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Abstract

Magnetohydrodynamics flows are those which involves the interaction between the

flow of electrically conducting fluids and electromagnetic fields. Such flows are gov-

erned by Navier-Stokes, continuity along with Maxwell’s equations, and are commonly

encountered in applications of practical interest.

In the first part of the thesis validations of ANUPRAVAHA MHD module were

carried out with available analytical results. In the second part of the thesis numerical

simulations of MHD rectangular duct flow were carried out for various arbitrary wall

conductance ratio and Hartmann number using induction-less formulation and results

of velocity profile and pressure gradient have presented.

In the final part of the thesis fully developed MHD flow solution in a rectangular

duct has been investigated to obtain flow profile and pressure gradient at very high

Hartmann number(order of 104) using inertia-less formulation. The results of the

study compared with solution from numerical simulation of full set of equation and

shows good agreement. In this method computation time for simulation was reduced

considerably because of the lesser grid point and neglecting the non-linear term in

the momentum equation.
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Chapter 1

Introduction

Magnetohydrodynamics is the branch of physics which studies the interaction between

the flow of electrically conducting fluids and electromagnetic fields. It is an inter

disciplinary science which is a combination of two familiar sciences: fluid dynamics

which is a study of the flow of gases and liquids, and electromagnetism which provides

relationships between electric and magnetic fields and current. In MHD fluid must be

electrical conducting and non-magnetic, this covers the wide range of materials from

electrolytes and liquid metals to partially or fully ionized gases.

The dynamics in an MHD flow can be summarized as follows. The mutual in-

teraction of magnetic field (B) and velocity field (u) arises partially as a result of

the laws of Faraday and Ampere, and partially because of the Lorentz force experi-

enced by a current-carrying body. It is convenient to split the process into three parts.

(i) The relative movement of a conducting fluid and a magnetic field causes an e.m.f.

(of order |u×B| ) to develop in accordance with Faraday’s law of induction. In

general, electrical currents will arise, the current density being of order σ(uxB),

σ being the electrical conductivity.

(ii) This induced current according to Ampere’s law, give rise a induced magnetic

field. This adds to the original magnetic field and the change is usually such

that the fluid appears to drag the magnetic field lines along with it .

(iii) The combined magnetic field (imposed plus induced) interacts with the induced

current density(J), to give rise to a Lorentz force J×B (per unit volume). This

acts on the conductor and is generally directed so as to prevents the relative

movement of the magnetic field and the fluid.
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Magnetohydrodynamics applies to a large variety of phenomena like in the sponta-

neous generation of the Earth’s magnetic field by the motion of the liquid iron core of

the Earth, in engineering problems such as plasma confinement, liquid-metal cooling

of nuclear reactors and electromagnetic casting.

1.1 Application

MHD effects are in several industrial process as well as in technical devices. Some

application related to duct and channel flows are given below.

1.1.1 MHD flow meter

The working principle of an MHD flow meter is shown in Fig. 1.1. In an electrically

conducting fluid flowing in a pipe and subject to an external magnetic field perpen-

dicular to the flow direction an electrical voltage is induced, which can be sensed by

a voltmeter. The measured voltage is proportional to the volumetric flow rate. This

measuring principle is suitable even for liquids with low electrical conductivities such

as ordinary tap water.

Figure 1.1: Working principle MHD flow meter

1.1.2 Electromagnetic pump

Electromagnetic pump or conduction pump is a type of pump in which the liquid is

moved by electromagnetic force. Working principle is shown in Fig. 1.2. The electrical

current I through the liquid in the duct interacts with the externally applied magnetic

field B and generates an induced electromagnetic force (Lorentz force) which drive

the liquid through the pipe. Usually large electric current is require to get adequate

volumetric flow rate. Conduction pumps are used in industry for delivery of various

electrically conducting liquids, particularly for conveying and pouring molten metals.
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Figure 1.2: Working principle Conduction Pump

1.1.3 MHD generator

Magnetohydrodynamics power generation provides a way of generating electricity di-

rectly from a fast moving stream of ionized gases without the need for any moving

mechanical parts. The working principle is shown in Fig. 1.3. The MHD genera-

tor can be considered as fluid dynamo. This is similar to a mechanical dynamo in

which the motion of a metal conductor through a magnetic field creates a current

in the conductor except that in the MHD generator the metal conductor is replaced

by a conducting gas plasma. A highly pressurized and extremely hot (3500K) and

thus ionized gas is expanded through a nozzle which is subject to a strong external

magnetic field. In the ionized gas flow a charge separation occurs under the effect of

the imposed magnetic field and an electrical potential difference is induced between

electrodes inserted in channel wall sections aligned with the direction of the magnetic

field. This MHD power process utilized as a topping cycle in a combined thermal

power plant gives a potential for high overall thermal efficiencies.

Figure 1.3: Working principle MHD Generator
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1.1.4 Liquid metal flow in fusion blanket

Magnetohydrodynamic (MHD) flows play an important role in liquid-metal cooled

fusion reactor blankets. The reaction between a deuterium and tritium core can

only take place if both reactants are completely ionized. These ionized plasmas are

characterized by very high conductivities and densities. Intense magnetic fields are

used to confine these plasmas within the reaction vessel. To protect associated devices

of fusion reactor from this high energy plasma some blanket module are used. These

blankets are multi functional: in the first place, they should absorb the neutron flux

and convert the kinetic energy of the neutrons into heat, which can then be used to

drive a classical turbine process. Liquid metals are candidate coolant liquids since

they can be operated at high temperature and have high thermal conductivities. The

second function of the blankets is to protect the magnetic field coils from intense,

damaging neutron radiation. In more advanced blanket designs (called self-cooling

blankets), the liquid coolants also have to provide the tritium needed for the fusion

reaction. This is possible if the coolant contains lithium. Liquids that are considered

are pure lithium or eutectic lead-lithium alloy. Due to MHD effect these blanket are

subjected to huge pressure drop, turbulence modifications, changes in heat and mass

transfer and other important MHD phenomena.

1.2 Literature review

Liquid metal MHD received the attention of researchers starting with the pioneering

work of Hartmann (1937) in liquid metal duct flow in the presence of a strong external

magnetic field. Shercliff(1952,1956) [13] studied steady, viscous motion of electrically

conducting fluid in the presence of imposed transverse magnetic field in circular pipe

with insulating and conducting wall. Chang et.al [1] gave an analytical solution

for the velocity and induced magnetic field for the case of Hartmann flow. Hunt

[2] presented an analysis of laminar motion of a conducting liquid in a rectangular

duct under a uniform transverse magnetic field. He presented exact solutions for

two cases(i) perfectly conducting walls perpendicular to the field and thin walls of

arbitrary conductivity parallel to the field, and (ii) non-conducting walls parallel

to the field and thin walls of arbitrary conductivity perpendicular to the field. He

obtained an M-shaped velocity profile having a large velocity near the insulating walls.

He also carried out theoretical analysis on three dimensional MHD duct flows with

obstacles in the flow field under the influence of a very strong magnetic field in which
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he showed that the flow over an obstacle is highly dependent on the conductivity of

the duct walls as well as on the conductivity of the body .

