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Abstract

The extended finite element (XFEM) is a special kind of numerical method to handle dis-

continuities and singularities. Hence, it is an indispensable tool for modeling crack. In

this work we are exploring the ability of XFEM for modeling the different type of fracture

problems. We studied three type of fracture problems such as static crack tip fields charac-

terization, fatigue life estimation of a cracked Al 2014-T6 panel and the crack propagation

studies using XFEM.

The XFEM modeling of statically loaded crack is used to validate the least square

algorithm proposed by Yoneyanama et. al. [1] for evaluating fracture parameters. In

general, stress intensity factor (SIF) and T-stress are used for characterizing the stress field

around the crack tip. These fracture parameters are estimated using the displacement field

around the crack tip obtained experimentally through 2D digital image correlation (DIC)

techniques and numerically through XFEM. It is observed that in case of parallel cracks

more parameters are needed to represent the displacement field due to mixed-mode loading

because of crack interactions.

In part two, the fatigue life of Al 2014-T6 panel with straight and inclined edge crack

is investigated using XFEM and experiments. Fatigue tests are conducted using MTS

Landmarkr and DIC is used to monitoring the crack tip position accurately. The life of the

cracked panels are predicted numerically using ABAQUS 6.9 through XFEM. The prediction

from the simulations are in reasonable agreement with the experimental prediction.

Finally, the crack propagation studies are also carried out in ABAQUS using XFEM.

Conventional FEM has limitations such as necessity of re-meshing at the end of each step and

crack growth path limited to inter element boundaries, etc. However, by using XFEM we

overcame these limitations. And using XFEM modelling we carried out crack propagation

of straight and inclined cracks. However, XFEM based crack propagation studies could not

be extended to parallel cracks due to in capability of ABAQUS to model multiple cracks

using XFEM.
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

No structure is devoid of flaws. A designer has to estimate the lifetime considering the

defect distribution in the structure. Especially, the load bearing structures with pre-existing

flaws or stress concentrations are susceptible to fracture. Usually these structure and its

components are designed to withstand stress concentrations. Further, stress concentrations

can also occur from the joints of the structures like welds, rivets and fasteners. The cracks

can be found due to the mechanical loading during manufacturing or because of the stresses

induced during thermo-mechanical processes (such as welding or heat treatment) etc. In

the cracked structures due to application of repeated loads or due to combination of loads

and environmental attack, cracks grow with time. The residual strength of the structure

decreases progressively with increasing crack length and eventually falls below the designed

service load. From this moment, the structure is liable to failure. In order to have control

over crack propagation, one need to estimate how fast crack grows and how fast residual

strength decreases.

Finite element method (FEM) is widely used for fracture problems from several decades

even though some numerical difficulties are present. To list a few, to represent the crack tip
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singularity, remeshing with the advancing crack, crack branching and etc are the common

difficulties with the Galerkin finite element methods. Mesh refinement is usually necessary

near the crack tips in order to represent the asymptotic fields associated with the crack

tips. And for propagating crack re-meshing is necessary. Using XFEM the above mentioned

problems can be avoided.

In this work we are using XFEM for several fracture problems. Our work can be divided

into three parts. In the first part, crack is modelled using XFEM to obtain the displacement

field and from that SIF crack tip parameters are estimated using over-deterministic least

square method [2, 1]. Further, the displacement fields obtained from FEM are validated

with the DIC displacement fields. In the second part, fatigue life is estimated using ex-

periments and predicted using XFEM simulations. In the third part, crack propagation

modelling is carried out using XFEM.

The structure of this report is as follows: Chapter 1 give a brief introduction and

literature review about fracture mechanics, XFEM, evaluation of fracture parameters from

displacement field, fatigue life prediction using XFEM and crack propagation using XFEM

Chapter 2 contain the methodology, experimental and numerical techniques for finding

fracture parameters from displacement field. And using this we study the mixed mode

fracture parameters for straight, inclined and parallel cracks.

In chapter 3, we carry out the experimental and numerical study of fatigue crack growth

of edge cracked aluminum plate using XFEM and DIC.

In Chapter 4 we present our studies on crack propagation in aluminum panels using

XFEM.

1.2 Literature Review

1.2.1 Fracture mechanics

Crack is a planar discontinuity, that is the class of defects which exhibit jump discontinuity

across it and a singularity at the tip. Based on the loading the deformation field of the

crack can be classified into three modes, as shown in Fig. 1.1. Mode 1 is an crack opening

mode, mode 2 corresponds to in-plane shear and mode 3 is out-of plane shear. The fields
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(a) Mode I (b) Mode II (c) Mode II

Figure 1.1: Modes of Crack

Figure 1.2: Crack tip

near the crack tip may then be characterized by the three stress intensity factors (SIF), KI

, KII , and KIII - corresponding to the three types of loading shown in Fig. 1.1

The SIFs are related to the in-plane traction vector at a distance r ahead of the crack

tip by Eq. 1.1 where r and θ are as shown in Fig. 1.2

(σ22 + iτ12) =
KI + iKII√

2πr
(1.1)

The relative amount of mode II to mode I loading on a specimen is characterized by the

mode angle

ψ = arctan

(
KII

KI

)
(1.2)

with ψ = 0o for pure mode I loading, and ψ = 90◦ for pure mode II. The resulting

Cartesian components of the displacements near the crack tip can be expressed as follows
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u =
(
u1
x

)
+
(
u2
x

)
+
(
u1
y

)
−
(
u1
y

)
(1.3)

u1
x =

K1

2µ

√
r

2π
cos

(
θ

2

)[
k − 1 + 2 sin2

(
θ

2

)]
(1.4)

u2
x =

K2

2µ

√
r

2π
sin

(
θ

2

)[
k + 1 + 2 cos2

(
θ

2

)]
(1.5)

u1
y =

K1

2µ

√
r

2π
sin

(
θ

2

)[
k + 1− 2 cos2

(
θ

2

)]
(1.6)

u2
y =

K1

2µ

√
r

2π
cos

(
θ

2

)[
k − 1− 2 sin2

(
θ

2

)]
(1.7)

k = 3− 4µ (1.8)

µ =
E

2 (1 + ν)
(1.9)

where, k and µ are the Kolosov constant and shear modulus respectively.

It is evident that the above displacement fields and the corresponding stress fields are

asymptotic in nature.

