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Abstract

With India focussing even more on Aerospace applications , research and development in

compressible flow has received a boost in the country. We aim to develop a general-purpose

and robust compressible flow solver to help in research in Aerospace problems. The present

work aims to make the Euler Solver developed by previous post-graduate students as part

of the general purpose AnuPravaha Solver more robust and accurate, and develop it as a

stand-alone compressible flow solver. In this work, the solver has been made more general

and now incorporates non-reflecting, symmetric and other boundary conditions, taking into

the account curvature at the boundary. As a step to move to higher accuracy, the TVD

scheme and the upwind-based scheme AUSM+ − up have been successfully implemented.

The latter has been shown to give more accurate, stable and numerical oscillation-free

results.
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Chapter 1

Introduction

Compressible flow effects are encountered in numerous engineering applications involving

high speed flows, e.g. gas turbines, steam turbines, internal combustion engines, rocket

engines, high-speed aerodynamics, high speed propellers, gas pipe flows, etc. Special phe-

nomena such as compression shocks, entropy layers, expansion fans, flow induced noise etc.

are of fundamental scientific importance and directly affect the performance and endurance

of these engineering applications. Taking this as the motivation, the task of incorporating a

density-based solver in the Anupravaha - General purpose CFD solver was undertaken two

years ago. This solver, which was initially only for incompressible flows, has been under

continuous development since 2004 in the research group of Prof. Vinayak Eswaran. It

already has the Pressure-based solver having modules for turbulence, multiphase flows, ra-

diation problems, MHD, Solidifications and Melting, etc. To cater exclusively to aerospace

applications and for the ease of management of the solver, we have now tried to separate

out the density-based solver in a stand-alone code.

Compressible flows (in contrast to variable density flows) are those where dynamics (i.e

pressure) is the dominant factor in density change. Generally, fluid flow is considered to be

compressible if the change in density relative to the stagnation density is greater than 5%.

Significant compressible effects occur at Mach number of 0.3 and greater.

Compressible flow is divided often into four main flow regimes based on the local Mach

number (M) of the fluid flow

• Subsonic flow regime (M ≤ 0.8)

• Transonic flow regime (0.8 ≤M ≤1.2)

• Supersonic flow regime (M > 1)

• Hypersonic flow regime (M > 5)

Compressible flow may be treated as either viscous or inviscid. Viscous flows are solved

by the Navier-Stokes system of equations and inviscid compressible flows are solved by Euler
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equations. The physical behavior of compressible fluid flow is quite different from incom-

pressible fluid flow. The solutions of Euler equation are different (due to their hyperbolic

wave-like nature) from the solutions of the elliptic governing equations of incompressible

flows. Compressible flow can have discontinuous solutions in certain cases e.g vortex sheets,

contact discontinuities or shock waves. So, for compressible flows special attention is re-

quired for solution methods which will accurately capture these discontinuities.

In compressible fluid flows, properties are not only transported by the flow, but also by

the propagation of waves. This requires the construction of flux interpolations, that take

into account that transports can occur in any direction.

Thus, a major difference between solution methods for compressible flow and incompress-

ible flow lies in the boundary conditions implementation. In compressible flows, boundary

conditions are imposed based on the characteristic waves coming into the domain boundary,

which is very different from the elliptic-type boundary conditions used for incompressible

flows.

1.1 Literature review

Hirsch, [1] has discussed the general methodology to analyze the nature of systems of partial

differential equations. This systematic procedure to determine the nature of equations

and the propagation of their solution is key to the understanding the implementation of

boundary conditions. Euler equations are solved in conservative form but require imposition

of boundary condition in primitive form; in Chapter 19 [2] discusses the implementation

of boundary conditions (both physical and numerical) from characteristic extrapolation

for conservative and primitive variables, along with different extrapolation methods. The

outflow boundary condition has been scrutinized in the present work in detail after the

previous work done by Nikhil, [3] reported unwanted reflections at outflow. This study is

more popularly known as the far field boundary condition (FFBC) model for compressible

flow. It also permits a substantial reduction of the computational domain, leading to a

considerable improvement in the computational efficiency [4]. A theoretical basis of non-

reflecting boundary conditions for hyperbolic equations was first established by Kreiss,

[5] for initial boundary value problems of multiple-dimension hyperbolic systems. Kreiss

examined the well-posedness of the hyperbolic system and emphasized that truncating an

infinite domain into a finite domain must be done such that the flow solution is well-

posed. Hedstrom, [6] showed that hyperbolic characteristic theory is able to correctly

impose non-reflecting boundary conditions for one-dimensional unsteady problems using

the eigenvector method. The same year, Engquist et al. [7] introduced a list of non-

reflecting boundary conditions of increasing complexity for multi-dimensional flows, the first

of which was the one-dimensional condition.Gustafsson, [8], used these boundary conditions

to solve the unsteady Euler equations. Non-reflecting boundary conditions are also used to
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accelerate convergence of the solution, but can create inaccurate results if the method is

not correctly implemented. This is especially evident for Hedstrom’s boundary conditions

where the converged steady-state is often quite sensitive to initial conditions. A makeshift

solution to this problem was proposed in [9], replacing Hedstrom’s boundary condition for

a subsonic outlet by the constant parameter to enforce convergence to a desired free-stream

pressure. We use this method for the outflow condition in the solver. All the boundary

conditions have been implemented to incorporate curved surface, based on the book of

Blazek, [10] and the work done in [11].

The second focus of this thesis has been the incorporation of High Resolution schemes

into the solver. The second volume of [2] discusses almost all basic numerical schemes

pertaining to Euler and Navier Stokes equations.

First order schemes avoid numerical oscillations but are diffusive in nature, which causes

loss of information in the vicinity of shock and contact discontinuities. Higher order methods

create spurious oscillations in the numerical solution in the presence of shocks or contact

discontinuities. One set of techniques to avoid the latter phenomenon follow the method

suggested by [12] and are popularly known as ENO (“Essentially non-oscillatory”) schemes.

Such methods use special methods to calculate flux across cell-faces to prevent numerical

oscillations. In his text, [13] discusses these methods from first principles after discussing

the basic techniques - including the Lax-Friedrichs method, the Lax-Wendroff method,

MacCormack’s method and Gudunov’s method.

Nowadays, to solve the Euler equations it is usually preferred to use special higher

order methods, that avoid the spurious oscillations usually found in the the classical cen-

tral methods, to get oscillation-free solutions that accurately represent shock and contact

discontinuities. A systematic analysis of conditions required by these schemes was devel-

oped by Godunov [2], who first introduced the concept of monotonicity. For the solution

of non-linear equations, the more general concept of bounded total variation of solutions

was introduced by Harten [12]. This led to criteria, popularly known as the TVD (“Total

Variation Diminishing”) condition, to ensure unwanted oscillations are not generated by

the numerical scheme.