MHD flows at high hartmann number have been studied extensively by the method

of asymptotic expansion. Walker [3] gave review of these result. Asymptotic analysis

is based on the assumption on the order of magnitude in the different terms in the

governing equation. Generally inertia and viscous friction are neglected. These kinds

of assumptions can lead to results which are not valid for the parameters which are

characteristic of the fusion blanket. Therefore, semi-analytical or semi-numerical

methods have been developed Talmage et.al. (1988).

The in influence of a magnetic field on the heat transfer in buoyancy driven flows

in case of crystal growth and breeding blankets of fusion reactors has been studied by

several authors. Garandet et.al. [4] proposed an analytical solution to the equations

of magnetohydrodynamics for a case of buoyancy driven convection in a two dimen-

sional cavity under the influence of a transverse magnetic field. Ben Hadid et.al. [5]

carried out a study on the convection in a horizontal bridgman configuration under

the influence of a constant magnetic field in case of two and three-dimensional flow.

Ozoe et.al. [6] numerically studied the effect of the direction of the external mag-

netic field on the three-dimensional natural convection in a cubical enclosure. Piazza

et.al.[7] have numerically simulated free convection in a differentially heated and vol-

umetrically heated cubic enclosure. Karcher et.al. [8] conducted experimental and

numerical studies on natural convection in a cylindrical test cell filled with liquid

alloy Gallium-Indium-Tin (GaInSn), heated locally at its upper surface and affected

by a vertical magnetic field. The text book on liquid metal MHD flows in containers

by Muller et. al.[9] discusses broadly on internal flows of liquid metals which are of

industrial importance.

1.3 About the solver: ‘ANUPRAVAHA’

ANUPRAVAHA, a robust general purpose CFD solver created during an earlier BRNS

funded IITK-DAE project (2004-2009)for use at BARC and associated institutions.

The code (ANUPRAVAHA), written in C, is a multi-block finite-volume solver for

non-orthogonal hexahedral structured grids has been in continuous development ever

since. Apart from the basic module for the Navier-Stokes, Temperature and species

transport equations, the solver is now capable of solving problems with Conjugate

Heat Transfer, thermal Radiation with participating media, Multiphase and Droplet-

dispersed phase flows, Variable density flows, Combustion, Liquid metal MHD, Tur-
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bulence, and solidification-melting, in arbitrarily complex geometries. The code reads

mesh file and write solution in CGNS format which can be post-processed in most of

commercial as well as open-source post-processing packages.

1.4 Statement of objectives

The objectives of this thesis are

• Validate Anupravaha MHD module with available analytical solutions.

• Numerical simulation of MHD flow in rectangular ducts to study the effect

of wall conductivity on pressure drop and flow field using electrical potential

formulation of Anupravaha solver.

• Numerical simulation of MHD flow in rectangular duct in fully developed region

using the inertia-less formulation of Anupravaha solver at very high Hartmann

number (∼ 104) and calculation of pressure gradient for arbitrary wall conduc-

tivity.

1.5 Structure of report

This report is organized in the following way. Chapter 2 deals with theoretical back-

ground of MHD which include governing equations, assumptions, dimension-less num-

bers and a brief introduction to Anupravaha MHD solver algorithm. In Chapter 3

validation of solver for various test cases are outlined. Chapter 4 discuss effect of

wall conductivity on MHD pressure drop in a rectangular duct for different Hart-

mann number by solving full equations using electrical potential formulation of the

solver. Chapter 5 deals with numerical simulation of MHD flow in rectangular duct

in fully developed region using the inertia-less formulation of Anupravaha solver at

very high Hartmann number and calculation of pressure gradient for arbitrary wall

conductivity.
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Chapter 2

Theoretical Background

Liquid metal flows under the influence of a magnetic field are governed by the Navier-

Stokes equations and electrodynamic equations. The equations which are to be solved

for numerically simulating these flows are derived from different electrodynamic equa-

tions like Maxwell’s equations, Amperes law, Ohmss law and charge conservation. If

the induced magnetic field is not strong enough to perturb the imposed magnetic field

it is enough to solve Navier-Stokes equation along with a Poisson equation for the

electric potential, However, if the induced magnetic field is strong then along with

these equations one should solve a vector equation (with solenoidal constraint) for

the induced magnetic field.

In this chapter various governing equations, assumptions, non dimensional num-

bers related to MHD, boundary conditions, and fundamental phenomena in MHD

duct flow are described. The discussion of this chapter owes substantially to N.Vetcha[11]

2.1 Assumptions

• Flow is laminar, incompressible, and Newtonian.

• The fluid is electrically conducting and non-magnetic.

• Unless otherwise mentioned, it is assumed that the material properties are con-

stant.
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2.2 Electromagnetism

2.2.1 Maxwell’s equations

The pillars of classical electromagnetism are described by Maxwells equations, which

simplified for magnetohydrodynamics conditions are:

1. Gauss’s law of electric field

∇.E =
ρe
ε0

(2.1)

2. Gauss’s law of magnetism

∇.B = 0 (2.2)

3. Faraday’s law of induction

∇× E = −∂B

∂t
(2.3)

4. Ampere’s-Maxwell equation

∇×B = µm(J + ε0
∂E

∂t
) (2.4)

where E is the electric field, B the magnetic field strength, J the current density ,ε0

the electric permittivity ρe the charge density and µm is the magnetic permeability

of the medium.

2.2.2 Charge continuity equation

As given in previous section Ampers-Maxwell equation( 2.4) is

∇×B = µm(J + ε0
∂E

∂t
) (2.5)

The above equation is capable of describing a great range of phenomena like electro-

magnetic waves. The last term in (2.5) was introduced by Maxwell as a correction to

Ampere’s law and is called the displacement current; it is introduced to account for

the conservation of charge. However, this correction is not needed in MHD, because

under MHD approximation speeds are very small compared with the speed of light c.

µmε0
∂E
∂t

∇×B
≈ (

u

c
)2 << 1
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Therefore we can use the pre-Maxwell form of (2.5), which is simply the Ampere’s

law in differential form.

∇×B = µmJ (2.6)

Applying divergence to the above equation leads to

∇.J = 0 (2.7)

The above equation (2.7) is called charge-continuity equation.

2.2.3 Ohm’s Law

Ohm’s Law states that the total electric current flowing in a conductor is proportional

to the total electric field. In addition to the field E acting on a fluid at rest,a fluid

moving with velocity u in the presence of a magnetic field B is subject to an additional

electric fieldu×B. Ohm’s law then gives

J = σ(E + u×B) (2.8)

2.2.4 The Magnetic Induction Equation

If we combine Ohm’s law(2.8), Faraday’s equation(2.3) and Ampere’s law (2.4)we

obtain an expression relating B to u

∂B

∂t
= −∇× E = −∇× [(J/σ)− u×B] = ∇× [u×B−∇×B/µmσ]

noting that ∇×∇×B = −∇2B (since B is solenoidal),this simplifies to

∂B

∂t
= ∇× (u×B) + λ∇2B (2.9)

where λ ≡ 1/µmσ is called the magnetic diffusivity . The equation(2.9) is also known

as the transport or advection-diffusion equation for B, where B now is the total

magnetic field which includes both the imposed and the induced magnetic fields.