Another way of characterizing a crack is to use so called energy methods [3]. The energy

release rate is one such method. The energy release rate often denoted by G is the amount

of energy, per unit length along the crack edge, that is supplied by the elastic energy in

the body and by the loading system in creating the new fracture surface area. The energy

release rate is shown below in the Griffith energy balance

dW

da
− dU

da
=
dΓ

da
(1.10)

where W is the external work, U is the elastic energy, Γ is the energy required for crack

growth, and a is the length of the crack. When the left hand side is divided by the sample

thickness, the energy release rate, G, is obtained. If G > Gc then the crack will propagate,

with Gc being the fracture toughness of the material. These two methods may be related

to each other by

G =

(
K2
I +K2

II

)
E

(1.11)
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1.2.2 Extended Finite Element Method(XFEM)

Watwood [4] in 1970’s studied about use of finite element method for prediction of crack

behavior. He observed that very fine mesh is needed near crack tips to represent large

stress gradients. Nakamura et al. [5] studied about 3-D stress fields near the crack front

and calculated approximate size of 3-D stress region. They also proposed a special kind

of meshing for the crack tip in which element size gradually increased with radial distance

from the crack tip. In 1995 Fernado C et al [6] studied about crack tips meshing. This

extensive study on crack meshing shows that the conventional finite element method, for

fracture problems is highly mesh depended and studies had been done in 90′s about a

mesh independent model. As a result extended finite element method is evolved as a mesh

independent method which can solve many problems with modeling cracks. Bubushka et

al. [7] proposed partition of unity finite element method that features the ability to include

in the finite element space knowledge about the partial differential equation being solved.

An additional feature of this meshless method is that finite element space of any desired

regularity can be constructed very easily. Belitschko et al. [8] introduced a new technique

which is later known as XFEM, for modelling cracks in the finite element framework in which

standard displacement-based approximation is enriched near a crack by incorporating both

discontinuous fields and the near tip asymptotic fields through a partition of unity method.

This technique allows the entire crack to be represented independently of the mesh, and

so remeshing is not necessary to model crack growth. Since crack contains singularity and

discontinuity, XFEM can be used for modeling crack.

The basis of XFEM is that the shape functions in the finite element method exhibits

the properties of partition of unity function.In the finite element method, a basis function,

Ni , is associated with with a node i. n is the number of nodes in the mesh. These shape

functions form a partition of unity[7]

n∑
i=1

Ni (x) = 1 (1.12)
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It follows that any arbitrary function φ(x) may be reproduced exactly by

n∑
i=1

Ni (x)φ (x) = φ (x) (1.13)

It is this ability that forms the basis of the XFEM. By appropriately choosing the

function φ(x) for each node, a priori knowledge of a model’s behavior may be incorporated

while retaining the firm mathematical basis of standard finite element analysis.

In linear elastic fracture analysis, two set of functions are used to handle the presence

of a crack: a discontinuous function for the crack line and a set of asymptotic functions for

the crack tip. Let the interior of the crack surface be denoted by Γ and the crack tip by

Λ. The set of all nodes is N; nodes whose support is cut by the crack tip is NΛ; and those

nodes whose support is cut by the crack line are denoted by NΓ (NΓ ∩ NΛ = 0) [9] The

enriched displacement approximation then becomes [7]

uh (x) =
∑
iεn

Ni (x)

[
ui +H (x) aj +

4∑
α=1

φα (x) bαk

]
(1.14)

where jεNΓ, kεNΛ, ui is the nodal displacement vector of the continuous part of the finite

element solution, aj is the nodal enriched degree of freedom vector of the discontinuous crack

line function, and bαK are the nodal enriched degree of freedom vectors of the asymptotic

crack tip.

H (x) =

+1 if (x− x∗) .n

−1 otherwise
(1.15)

where x is a sample (integration) point, x∗ is the projection of x onto the crack surface,

and n is the unit outward normal to the crack at x∗. The asymptotic functions associated

with the crack tip are

[φ (X) , α = 1− 4] =

[√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sinθ,

√
r cos

θ

2
sinθ

]
(1.16)

Figure 1.3 shows the type of enrichment active on each node in an isotropic fracture
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Figure 1.3: Nodal enrichment for XFEM

model

1.2.3 Fracture Parameters From Displacement Field

The presence of crack in a structure results in redistribution of displacement, stress and

strain around the crack tip. In general, stress intensity factor (SIF) and T-stress are used for

characterizing the stress filed around the crack tip. These are the major fracture parameters,

whose knowledge is essential for understanding crack growth behavior. SIF depends on the

far field stress (σ), flaw size (a), component geometry and the mode of loading [10].

σij =
K

2πr
fij (θ) (1.17)

Where, K = stress intensity factor

The SIFs can be evaluated analytically, numerically and experimentally. Most of the

analytical solutions are based on highly idealized models of the component geometry. They

only provide the basic relations to find out the fracture parameters. Analytical closed-form

solutions are available for various simple configurations in SIF data hand book [11]. But

analytical techniques are arduous and feasible only for simple geometries. For complex

configurations, SIF is extracted from experimental or numerical analysis.

Rice et al [12] correlated small crack tip plastic zones in terms of the elastic stress

intensity factor and T-stress. T-stress is a non-singular stress term which acts parallel to
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the crack plane. By investigating crack in homogeneous materials under a mode I load,

Cotterell et al [13] concluded that the T-stress plays an important role in the directional

stability of the crack propagation. The crack is directionally stable if the T-stress is negative

and unstable if it is positive.

Many mathematical models have proposed to represent displacement fields around the

crack tip. Some of them are a series type of equations with several fracture parameters

as coefficients. K Ramesh et al [14] brought out equivalence of various multi-parameter

equations such as generalized Westergaard, William’s eigen function expansion and Atluri

and Kobiyashi equation. Further they used data from photoelasticity for finding stress

field parameters by using least square method. For finding SIF they used a method of

increasing the number of terms of Atluri and kobiyashi’s multi parameter equation until the

experimental fringes are correctly modelled. Digital image correlation (DIC) is a full field

optical method used for measuring deformation, stress and strain. In DIC digital images

are compared before and after deformation to get displacement field. McNeill et al. [15]

determined the stress intensity factor KI from data points (r, θ and v) obtained from 2D-

DIC technique, over full field displacement field using linear least square method. They

used v-displacement fields near the crack-tip and investigated the effect of using higher

order terms on the evaluation of SIF. Sutton et al. [16] employed 2D-DIC to study the

three-dimensional effects near the crack-tip.

In order to reduce the experimental noise, they used smoothed u-displacement and v-

displacement field obtained for SEN specimen to predict the presence of three-dimensional

and/or non-linear zone near the crack-tip. Han et al. [17] studied the in-plane deforma-

tion near the stationary crack-tip for thin SEN specimen using 2D-DIC. Using the multi-

parameter displacement field equations derived from William’s eigen function approach,

they obtained the values of KI separately, from both u-displacement and v-displacement

field near the crack-tip. A total of 10 to 15 numbers of terms were used to estimate KI from

large numbers of data points. The above mentioned methodologies either neglected the er-

ror introduced due to ambiguous location of the crack-tip or used trial and error technique

to locate the crack-tip that minimizes this error [16, 17]. Using the whole field displacement

data (u and v) obtained from 2D-DIC, Yoneyama et al. [18] employed a non-linear least
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square algorithm to estimate the mixed-mode SIF’s (KI and KII), rigid body displacement

as well as the location of crack-tip. They used the radial and tangential components of dis-

placement (ur and uθ) derived from Atluri and Kobayashi’s multi-parameter displacement

field equations as a base for their mathematical formulation. They treated the displacement

components separately and compared the values of KI and KII obtained from whole field

displacement components ur, uθ, u and v. They accounted for effect of twenty terms and

found that polar displacement components (ur and uθ) are better suited for determination

of mixed mode fracture parameters as compared to Cartesian displacement components

(u, v). Yoneyama et al. [1] extended the non-linear least square algorithm by using novel

mathematical formulation that treats u and v displacement components in a combined way.