Van Leer in his works [14] [15] [16] presented a high resolution scheme satisfying the

Entropy Condition, Monotonocity and TVD, and a general frame-work for the development

of such schemes.

There are a large number of schemes presently known for the solution of compressible

flow. The overall picture and classification of these schemes can be found in [17]. The

compressible flow codes have seen development of two classes of schemes central and up-

wind based. The central scheme which is more suited for turbo-machinery applications has

been incorporated in various solvers such as rhoCentralFoam a solver in the OpenFOAM

that incorporates a new high resolution central scheme based on the work of [18]. The

MacCormack method, a central scheme, has been used in this work.
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However, for better stability and accuracy, we have successfully tried to implement the

upwind-based scheme AUSM+ of [19] with second order accuracy. This scheme was first

presented by Liou in 1993 as Advection Upstream Splitting Method (AUSM) [20]. The

scheme has went through several revision since then, which can be found in [21].

1.2 Objective of present work

• Optimizing and increasing the robustness of the existing Euler Solver in Anupravaha.

• Incorporating Far-Field Boundary Conditions, and expanding the boundary condi-

tions for curved surfaces.

• To incorporate robust High resolution Scheme into the solver.

• To validate this solver for different regimes of flow i.e. in subsonic, transonic and in

supersonic regime and for the 3D cases.

• To separate the density-based solver to cater to aerospace applications exclusively.
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Chapter 2

Mathematical Nature Of Equations

And Boundary Conditions

Let us consider the system of governing differential equations for inviscid compressible flow

in primitive variable form, also known as the Euler equations, describing the conservation

of mass, momentum and energy:

u
∂ρ

∂x
+ v

∂ρ

∂y
+ ρ

∂u

∂x
+ ρ

∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂y
(2.1)

However, for the special case of irrotational compressible flow we can equivalently write

the potential flow equation as(
1− u2

c2

)
∂2φ

∂x2
− 2uv

c2

∂2φ

∂x∂y
+

(
1− u2

c2

)
∂2φ

∂y2
= 0 (2.2)

where φ is the potential function defined by,

u =
∂φ

∂x
; v =

∂φ

∂y
(2.3)

These two sets of PDE’s describe exactly the same physics for steady irrotational flow.

But looking at the forms of the equations, they appear to be quite different, with the first

set of equations (2.1) seeming to be convection dominated, whereas the second Eq. (2.2)

seemingly diffusion dominated. Convection and diffusion are two important phenomena

in fluid mechanics, and relate to very different physical behavior. But as we know, both
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Eq. (2.1) and Eq. (2.2) describe the same physics.

So, it is clear from the above discussion that one cannot predict the behavior of the

solutions of differential equation by just looking at the form of the equations. It is not

the form of the governing equation which decides the behavior of solutions; rather, it is

the eigenvalue matrix (discussed in the next section) which determines this, and provides a

tool to analyze the nature of governing equations, independent of physical form, to tell us

something about the nature of their solutions. Thus, in these chapter we try to learn these

tools and others to develop our understanding of hyperbolic equations.

2.1 Domain of dependance and zone of influence

2.1.1 Scalar Conservation Law

To understand the propagation of information in the solutions of governing equations, con-

sider a single equation describing a conservation law:

∂w

∂t
+
∂F

∂x
= 0 w(x, 0) = w0(x) (2.4)

∂w

∂t
+

dF

dw

∂w

∂x
= 0 (2.5)

Introducing wave speed as, dF
dw = λ in the above Eq. (2.5) can also be written as,

∂w

∂t
+ λ

∂w

∂x
= 0 (2.6)

An analytical solution to above equation exists and can be found using the method of

separation of variables, and can be written as,

w(x, t) = w0(x− λt) (2.7)

The analytical solution of this equations for a constant and positive wave-speed shows

that solution is constant along the line satisfying satisfying the condition dx
dt = λ; this line is

called the characteristic. For linear PDEs the solution is constant along the characteristic,

while for non-linear PDEs the solution may vary along characteristic but it will be purely

a function of the curvilinear co-ordinate describing the characteristic. Now from Eq. (2.7),

the solution at a point for the hyperbolic systems is dependent on the previous solutions

at points lying on the same characteristic, and ultimately on the initial condition at that

characteristic at t=0. So, for a single first-order hyperbolic equation all the points on a

particular characteristic line form the domain of dependence and zone of influence of any

point on that characteristic.
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2.1.2 System of PDEs

Now, moving one step forward, consider a general 1-D unsteady system of first-order PDEs,

∂wi
∂t

+
∂Fi
∂x

= 0 (2.8)

where wi is a vector containing conservative variables

Fi is a vector containing flux associted with wi

The Eq. (2.8) can be written as,

∂wi
∂t

+ [A]
∂wi
∂x

= 0 (2.9)

where [A] is called the Jacobian (matrix).

The Jacobian in Eq. (2.9) determines the behavior of the solutions, based on the nature

of its eigenvalues. Diagonalizing the Jacobian in Eq. (2.9), we can rewrite the equation as:

∂wi
∂t

+ [Qr] [λi] [Ql]
∂wi
∂x

= 0 (2.10)

where Ql, Qr are the left and right eigenvector matrices explained through the following

relations.

For any diagonalizable matrix A, Qr is a matrix whose columns ri are right characteris-

tics vectors or right eigenvectors of A, andQl is a matrix whose rows li are left characteristics

vectors or left eigenvectors of A.

The right characteristic vectors are defined as follows:

Ari = λiri (2.11)

While less familiar, left characteristic vectors are defined in almost the same way as

right characteristic vectors, except that left characteristic vectors multiply A on the left

than on the right.

liA = λili (2.12)

Also,

[λ] = [Ql][A][Qr]

[Ql] = [Qr]
−1

As mentioned earlier, the nature of λi determines the behavior of the solution. If a full

set of real non-zero eigenvalues exists then the system of equations is called Hyperbolic, if a
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full set of real eigenvalues does not exist then the system is called Parabolic and if some of

eigenvalues are complex then the system is called Elliptic.

Let us now consider a hyperbolic system. By multiplying Eq. (2.10) by [Ql] and rewriting

equation(2.10) we get

[Ql]
∂wi
∂t

+ [Ql] [Qr] [λi] [Ql]
∂wi
∂x

= 0 (2.13)

As we know,

[Ql] = [Qr]
−1 (2.14)

[Ql]
∂wi
∂t

+ [λi] [Ql]
∂wi
∂x

= 0 (2.15)

Introducing new set of variables as,

δvi = [Ql] δwi (2.16)

Eq. (2.15) can be written as,

∂vi
∂t

+ [λi]
∂vi
∂x

= 0 (2.17)

where [λi] is a diagonal matrix of eigenvalues.