However as the former is usually constant, the equation effectively computes the

induced magnetic field. As the Eqn(2.9) is linear, the imposed component of B may

be subtracted out of the equation which then could be used to compute only the

induced field (with BC for the induced field). Equation (2.9) describes the evolution

of the magnetic field B. The first term on the right-hand side is the induction term

9



that describes the interaction of the field with the ow u. It is the only term that can

generate field. The second term on the right-hand side is a diffusive term. Using the

fact that B is solenoidal and that the fluid is incompressible,∇.u = 0 we can get the

following modified form of the induction equation.

∂B

∂t
+ (u.∇)B = λ∇2B + (B.∇)u (2.10)

2.3 Fluid Mechanics

2.3.1 Continuity Equation

The general continuity equation is

∂ρ

∂t
+∇.(ρu) = 0 (2.11)

For incompressible flow continuity equation reads as

∇.u = 0 (2.12)

2.3.2 Momentum Equation

The Navier Stokes equations for laminar incompressible MHD flow of a Newtonian

fluid, can be written as

ρ

[
∂u

∂t
+ (u.∇)u

]
= −∇p+ νρ∇2u + f + J×B (2.13)

where p denotes the pressure, ρ the fluid mass density, ν its kinematic viscosity. The

interpretation is obvious. The temporal evolution of the linear momentum of a fluid

element changes by the action of pressure force,−∇p, viscous friction, ρν∇2u, by

volumetric forces f of non-electromagnetic origin like gravity and by the occurrence

of Lorentz (or Laplace forces), j × B. Lorentz forces couple the mechanical and

electrodynamic states of the system. Lorentz forces act in planes perpendicular to

current and magnetic field vectors.

Using Ampere’s law (2.4) the Lorentz forces can be written in the form of the

divergence of a stress tensor, the so-called Maxwell stress tensor. It plays an important

role in some technical arrangements such as in liquid metal processing. Introducing

Ampere’s law in the expression for the Lorentz force we get after some analytical

10



manipulation

j×B = − 1

µ
B×∇×B = −∇(

1

2µ
B2) +

1

µ
∇.(BB) (2.14)

where (BB) is the dyadic product of vector B with itself. The first term of right

hand side of equation(2.14) is gradient of scalar so we can call this part as magnetic

pressure.while the last term describes a stress term called Maxwell’s stress.

2.4 Dimensionless Groups

It is useful to present the governing equation(2.13,2.17,2.12) in dimensionless form by

using the following substitutions u∗ = u/U,B∗ = B/B0,∇∗ = L−1∇, t∗ = tU/L, J∗ =

J/σUB0, p
∗ = p/ρU2 and omitting star after substitution, we obtain

∇.u = 0 (2.15)

∂u

∂t
+ (u.∇)u = −∇p+Re−1∇2u + f + N(J×B) (2.16)

∂B

∂t
+ (u.∇)B = R−1m ∇2B + (B.∇)u (2.17)

∇.B = 0 (2.18)

We see that, in a given geometry, we can characterize MHD flows by mainly three

dimensionless groups: the Reynolds number Re, the interaction parameter(or Stuart

number) N , and the magnetic Reynolds number Rm. The definition and physical

meaning of these parameters is discussed below.

The Reynolds number is a non-dimensional estimate of the ratio between convec-

tive and viscous forces in the Navier-Stokes equation (Re = UL
ν

). If the Reynolds

number is small, small-scale fluctuations can not overcome the dissipative action of

the viscous forces, and will quickly be damped. This results in a homogenized flow

in which only slow variations of the velocity field are possible. At large Reynolds

number however, small-scale fluctuations can persist and grow due to the increasing

impact of the (non-linear) convective term. This will give rise to a seemingly random

behavior that is characterized by a large range of spatial temporal scales, a state

known as turbulence.

The analogous ratio between convective and diffusive terms in the magnetic in-

duction equation is known under the name magnetic Reynolds number, and is defined

11



as

Rm = µσUL

The phenomenology of MHD systems will depend strongly on the value of Rm, as it

is the only parameter governing the induction equation. When Rm is small, magnetic

field fluctuations relax quickly; velocity inhomogeneities, which are at the origin of

these fluctuations, hardly affect the magnetic field. Such flows have a dissipative

nature; the kinetic energy of the fluid is transformed into heat due to Joulean dis-

sipation. Small values of the magnetic Reynolds number are typical for man made

flows, like the ones encountered in laboratory and industrial processes.High values of

Rm, on the other hand are typical for large-scale terrestrial or astrophysical flows.

Such flows are such that the magnetic field is ’frozen’ into the fluid, and can exhibit

wave-like behavior.

The interaction parameter is a measure for the ratio between electromagnetic and

inertial forces. It reads as.

N =
σB2

0L

ρU

It is also important to interpret this parameter as the ratio between two time scales.

On the one hand, there is the Joule damping time,τJ which is the typical time needed

by the Lorentz force to damp a vortex. It is given by: τJ = ρ/σB2
0 . On the other

hand, we have the eddy-turnover time τe which is the time scale on which a vortex

moves over a typical length scale L: τe = L/U , and we can write the interaction

parameter as

N =
τe
τJ

Hartmann number (Ha), a fourth parameter which is hybrid of Re and N , is the

ratio of square root of electro magnetic force to viscous force and can be read as,

Ha = B0L

√
σ

µ
=
√

N Re

2.5 The quasi-static approximation

In the previous section, we found that the induction equation (2.17) contains only

one non-dimensional group: the magnetic Reynolds number Rm, for most terrestrial,

laboratory and industrial flows, this parameter is typically small compared to one.

The assumption that Rm is vanishing, allows for a substantial simplification of the

MHD equations. Consider therefore equation (2.17), in which we decompose the
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magnetic field in a uniform, stationary, externally imposed part Bext and a fluctuating

part b. So equation (2.17) becomes

∂b

∂t
+ u.∇b = Bext.∇u+ b.∇u+

1

µσ
∇2b (2.19)

An order-of-magnitude estimate of the convective and diffusive terms gives

O(u.∇b)

O((µσ)−1∇2b)
=

UbL−1

(µσ)−1bL−2
= Rm (2.20)

where b is a typical scale of the fluctuating magnetic field. We can thus neglect the

second term on both the right and left-hand side of equation (2.19). This leads to

∂b

∂t
= Bext.∇u+

1

µσ
∇2b (2.21)

This is a diffusion equation with a source term due to gradients in the velocity field.

We can now pursue our analysis by considering the time scales associated with both

terms on the right-hand side. The ratio between these is

τ((µσ)−1∇2b)

Bext.∇u
=
L2µσ

LU−1
= Rm (2.22)

This means that the fast response of the diffusion term makes the magnetic field

fluctuations adapt quasi-instantaneously to (slower) variations due to the flow. As

such, we end up with the following static equation for the induced magnetic field.