They proposed new convergence criteria based on the correlation coefficient and the sum

of absolute values of error between experimentally obtained and theoretically reconstructed

displacement fields.

Yates et al. [6] found out SIF, T-stress and crack tip opening angle using DIC. They used

William’s approach and increased number of terms until SIF becomes constant. Gajanan et

al [19] shown that DIC can be used for finding out SIF of an edge crack aligned along fiber

of an orthotropic composite material. They used displacement fields, which is derived from

strain fields and least square method for finding SIF. Mehdi et al. [20] experimentally found

out SIF of interacting crack using photoelasticity. They used William’s stress function and

fitting involved Newton Raphson and least square methods.

1.2.4 Experimental and Numerical Study of Fatigue Crack Growth: XFEM

and DIC

Fatigue cracking is one of the primary damage mechanisms of structural components. Fa-

tigue cracking results from cyclic stresses that are below the ultimate tensile stress, or even

the yield stress of the material. The fatigue life of a component is the the number of cycles

required for the complete fracture of that component.

There are two major aspects in mixed mode fatigue crack growth: crack growth direction

and crack growth rate. Various criteria for the crack growth direction under mixed mode

loadings have been proposed. Some of them are maximum tangential stress criteria(MTS)
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[21], strain energy density criteria [22, 23], dialitational strain energy density criterion [24],

vector crack tip displacement (CTD) criterion [25], tangential stress factor and tangential

strain factor [26] and maximum tangential strain criteria [27]. Among all these, MTS

criterion is widely used. The application of this criterion can be found from the works

by several authors, including Gdotos [28], Abdel [29], Chambers [27]. To correlate fatigue

crack growth rates under mixed mode loading Tanaka [30] used a Paris type equation as a

function of an effective stress intensity factor.

ASTM E647 [31] suggests two methods for measuring crack length. Compliance gauge

method and electrical potential difference method. The compliance gauges are only useful

for the straight cracks. Ali Kha Soh et al [32] used crack micro-gauge to monitor crack

growth during the test. All the above methods uses electrical signals and need gauges to

be attached with the specimen. Borrego et al. [33] used a traveling microscope to measure

crack length. Singh et al.[34] evaluated the fatigue life of homogeneous plates containing

multiple discontinuities (holes, minor cracks and inclusions) by extended finite element

method (XFEM) under cyclic loading condition.

1.2.5 XFEM Modeling of Crack Propagation

Modeling of moving discontinuities such as propagating crack using conventional finite el-

ement method is highly erroneous in nature as explained earlier (see Sec. 1.2.2). XFEM

enables us to model crack propagation with ease. Reinhardt et al [35] done a XFEM study

on crack propagation and compared the results with experimental results.
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Chapter 2

Investigation of Mixed mode

Fracture Parameters for Straight,

Inclined and Parallel Cracks:

XFEM and DIC

2.1 Introduction

None of the literature [14, 20] has used displacement fields for finding fracture parameters

for inclined and interacting cracks. In here, Atluri and Kobiyashi’s multi-parameter dis-

placement equation is used for finding SIF for many crack configurations, including inclined

and interacting parallel cracks. Newton-Raphson and least square method are used for

finding fracture parameters from displacement field. DIC and XFEM is used for getting

displacement field, experiments and FEA respectively. Since the origin of the coordinate

system for the displacement equation is at the crack tip as shown in Fig 1.2, the values

of the fracture parameters depend on the coordinates of the crack tip input into the algo-

rithm when displacement fields are used. Furthermore, the stress intensity factors cannot

be estimated accurately when the coordinates of an actual crack tip are used for elasto-

plastic problems. In this case, the effective crack length, where the crack tip is located at
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the center of the plastic zone, should be incorporated in geometry correction. Therefore

over-deterministic non-linear least square algorithm, proposed by Yoneyama et al [1] for the

estimation of mixed-mode SIF’s from whole field displacement field, has been implemented

in a modified form. In this study, displacement data used for least square (LS) fittings is ex-

tracted along different contours from experiment/numerical analysis. To this contour data,

we fit in multi-parameter displacement using least square method in a repetitive manner

till we find an optimized number of terms. The procedure of optimization is carried out till

the LS data fits with experimental data to a given tolerance.

2.2 Least Square Method

General procedure for the extraction of fracture parameter is represented in the form of

flow chart as shown in Fig. 2.1.

For mode I, mode II and mixed mode crack in plane problems, the displacement field

around a crack field is expressed as

u =

∞∑
n=1

AIn
2G

rn/2
{
kcos

n

2
θ − n

2
cos
(n

2
− 2
)
θ +

{n
2

+ (−1)n
}
cos

n

2
θ
}

(2.1)

−
∞∑
n=1

AIIn
2G

rn/2
{
ksin

n

2
θ − n

2
sin
(n

2
− 2
)
θ +

{n
2
− (−1)n

}
sin

n

2
θ
}

v =
∞∑
n=1

AIn
2G

rn/2
{
ksin

n

2
θ +

n

2
sin
(n

2
− 2
)
θ −

{n
2

+ (−1)n
}
sin

n

2
θ
}

(2.2)

−
∞∑
n=1

AIIn
2G

rn/2
{
−kcosn

2
θ − n

2
cos
(n

2
− 2
)
θ +

{n
2
− (−1)n

}
cos

n

2
θ
}

where, G is shear modulus, k = (3−ν)/(1+ν) for plane stress condition and k = (3−4ν),

for plane strain condition. AI1=KI/
√

2π, and AII1=KII/
√

2π, and 4AI2 = −T stress. In

Eqs. 2.1 and 2.2, polar co-ordinates are measured from the crack tip as shown in Fig. 1.2.

