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Abstract— Speckles are considered as noise, which masks
the fine information present in B-mode ultrasound images.
Speckles appears as small snakes and dense granular like
structures which has serious impact on visual perception of
an image. Adaptive filter based on local statistics of an image
is used to enhance the image by suppressing the noise. Adaptive
speckle suppression filter enhance the image by reducing the
variance between intrapixel intensities in homogeneous regions
and preserving variance across interpixel intensities across the
nonhomogeneous regions. In this paper, we implemented low
complex adaptive speckle suppression filter on FPGA based
kintex7 board. The performance of the filter is evaluated by
plotting the pixel variations of original image with filtered image
of an ultrasound phantom. The results show that proposed
algorithm can be implemented on mobile ultrasound platforms
due to 50% less computations needed per pixel compared to
traditional adaptive speckle suppression algorithms, which aids
better diagnosis for healthcare.

Index Terms— Adaptive filter, FPGA, Image enhancement,
Multiplicative noise, Speckle.

I. INTRODUCTION

Ultrasound Medical Imaging is the widely used nonin-

vasive imaging technology which uses safe nonradioactive

sound waves to visualize the internal body structures like

kidney, liver, tumors, heart, etc. Ultrasound devices are

doctor friendly due to its unique real time imaging capability

compared to Magnetic Resonance Imaging (MRI), Computed

Tomography (CT) and Positron Emission Tomography (PET)

technologies. Ultrasound offers cheap and fast diagnosis

reducing the time to start medication at causality. Medical

ultrasound sustains the competition from MRI, CT since they

are considered to be golden standard, due to its inexpensive

setup and fast diagnosis.

Recent developments in computing platforms like Field

Programmable Gate arrays (FPGA), Digital Signal Proces-

sors (DSP) has brought down the size of ultrasound ma-

chine to portable level which is suitable for point of care

applications [1]. Unlikely, ultrasound images suffers from a

special type of noise called speckles [2] which also appears in

synthetic aperture radar and active radar images [3]. Speckles

appears as small granules and worm like structures in the ul-

trasound image which masks the finer information of tissues,

cells etc. Speckle suppression will help the sonographer to

diagnose the patients with confidence.

Speckle is an artifact for image enhancement algorithms

like edge detection and segmentation tasks, but speckles has
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to be preserved for organ detection, tissue tracking and com-

puter aided diagnosis. The ultrasound phantom image and

corresponding canny edge detection of ultrasound phantom

image is shown in Fig. 1. The spurious edges are resulted in

contours due to presence of speckle noise in the ultrasound

image. Speckles can be suppressed at the RF receiver side

by using different compounding techniques [4], [5]. These

compounding techniques can be implemented at a cost of

hardware complexity, which cannot be offered by portable

ultrasound devices. Speckle suppression can also be done by

applying image filtering techniques on the ultrasound image

[6], [7].

Speckle suppression and information preservation in im-

ages is divergent. Speckle suppression comes at a cost of

loosing the information in image. The image quality assess-

ment parameters [8] like mean square error (MSE), peak

signal to noise ratio (PSNR) and mean structural similarity

index (SSIM) will not able to evaluate the performance of

the filter as it compares the filtered image with noise affected

ultrasound image which is already corrupted with noise.

Image quality assessments says to what extent filtered image

is deviated from ultrasound image. The performance of the

filter is visualized by plotting the pixel variations of original

image with filtered image.

The speckle noise give rise to high variations in inter and

intrapixels. The solution to speckle noise in this paper is

seen as reducing the intrapixel variations in homogeneous

regions and preserving the edges simultaneously. In adaptive

speckle suppression filters [9]-[12], each pixel is resolved

by knowing the local statistics pertaining to that pixel,

increasing number of computations per pixel. Low complex

adaptive speckle suppression filter reduces the number of

computations by dividing the image into small blocks, as-

(a) (b)

Fig. 1. (a) Ultrasound phantom image. (b) Canny edge detection.



suming local statistics of all pixels remains same to that of

block it belongs. The pixel is resolved by knowing the local

statistics of the block in which it is residing, reducing the

number of overall computations required per pixel.

The rest of the paper is organized in the following way,

section II gives the statistical behavior and modeling of

speckles. Section III gives the description of the low complex

adaptive speckle suppression algorithm. Section IV discusses

the FPGA implementation of the algorithm. Results of the

filter is discussed in section V and section VI concludes the

paper.

II. MATHEMATICAL MODELING OF SPECKLES

Mathematically speckle noise can be modeled as sum of

large number of complex phasors which results in construc-

tive and destructive interference at the receiver side [13]. The

constructive interference leads to bright spots and destructive

interference leads to dark spots appearing similar to dense

salt and pepper like noise [14] in the image.