Now, note the simplicity of Eq. (2.17) in comparison to Eq. (2.8); unlike in the latter

equation, the equations in system (2.17) are decoupled, i.e., the solution of any one of them

is independent of the solution of others. Thus the component equations of (2.17) can thus

be solved separately and easily. Then, by inverting Eq. (2.16) we can obtain the solution

to system of Eq. (2.8).

As shown in the figure for a system of 3 equations, the information flowing along corre-

sponding characteristic lines passing through a point P determine the solution at P by the

superposition of the characteristic information. From this, it is not difficult to show that

solution at point P depends only on the solution in region APCBA and it has nothing to do

with the solution outside this region. Hence this region is termed as the domain of depen-

dence. By extending the characteristic lines beyond point P, we can say that solution at this

point is going to affect the solution in the region FPDE, hence this region is termed the zone

of influence. The point to note here is that a numerical scheme determining the solution

(for a time-step) at point P must include only points from the domain of dependence to

capture the solution correctly — failing to do this causes serious issues, mostly resulting in

the blowing up of the solution. This condition is called Courant-Friedrichs-Lewy condition

and will be discussed in the next chapter.

Depending upon the nature (positive or negative valued) of the eigenvalues, character-
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Figure 2.1: Characteristics in 3 equation system

istic information may flow from left to right or right to left (Fig. 2.1). So, the problem to

well-posed boundary conditions must be handled carefully. We will discuss this in the next

few sections.

Further discussion over characteristics can be found in the ([3], Section 2). Here, in the

following section we shall present the method to find the nature of the governing equations

for the multi-dimensional cases.

2.2 System of partial differential equation in

multi-dimensions

By direct matrix manipulation we can find out the nature of governing equation for 1-D case.

We discuss here the general method to find out the nature of governing equations applicable

for all the cases. Governing equations defining conservation laws in multi-dimensions can

be written as:

Steady state:

[A]
∂wi
∂x

+ [B]
∂wi
∂y

+ [C]
∂wi
∂z

= 0 (2.18)

Unsteady state:

[I]
∂wi
∂t

+ [A]
∂wi
∂x

+ [B]
∂wi
∂y

+ [C]
∂wi
∂z

= 0 (2.19)

Diagonalizing the Jacobian matrices, we get:

9



I
∂wi
∂t

+ [Qa][λa][Qa]
−1∂wi

∂x
+ [Qb][λb][Qb]

−1∂wi
∂y

+ [Qc][λc][Qc]
−1∂wi

∂z
= 0 (2.20)

Since, [Qa] 6= [Qb] 6= [Qc] we cannot replace, as before the conservative variables with

another set such that the equations in the system (2.18) or (2.19) gets decoupled. Therefore

a deeper analysis needs to be done to get eigenvalues and characteristic variables.

2.2.1 System of First Order Steady-State PDEs

The following steps define the procedure to identify the nature of a mathematical system.

These are taken from [1]:

Step 1: Write the system of PDEs describing the mathematical model as a

system of first order PDEs

Suppose we have n unknown variables wj , in (m + 1)-dimensional space xJ , we can

group all the variables wj in an (n × 1) vector column w and write the system of first order

PDEs under the general form:

ΣjAj
∂w

∂xj
= T j = 1, 2, 3....m+ 1

w =



w1

w2

w3

.

.

.

wn


(2.21)

where Aj are (n × n) matrices and T is a column vector of the non-homogeneous source

terms. The matrices Aj and T can depend on xj and w, but not on the derivatives of w.

Step 2: Consider a plane wave solution of amplitude Û in the space of the

independent variables x with components xj(j = 1, ...,m+ 1), defined by

w = Ûei(
−→n ·−→x ) (2.22)

where i =
√
−1, ~n is a vector in the m-dimensional space of the independent variables xj

and Û is an (n× 1) column vector.
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Step 3: Introduce this solution in the homogeneous part of the system (2.21)

and find the values of n satisfying the resulting equation.

The homogenous part of Eq. (2.21) is written as

ΣjAj
∂w

∂xj
= 0 j = 1, 2, 3....m+ 1 (2.23)

and the function (2.22) is a solution of this system of equations if the homogeneous algebraic

system of equations:

[ΣjAjnj ] Û = 0 (2.24)

has non-vanishing solutions for the amplitude Û . This will be the case if and only if the

determinant of the matrix ΣjAjnj vanishes.

Step 4: Find the n solutions of the equation

det [ΣjAjnj ] (2.25)

Eq. (2.25) defines a condition on the normals ~n. This equation can have at most n

solutions, and for each of these normals ni , the system (2.25) has a non-trivial solution.

The system is said to be hyperbolic if all the n characteristic normals ni are real and if

the solutions of the n associated systems of equations (2.25) are linearly independent. If all

the characteristics are complex, the system is said to be elliptic. If some are real and other

complex the system is classed as hybrid. If the matrix Σj [Ajnj ] is not of rank n, i.e. there

are less than n real characteristic normals then the system is said to be parabolic.

The last case will occur, for instance, when at least one of the variables, say w1 has

derivatives with respect to one coordinate, say x1 , missing. This implies that the compo-

nents A1 = 0 for all equations i.

2.2.2 Characteristic and Characteristic Surface in

Multi-dimensions

Parabolic and hyperbolic equations play an important role in CFD, due to their associa-

tion to diffusion and convection phenomena. They are recognized by the existence of real

characteristic normals, solutions of Eq. (2.25). Each of these normals ni defines therefore

normal to the surface, which is called the characteristic surface. We will show here the very

important consequences of these properties, as they have a significant effect on the whole

process of discretization in CFD.
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If we define a surface S(xj) = 0, in the (m + 1)-dimensional space of the independent

variables xj , the normal to this surface is defined by the gradient of the function S(xj), as

−→n =
∇S
‖∇S‖

(2.26)

(Henceforth, the normalizing ‖∇S‖ is to be absorbed into the function S).

What is the significance of this characteristic surface in terms of wave propagation,

referring to the plane wave solution Eq. (2.22)?

If Eq. (2.26) is introduced in the plane wave Eq. (2.22), a general representation is

defined as,

w = Ûei(
−→x ·∇S) = Ûei(xjSj) with Sj ≡

∂S

∂xj
(2.27)

If we consider the tangent plane to the surface S(xj) = 0, defined by

S(xj) = S(0) +−→x · ∇S = S(0) + xj
∂S

∂xj
= S(0) + xjnj (2.28)

we observe that along the constant values of the phase of the wave φ = −→x ·∇S, the quantity

w is constant.

Hence, we can consider that, the quantity U is propagating at a constant value in the

direction of the normal −→n .