After accounting for rigid body motion, Eqs. 2.1 and 2.2 can be rewritten as
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Figure 2.1: General procedure
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u =
∞∑
n=1

AInfI (r, θ)−
∞∑
n=1

AIInfII (r, θ) + Tx + x (cosR− 1)− y sinR (2.3)

v =
∞∑
n=1

AIngI (r, θ)−
∞∑
n=1

AIIngII (r, θ) + Ty + y (cosR− 1) + x sinR (2.4)

where, fI , fII , gI and gII are trigonometric functions of position co-ordinates r and θ; Tx

and Ty are rigid body translations in x and y-directions, R is the rigid body rotation. If we

assume R is very small, then equations reduce to following form:

u =
∞∑
n=1

AInfI (r, θ)−
∞∑
n=1

AIInfII (r, θ) + Tx −Ry (2.5)

v =
∞∑
n=1

AIngI (r, θ)−
∞∑
n=1

AIIngII (r, θ) + Ty −Rx (2.6)

Although any of the Eqs. 2.3 and 2.4 or 2.5 and 2.6 can be used in the implementation,

Eqs. 2.3 and 2.4 tends to increase the computational time by reducing the rate of convergence

as it is non-linear in terms of unknowns Tx, Ty and R. Equations 2.5 and 2.6 is not applicable

when R cannot be assumed as small angle which is especially true when the initial guesses

for the required unknowns are not close to their actual values. The compromise can be

achieved by incorporating simple ’if else’ during the implementation of the algorithm. If

−0.15 ≤ R ≤ 0.15, Eqs. 2.5 and 2.6 are used otherwise Eqs. 2.3 and 2.4 are used as a default

one.

r =

√
(x1 − xc)2 + (y1 − yc)2

θ = tan−1

(
x1 − xc
y1 − yc

)
x = x1 − xc

y = y1 − yc (2.7)

where, xc and yc are the locations of a crack tip relative to an arbitrary Cartesian co-
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ordinate system whose x and y-axes are parallel to that of crack tip co-ordinate system of

Fig. 1.2. x1 and y1 are the position co-ordinates of the point of interest relative to the same

arbitrary Cartesian co-ordinate system. Error function can be defined as:

hxm = u− (u)exp

hym = v − (v)exp (2.8)

Applying Taylor series expansion

(hm)i+1 = (hm)i +
∂h

∂AI1
(∇AI1) + ...+

∂h

∂AII1
(∇AII1) + ...

∂h

∂Tx
(∇Tx) +

∂h

∂Ty
(∇Ty)

+
∂h

∂R
(∇R) +

∂h

∂xo
(∇xo) +

∂h

∂yo
(∇yo) (2.9)

where i = ith iteration step and ∇A is the correction to be added to the previous estimate

of A

To determine corrections take (hm)i+1 = 0

− (hm)i =
∂h

∂AI1
(∇AI1) + ...+

∂h

∂AII1
(∇AII1) + ...

∂h

∂Tx
(∇Tx) +

∂h

∂Ty
(∇Ty)

+
∂h

∂R
(∇R) +

∂h

∂xo
(∇xo) +

∂h

∂yo
(∇yo) (2.10)

Rearranging in matrix form

{hi} = − [b]i {∇A}i

{∇A}i = − [c]−1
i {d}i (2.11)

where, [c]i = [b]Ti [b]i, and {d}i = [b]Ti {h}i

The Eq. 2.11 gives the correction terms for prior estimates of the coefficients. Accord-

ingly an iterative procedure must be used to get best fit sets of coefficients. Then the

estimates of the unknowns are revised as
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{A}i+1 = {A}i + {∇A}i (2.12)

The above equations are solved using Newton-Raphson scheme in an iterative manner.

The iterations are stopped using two criteria, namely: (a) Parameter error (∆A) minimiza-

tion (b) minimization of displacement vector sum error which is defined as

∑ | utheory − uexp |
Total number of data points

≤ convergence error (2.13)

where, utheory is vector sum of theoretically recalculated u and v-displacements and uexp

is vector sum of experimental u and v-displacements.The solution for the given number

of parameters is considered as acceptable when the convergence error is of the order of

0.001 and parameter error ∇A becomes reasonably small. Number of terms required in

multi-parameter displacement field equations to model the displacement field correctly,

is incremented from 1 until the reconstructed u and v displacement field matches with

experimental distribution. The cross checking is done by plotting theoretically reconstructed

u and v displacement contour maps over the displacement data which is used for least square

fitting. The algorithm is validated by applying it to both experimental and numerical

displacement field. For getting displacement fields, experiment is done using digital image

correlation.

2.3 Fracture parameters from experimental displacement field

Experimental techniques that measure the surface deformation of components and struc-

tures, subjected to a variety of loading conditions, play an important role in many areas of

engineering. DIC is established in the field of experimental mechanics as an effective and

flexible tool for the full field measurement of shape and deformation. This is due to the

range of advantages DIC offers over the other experimental techniques such as simple optical

set up, ease of specimen preparation, relatively less stringent requirements on measurement

conditions and wide range of sensitivity of measurement. We used a single recording camera

(2D-DIC), it can measure in-plane surface displacement of a planar object. Experiments
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Figure 2.2: Specimen with speckle pattern for digital image correlation

are conducted on the test specimens machined from 3 mm thick sheet of aluminum alloy

(Al2014-T6). Wire cut EDM is used for machining and creating crack. In order to simulate

the natural crack, test specimens are pre-cracked in fatigue loading condition using MTS

Landmarkr servo-hydraulic cyclic testing machine of 100 kN capacity. Care is taken while

locating and securing the specimens in the hydraulic test fixtures so as to have approxi-

mately similar fatigue crack growth behavior on both the sides of the specimen. During

the pre-cracking process, the specimen is monitored closely with magnifying glass. Liquid

dye-penetrant NDT-19 is used to detect any fatigue crack initiation. Fatigue pre-cracking

is conducted using force control mode and a short crack of the approximate length of 0.5-1

mm is obtained for the test specimens. Using optical microscope, lengths of the cracks are

measured on both the sides of the specimens and total crack-length is obtained by aver-

aging the values of measured crack lengths on both the sides of the specimen. Then, the

pre-cracked test specimens are cleaned thoroughly with isopropyl alcohol. The surface of

the specimens are coated with a thin layer of white acrylic paint and over-sprayed with

carbon black paint using an airbrush to obtain a random black-and-white speckle pattern.

Table 2.1: Material properties of Al2014T6 alloy

Property Value

Young’s modulus, GPa 72400
Poisson’s ratio ν 0.33
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Figure 2.3: Experimental setup for 2D DIC experiment

Figure 2.3 shows the typical 2D DIC experimental setup. The hardware for the op-

tical setup of 2D-DIC system comprises a CCD camera (of 2448 2048 spatial resolution

with 8 bit intensity resolution and frame rate of 15 fps), Tamron lens with 180mm focal

length, a portable computer system with image acquisition card and LED lighting to ensure

adequate image contrast. All the experiments are performed using a computer-controlled

MTS Landmarkr servo-hydraulic cyclic testing machine of 100 KN capacity with a com-

puter data acquisition system. Self-adjusting hydraulic test fixtures are used to grip the

specimens.