Bext.∇u+
1

µσ
∇2b = 0 (2.23)

An order-of-magnitude estimate of this equation leads to the following result

O(b)

O(Bext)
= µσUL = Rm (2.24)

We find thus that, in the limit of vanishing Rm, the induced magnetic field is negligible

with respect to the externally imposed one. So we can neglect the induced magnetic

field and its effect and this approach is called quasi-static or induction-less approach.
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2.6 Poisson equation for electrical potential

One another important equation which governs the flow of liquid metal subjected to a

magnetic field is Ohm’s law (2.8). If the induced magnetic field is small compared to

the applied magnetic field, the magnetic field variables need not be solved and with

the electric field being curl free, an electric potential such that E = −∇φ, where φ is

the electric potential, the equation (2.8) becomes.

J = σ(−∇φ+ u×B) (2.25)

Using solenoidal nature of electric current and taking divergence of above equation

results

∇2φ = ∇.(u×B) (2.26)

2.7 Initial and Boundary Conditions

2.7.1 Initial Condition

Arbitrary initial conditions can be given for those flows in which the induced magnetic

field is assumed negligible, these flows commonly end up in a steady state solution.

On the other hand if the induced magnetic field is perturbing the imposed magnetic

field then proper initial condition on the induced magnetic field is required to get an

unsteady, perhaps periodic solution.

2.7.2 Boundary Condition

Boundary condition on flow field

At the wall, no-slip conditions are applicable for all components of velocity. i.e. u = 0

and v = 0. For temperature, generally Dirichlet (temperature specified) or Neumann

( flux-specified) boundary conditions apply at walls, while Dirichlet BC apply at flow

inlet and Neumann BC at outlets. Generally uniform inlet boundary condition is used

at the inlet. At the exit plane, homogeneous Neumann boundary condition is used

for all components of velocity and temperature. A homogeneous Neumann condition

is specified for pressure on velocity specified boundaries and a homogeneous Dirichlet

pressure condition at the exit plane.
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Boundary condition on φ

The conductivity of the duct walls decide the boundary conditions on the electric

potential φ . If the walls are insulating then a homogeneous Neumann condition is

used and if the walls are perfectly conducting then a homogeneous Dirichlet bound-

ary condition is used. For arbitrary wall conductivity we will be solving conjugate

(solid-fluid) modeling. So the general interface condition for the electric potential ap-

plicable for all Quasi-static flows can be derived simply from the fact that the normal

component of the current density across the interface must be continuous. This gives

σfluid(
∂φ

∂k
)fluid = σsolid(

∂φ

∂k
)solid

The boundary conditions at entry and the outlet are chosen such that no electric

currents leave or enter the domain, this leads to the following

∂φ

∂n
|entry = 0

∂φ

∂n
|outlet = (u×B).n̂

This results in a zero normal component of current at the entry and at the outlet.

Boundary condition on B

The boundary condition of total magnetic field B is decided by conductivity of wall. If

the wall is perfectly conducting we use homogeneous Neumann boundary condition; if

it is insulating we use homogeneous Dirichlet boundary condition on the all component

of B on which there is no magnetic field being applied. For walls on which a magnetic

field is applied, Dirichlet condition is used for that particular component of B which

is in the direction of magnetic field. At the inlet a homogeneous Dirichlet condition

is specified and at outlet homogeneous Neumann boundary condition is given. The

former reflects the situation that no induced current exists at the flow inlet and latter

represents that the induced current does not change in the flow direction at the flow

outlet.

Conjugate (Solid-Fluid) modeling is used for duct walls of arbitrary conductiv-

ities, for solving the magnetic field. This requires the specification of an interface

condition.A solid-fluid interface condition can be derived for the induction equation
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(2.17) realizing its similarity to the temperature equation as follows

∂B

∂t
+ (u.∇)B = ∇.∇(

1

λ
B) + (B.∇)u

under steady state,stationary (no-slip wall) condition the above equation become

∇.∇(
1

λ
B) = 0

Applying the Gauss-Ostrogradskii theorem at the interface and shrinking the volume

to zero, we obtain
1

λfluid
(
∂B

∂k
)fluid =

1

λsolid
(
∂B

∂k
)solid

2.8 The Solver-a brief algorithm

The MHD module of ANUPRAVAHA is capable of solving the coupled mechanical-

electromagnetic system and it allows a choice for selecting either the Potential or

the Induction method, for the quasi-static and magneto static cases, respectively. It

also has an option for including the temperature equation in the computations, for

both the flow and solid regions (conjugate heat transfer). A brief algorithm of MHD

module is given below.

Initial condition for the velocity and pressure are prescribed for all points in the

domain. Initial volume fluxes are calculated . For the induction method, the total

magnetic field vector is initialized and the initial magnetic flux is calculated while for

the potential method, current fluxes are initialized and the applied magnetic field is

specified. Appropriate boundary conditions are given to start the solution.

1. Initially assign the volume flux, F ?
f = F n

f . The Lorentz force source term, j×B
is evaluated.

2. The mass-velocities are obtained by integrating the Navier Stokes equation with-

out the pressure gradient term over all the cells till convergence.

3. Calculate volume fluxes, F ?
of from mass velocities using linearly interpolated

values from cell adjacent centers at each face of the control volume.

4. Iterate the pressure equation with BC till convergence to get pressure p?

5. Save the old volume fluxes, (F ?
f )prev = F n

f , and evaluate new fluxes as F ?
f =

F ?
of − 4tρ ∇P

∗
f .Sf
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6. Repeat steps 1-5 till convergence of the volume fluxes.

7. Iterate the full N-S equation using the converged flux values to obtain values at

the new time step n+1 and correct pressure gradient calculated in step 4.

For electrical potential method

i Calculate u × B at cell faces through linear interpolation of the newly obtained

velocities in step 7 at cell centers.

ii Evaluate the RHS of the Poisson equation for the electric potential as the sum of

face fluxes, (u×B)f .dsf

iii Solve the Poisson equation for the potential with appropriate boundary conditions

till convergence.

iv Calculate the current density and evaluate Lorentz force at cell centers to be used

as the source term for the N-S equations as in step 1.

For inertia-less method

In inertia-less method, we need not calculate convection fluxes, so algorithm will be

same except in step.2, the mass velocity will be without convection fluxes.

2.9 Fundamental Phenomena in MHD duct flow

Let us consider a fully developed flow in a duct with rectangular cross-section as

shown in Fig. 2.1. An electrically conducting fluid is driven through the duct by

a constant pressure gradient and flows with unidirectional velocity v = ux̂. The

duct and the fluid are exposed to an externally applied magnetic field B. Walls on

which the magnetic field has a normal component are called the Hartmann walls,

whereas the walls tangential to the field are called the side walls. The interaction

of the moving fluid with the magnetic field induces an electric field v × B driving

the electric current J. This causes a potential difference between the side walls, as

indicated by the symbols ⊕ and 	 in Fig. 2.1. A variation of the potential along the

periphery of the duct drives currents along the walls, both inside the walls if they are

conducting and inside the viscous layers near the walls, where the induced electric

field is weak because of a reduced velocity.