The surface S is called a wave-front surface, defined as the surface separating the space

domain already influenced by the propagating quantity w from the points not yet reached

by the wave.

Observe that in the general case of n unknown flow quantities ui , we have n character-

istic surfaces, for a pure hyperbolic problem.

In a two-dimensional space the characteristic surface reduces to a characteristic line.

The properties w are transported along the line S(x, y) = 0 and the vectors tangent to the

characteristic line are obtained by expressing that along the wavefront:

dS = ∇S · dx =
∂S

∂x
dx+

∂S

∂y
dy = 0 (2.29)

Hence, the direction of the characteristic line in two dimensions is given by

dy

dx
= −Sx

Sy
= −nx

ny
(2.30)

In two dimensions, there are two characteristic directions for a hyperbolic equation.

Hence out of each point in the (x, y) domain, two characteristics can be defined, along

which two quantities propagate. As we have as many unknowns, at each point the solution

can be obtained from the characteristic-related quantities that have propagated from the
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boundary or initial condition to that point.

To get a physical understanding of the discussion so far we can consider unsteady in-

viscid flow. The unsteady inviscid flow equation or the unsteady Euler Equation in non-

conservation form is written as

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
= 0 (2.31)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
(2.32)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
(2.33)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
(2.34)

∂E

∂t
+ u

∂E

∂x
+ v

∂E

∂y
+ w

∂E

∂z
= −1

ρ

(
∂pu

∂x
+
∂pv

∂y
+
∂pw

∂z

)
(2.35)

By following the analysis given in Sec. 2.2, we can find that the above governing equa-

tions is hyperbolic, no matter whether the flow is locally subsonic or supersonic. More

precisely, we say the flows are hyperbolic with respect to time. (The classification of the

unsteady Euler Equations as hyperbolic with respect to time is derived in Sec 11.2.1 of [22].)

This implies that in such unsteady flows, no matter whether we have one, two, or three

spatial directions, the marching direction is always the time direction. Let us examine this

more closely to understand the marching behavior discussed before for hyperbolic partial

differential equations. For one dimensional flow, consider a point P in the xt plane shown

in Fig. 2.2. The region influenced by P is the shaded area between the two advancing char-

acteristics through P. The x-axis (t = 0) is the initial data line. The interval ab is the only

portion of the initial data along the x axis which the solution at P depends. Extending

these thoughts for two-dimensional unsteady flow, consider point P in the xyt space as

shown in Fig. 2.3. The region influenced by P and the portion of the boundary in the xy

plane upon which the solution at P depends are shown in this figure. Starting with known

initial data in the xy plane, the solution “marches”forward in time. The same extension

can be applied to the 3D case.
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Figure 2.2: Domain and boundaries for the solution of hyperbolic equations. One dimen-
sional unsteady flow. [22]

Figure 2.3: Domain and boundaries for the solution of hyperbolic equations. Two dimen-
sional unsteady flow. [22]
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2.3 Advantage of Conservation form over the non-conservation

form

The conservation and non-conservation form of the continuity equation is shown below.

Conservation form:

∂ρ

∂t
+ ~∇ · (ρ~V ) = 0

Non-Conservation form:

Dρ

Dt
+ ρ~∇ · (~V ) = 0with

D

Dt
≡ ∂

∂t
+ ~V · ~∇

The labelling of the governing equations as either conservation or non-conservation form

grew out of modern CFD, as well as concern for which method has to be preferred for a

given CFD applications. We shall state here the two perspectives for the advantage of

conservation form over the non-conservation form. The detail understanding of these can

be found in [22].

1. The conservation form of the governing equations allows to write the system of equa-

tion in a general form. Thus, it provides an ease and better organization for numerical

and computer programming.

2. Experience has shown that the conservation form of equation is better for shock-

capturing method (used in this thesis). For the non-conservation form, the computed

flow-field has unsatisfactory results. The reason for this is, the conservation form

uses flux variables as the dependent variable and because the changes in these flux

variables are either zero or small across a shock wave, the numerical quality of the

shock-capturing method will be enhanced. Whereas, the non-conservation form uses

the primitive variables as dependent variable, and one would see a large discontinuity

in them.

2.4 Boundary Condition Specification in Hyperbolic System

Boundary condition specification is an important part of any CFD problem statement and

has to be compatible with physical and numerical properties of problem.

We have already seen that information in a hyperbolic problem propagates in a specific

characteristic direction, the eigenvalue spectrum of the Jacobian matrix defines how infor-

mation is going to propagate. Hence for a hyperbolic problem to be well-posed we cannot

specify general boundary conditions on all boundaries. Rather, the following questions have

to be answered:
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1. How many boundary conditions have to be imposed at a given boundary?

2. What are the boundary conditions that have to be imposed at the boundary?

3. How are the remaining variables (i.e., those without BCs) to be handled at the bound-

ary?

In this section we will discuss only the answer to the first question pertaining to the Euler

problem.The five eigenvlaues of the system, which correspond to the speed of propagation

of five characteristic quantities, are given by,

−→u ·
−→
k

k
,

−→u ·
−→
k

k
,

−→u ·
−→
k

k
,

−→u ·
−→
k

k
+ c,

−→u ·
−→
k

k
− c

where c is the local sonic speed. [1]

The derivation for the above eigenvalues can be found in the Section of 11.2.1 of [22].

Since, the transport properties at a surface are determined by the normal components of

the fluxes, the number and type of conditions at a boundary of a multi-dimensional domain

will be determined by the propagation of waves with the following speeds:

λ1 = −→u · ên = vn

λ2 = −→u · ên = vn

λ3 = −→u · ên = vn

λ4 = −→u · ên + c = vn + c

λ5 = −→u · ên − c = vn − c

where vn is the inward normal velocity component at the considered surface, coming into the

computational domain. The first three eigenvalues correspond to the entropy and vorticity

waves, while the two remaining eigenvalues, are associated with acoustic waves. This defines

a locally quasi-one-dimensional propagation of information and we can therefore look at

how the propagation behaves at a boundary, from the the sign of these eigenvalues at the

boundary.

The key to the understanding of the issue of the number of boundary conditions that

are needed at the boundary is that characteristics convey information in the (n− t) space

formed by the local normal direction and time. When information is propagated from out-

side into the computational domain, it means that this information has to obtained by a
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boundary condition; this occurs when the eigenvalue λ is positive, and a physical boundary

condition has to be imposed. On the other hand, when the eigenvalue λ is negative and

the propagation occurs from the interior of the domain towards the boundary, this means

that a boundary condition cannot be imposed from the outside. Such variable will be han-

dled through “numerical boundary conditions”, by extrapolating interior information to the

boundary.

In summary, the number of physical conditions to be imposed at a boundary with in-

ward normal vector −→n , pointing into the computational domain, is defined by the number

of characteristics entering the domain.