The experimental procedure starts with the specimen fixing into hydraulic wedge grips

and specimen straightness is ensured using a try square. A camera is mounted on a tripod

and the horizontal level of the camera is checked using spirit level and adjusted accordingly.

Height of the camera is adjusted in the tripod to ensure full view of the specimen. The

camera is aligned with respect to the specimen and positioned. The distance between

the camera and the specimen is adjusted depending on the specimen area to be captured.

Positions of LED lamps are adjusted to get uniform illumination of the specimen surface.

The surface of interest is focused by adjusting the lens to get a sharper speckle pattern. The

aperture of the lens is adjusted to get sufficient intensity and also to avoid saturation of the

pixels over the field of view. Finally images are grabbed at a rate of ten images per second

while the uniaxial tensile load is applied along longitudinal direction of the test specimens
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using displacement control mode with a cross-head speed of 0.5 mm/min .While grabbing

the images the output from the load cell is synchronized with images for obtaining the load

value using data acquisition systems. Post-processing of the acquired images is done by

using VIC-2D 2010 software acquired from Correlated Solutions. The region of interest

(ROI) is selected and the subset sizes are chosen as 35x35 and a step size of 5 is taken.

The data got after post processing is smoothed to get smooth continuous contours with a

filter size of 37. For calculating SIF data extracted from contours by drawing lines over the

contour and VIC-2D is used to extract data from the line. Data is collected from the annular

region surrounding the crack-tip, the inner radius of which is chosen more than 1.5 times of

the specimen thickness to avoid the three-dimensional effects and non-linear process zone

in the vicinity of the crack tip [5]. The outer radius of the annular data collection region

is limited such that r/a ≤ 1. Total 1000-1300 data points are collected from a specimen.

An over-deterministic non-linear least squares procedure is then invoked using MATLAB

program to evaluate the multiple parameters governing the displacement field. Experiment

is done on single edge notch specimens and results are compared with analytical results.

2.3.1 Single edge notch(SEN)

To understand the algorithm correctly, we explain the procedure in detail with this example.

For the later examples we only give the results and corresponding graphs. The process

starts with collecting data for least square method from three or more contours as shown in

Fig. 2.5(a). The data should be taken from both u and v displacement fields. The data which

are collected (Fig. 2.5(b)) is used for least square fittings for finding parameters and then

with that parameters u and v contours are plotted with data points echoed back. We start

the algorithm with a number of terms, one for each first and second term of multi-parameter

equations and checked the similarity of collected data and reconstructed data. If they are

not matching we increase the number of terms of multi-parameter equations by one until the

contours matches reasonably. Figure 2.6 shows the theoretically reconstructed displacement

field around the crack tip of SEN specimen (subjected to a load of 10 kN) obtained using

various parameters with the data points echoed back (indicated by red colored marker dots).

The data points coincide very well with reconstructed contours as the number of parameters
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(a) u displacement contours from DIC
(SEN specimen)

(b) v displacement contours from DIC
(SEN specimen)

(c) u displacement contour from DIC
(ESC specimen)

(d) v displacement contour from DIC
(ESC specimen)

(e) u displacement contour from DIC
(PEC specimen)

(f) v displacement contour from DIC
(PEC specimen)

Figure 2.4: DIC images with contours used for LS fitting (shown white in color inside circle)
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Figure 2.5: Data points from which u and v displacements are taken for least square fitting
(SEN specimen)

increases to six, assuring the sufficiency of six parameters to represent the displacement field.

Comparing KI with its analytical value, the error is around 2.3%. The sample dimension

of SEN is given in the Fig. 2.9.

Table 2.2: Fatigue pre-cracking

Type
Initial notch
length (mm)

Final crack
length (mm)

Mean
load KN

Amplitude
of load KN

Number of
cycles

Frequency
Hz

SEN 8 8.5 4 3 7805 5

ESC 8 8.556 3.5 3 20000 10

PEC 8 8.58 3 3 18000 10

Table 2.3: SEN at 10 kN load
2 para 3 para 4 para 5para 6 para Analytical %error

KI , MPa
√
mm 562 567.5 592 586.32 588.61 602.8 2.3

KII , MPa
√
mm 14 17 1.5 14 16 0

2.3.2 Edge Slant Crack(ESC)

The coordinate system for the multi-parameter equation is in such a way, that the x-axis

should be parallel to the crack. In experiments to align crack along x-axis, the camera
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Figure 2.6: Results obtained from the experimental displacement field of a SEN specimen
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should be tilted such that x-axis is parallel to the crack. The images taken for the inclined

crack is shown in figure. Analysis is done on edge slant cracked specimen at 10 kN force.

Results are compared with analytical results

Table 2.4: ESC at 10 kN load
LS Fitting Analytical %error

KI , MPa
√
mm 303 302.43 .18

KII , MPa
√
mm 187.5 183.6 2.18

2.3.3 Parallel crack

Analysis is done on a parallel cracked specimen at 10KN force. Results are compared with

numerical results. XFEM is used for modelling the crack. Since the specimen is symmetric,

we need to model only the half part of the specimen. The XFEM model is shown in figure

Table 2.5: PEC at 10 kN load
LS Fitting ABAQUS %error

KI , MPa
√
mm 442.9 506.3 12.45

KII , MPa
√
mm -69.6 -66.1 5.7

2.4 Fracture parameters from Numerical Displacement Field

The extended finite element method (XFEM) is used for modelling crack in numerical

method. XFEM alleviates shortcomings associated with the meshing of crack surfaces in

existing methods. In this method, the finite element approximation is enriched by addi-

tional functions through the notion of partition of unity. The essence of the XFEM lies in

sub-dividing a model problem into two distinct parts: mesh generation for the geometric

domain (cracks and holes not included), and enriching the finite element approximation

by additional functions that model the flaws and other geometric entities. In this work

we used XFEM capability of ABAQUS to model the cracked panels. Since XFEM is not

much dependent on meshing, fine incremental type of meshing which we usually use for

conventional finite element method is not required for modeling cracks. In ABAQUS we
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Figure 2.7: Results obtained from a experimental displacement field of a edge slant crack
(ESC) specimen
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Figure 2.8: Results obtained from a experimental displacement field of a parallel crack
(PEC) specimen
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(a) Single edge notch (b) Edge slant crack (c) parallel crack

Figure 2.9: Dimension of different models which are used for XFEM modelling

can mesh the plate without crack and then it is possible to assemble the geometry of the

crack which we needed to the plate. Considering computational easiness and number of

data points required for the least square fitting the panel is partitioned and gave a fine

mesh near to the crack tip and a coarse mesh away from the crack tip. Hexagonal elements

are used for the meshing. Properties of Al 2014-T6 alloys are used for modeling. Fix top

end and u = 0 for the bottom end are taken as the boundary conditions. Force in the form

of pressure is applied on the bottom surface. The nodal coordinates and the corresponding

u and v displacement values are extracted from the ABAQUS. A MATLAB program is used

to collect data along contours which is used for the least square fitting. The algorithm is

verified with many configurations such as Single edge notch (SEN), edge slant crack (ESC),

parallel interacting crack (PEC).