I(m,n) =

p∑

1

ap(m,n) ejϕp(m,n) (1)

p is a positive integer which is generally considered very

large, ap and ϕp are amplitudes and phases of scattered

echoes from tissues. I(m, n) represents intensity of RF signal

at (m, n) spatial location of scan plane.

The multiplicative model for envelope detection J(m, n)

of RF signal is given by

J(m,n) = (P (m,n) ∗ I(m,n)) N×(m,n) (2)

where the multiplicative noise N×(m,n) is sample wise

independent of past, future samples and uncorrelated to the

image pixel value I(m, n) and P(m, n) is the point spread

function (PSF) of the ultrasound imaging system. (m, n)

represents the spatial position of pixel in the image. The log

transformation, which is used to compress the dynamic range

of envelope detected data in ultrasound imaging system will

modify the multiplicative model into an additive model.

J(m,n) = (P (m,n) ∗ I(m,n)) +N+(m,n) (3)

N+(m,n) is the additive noise term dependent on image

pixel value.

Speckle behavior in ultrasound image is better visualized

by plotting the histogram of small portion of homogeneous

regions. Fig. 2 is an ultrasound phantom image with red and

blue boxes indicating the constant reflectivity regions. Fig.

3(a) and Fig. 3(b) represents the histogram of homogeneous

regions indicated with blue and red regions of Fig. 2.

Homogeneous regions are those which have same intensity

distribution. Ideally the histogram of homogeneous region

should be of single spike, but the histogram follows some

random distribution [15] due to speckle noise.

In [12], it is shown that there is a linear relationship

between mean and variance of the speckle patterns in an

Fig. 2. Ultrasound phantom image.
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Fig. 3. Histogram of region indicated in (a) blue color box. (b) red color
box.

ultrasound image. The mean and variance of speckle pat-

terns is computed for variable block sizes at different pixel

locations of an image.

σ2
m,n = K µm,n (4)

σ2 and µ are the variance and mean at (m, n) pixel

location, K is a proportional constant. In [15] it is shown

that speckle noise in ultrasound image will follow Fisher-

Tippet distribution. Final ultrasound image is modeled to fit

it into the equation (4). The signal dependent noise model

[12] of an ultrasound image is given by

J = I +
√
I ∗N (5)

where J is the observed signal, I is noise free signal and N

is noise.

III. LOW COMPLEX ADAPTIVE SPECKLE

SUPPRESSION FILTER DESIGN

The objective of the low complex adaptive speckle sup-

pression filter is to reduce the number of computations

required per pixel for speckle suppression by doing block

processing assuming invariant speckle behavior in that par-

ticular block. This algorithm first divides the image into fixed

size blocks which termed as homogeneous and nonhomoge-

neous regions based on image statistics of the block. The



homogeneity of the block is decided by computing variance

to mean ratio of pixels present in that block.

µ = (1/W 2)

W/2∑

m=−W/2

W/2∑

n=−W/2

I(i−m, j − n) (6)

σ2 = (1/W 2)

W/2∑

m=−W/2

W/2∑

n=−W/2

(I(i−m, j − n)− µ)2

Mean (µ) and variance (σ2) are computed for WxW block

size, consisting of W 2 pixels, (i, j) represents the spatial

location of pixel in the image.

The high variance of block indicates that region is in

nonhomogeneous region. High variance will result, if there

is a boundary in that block. The low variance indicates there

are no boundaries. If variance/mean (σ2/µ) is greater than

threshold then it is said to be in nonhomogeneous region

else it is said to be in homogeneous region. The selection

of block size is based on statistics of speckle noise. The

local statistics of particular block is obtained by computing

average and standard deviation of σ2/µ of 10 windows of

different sizes each coming from homogeneous region [16].

The average and standard deviation of σ2/µ for different

windows of phantom image is shown in Fig. 4. The vertical

bar indicates the standard deviation of σ2/µ . The low

standard deviation σ2/µ of a particular window indicates it

can approximate the speckle behavior of a region. 7x7 and

11x11 block size has low standard deviation as shown in the

Fig. 4. 11x11 is selected as standard grid size as it reduces

the number of computations required per pixel further when

compared to 7x7.

The homogeneity of the block is tested with its local

statistics, if σ2/µ of the block is greater than or equal to

threshold (Th), which is the sum of average and standard

deviation of σ2/µ of 11x11 block then that block is said

to be nonhomogeneous region and need to be resolved

Fig. 4. Local statistics of ultrasound phantom image.

else the region is in homogeneous region and mean filter

is applied to smooth the region. The computed threshold

for ultrasound phantom image for 11x11 block is 3. In

nonhomogeneous region, there exists two regions and mean

filter is not applied which has a property of delineating the

edges, so median filter which has the property of preserving

the edges is applied.