2.5 Closure

In this chapter we saw very basic properties of system of partial differential equations with

emphasis on the hyperbolic type. These properties must be understood before implementing

boundary conditions, to avoid ill-posedness of system.

We saw how information flows along with characteristic in hyperbolic systems and we

used this information to determine the number of variables to be assigned at the boundary,

based on direction of characteristic waves, i.e. whether the characteristic is flowing into

the domain or out of the domain. Also, we saw the advantage of the conservation form of

governing equation over the non-conservation form for hyperbolic system.
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Chapter 3

Euler Equations, Boundary

Conditions and CFL criterion

3.1 A short description of Euler Equations

The System of Euler equations are first order non-linear coupled Partial Differential Equa-

tions (PDEs) governing compressible inviscid flows. They can be formulated in different

ways depending upon the choice of flow variables. If the dependent variables are chosen

as density, momentum, total energy that directly obey conservation laws, this is called the

conservative formulation. However, if the variables are pressure, velocity, temperature, it is

called the primitive variable formulation (see Eq. 2.35). As seen in Sec. 2.3 we would use the

former one for our numerical methodology. Since, transient Euler equations are hyperbolic

in nature, the formulation made using the characteristic variables (variables that flows along

characteristic lines) can also be used. These formulation which uses characteristic variables

the dependent variables is called the characteristic formulation. We can obtain the system

of equations in these various forms from each other by algebraic manipulation. Here, we

present the conservative form.

System of Euler equation in conservative form:
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∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 (3.1)

∂(ρu)

∂t
+
∂(ρu2 + P )

∂x
+
∂(ρuv)

∂y
+
∂(ρuw)

∂z
= 0 (3.2)

∂(ρv)

∂t
+
∂(ρvu)

∂x
+
∂(ρv2 + P )

∂y
+
∂(ρvw)

∂z
= 0 (3.3)

∂(ρw)

∂t
+
∂(ρwu)

∂x
+
∂(ρwv)

∂y
+
∂(ρw2 + P )

∂z
= 0 (3.4)

∂(ρE)

∂t
+
∂(ρuH)

∂x
+
∂(ρvH)

∂y
+
∂(ρwH)

∂z
= 0 (3.5)

where, P = ρRT , E = CvT + u2+v2+w2

2 , H = E + P
ρ

The mathematical nature of the steady and non-steady Euler Equations is stated below.

The detailed derivations of the same can be found in [22, 3].

• the steady state Euler equations show elliptic behaviour when the flow is subsonic,

parabolic behaviour when flow is sonic and hyperbolic behaviour when the flow is su-

personic.

• The 3-D unsteady Euler system is always hyperbolic in nature.

From the computational point of view, usually we are more interested in steady state

than transient solutions. Therefore, while solving the steady state equations we have to

check for the sonic condition, as the numerical schemes for each type of PDE are different.

Till date no scheme has been developed which can work well for all these types of PDEs. So

there need to be completely separate modules to be developed for subsonic and supersonic

flows, while for transonic flows it would be even more difficult to obtain solutions since the

domain will contain all three types of PDEs.

Thus, by just the addition of the temporal dimension in this system of equations makes

it hyperbolic, independent of the speed of flow. Therefore, even if we are interested in only

in the steady state solution, it is best to solve the transient set of equations to steady state.

This is called the false-transient approach and is used in this work.

3.2 Boundary condition treatment in terms of primitive vari-

ables

In the preceding chapter we have seen how boundary condition specification is different for

hyperbolic problems compared to that of parabolic and elliptic problems, and have seen how

the flow of characteristics into or out of the computational domain affects the specification

of the boundary conditions.
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Extending the thoughts developed in Sec. 2.4 and referring the literature [1, 2] we can

present the following table and implementation of boundary condition for Euler equations.

This way we answer all the three questions required for the specification of boundary con-

ditions. Namely,

1. How many boundary conditions should be specified?

2. What boundary conditions should be specified?

3. What boundary conditions will have numerical boundary condition?

The answer to the first question depends upon on the number of characteristics that enter

into domain at a boundary. Following table summarises the no of physical/numerical B.C.

specification in 3-D Euler flows.

Type Sub-sonic
No of +ve Eigen values No of physical BC No of Numerical B.C

Inflow Four Four One

Outflow One One Four

Super-sonic
No of +ve Eigen values No of physical BC No of Numerical B.C

Inflow Five Five Zero

Outflow Zero Zero Five

Wall
No of +ve Eigen values No of physical BC No of Numerical B.C

One One Four

Table 3.1: No of boundary condition to be fixed on boundary in Euler system of equation

The second question would be answered in the following subsection.

3.2.1 Implementation of Boundary Conditions

For implementing the boundary condition for the structured grid arrangement, we use

the fictitious cell with zero-volume approach. The value of the fictitious cell is updated

using the value calculated at the boundary directly. But this, method has to be reviewed,

for inhomogeneous Neumann conditions at the boundary. Under such condition, for non-

orthogonal grid, taking fictitious cell-center at the face center will lead to complexity. One

has to take into account the cross-diffusion terms also.

The characteristic variables has to be defined in terms of the primitive variables and

using them we have to specify the boundary conditions. The detail is very interesting and

can be found in [11]. The boundary condition used in this thesis is based on these concepts.

The two basic flow situations at the boundary is sketched in the Fig. 3.1.
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Figure 3.1: Flow Situation at boundary: inflow (a) and outflow (b) situation. Position a
is outside, b on the boundary, and the position d is inside the physical domain. The unit
normal vector ~n = [nx, ny, nz]

T points out of the domain.[10]

3.2.2 Inflow BC

Subsonic Inflow

For subsonic inflow, we have four physical boundary condition and one numerical bound-

ary condition. All combinations of conservative and primitive variables can be selected as

physical boundary conditions, with the exception of the pair (u,p) ([2], Pg. 353). The com-

bination of (u,p) is not well posed as the problem is over-specified. It allows for specifying

the outgoing characteristic variables, which is already specified by the interior domain.The

combinations such as (ρ, p) or (ρ, u) are well-posed boundary conditions. The former is

called the pressure-driven inlet condition useful for internal flows and later is called the

velocity-driven inlet condition is useful for the external flow problems. Here, u refers to

inlet velocity. The remaining variable will have the “numerical BC”.

Following are the numerical formulation for subsonic inflow/inlet boundary conditions.

Velocity-Driven Flows: These are more suitable for external flow problems, which

are velocity driven [10].
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pb =
1

2
{pa + pd − ρoco[nx(ua − ud) + ny(va − vd) + nz(wa − wd)]}

ρb = ρa +
(pb − pa)

c2
o

ub = ua − nx
(pa − pb)
ρoco

vb = va − ny
(pa − pb)
ρoco

wb = wa − nz
(pa − pb)
ρoco

(3.6)

where ρo and co represent a reference state. The reference state is normally set equal to the

state at the interior point (point d in Fig. 3.1). The values at point a are determined from

the freestream state.