2.4.1 Single edge notch

To validate the algorithm for pure mode-I problems, the analysis is done on a SEN specimen.

Dimensions of the SEN model are given Fig. 2.9. With 8 term equation the reconstructed

and numerical data matches closely as shown in Fig. 2.10.
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Table 2.6: SEN at 7.5KN load
LS Fitting ABAQUS %error

KI , MPa
√
mm 487 492 1.016

KII , MPa
√
mm 6 0 -

σ0x, MPa -32 -26 23
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Figure 2.10: Results obtained from the XFEM displacement field of a SEN specimen
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Table 2.7: ESC at 10kN load
LS Fitting ABAQUS %error

KI , MPa
√
mm 326 344 5.5

KII , MPa
√
mm 169 188 10

σ0x, MPa -32 -37 13.5

2.4.2 Edge slant crack

To validate our algorithm for the mixed mode problems, analysis is done on an ESC speci-

men. Since the coordinates of the multi-parameter equation is as shown in Fig. 1.2, we need

to apply a coordinate transformation. Dimensions of the ESC model are given Fig. 2.9. With

8 number of terms the reconstructed contours closely matches with numerical data(Fig. 2.7).

So the parameters corresponding to 8 number of terms is taken as results. Table 2.7 shows

KI , KII and T-stress and these are matching reasonably with the numerical results ob-

tained directly from XFEM.

2.4.3 Parallel crack

The validity of algorithm for interacting crack is checked on a model with dimensions as

shown in Fig. 2.9. With 10 terms in equation the reconstructed displacement field matches

with extracted displacement data. The SIFs values obtained by least square fitting and

XFEM matches very closely as shown in the Table 2.8. The variation of SIF with number

of terms used and displacement plot is shown in Fig. 2.12.

Table 2.8: PEC at 7.5KN load
LS Fitting ABAQUS %error

KI , MPa
√
mm 367.4 370 .7

KII , MPa
√
mm 46 52 11

σ0x, MPa -56 -54 3.7
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Figure 2.11: Results obtained from a XFEM displacement field of a edge slant crack(ESC)
specimen
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Figure 2.12: Results obtained from the numerical displacement field of a parallel cracked
(PEC) specimen
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2.5 Conclusion

The proposed method is used for analyzing the following crack configurations.

a) straight crack

b) Inclined crack

c) Parallel crack

for fracture parameters from both experimental and numerical displacement field.

Using least square algorithm we fitted displacement fields (with respect to local coordi-

nates) and found that 6 parameter solution is optimum for representing inclined crack and

straight crack displacement fields. From fitted displacement fields we have extracted SIF

and T-stress. Using this we validated that the optimized displacement field can be used

for mixed mode problems for finding fracture parameters. Then we extended this method

for parallel crack in which two parallel edge cracks are separated by distance d. In par-

allel cracks the crack experience mode mixicity due to interactions. Using the same least

square algorithm we obtained the displacement field shows that upto 12 number of terms are

needed to represent displacement field for parallel crack. In the case of interacting cracks,

we observed that more number of parameters in multi-parameter equations is needed to get

a fitted displacement field.

KI and KII evaluated from the displacement field obtained from the experiments, of

SEN and ESC crack shows a maximum percentage error of 2.3%. But in the case of parallel

crack KI and KII shows 12.14% and 5.7% respectively which is higher than the error

observed in SEN and ESC. KI and KII evaluated from the displacement field obtained

from the XFEM analysis, of an elastic model, of SEN and ESC crack shows a maximum

percentage error of 10%. The elastic modeling can’t represent crack problem realistically.

If we use elastic-plastic model, the crack will be more realistic and the error in parameters

may come down. In the case of parallel crack KI and KII show .7% and 11% respectively.

T-stress shows 23%, 13.5% and 3.7% error for SEN, ESC and PEC respectively. This errors

obtained for T-stress is higher than that of stress intensity factors. From this work, it is

evident that the displacement field is useful for finding stress intensity factors.
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Chapter 3

Prediction of Fatigue Life of Edge

Cracked Aluminium Plate: XFEM

and DIC

3.1 Introduction

Fatigue cracking is one of the primary damage mechanisms of structural components. Fa-

tigue occurs when a material is subjected to repeated loading and unloading. If the loads are

above a certain threshold, microscopic cracks will begin to form at the stress concentration

points. Eventually a crack will reach a critical size, the crack will propagate suddenly, and

the structure will fracture. The fatigue life of a component can be expressed as the number

of loading cycles required to initiate a fatigue crack and to propagate the crack to critical

size. Therefore, it can be said that fatigue failure occurs in three stages crack initiation;

slow, stable crack growth; and rapid fracture.For some components the crack propagation

life is neglected in design because stress levels are high, and/or the small critical flaw size.

For other components the crack growth life might be a substantial portion of the total life

of the assembly.

None of the literatures used digital image correlation for measuring crack growth. Digital

image correlation (DIC) is a full field optical method used for measuring deformation, stress
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and strain. In DIC digital images are compared before and after the deformation to get

displacement field. In this work we are proposing a method for monitoring crack growth

using digital images. Numerical simulation is done using ABAQUS 6.9 which has inbuilt

XFEM module in it. We also studied the effect of mode mixity in the life of edge cracked

aluminum specimens.

3.2 Experimental Study

In this work DIC is used for monitoring crack growth. The method for specimen preparation

is the same as explained in Sec. 2.3. Since we can identify when the crack starts from the

images, pre-cracking is not necessary for generating natural crack. In experimental setup,

apart from the image grabbing system everything is same as explained in the Sec. 2.3.

The image grabbing system for the fatigue experiments comes with a triggering con-

troller. In order to get exact correlations between the images and number of cycle, camera

triggering controller is used which will trigger the camera in equal intervals of cycles and

also at specified phase angles. In the present analysis the images were captured every twenty

cycle and at every 90 degree phase angle.While grabbing the images the output from the

load cell is synchronized with images for obtaining the number of cycles using data acqui-

sition systems. The reference image is calibrated for a known distance such that it will

enable one to get coordinates of any pixel in mm. This capability of image correlation is

used for obtaining the crack advancement distance from the crack tip. Post-processing of

the captured images is done using VIC-2D 2010 software acquired from Correlated Solu-

tions. The region of interest (ROI) is selected and the subset sizes are chosen as 35x35 and

a step size of 5 is taken. The x and y coordinate plots are used for measuring crack length

and propagation angle. The crack length and the propagation direction is calculated using

Eqs. 3.1 and 3.2 respectively.