A. Mean filter

The mean filter [14] has smoothing effect on the image.

It smoothens the high frequency components such as

textures and speckles. The 3x3 convolution template used

in homogeneous region to suppress the speckles is shown in

Fig. 5. The mean filter will replace original pixel intensity

at I(i, j) with average of neighboring 3x3 pixel intensities.

I(i, j) = (1/9)

1∑

m=−1

1∑

n=−1

I(i−m, j − n) (7)

B. Median filter

Median filter [14] is a nonlinear filter removes the outliers.

Median filter will replace the original pixel with median of

the 3x3 surrounding pixels, thus eliminating extremum of

the pixels. The extremum pixels are generally contributed by

speckles. The median filter has the property of suppressing

speckles without delineating the edges.

The low complex adaptive speckle suppression filter de-

cides which filter has to use depending on the local statistics

of the image. The flow chart of low complex adaptive speckle

suppression filter is shown in Fig. 6.

The adaptive speckle suppression filters based on image

local statistics has been discussed in [9]-[12]. For evaluating

the performance of our low complex adaptive speckle sup-

pression filter, we choose Lee [9] and Frost [10] filters for

comparison.

C. Lee filter

Lee filter is based on the local statistics of the pixel. The

generalized equation for Lee filter is given by

Î(m,n) = G(µ) +K(I(m,n)− µ) (8)

G is a linear function acting on the local mean and K is

the variable gain which depends upon the local statistics of

1 1 1

1 1 1

1 1 1

0.11 X

Fig. 5. Convolution template for mean filter.



the image. Î(m,n) is the filtered pixel value of I(m,n).
The Lee filter has the property of smoothing the image in

homogeneous regions and leaving the pixels unaltered in

nonhomogeneous region.

D. Frost filter

Frost filter uses exponential kernel which adapts to the

local statistics of pixel which is given by

Îf =
∑

rǫη

hrIr (9)

where

hr =
exp(−KC2

qdq,r)
∑
rǫη

exp(−KC2
qdq,r)

C2
q =

σ2
I (m,n)

Ī(m,n)

dq,r is the euclidean distance between the spatial

coordinates q and r. The value K is chosen adaptively

from the local statistics of the image. σ2
I (m,n) and

Ī(m,n) represents local variance and mean of squared

image. Frost filter performs similar to mean filter for the

pixels at homogeneous region and the pixels across the

regions are unaltered. Low complex adaptive filter operates

similar to Lee and Frost filter by performing mean filter in

homogeneous region and unaltering the pixels at boundaries

by operating median filter. The difference between Lee,

Frost and proposed adaptive filter is former acts on local

statistics of pixels where later acts by block basis.

Image

�

�

Th< Th

Filtered Image

Mean Filter Median Filter

Divide the image 

into blocks

Fig. 6. Flow chart for low complex adaptive speckle suppression filter.

IV. FPGA IMPLEMENTATION OF LOW COMPLEX

ADAPTIVE SPECKLE SUPPRESSION FILTER

Low complex adaptive speckle suppression filter based

on local statistics of an image is implemented on FPGA

based kintex7 platform [17]. The architecture of proposed

low complex adaptive speckle suppression filter is shown in

Fig 7.

It mainly consist of mean value generator, variance value

generator, comparator, median filter, mean filter, four RAMs,

grid address generator and filter address generator. Out of

four RAMs, two RAMs are of size 484x484 while other two

RAMs are of size 11x11. The first 484x484 RAM is used

to store the image. The grid address generator first generates

the addresses to store raw image into the first RAM, then

it generates address for each 11x11 sector of image. The

data corresponding to the address generated are taken by the

mean value generator and variance value generator. Simul-

taneously, same data is stored in the two 11x11 RAMs. The

mean and variance value generator generates the mean and

variance value, which is passed to comparator. Comparator

compares the σ2/µ to a threshold (Th) value 3 for 11x11

block from Fig. 4. If the value is equal or greater than Th,

then it enables median filter otherwise it enables the mean

filter. Once either median or mean filter is enabled, it starts

processing each pixel values stored in the first 11x11 RAM

using 3x3 kernel and the corresponding values are stored

in second 11x11 RAM. The addresses for processing pixel

values stored in the first 11x11 RAM and stores processed

pixels in other 11x11 RAM are generated by filter address

generator.
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Fig. 7. Hardware architecture of low complex adaptive filter for FPGA
kintex7.