Pressure-Driven Flows: A common procedure consists of the specification of the

total pressure, total temperature, and of two flow angles. We unsuccessfully attempted to

implement the boundary condition based on the outgoing Riemann invariant, as given in

[10]. This could be tried in future again. However, based on the basic of compressible fluid

flow we came up with a simpler formulation. It requires specification of total pressure, total

temperature and velocity in y and z direction for flow having dominance in x-direction. The

value of velocity in x direction is numerically extrapolated from inside the domain. The

following are the isentropic relations used for determining the static pressure (p), density

(ρ) and temperature (T ), which are used in the governing equations.

po = p(1 +
γ − 1

2
M2)

γ
γ−1

ρo = ρ(1 +
γ − 1

2
M2)

1
γ−1

(3.7)

The imposed isentropic static-to-stagnation pressure ratio implies the inlet Mach num-

ber. Thus, this boundary condition can also be defined in terms of inlet Mach number and

the flow angle.This can be incorporated in the future versions of the solver.

Supersonic Inflow

When the flow is supersonic, all boundary conditions are physical. The conservative vari-

ables on the boundary (point b in Fig. 3.1) are determined by freestream values only.

3.2.3 Outflow BC

Subsonic Outflow

It requires only one physical boundary conditions, the others have to be numerical boundary

conditions. The most appropriate physical condition, particularly for internal flows and

corresponding to most experimental situations, consists in fixing the downstream static
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pressure. This can also be applied for external flow problems. The following numerical

formulation is used:

pb = pa

ρb = ρd +
(pb − pa)

c2
o

ub = ud + nx
(pd − pb)
ρoco

vb = vd + ny
(pd − pb)
ρoco

wb = wd + nz
(pd − pb)
ρoco

(3.8)

with pa being the prescribed static pressure.

A point to be considered is that when imposing a constant pressure at a subsonic exit

section, one actually allows perturbation waves to be reflected at the boundaries. The

non-reflecting boundary condition [23, 6] expresses the physical boundary condition as the

requirement that the local perturbations propagated along incoming characteristics be made

to vanish. We use the work of Rudy [9] to implement the non-reflecting boundary condition.

It has the following form.

∂u

∂t
− 1

ρbab

pn+1
b − pnb

∆t
− α

ρa
(pn+1
b − p∗b) = 0 (3.9)

where,

α =


0.25 for M ≥ 0.7

0.6 for 0.5 ≤M ≤ 0.7

1 otherwise

,

p∗b is the constant pressure imposed at the subsonic exit section and ab is the sonic speed.

Supersonic Outflow

When the flow is supersonic at outflow, all the conservative variables at the boundary must

be determined from the solution inside the boundary.

3.2.4 Wall (or Solid) Boundary

Since the Euler equation system describes inviscid flow, we cannot assign a no-slip BC at

the wall. Only one physical BC can be imposed.

~v · n̂ = 0 at the solid boundary,

where n̂ denotes unit normal vector at the solid boundary.
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In numerical calculation with finite volume methodology we are interested in the flux at

the surface of a cell than the values of the variable at the wall. Fluxes in the Euler equation

can be written as,

Fx =



ρu

ρu2 + p

ρvu

ρuw

ρuH


Fy =



ρv

ρvu

ρv2 + p

ρvw

ρvH


Fz =



ρw

ρwu

ρwu

ρw2 + p

ρwH


(3.10)

Multiplying with the respective area components at the wall surface segment of the cell,

the net flux crossing a surface can be written as,

(FxSfwx + FySfwy + FzSfwz)wall =



ρuSfwx + ρvSfwy + ρwSfwz

uw (ρuSfwx + ρvSfwy + ρwSfwz)w + pwSfwx

vw (ρuSfwx + ρvSfwy + ρwSfwz)w + pSfwy

ww (ρuSfwx + ρvSfwy + ρwSfwz)w + pSfwz

Hw (ρuSfwx + ρvSfwy + ρwSfwz)w


(3.11)

Since at the wall

ρuSfwx + ρvSfwy + ρwSfwz = 0

FxSfx + FySfy + FzSfz =



0

p

0

0

0


Sfx +



0

0

p

0

0


Sfy +



0

0

0

p

0


Sfz (3.12)

The general discretized Euler equation (which we will derive in next chapter) is given

as,

Vp
wn+1
p − wnp

∆t
= −

∑
f

FfxSfx + FfySfy + FfzSfz (3.13)

so whenever for cell p surface f corresponds to the solid boundary, then flux will be calcu-

lated from Eq. (3.12). Thus, using this method we are actually using at wall the physical

Boundary condition as vn = 0 and the remaining variables will have numerical boundary

conditions.
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3.2.5 Symmetry Boundary Conditions

We apply the Neumann boundary condition on characteristic variables to update value of

the boundary slabs corresponding to symmetry boundaries. While for flux calculation we

follow the same procedure as for wall described by Eq. (3.12). Since, at symmetry we also

have vn = 0.

Numerical boundary conditions: We end this section with the discussion on how

to implement the numerical boundary conditions. This is particularly important for solid

walls, where we want to determine the pressure variations. The simplest way is to take

the value at the cell centre of the associated cell. This is a zero-order extrapolations. We

can also apply volume extrapolation using the inside two cells. This is first-order and thus

supposedly more accurate. Through numerical experiments we have found that the linear

extrapolation esp. at wall and symmetry plane can lead to divergence in the solution.

3.3 CFL Condition

3.3.1 Physical interpretation

From our study of hyperbolic partial differential equations, we know that the solution at

a point does not depend upon the previous solution in the whole domain, but rather it

depends on the previous solution in the domain of dependence. This domain is also referred

to as the physical domain of dependence or true domain of dependence. While determining

the solution at a point using a computational technique, we use the previous solution at its

neighbouring points; a space formed by these points is known as the numerical domain of

dependence.

The figure below shows the physical and numerical domain of dependence for explicit

schemes.

Fig. 3.2 shows the numerical domain of dependence formed by a scheme which uses

solution at points (n, j − 1), (n, j), (n, j + 1) to calculate the solution at point n, j

Now to avoid numerical instability and to capture the solution correctly, the numerical

domain of dependence must lie within the physical domain of dependence. This condition is

called the Courant-Fridrichs-Lewy (CFL) condition. Any numerical method that violates

the CFL condition uses information from outside the physical domain of dependence, and

has large errors and usually causes the solution to blow-up.