4a =

√
(xci − xc)2 + (yci − yc)2 (3.1)
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θ = arctan
yc − yci
xc − xci

(3.2)

where

θ is crack propagation direction

xci and yci are the coordinates of the initial crack tip

xc and yc are the current tip coordinates

3.3 Numerical method XFEM

In the present work, the fatigue crack growth simulations are performed by XFEM. Mixed

mode stress intensity factor is extracted from J-integrals. The direction of crack propagation

is established to be a function of the mixed-mode stress intensity factor of the crack tip.

There are several criteria to calculate the direction. Some of the most widely used mixed

mode criteria are; the maximum tangential stress criterion, the maximum energy release

rate criterion, the zero k2 criterion and maximum circumferential stress criterion. In this

study we have been using maximum tangential stress criterion [21] in which the deflection

angle of crack growth defined to be perpendicular to the maximum tangential stress at

the crack tip. The crack propagation angle θ is given by the Eq. 3.3. where the crack

propagation angle θ is measured with respect to the crack plane θ =0 and represents the

crack propagation in the straight-ahead direction. θ < 0 if k2 >0 while θ > 0 if K2 <0

θ = arccos(
3K2

II +
√
k4
I + 8k2

1 + k2
II

K2
I + 9K2

II

) (3.3)

For mixed mode crack growth problems we use equivalent mode 1 SIF for the life cal-

culations. Tanank [30] proposed a formula for the equivalent SIF based on curve fitting

data.

4Keq = 4

√
4K4

I + 84K4
II (3.4)
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where

4K1 = KImax −KImin (3.5)

4K2 = KIImax −KIImin (3.6)

For stable crack propagation, the generalized Paris law is described as

da

dn
= C (4Kequ)m (3.7)

where, a is the crack length, N is the number of loading cycles and Keq is obtained

by with 4KI and 4KII , C and m are material properties. The loading cycles required

to extend the crack from initial length to final failure length are evaluated by Eq. 3.7. A

compromise must be made regarding the value of the linear extension length 4a. If crack

increments are too small, then very fine meshing is required at the crack tip so that the

new crack tip should fall in new elements after each step. If increments are too long, the

piece wise linear paths cannot precisely represent the real crack path. The problems having

single crack, 4a is kept constant.

3.4 Experimental and numerical validation

3.4.1 problem Definition

In this work we are investigating the crack growth behavior of thin edge cracked aluminum

2014-T6 alloy panels. The material properties and Paris law constants of the AL2014T6

[36] are given in the Table 3.1 and 3.2 respectively.

Table 3.1: Material Properties of AL2014-T6
Property Value

Young’s modulus, GPa 73.1

Poisson’s Ratio 0.33

We have taken two configurations of crack which represent mode 1 and mixed mode

crack growth behavior.
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Table 3.2: Paris Law Constants of AL2014-T6
Property Value

C, mm/(cycle*MPa
√
mm) 5.57e-13

m 3.37

1) Side Edge notched specimen (SEN)

2) Edge slant cracked specimen (ESC)

The experiment is conducted on a 3 mm thick sheets of aluminum alloy. The dimensions

of the specimen is given in the Fig. 3.1. A fatigue load in sinusoidal forms is applied to the

both specimens. The specifications of the load is given in the Table 3.3. The crack behavior

is investigated using DIC and XFEM.

Table 3.3: Fatigue load
Property Value/Type

Mean load, kN 5

Amplitude, kN 3.5

Frequency, Hz 10

Applied form Sinusoidal

3.4.2 Experimental evaluation

In usual procedure in order to simulate natural crack, pre-cracking is done. While we use

DIC for measuring crack growth we can monitor the images, and when the crack starts to

grow that is image is taken as first image. The images are correlated. the crack growth and

number of cycles are extracted such that 4a should be less than 2mm. In the cases of SEN

and ESC crack the crack grows almost in x direction. So we have taken yci = yc. Then 4a

becomes xci − xc and θ = 0 in global coordinates.

3.4.3 Numerical Technique (XFEM)

In the present work, ABAQUS 6.9 which has inbuilt XFEM module in it is used for numerical

simulations. We used a 3-D model to extract SIFs. XFEM module for modeling crack

enables us to create the crack geometry separately and assemble the crack to the plate. We

meshed the plate with two elements along the the thickness. SIF and crack propagation
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Figure 3.1: Specimen Dimensions

(a) Without speckle (b) with speckle

Figure 3.2: Work pieces
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(a) DIC images of SEN

(b) DIC image of ESC specimen

Figure 3.3: DIC images with lines at various crack tip points
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direction is evaluated from the mid-plane of the model. For simplify the crack modeling,

the crack propagation direction is approximated to the nearest integer. The life for the

crack increment is calculated using Paris law The crack length is incremented by 0.5 mm

in the crack propagation direction and the new SIF and crack propagation direction are

extracted. This process continued until the plate fails.

3.5 Results and Discussions

Experimental and numerical study of specimens are done. Life estimated using XFEM

matches very closely with experimentally observed life as given in Table 3.4. Fatigue life

diagrams are shown in 3.4(a) and 3.4(b). The XFEM and the experimental life diagram

are matches very closely. Even though we used same loads and crack length the life of ESC

specimen is more than double of the SEN specimen. The life of SEN and ESC specimen is

shown as bar graph in Fig. 3.4(c).

Since it is little difficult to identify the crack tip precisely from the images, advised to

put some paint in the crack, such that it can flow through the crack as it grows. Then crack

tip identification will be pretty easier. While using XFEM for numerical modeling, very

fine mesh is advised near the mixed mode crack tip so that we should get enough number

of contours within the crack increment.

In this work, digital images are used for measuring crack length. When we use a moving

microscope, it is necessary to stop the experiment to measure the crack length. In that

case, strict monitoring of crack is required to stop loading cycle and to take measurements.

But if we use an image grabbing system with a triggering controller the images are taken

in the regular interval of cycles. So the crack length can be measured very easily from that

images, without interrupting loading cycle. Further more, the experimental set up does not

contains any component which is directly attached to the specimen. So the setting up of

experiment is relatively easy compared with other experiments such as compliance gauge

method and electrical potential difference method. Due to above mentioned advantageous,

the crack monitoring using DIC is found to be easy and useful.
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(c) Fatigue life comparison

Figure 3.4: Life diagrams for the edge cracks

Table 3.4: Life
Specimen Type Experimental XFEM Percentage error

SEN 7670 7360 -4%
ESC 19533 19790 +1%

40



3.6 Conclusion

Using triggering controller the images are taken in regular interval of cycles without stopping

loading cycle. We observed that down time for measuring crack can be avoided if use DIC

for measuring crack length.