The components of current which are perpendicular to the magnetic field lines

induce a Lorentz-force fL = J × B In the center of the duct, often called the core,
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Figure 2.1: Sketch of the MHD channel flow

the Lorentz force acts in the direction opposite to the flow direction and tends to

retard the flow. The magnitude of current and as a consequently the magnitude of

the Lorentz force depends linearly on the velocity u. If there were regions of higher

velocity in the core these would exert stronger braking by the Lorentz force than

regions with lower velocities. As a result, the Lorentz force equalizes the fluid flow

in the core, where the main balance of forces is established between the Lorentz

force and the driving pressure gradient. The Lorentz force contributes therefore to

the pressure drop, in addition to the viscous pressure drop in hydrodynamic flow.

For strong magnetic fields the electromagnetic pressure drop may exceed the viscous

pressure drop by orders of magnitude.

Near the Hartmann walls the velocity drops sharply within thin boundary layers

to satisfy the kinematic no-slip boundary condition. These layers are called the

Hartmann layers. In regions of low velocity the direction of current is opposite to

that in the core. Here the Lorentz force drives the flow against the action of the

viscous braking.For strong external magnetic fields the flow in the core turns into a

quasi-slug flow with thin boundary layers near the Hartmann walls.

The electric conductivity of the channel walls influences the distribution of current

in the fluid and determines the flow pattern. For insulating walls the currents close

through the relatively thin Hartmann layers. Because these layers are very thin,

their electric resistance is high so that the current magnitude is small. For highly

conducting walls a significant fraction of currents may close through the walls in

addition to that in the viscous layers. This increases the total magnitude of currents

compared to insulating conditions. As a consequence we expect stronger Lorentz

forces and a higher pressure drop with increasing wall conductance.

The main purpose of this thesis is to parametrize the pressure drop in rectangular

channel against wall conductivity. The flow is assumed to be fully developed, so the
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inertia-less approach can be used.

MHD flows very quickly reach fully developed states for uniform flow condition,

so it is not necessary to calculate the entrance length to get the pressure drop for

practical flow simulation. The assumption of fully developed flow enormously reduces

the amount of computation as the flow does not change in the longitudinal direction.

This allows us to have only one cell in that direction whereas in developing flows we

may need several hundred cells . This allows us to do the computation for for very

high Hartmann number flows (∼ 104), which would otherwise be impossible.
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Chapter 3

Code Validation

The majority of theoretical solutions are limited to simple geometries, or otherwise

incorporate assumptions like negligible inertial effects. This chapter outlines various

validation problem of ANUPRAVAHA latest numerical code. All validations are

using induction-less (Elctrical potential Method) approach.

3.1 Flow between parallel planes - Hartmann flow

Hartmann (1937) first investigated experimentally and theoretically the MHD flow in

the gap between two parallel plates. This investigation provided fundamental knowl-

edge for the development of several MHD devices such as MHD pumps, generators,

brakes and flow meters. This is a type of MHD flow that corresponds to a general-

Figure 3.1: Hartmann flow

ization of plane Poiseuille flow in classical fluid mechanics. Let us consider a steady,

laminar flow between two infinitely broad parallel plates as shown in Fig. (3.1). The

fluid enters the channel with a uniform velocity whose magnitude is calculated as dis-

cussed below. The channel is infinitely long in the z-direction so that any variation of

variables in this direction can be neglected and the flow is 2-D. A uniform magnetic

20



field is applied perpendicular to the channel walls. The flow becomes fully developed

after some distance from the entry, so the velocity u and magnetic field B depends

only on the y coordinate. Chang and Lundgren[1] gave an analytical solution for both

velocity and induced magnetic field as given below,

u(y) = û

[
1− cosh(Hay)

cosh(Ha)

]
(3.1)

b(y) =
−y
Ha

+ û
sinh(Hay)

cosh(Ha)
(3.2)

with characteristic magnitude of velocity

û =
1

Ha

c+ 1

cHa+ tanh(Ha)
(3.3)

where c is the wall conductance ratio, which depends on conductivity of the chan-

nel walls.The following input parameters are used for both analytical and numerical

solutions.

• Length of the channel, L = 80m

• Height of the channel, H = 2m

• Grid points in the domain=161× 61

The inlet velocity which is given as uniform is calculated by averaging the profile

(3.1) over the height of the channel. The analytical solutions (3.1) and (3.2) are non-

dimensional while the numerical solution is dimensional. However, as the integrated

non-dimensional velocity value is specified at the inlet, the numerical solution is

automatically scaled to the non-dimensional value. Since the velocity has been scaled

to the non-dimensional value the resulting magnetic field will also be scaled to non-

dimensional value as both are coupled.

3.1.1 Hartmann flow with insulating walls

In case of insulating walls,the boundary conditions for electric potential φ is given

as homogeneous Neumann on all walls (wall conductance ratio, c = 0 for insulating

wall), for pressure, homogeneous Neumann at inlet and homogeneous Dirichlet at

outlet are applied. For flow field no-slip conditions are applied at the wall and fully

developed condition are applied at the outlet. Fig.(3.2) shows fully developed velocity
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profile for different Hartmann number and result are considerably in good match with

analytical solution.

Figure 3.2: Velocity profiles for Hartmann flow for insulating walls

3.1.2 Hartmann flow with perfectly conducting walls

In case of perfectly conducting walls the boundary conditions for the electric potential

φ on the walls is given as homogeneous Dirichlet (wall conductance ratio, c = ∞),

while at the inlet and outlet of the channel homogeneous Neumann conditions are

specified for φ. All other boundary condition are same as Hartman flow with insu-

lating wall. Fig.(3.3) shows fully developed velocity profile for different Hartmann

number and result are considerably in good match with analytical solution.

Figure 3.3: Velocity profiles for Hartmann flow for perfectly conducting walls
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The following characteristic features can be identified from above graph.

• With increasing Hartmann number i.e. increase strength of magnetic field, the

velocity profile flattens in the channel core and exhibits thin boundary layers

near the Hartmann walls.

• The velocity decreases with increasing Hartmann number for both insulating

and conducting wall.

3.2 Buoyancy driven convection in a rectangular

cavity

Buoyancy driven magneto hydrodynamic flows are considered in the context of some

magnetically confined fusion reactors using liquid metals as breeder and/or coolant.

Here convective or forced flow is strongly opposed by the applied magnetic field. In

these applications it may happen that the MHD damping is so large that convec-

tive heat transfer becomes a problem. During semiconductor crystal growth from

melts one aims at establishing the fluid-solid interface conditions as homogeneous as

possible. Time dependent flows as they might occur by buoyant convection should

be avoided. One way to suppress instabilities or to minimize the velocities near the

solidification front is the application of a magnetic field.To control the conditions of

heat transfer during casting may be another application of magnetic fields to affect

buoyant flows.