Mathematically, the CFL condition is stated as a∆t
∆x ≤ 1, where a is the wave-speed.

The dimensionless term a∆t
∆x known as the Courant No. and we can say that CFL condition

is followed if and only if CN ≤ 1.

Extending the concept by analogy to a 3-D rectangular grid, we obtain the CFL condi-

tion [3] as
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Figure 3.2: Physical and Numerical domain of dependence

∆t ≤ min
[

∆x

ax
,
∆y

ay
,
∆z

az

]
(3.14)

There are many practical difficulties that arise in the implementation of the CFL con-

dition given in expression (3.14) for a finite-volume solver using non-rectangular cells. To

overcome these difficulties we will derive the following volume based CFL condition. Con-

sider a general 2-D non-orthogonal grid with local rectangular assumption,

Figure 3.3: Localy rectangular grid assumption

where A,B are cell centres and C is common face centre. Rewriting the CFL condition

with AB as the distance of propagation of information and a as the wave speed, we get,

a∆t

AB
= CN < 1

a∆t
∆x1

2 + ∆x2
2

< 1

Then, multiplying and dividing by common surface area Sf

a∆tSf(
∆x1

2 + ∆x2
2

)
Sf

< 1 Sf =
√
S2
fx + S2

fy + S2
fz
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a∆Sf × 2

V1 + V2
< 1

or in terms of Courant No.,

∆t =
CN (Vp + Vnb)

2× c× Sf
This is the volume based expression for determining size of ∆t uses a chosen value of

CN ≤ 1. Now consider all six indices direction, i.e., e, w, n, s, t, b and note the simplicity in

expression when cell is near the boundary and Vnb = 0

∆te = CN
Vp + VE

2aSe
Se =

√
S2
ex + S2

ey + S2
ez

∆tw = CN
Vp + VW

2aSw
Sw =

√
S2
wx + S2

wy + S2
wz

∆tn = CN
Vp + VN

2aSn
Sn =

√
S2
nx + S2

ny + S2
nz

∆ts = CN
Vp + VS

2aSs
Ss =

√
S2
sx + S2

sy + S2
sz

∆tt = CN
Vp + VT

2aSt
St =

√
S2
tx + S2

ty + S2
tz

∆tb = CN
Vp + VB

2aSb
Sb =

√
S2
bx + S2

by + S2
bz

We implement the CFL condition by choosing the minimum ∆t out of six,

∆t = min (∆te,∆tw,∆tn,∆ts,∆tt,∆tb) (3.15)

The above section defines timestep using cell-face values. A similar method can be

described based on the cell-center values [22]. We follow the method based on cell-center

values, though the code also provides function for cell-face values.

3.4 Closure

In this chapter we have set up the basic governing equations we use for the study of inviscid

compressible flows. The boundary conditions described in the previous chapter have been

implemented. At last we have discussed the criteria for the calculation of the time-step,

based on the CFL criterion.
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Chapter 4

Numerical Methodology

4.1 Numerical Schemes.

Real flow includes rotational, non-isentropic, and non-isothermal effects. Compressible

inviscid flow including such effects requires simultaneous solution of continuity, momentum,

and energy equations. Special computational schemes are required to resolve the shock

discontinuities encountered in transonic flow. The most basic requirement for the solution

of the Euler equations is to assure that solution schemes provide an adequate amount of

artificial viscosity required for rapid convergence toward an exact solution.

Numerical schemes to solve Euler equations may be grouped into three major categories:

(1) central schemes, (2) first order upwind schemes, and (3) second order upwind schemes

and essentially non-oscillatory (ENO) schemes.

1. Central Schemes. These schemes are combined space-time integration schemes.

(a) Explicit schemes

i. Lax- Friendrichs: first-order scheme

ii. Lax- Wendroff: second-order scheme

(b) Two-step explicit schemes

i. Richtmyer and Morton scheme

ii. MacCormack scheme

2. First order upwind

(a) Multiple Flux vector splitting method

i. Steger and Warming method

ii. Van Leer method.

(b) Godunov methods.
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3. Second order upwind

(a) Variable extrapolation

(b) TVD (Total variation diminishing ) scheme

In the present work, the MacCormack scheme has been chosen to solve Euler equations,

since it is a very robust and tested scheme. We extend the scheme to TVD MacCormack

by slight modification in the MacCormack code. We have also implemented the upwind

method, by incorporating the AUSM+ scheme in the solver.

4.2 Governing Equations

The Euler equations which describes the inviscid compressible fluid motion can be presented

in conservation form as,

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 (4.1)

∂(ρu)

∂t
+
∂(ρu2 + P )

∂x
+
∂(ρuv)

∂y
+
∂(ρuw)

∂z
= 0 (4.2)

∂(ρv)

∂t
+
∂(ρvu)

∂x
+
∂(ρv2 + P )

∂y
+
∂(ρvw)

∂z
= 0 (4.3)

∂(ρw)

∂t
+
∂(ρwu)

∂x
+
∂(ρwv)

∂y
+
∂(ρw2 + P )

∂z
= 0 (4.4)

∂(ρE)

∂t
+
∂(ρuH)

∂x
+
∂(ρvH)

∂y
+
∂(ρwH)

∂z
= 0 (4.5)

where P = ρRT , E = CvT + u2+v2+w2

2 , H = E + P
ρ

4.3 Discretization of Governing Equation

The equations can be written in compact form as

∂ {wi}
∂t

+
∂ {Fxi}
∂x

+
∂ {Fyi}
∂y

+
∂ {Fzi}
∂z

= 0 (4.6)

w ≡



ρ

ρu

ρv

ρw

ρE


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Fx ≡



ρu

ρu2 + P

ρuv

ρuw

ρuH


, Fy ≡



ρv

ρuv

ρv2 + P

ρvw

ρvH


, Fz ≡



ρw

ρuw

ρvw

ρw2 + P

ρwH


Note that the Fx, Fy, Fz column vectors are used just for notational convenience. Now

assuming that F is an arbitrary vector whose x,y,z components are Fx, Fy, Fz we can write

∂wi
∂t

+∇ · Fi = 0

where each row i respectively represents the governing continuity, momentum, energy equa-

tion equations.

The finite volume method uses the integral form of the equations while the governing

equation above is in differential form. The corresponding integral form of the equation can

be obtained by taking the integral of the equation over a control volume.∮
V

(
∂wi
∂t

+∇ · Fi

)
dV = 0

where V is the fluid domain under analysis. Using the divergence theorem,
∮
V ∇ ·

−→v dV =∮
S
−→v · d

−→
S we get

∮
V

∂wi
∂t

dV +

∮
S

Fi · d
−→
S = 0

Assuming the control volume is not changing with time, the equation can be written as,

∂

∂t

∮
V
widV +

∮
S

Fi · d
−→
S = 0

The equation can be divided into the temporal and convective parts, as shown, and we

will now do the finite volume discretization of each part to get the full discretized equation.