The method was applied to simulate the fatigue life of a rectangular plate in the presence

of mode 1 and mixed mode crack under constant amplitude cyclic loading. The results

obtained by XFEM were compared with experimental results. These simulations show

that the life diagram obtained by XFEM were found in good agreement with experimental

solutions. The life of the SEN and ESC specimen shows an error of 4% and -1% percentage

respectively. The closely matched experimental and numerical data shows that XFEM is

very useful for estimation of fatigue life.

It is also found that the presence of mixed mode crack significantly affect the fatigue life

of the materials. Even though we used same crack length, 45o inclination, increased fatigue

life by 154% compared with straight crack. The inclined crack is mixed mode problem in

which the crack driving force is much less than driving force in the straight crack problems.
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Chapter 4

XFEM Modeling of Crack

Propagation of Edge Cracked

Aluminium Panel

4.1 Introduction

Modeling of moving discontinuities such as propagating crack at using conventional finite

element method is highly erroneous in nature. By using XFEM, the entire crack can be

represented independently of the mesh, and so remeshing is not necessary to model crack

growth. In this work we are modeling the crack growth of aluminum panel using ABAQUS

6.9 which has inbuilt XFEM module in it. We modeled two edge crack geometry such as

the straight and inclined crack which represent mode 1 and mixed mode crack respectively.

If we know the crack propagation path of a specimen we can redesign the component to get

better life.

4.2 Modeling and Simulation

The XFEM capability in ABAQUS6.9 is used to model edge cracked specimens. While

using XFEM it is not necessary to model a crack tip singularity or its direction of crack

growth. In ABAQUS crack in the form of a wire or area can be define as an enriched zone.
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(a) SEN (b) ESC

Figure 4.1: Model Geometries

Wire and area are used to create crack in 2-D and 3-D problems respectively. In this work

we are using 3-D models. Crack is created as an area (3-D shell), then it is assembled to

the uncracked plate geometry. In the interaction module, we can define the shell as XFEM

crack so that enrichment can be done accordingly. We studied the crack propagation of the

straight and inclined edge crack which represent mode 1 and mixed mode crack respectively.

The dimension are taken according to ASTM standards [31] as shown in Fig. 4.1

Panels are modeled with elastic plastic models. The properties of AL 6061-T6 from the

[35] is used for modeling. The values are given in the Table 4.1

For this study, as mentioned in [35], the maximum principal stress criteria was chosen

for the damage criteria (’Maxps Damage’ in ABAQUS). The bottom stress in Table 4.2

was used for the maximum principal stress. Damage evolution was based on an energy

criteria equivalent to the strain energy release rate, G1. The damage energy was calculated
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Table 4.1: Material Properties of AL 6061-T6
Property Value

Ultimate Tensile Strength, MPa 317

Young’s Modulus, GPa 66.3

Strain at Ultimate Failure 13

Poisson’s ratio 0.33

Table 4.2: True Plastic Stress versus True Strain of AL 6061-T6
True Plastic stress True Strain

111.0 0.0000

112.6 0.0019

113.6 0.0038

116.1 0.0067

116.9 0.0086

118.7 0.0135

120.7 0.0183

122.5 0.0231

124.6 0.0279

127.5 0.0326

130.0 0.0421

133.3 0.0514

136.1 0.0607

139.3 0.0699

141.8 0.0790

144.4 0.0881

146.3 0.0971
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(a) SEN (b) ESC

Figure 4.2: Boundary conditions and Load

assuming G1 =
K2

1c
E or 24.2 kN/m. The sub-option for viscosity coefficient was used with a

value of 1.e-6.

It is very difficult to get a converged solution for the crack propagation problems. To get

a converged solution we need to adjust time step in the step module. The regular meshing

can be used for modeling crack using XFEM. To simulate MTS machine in displacement

control mode, top end of the specimen is held fixed and on the bottom side a gradual

displacement of 10 mm/s is applied as shown in Fig. 4.2

4.3 Results and Discussions

In this work, we have simulated simple geometry like SEN and ESC only. The crack

propagation of ESC and SEN panel is shown in Figs. 4.3 and 4.4 respectively. The crack

propagation direction matches with the experimental crack.

In this work we used the material properties from the reference [35]. For finding the

elastic and plastic properties of a material it is advised to use Ramberg Osgood algorithm

which is used to find the Young’s modulus, yield stress and other properties from the load

displacement data. If we know the yield stress, the plastic properties can be taken from the

stress strain data which is beyond yield point in the x axis.
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(a) Initial Crack (b) Final Rupture

Figure 4.3: Crack Growth of ESC

(a) Initial Crack (b) Final Rupture

Figure 4.4: Crack Growth of SEN
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Crack propagation is simulated using XFEM. It is very difficult to get a converged

solution. While modeling crack propagation using ABAQUS XFEM, no of increments goes

above 5, which is the default maximum number of increments. To avoid this problem we

increased the number of increments to 20 in general solution controls. To get the convergence

easily we also changed the analysis type from continuous to discontinuous analysis in solution

control menu. Then we got converged solution very easily.

4.4 Conclusion

In traditional FEM, we need to give crack propagation direction. But XFEM crack can

propagate any direction through the notion of partition of unity. In traditional FEM, it is

necessary that the elements should be aligned with crack. But in the case of XFEM the

crack can be placed in the uncracked domain independent of meshing.

Crack propagation analysis of SEN and ESC model has been done. The crack is found

to be growing through the elements. Without using XFEM it is not possible. So the mesh

is need not to be very fine as we do in crack growth problem using cohesive zone modeling.

In cohesive zone modeling, crack never grows through the crack

Moreover the crack propagation path matches with actual propagation path. The results

show that XFEM is an effective tool for crack propagation analysis.
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Chapter 5

Conclusion and Future Scope

From this work it is evident that XFEM is valuable tool for modeling fracture problems.

We have successfully done XFEM analysis of following problem.

• Static analysis

• Fatigue life analysis

• Crack propagation modelling

As explained in the Sec. 2.5, SIFs agreeing reasonably with the reference value. But T-

stress have a considerable variation from the reference value. If we use a multiparmeter

equation which represent both elastic and plastic zone displacement, we will get a better

solution.

The fatigue life estimation using XFEM is found to be effective for simple geometries

such as SEN and ESC as explained in Sec. 3.6. In industries such as aerospace industries,

many components are subjected to fatigue loading. Fuselage is an example for the com-

ponent which is subjected to fatigue loading. This work can be taken as a benchmark

problem and studies can be extended to more complex geometries such as airplane fuselage

and adhesively patched metal plates.

The crack propagation using XFEM is found to be effective for simple geometries such as

SEN and ESC as explained in Sec. 4.4. This work can be extended to study the failure loads

and failure directions for other materials and geometries. Due to increased use of container
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tankers and pressurized gas pipe lines, the failure analysis has an increased demand. These

problems an be easily analyzed using XFEM. In industries, we can find out many more

application for simulation of crack propagation.
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