A suitable measure for buoyancy in hydrodynamic flows is the Grashof number,

Gr =
gβαL4

ν2

which quantifies the importance of buoyant and viscous effects. The magnitude of the

gravitational acceleration is denoted by g and L stands for a typical length scale of the

problem. With the magnitude of a typical temperature gradient α the characteristic

temperature difference of the problem becomes 4T0 = αL. All properties of the

fluid like the kinematic viscosity ν or the electrical conductivity σ are assumed to

be constant in the temperature range considered. The density of the fluid at the

reference temperature T0 is ρ0 and the volumetric thermal expansion coefficient is

β so that the density according to the Boussinesq approximation is described as

23



ρ = ρ0[1− β(T − T0)]. The governing equation of the problem reads as,

ρ

[
∂u

∂t
+ (u.∇)u

]
= −∇p+ νρ∇2u + J×B + gβ(T − T0) (3.4)

[
∂u

∂t
+ (u.∇)u

]
= α∇2T (3.5)

The effect of a transverse magnetic field on buoyancy driven convection in a rect-

angular cavity was simulated for Grasshoffs number 2×104 and Prandtl number 0.01

and domain of grid points 101. The flow domain is shown in Fig.(3.4). The cavity

is thermally insulated on the top and bottom walls. Garandet et. al.[4] gave an

analytical solution for the horizontal velocity along the vertical center line as,

Figure 3.4: Schematic of buoyancy driven natural convection

u =
Gr

Ha2

(
sinhHay

2 sinh(Ha/2)
− 1

)
(3.6)

and in the absence of a magnetic field (Ha = 0) the profile is cubic given by Birikh[10];

u =
Gr

6

(
y3 − y

4

)

Fig.(3.5) shows the temperature contour for different Hartmann number. For hart-

mann number 5 isotherm is more distorted and as increasing hartmann number the

more distorted isotherm becomes straight gradually. This shows that convection does

not play important role in the heat transfer and the heat transfer is more conductive

in nature as Ha increases.

Fig.(3.6) shows comparison between numerical and analytical solution of horizon-

tal velocity at the central vertical line of the cavity. Numerical solutions are in good

agreement with analytical solution of Garandet. From Graph it is clear that velocity
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increases from zero at the wall to a peak value and drop to zero at the center. As

Hartmann number increases gradient of velocity become constant almost everywhere

in the cavity except near the top and bottom wall called Hartmann layer.

Figure 3.5: Temperature contour for different Hartmann numberr
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Figure 3.6: Normalized horizontal velocity along vertical centreline of the cavity for
different Hartmann number
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3.3 MHD flow in rectangular duct-Hunt’s solution

To test the three dimensional validity of the code, MHD flow in 3D channel of rect-

angular cross section(25mm× 25mm) and 500mm length, with perfectly conducting

walls perpendicular to the applied magnetic field and insulating walls parallel to the

magnetic field considered by Hunt [2] was simulated for Ha = 100 and Re = 679.

The flow exhibits strong boundary layers at the walls. The layers formed at

the wall parallel to the magnetic field are called side layers and have the thickness

δ = 1/
√
Ha. The layers that appear at the walls perpendicular to the magnetic field

are called Hartmann layers and have a thickness δ = 1/Ha. Numerical simulation

was carried out in mesh of grid point 36 × 26 × 36 and minimum of 4 grid points

are ensured in boundary layers. A grid independence test had conducted in a higher

resolution mesh (46× 36× 46) and the velocity is compared. The deviation of peak

velocity is less than 0.5%.

Figure 3.7: current density plot (Ha=100) at the outlet of the duct

From current density plot(Fig.3.7) it can be see that the current flows to the right-

hand side in most of the duct’s cross section. This region is called core of the flow.

Because of the insulating side wall this current turns near the side wall through a

narrow region called side layer and flows back to the left-hand side through hartmann

wall since hartmann wall is perfectly conducting. Fig.(3.9) shows comparison of
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Figure 3.8: jet like velocity profile (Ha=100) at outlet of the duct.

velocity along side wall and deviation of peak velocity from Hunt analytical solution

is less than 4.5%. This deviation may be due to limitation of numerical scheme or

thin wall approximation of Hunt’s solution. Jet like profile of velocity can be observed

in Fig.(3.8).
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Figure 3.9: VelocityX comparison (Ha=100) along hartmann wall at the center of the
duct.
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Chapter 4

MHD flow through rectangular

duct- effect of wall conductivity

This chapter discusses the effect of wall electrical conductivity on the velocity profile

and pressure drop in a rectangular duct subjected to a transverse magnetic field.

There are very few cases for which analytical solutions have been obtained for simple

rectangular channel geometries.

1. Rectangular duct with insulating wall subjected to transverse magnetic field

(Shercliff 1953)

2. Rectangular duct with perfectly conducting wall subjected to transverse mag-

netic field (Chang and Lundgren 1961;Uflyand 1961)

3. Rectangular duct with (1) Hartmann wall perfectly conducting and side wall

with arbitrary conductivity and (2) side wall non-conducting and hartmann wall

with arbitrary conductivity (Hunt 1965).

So cases with walls of arbitrary conductivity have to be solved by numerical methods.

4.1 Laminar MHD flow in straight rectangular duct

Laminar MHD flow in rectangular straight duct are characterized by boundary lay-

ers and core flow as mentioned in section 2.8 and thickness of these boundary layer

become smaller as Hartmann number increases. The resolution of these viscous layer

makes the simulation of such flows at high Hartmann number a challenging task. A

numerical simulation of straight rectangular duct with different arbitrary wall conduc-

tivity subjected to transverse magnetic field was carried out for Hartmann number 100
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and 500 by solving complete Navier-stokes and Maxwell’s equations using electrical

potential formulation of Anupravaha solver.

(a) 3D Mesh (b) cross sectional view

Figure 4.1: Computational domain

The simulation was carried out in a mesh of 36 × 36 grids in cross section and

41 grid in stream wise direction. The grid was refined towards the walls to obtain a

good resolution of the boundary layers (Fig. 4.1) and a minimum of 4 grid points are

ensured in these layer. Simulations were performed with a semi-coupled algorithm

and uses the QUICK convective scheme. For the given Reynolds number the length

of the domain is assumed to be enough to fully develop the flow. The following are

the parameters used in the simulations.

• cross section of duct =25mm× 25mm

• Length of duct, L = 500mm

• Thickness of the wall, twall = 3mm

• Reynolds number of flow, Re = 652

• Hartmann number, Ha = 100, 500

• Uniform inlet velocity, Uavg = 0.01m/s

• Wall conductance ratio c = σwalltwall

σfluidL
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Figure. 4.2 shows current distribution for various wall conductance ratio ranging

from insulating (c = 0) to perfectly conducting(c = ∞). From the current density

plots it can be seen that the current flows to the right-hand side in most of the duct’s

cross-section(core). Flow back to the left-hand side to close the circuit takes place

only in narrow layers at the top and bottom walls called Hartmann layer, at the

sidewalls, current flows mainly in the y-direction. Comparing pictures for different

wall conductance ratios(Fig. 4.2a, 4.2b, 4.2c, 4.2d) we see that the current density

rises when the conductance ratio increases.

