under this condition, the decision surface is referred to as

the optimal hyperplane. Fig. B.1 illustrates the geometric construction of a hyperplane

for two dimensional input space. The support vectors play a prominent role in the

operation of this class of learning machines. In conceptual terms, the support vectors

are those data points that lie closest to the decision surface, and therefore the most

difficult to classify. They have a direct bearing on the optimum location of the decision

surface.

The idea of an SVM is based on the following two mathematical operations:

1. Nonlinear mapping of an input pattern vector onto a higher dimensional feature

space that is hidden from both the input and output.

2. Construction of an optimal hyperplane for separating the patterns in the higher

dimensional space obtained from operation 1.

Operation 1 is performed in accordance with Cover’s theorem on the separabil-

ity of patterns. Consider an input space made up of nonlinearly separable patterns.



Fig. B.1: Illustration of the idea of support vectors and an optimal hyper-
plane for linearly separable patterns.

Cover’s theorem states that such a multidimensional space may be transformed into

a new feature space where the patterns are linearly separable with a high probabil-

ity, provided the transformation is nonlinear, and the dimension of the feature space

is high enough. These two conditions are embedded in operation 1. The separating

hyperplane is defined as a linear function of the vectors drawn from the feature space.

Construction of this hyperplane is performed in accordance with the principle of struc-

tural risk minimization that is rooted in Vapnik-Chervonenkis (VC) dimension theory

[151]. By using an optimal separating hyperplane the VC dimension is minimized and

generalization is achieved. The number of examples needed to learn a class of interest

reliably is proportional to the VC dimension of that class. Thus, in order to have a

less complex classification system, it is preferable to have those features which lead to

lesser number of support vectors.

The optimal hyperplane is defined by:

NL∑
i=1

αidiK (x,xi) = 0 (B.7)
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where {αi}NL
i=1 is the set of Lagrange multipliers, {di}NL

i=1 is the set of desired classes

and K (x,xi) is the innerproduct kernel, and is defined by:

K (x,xi) = ϕT (x)ϕ(xi)

=

m1∑
j=0

ϕj(x)ϕj(xi), i = 1, 2, . . . , NL (B.8)

where x is a vector of dimension m drawn from the input space, and {ϕj(x)}m1
j=1

denotes a set of nonlinear transformations from the input space to the feature space.

ϕ0(x) = 1, for all x. m1 is the dimension of the feature space. From (B.7) it is

seen that the construction of the optimal hyperplane is based on the evaluation of

an innerproduct kernel. The innerproduct kernel K (x,xi) is used to construct the

optimal hyperplane in the feature space without having to consider the feature space

itself in explicit form.

The design of a support vector machine involves finding an optimal hyperplane.

In order to find an optimal hyperplane, it is necessary to find the optimal Lagrange

multipliers which are obtained from the given training samples {(xi, di)}NL
i=1. Dimension

of the feature space is determined by the number of support vectors extracted from

the training data by the solution to the optimization problem (B.7).
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