TABLE I

DEVICE UTILIZATION SUMMARY

Slice Logic Utilization

Number of Slice Registers 452 out of 407600 0%
Number of Slice LUTs 841 out of 203800 0%
Number used as Logic 805 out of 203800 0%
Number used as Memory 36 out of 64000 0%
Number used as SRL 36

Slice Logic Distribution

Number of LUT Flip Flop pairs
used

938

Number with an unused Flip Flop 486 out of 938 51%
Number with an unused LUT 97 out of 938 10%
Number of fully used LUT-FF pairs 355 out of 938 37%
Number of unique control sets 36

IO Utilization

Number of IOs 19
Number of bonded IOBs 0 out of 400 0%

Specific Feature Utilization

Number of Block RAM/FIFO 129 out of 445 28%
Number using Block RAM only 129
Number of DSP48E1s 4 out of 840 0%

TABLE II

PERFORMANCE ANALYSIS

Filter MSE PSNR SSIM

Frost 24.2302 34.32127 0.8134
Lee 53.9054 30.8485 0.4478
ADF 4.7309 41.4154 0.953

Once processing of all pixel values stored in the first

11x11 RAM is over, the corresponding processed values

stored in second 11x11 RAM is written into second 484x484

RAM at the same address from where they were taken

from the first 484x484 RAM. The above mentioned process

is repeated for the processing of whole image which is

stored in the first 484x484 RAM and the processed image

gets stored in the second 484x484 RAM. The controller

is responsible for controlling and synchronizing all the

processes. The device utilization summary for FPGA kintex7

board is shown in Table I. The device uses only 0.974% of

slice logic of kintex7 board which is useful in reducing the

area overhead when implemented in Application Specific

Integrated Circuit (ASIC).

V. RESULTS

The results are interpreted by plotting the pixel variations

of single column of low complex adaptive speckle filtered

(ADF) image with ultrasound phantom (USP) image. The

ADF image is shown in Fig. 8. The pixel intensities of 175th

column of Fig. 1(a) with respect to Fig. 8 is shown in Fig

9. From Fig. 9 it is clear that local extremum pixels are

smoothed to the local mean. The fall and rise at 50 and 200

pixel indicates edge regions of the image. From the Fig. 9 it

is observed that the edges are preserved as red line follows

the blue line which

is a result of median filter at that region. The depths

of peaks and valleys are significantly reduced which is

commonly contributed by speckle noise due to smoothing

effect of the mean filter.

Fig. 10 and Fig. 11 represents smoothing of local pixel

intensities in Frost and Lee filters respectively. Performance

of the low complex speckle suppression adaptive filter is

compared with Frost and Lee filter by plotting the pixel

variations on the same graph which is shown in Fig. 12 and

Fig. 13 respectively. The performance of low complex adap-

tive speckle suppression filter exactly coincides with Frost

filter. The low complex adaptive speckle suppression filter

performs better than Lee filter where intra pixel variations

are less compared to Lee filter. The image quality assessment

metric including MSE, PSNR and SSIM for the filters is

shown in Table II. Low complex adaptive filter has low MSE,

high PSNR and high SSIM compared to Lee and Frost filters,

which is desirable. The error difference between Frost and

ADF is low as pixel variations of both filters coincide as

shown in Fig. 12.

Low complex adaptive filter took 30 computations per

pixel compared to other filters whose computation per pixel

is approximately 60 resulting 50% computational efficiency.

Implementation of Low complex adaptive speckle suppres-

sion filter in kintex7 took 2.31 ms when operated at 100 MHz

frequency for an ultrasound image of dimension 484x484 .

Fig. 8. ADF image.

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

175th COLUMN OF AN IMAGE

PI
XE

L 
VA

R
IA

TI
O

N
S

 

 

phantom image

adaptive filtered image

Fig. 9. Pixel variations: USP Vs ADF.
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Fig. 10. Pixel variations: USP Vs FROST filtered image.
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Fig. 11. Pixel variations: USP Vs LEE filtered image.
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Fig. 12. Pixel variations: ADF Vs FROST filter.
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Fig. 13. Pixel variations: ADF Vs LEE filter.

VI. CONCLUSION

The low complex adaptive speckle suppression algorithm

provides despeckling technique to suppress speckle noise

with reduced number of computations required per pixel. The

number of computations required per pixel is significantly

reduced by dividing the image into blocks and processing

the pixels based on local statistics of the block where pixel

is residing. The low complex adaptive speckle suppression

algorithm is implemented on FPGA kintex7 board which can

be the computing platform for portable ultrasound system

that comes with limiting computational capability. The pro-

posed low complex adaptive speckle suppression algorithm

performs similar to Frost and Lee filters with 50% less

in computations producing enhanced images offering better

diagnosis for healthcare.
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