(a) c=19.5 (b) c=0.00309

(c) c=0,(insulating wall) (d) c =∞(perfectly conducting wall)

Figure 4.2: Current density stream traces at outlet for Ha=100

Looking at the velocities in Fig. 4.3 we easily find the three regions: Hartmann

layer,and side layer and core. In the core, the velocity is nearly constant, abruptly

falling to zero in the thin Hartmann layers which are at the walls perpendicular to the

magnetic field. The most interesting region is the side layers which are at the walls
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(a) c=19.5 (b) c=0.00309

(c) c=0,(insulating wall) (d) c =∞(perfectly conducting wall)

Figure 4.3: Velocity profile at outlet for Ha=100

perpendicular to the magnetic field. Their structure is strongly dependent on the

wall conductance ratios and therefore on the current densities. The larger the current

densities, the higher the velocities are in the side layers, forming the so-called M-

shaped profiles. The explanation of this striking phenomenon is straightforward (Hunt

1965). In the side layers the current density always has a component jy parallel to B0,

the applied magnetic field. It does not contribute to the Lorentz force j ×B0, acting

against the flow. On the other hand, in the core jy vanishes, and the whole current

contributes to j × B0, leading to a higher force on the core flow. This component

jy depends on the conductivity of side wall.For the insulating case, current has to

pass through the thin side layer which offer higher resistance, leads to less j×B0 and
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Figure 4.4: Velocity profile of the MHD flow in a square duct atHa = 100, c = 0.00309
along the centerline perpendicular to the magnetic field (Grid independence test)

higher velocity and consequently a flat velocity profile(Fig. 4.3b, 4.3c). In the case

of a conducting wall current can pass through conducting side wall which offer least

resistance leads larger Lorentz force at the core and lesser core velocity. However, in

the side layer the retarding force is nearly zero (as j and B are parallel) and velocity

is high, leads to a jet like profile(Fig. 4.3a, 4.3d).

For grid independence test, the velocity profile from grids of 46× 36 and 36× 26

in cross section for a wall conductance ratio c=0.00309, are compared and deviation

of peak velocity is less than 0.6% and insignificant deviation in core. Fig. 4.4 shows

the comparison.

Table. 4.1 shows the values of pressure gradient for different values of Hartmann

number and wall conductivity ratio. The results shows that the pressure gradient

increases steeply with Hartmann number and decrease with wall conductance ratio,

with the insulated wall case having the lowest pressure drop.

In Anupravaha the Lorentz force is evaluated at the nth level while all the other

terms are discretized at the n + 1 level. This leads to a constraint on the time step

at high Interaction parameters as 4t ≈ 1/N especially high values N. As Hartmann
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Table 4.1: Pressure gradient for Ha=100, Re=652 for different wall conductance ratio

Sl.No Wall conductance ratio(c) Pressure gradient (N/m)

Ha=100 Ha=500
1 ∞ 1126.43
2 19.5 991.765 21009
3 2.16 690.266 16754.7
4 0.24 192.371 3949.89
5 0.003 15.8669 150.593
6 0 12.6393 70.5861

number increases, in order to resolve boundary layers properly, the total number of

grids in the domain will increases. So numerical simulation of MHD flow at high

Hartmann numbers also take longer computation time.
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Chapter 5

MHD flow in rectangular

duct-fully developed solution

This chapter describe the numerical study of the laminar, incompressible flow of a

conducting fluid in a rectangular duct under a uniform magnetic field at very high

Hartmann number in fully developed flow regime.

5.1 Formulation of the problem

Figure 5.1: Cross-Sectional view of the square duct used for the study

Let us consider a unidirectional, incompressible flow, of an electrically conducting

fluid through a rectangular duct of characteristic length L, (half distance between
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the Hartmann walls). An external magnetic field B = B0ŷ is imposed, and the

flow is driven by a uniform pressure gradient in the axial direction,∇p = −fx̂. For

channels with constant cross section a fully developed flow establishes where the

velocity v = u(y, z)x̂ has only one non-zero component depending on the lateral

coordinates y and z.

To obtain non-dimensional equation, we scaled the governing equations

ρ

[
∂u

∂t
+ (u.∇)u

]
= −∇p+ νρ∇2u + J×B

J = σ(−∇φ+ u×B)

∇2φ = ∇.(u×B)

by using non dimensional variable as, ∇∗ = (1/L)∇, z∗ = z/L, y∗ = y/L, u∗ =

u/U,B∗ = B/B0, t
∗ = tσB2

0/ρ, J
∗ = J/σUB0, p

∗ = p/σULB2
0 , φ

∗ = φ/UB0L. For

fully developed flow the convective transport term of the momentum equation become

zero and the governing equations in non-dimensional form (omitting stars in all term

after substitution) can be read as,

∂u

∂t
= −∇p+

1

Ha2
∇2u + J×B (5.1)

J = −∇φ+ u×B (5.2)

∇2φ = −∂u
∂z

(5.3)

Substituting equation 5.2 in 5.1 we will get momentum equation in x-direction as

∂u

∂t
= −∇p+

1

Ha2
∇2u + B

(
∂φ

∂x
B− uB

)

We can solve the equations assuming a unit pressure gradient and get a corresponding

velocity profile. So we are essentially solving the above equation as

∂u

∂t
= −1 +

1

Ha2
∇2u + B

(
∂φ

∂x
B− uB

)

and if we multiply above by α, some constant, since the equation is linear, all variables

will get multiplied by α and so the pressure drop required for a specific flow rate
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(Qspecific) become α and

Qspecific =
∫ 1

−1

∫ 1

−1
udydz = αQp

α =
Qspecific

Qp

(5.4)

where Qp is the flow rate due to unit pressure gradient. In our case the area of

cross section is 2× 2 so α can be written as

α =
Qspecific

Qp

=
4Uspecific

4Up
=
Uspecific
Up

where Up is the average velocity due to unit pressure gradient and which can be

calculated from velocity profile. In the coming discussions, given values of the pressure

gradient are pressure gradient due to unit average velocity (Uspecific = 1.0, Qspecific =

4).

The flow is essentially a two-dimensional and parameter affecting the flow is Hart-

mann number and wall conductivity ratio, c = σwtw
σL

, where σ is the electrical conduc-

tivity of the fluid, σw is the electrical conductivity of the wall and tw is the thickness

of the wall.

5.2 Boundary conditions and input parameters

Inlet and outlet

Inlet and outlet is in fully developed region, so homogeneous Neumann boundary

condition is applied for all velocity components and electrical potential φ. Since flow

is driven by unit pressure gradient, unit pressure is applied at the inlet zero pressure

is applied at the outlet.

Walls

For velocity homogeneous Dirichlet boundary conditions and for pressure homoge-

neous Neumann is applied. For electrical potential φ homogeneous Neumann bound-

ary condition is applied at the outer surface, while current continuity σfluid(
∂φ
∂n

)fluid =

σsolid(
∂φ
∂n

)solid is applies at fluid solid interface.
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Input parameters

The following parameters are given in accordance with non-dimensional governing

equation

• Density of fluid=1.0

• Dynamic Viscosity of fluid= 1
Ha2

• Electrical conductivity of fluid=1.0

• Electrical conductivity of walls=10 × c , c is the wall conductance ratio (c =
σwalltwall

σfluidL
= σwall×0.1

1.0×1 ).

• Strength of imposed magnetic field B=1.0

5.3 Grid and Computational detail

Numerical simulations were carried out in a square geometry of cross sectional area 2×
2 and one cell (of unit length) in stream-wise direction. Both Hartmann layer and side

layer are resolved properly to capture the current flowing through it. Number of grid

points in the cross section was 101× 101 (Fig. 5.2) and one grid point in stream-wise

direction. In this method the number of grid points is very less compared to solving

the full domain (including entrance region) and here the momentum equation is linear

leading to quicker convergence of the solution. Because the inertia-less approach is

used, we need not to solve for mass fluxes, which again resulting in lower computation

time.

5.4 Comparison with full solution

Numerical simulation of inertia-less method was compared with full solution for Hart-

mann numbers 100, 500, 1000, 1298 and wall conductance ratio c = 0.01546, for a

non-dimensional flow rate of 4. (Full solution result are taken from Narendra Gajb-

hiye,Unpublished). Fig. 5.3- 5.6 shows the comparison of normalized u-velocity profile

(normalized by average duct velocity) along center line perpendicular to applied mag-

netic field for different Hartmann number and the results match very well. Table. 5.1

shows the comparison of numerical values of the pressure gradient (non-dimensional)

for the non dimensional flow rate of 4. This inertia-less simulation took less than two

days to reach the steady state solution the while full solution takes around two weeks
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(a) 3D mesh (b) cross sectional view

Figure 5.2: Grid used for numerical simulation, Ha=10000

on the same processor. So if we are not interested in what happening in the entrance

region, to get the flow profile and pressure drop due to the MHD effect, this method

give accurate results using much less computational resources.

Table 5.1: Non dimensional pressure gradient for Ha=100, 500, 1000, 1298

Hartmann number Inertia-less solution Full solution

100 0.12376 0.1243
500 0.10986 0.109005
1000 0.108265 0.106369
1298 0.107355 0.103418
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Figure 5.3: Normalized velocity profile along center line perpendicular to magnetic
field for Ha=100, c=0.01546

Figure 5.4: Normalized velocity profile along center line perpendicular to magnetic
field for Ha=500, c=0.01546
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Figure 5.5: Normalized velocity profile along center line perpendicular to magnetic
field for Ha=1000, c=0.01546

Figure 5.6: Normalized velocity profile along center line perpendicular to magnetic
field for Ha=1298, c=0.01546

42



5.5 Fully developed flow solution at very high Hart-

mann number

Validation with Hunt’s case

To validate the inertia-less approach, a numerical simulation for the flow through a

rectangular duct (2× 2) and of wall thickness=0.1 was carried out. The conductance

ratio c = 0.05 for the Hartmann walls, while the side walls are insulated. An analyt-

ical solution exists for this case (case 2 of Hunt, [2]) with which results are compared

and the deviation of peak velocity from analytical result is 3.2%. A distinguishable

jet-like velocity profile can be seen in Fig.( 5.8). The velocity in the side layer is

compared with the analytical solution in Fig. 5.7. The results are seem to be quite

good for the very Ha=10000 of the computation.

Figure 5.7: Comparison of normalized velocity profile along center line perpendicular
to magnetic field for Ha=10000

Peak velocity Core velocity
Hunt’s solution 44.51724 0.344828
Numerical solution 43.08023 0.443532
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Figure 5.8: jet-like profile for Hunt’s case for Ha=10000
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Rectangular duct with arbitrary wall conductivity

Numerical simulations of MHD flow in rectangular duct with arbitrary wall con-

ductivity were carried out at very high Hartmann numbers which is very relevant

to fusion engineering applications, in a geometry of cross-sectional area 2 × 2 and

unit length in stream-wise direction. Number of grid points in the cross section was

121× 121 and one grid point in stream-wise direction and minimum of 5 grid points

were ensured in the boundary layer (∼ 1/Ha). The variables have been rescaled in

the same way as above and result of simulation are shown for Hartmann number

104, 1.5× 104, 2× 104, 3× 104 and wall conductance ratio c = 0, 2, 20.

Figure 5.9: Pressure gradient in a square duct as a function of the Hartmann numbers
(Ha)

Fig. 5.12 shows pressure drop in a rectangular duct as function of Hartmann num-

ber for a non-dimensional flow rate of 4. It is clearly seen that perfectly conducting

walls result in significantly higher MHD pressure losses and from equation. 5.4 it can

be conclude that given Hartmann number the volumetric flow rate is largest in a

channel with electrically insulating walls and smallest for perfectly conducting walls.

Fig. 5.14 shows velocity profile in the side layer and well known jet-like profile can be

seen whereas in the insulating case flat profile can be seen in Fig. 5.13 for different

hartmann numbers.
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Figure 5.10: Pressure gradient in a square duct as a function of the Hartmann numbers
(Ha) for c=20

Figure 5.11: Pressure gradient in a square duct as a function of the Hartmann numbers
(Ha) for c=2.0
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Figure 5.12: Pressure gradient in a square duct as a function of the Hartmann numbers
(Ha) for c=0

Figure 5.13: Normalized velocity profile along center line perpendicular to magnetic
field for wall conductance ratio(c)=0, Ha
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Since flow is fully developed the pressure drop required for any flow rate can be

found by multiplying the corresponding average velocity with pressure gradient due

to unit average velocity.

48



(a) Ha=10000
(b) Ha=15000

(c) Ha=20000 (d) Ha=30000

Figure 5.14: Normalized velocity profile along center line perpendicular to magnetic
field for different Hartmann numbers
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Chapter 6

Conclusion

In the present work, electrical potential formulation (induction-less) of Anupravaha

MHD module is used for study of MHD flow in rectangular duct with arbitrary

wall conductivity, and it is found that MHD pressure drop largely depends on wall

conductivity. Numerical simulation of these flow using complete Navier-Stokes and

allied equations require huge computational resources especially at High Hartmann

number due to the following reasons.

• Error in current density(J) is amplified by N, the interaction parameter, in

momentum equation when used to calculate momentum equation. So time step

should be ≈ 1/N . So as N increases time required to reach steady state will

increase.

• Suitable resolution of MHD boundary layers and smooth transition between

various region (core-region) is required. So by increasing Hartmann number,

total number of nodes becomes larger.

If we are not interested in what happening in the entrance regime, it is not nec-

essary to solve complete 3D Navier-Stoke’s equation to get flow profile and pressure

gradient in a constant area duct. So inertia-less method is used to simulate fully

developed region of rectangular duct with arbitrary wall conductivity at very high

Hartmann number.

The results of inertial-less method compared with solutions from complete 3D

Navier-Stoke’s equation (for Ha=1298, which took four weeks to reach steady state)

and results are matching perfectly. The assumption of fully developed flow enor-

mously reduces the amount of computation as the flow does not change in the lon-

gitudinal direction. This allows us to have only one cell in that direction whereas in
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developing flows we may need several hundred cells . This allows us to do the com-

putation for for very high Hartmann number flows (∼ 104), which would otherwise

be impossible.

Using inertia-less method, parametric study of laminar MHD flow in a square

duct at very high Hartmann number (upto 30000) have conducted and graph of

non dimensional pressure gradient, as a function of Hartmann number for various

wall conductance ratio is given which can be used to calculate MHD pressure drop

required to obtain a specific flow rate.
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