∂

∂t

∮
V
widV︸ ︷︷ ︸

TemporalPart

+

∮
S

Fi · d
−→
S︸ ︷︷ ︸

Convectivepart

= 0

The control volume V can be arbitrarily chosen so we use the above equation for each

of the finite-volume cells of a chosen grid spanning the entire computational domain. The

shape of the finite volume cells are the user’s choice. The numerical results obtained from

hexahedral elements are more accurate than that obtained from any other element like

triangular prism, pyramid or polyhedral. And it is easy to create a structured grid from

hexahedral elements rather than use of any other prismatic shaped element. Thus, we use
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Figure 4.1: Finite volume cell

non-orthogonal hexahedral elements, as shown in the figure, having east, west, north, south,

top and bottom faces.

Temporal term: The volume averaged value of conservative variable can be written

for the pth cell as:
1

Vp

∮
Vp

wdV = wp

thus, ∮
Vp

wdV = Vpwp

where, Vp is the volume of the pth cell.

Using this volume averaged value we can get the discretized form of the temporal term

as:

∂wi
∂t

= Vp
wn+1
p − wnp

∆t

Convective term: In the convective term, the integral is carried out over the full

surface of the control volume, without any approximation it can be divided into six parts

over the east(e), west(w), north(n), south(s), top(t) and bottom(b) faces as follows:
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∮
S

−→
Fi · d

−→
S =

∮
e

−→
Fi · d

−→
S e +

∮
w

−→
Fi · d

−→
S w +

∮
n

−→
Fi · d

−→
S n +

∮
s

−→
Fi · d

−→
S s+∮

t

−→
Fi · d

−→
S t +

∮
b

−→
Fi · d

−→
S b

where each face integral can be divided, without approximation, into 3 scalar parts:∮
Sf

−→
Fi · d

−→
S f =

∮
S
FixdSx +

∮
S
FiydSy +

∮
S
FizdSz

The value of flux variable may change over the surface. For each scalar component, we

now approximate the surface averaged value of the variable by its face-centroid value Fif :

1

Sf

∮
Sf
Fid
−→
S f = Fif

Therefore we can write, ∮
Sf

−→
Fi · d

−→
S f = FixSfx + FiySfy + FizSfz

where Sfi is the ith component of face vector
−→
S f . Repeating the procedure for each of the

faces we can write

∮
Sf

−→
F · d

−→
S f = FexSex + FeySey + FezSez + FwxSwx + FwySwy + FwzSwz

+ FnxSnx + FnySny + FnzSnz + FsxSsx + FsySsy + FszSsz

+ FtxStx + FtySty + FtzStz + FbxSbx + FbySby + FbzSbz

Now, putting the discretized temporal and convective terms together, the Euler equa-

tions can be written in discretized form as:

Vp
wn+1
p − wnp

∆t
= −

∑
f

(FfxSfx + FfySfy + FfzSfz) (4.7)

So, while discretizing the equation the following approximations are considered:

1. The volume-average value of the variable is approximated by its cell-center value.

2. The surface-average value of the variable on a cell-face is approximated by its face-

center value.

3. Second-order time variation is neglected.

4. The faces of the cell are taken to be flat.
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The approach used here for space discretization (dividing the domain into small finite-

volume cells) is the cell-centered approach because of its various advantages for a general-

purpose finite-volume solver. Therefore, the data-structure used for the discretized equation

stores the cell-values in its solution array. But the discretized equation also requires the

surface averaged value at the six faces of each cell. To get the variable face values from cell

centre values we need some interpolation function. Since, we are dealing with a convective

equation whose nature is quite different from a diffusion equation, the interpolation function

should give greater weight to upwind than to downwind values, in estimating the variable

value at any given point.

4.4 MacCormack scheme in FVM

The MacCormack scheme [22] in the finite volume methodology is described below. Rewriting

Figure 4.2: Finite volume grid

discretized equation (4.7)

Vp
wn+1
p − wnp

∆t
= −

∑
f

(FfxSfx + FfySfy + FfzSfz) (4.8)

and assuming step 1 as forward differenced and step 2 as backward differenced, the finite

volume discretization can be written as,

Step 1: Predictor Step

W ∗P = wnp −
∆t

Vp
(FnExSex + FnEySey + FnEzSez + FnPxSwx + FnPySwy + FnPzSwz

+ FnNxSnx + FnNySny + FnNzSnz + FnPxSsx + FnPySsy + FnPzSsz

+ FnTxStx + FnTySty + FnTzStz + FnPxSbx + FnPySby + FnPzSbz) (4.9)

Step 2: Corrector Step
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W ∗∗p = w∗p −
∆t

Vp
(F ∗PxSex + F ∗PySey + F ∗PzSez + F ∗WxSwx + F ∗WySwy + F ∗WzSwz

+ F ∗PxSnx + F ∗PySny + F ∗PzSnz + F ∗SxSsx + F ∗SySsy + F ∗SzSsz

+ F ∗PxStx + F ∗PySty + F ∗PzStz + F ∗SxSbx + F ∗SySby + FSzSbz) (4.10)

and the new time-level value can be calculated as:

wn+1
P =

wnP + w∗∗P
2

(4.11)

We see above that we have applied forward difference step in the Predictor step and

backward difference in the corrector step. We can apply the same in reverse also. The

left running waves are better captured by the former one, whereas the right running waves

are better captured by the second version. To avoid favouring either left- or right-running

waves, the two versions are often combined, reversing the order of FTBS and FTFS after

every time-steps ([13], Pg.361). Since the MacCormack scheme is second order accurate in

space and time, oscillations are observed in solution having abrupt step-changes in value.

The amplitude of oscillation depends upon the magnitude of the change; often this causes

the variable to crosses the CFL condition and the solution gets blown to infinity. To avoid

such oscillations and to get physically acceptable solutions, we need to add a small amount

of diffusion in the governing equation which is discussed in the next section.

4.4.1 Artificial Viscosity

The MacCormack method operates satisfactorily in the regions where the variations of

properties is smooth. But there is oscillations occurring around discontinuities, i.e. around

a shock wave or in the boundary layer. So, artificial smoothing terms must be introduced,

to damp these oscillations.

From the basic CFD we know that modified equation of a PDE gives us some information

on the behaviour to be expected of the numerical solution of the difference equation. The

modified equation for the one-dimensional wave equation given by

∂u

∂t
+ a

∂u

∂x
= 0 (4.12)

is shown below

∂u

∂t
+ a

∂u

∂x
=
a∆x

2
(1− ν)

∂2u

∂x2
+
a(∆x)2

6
(3ν − 2ν2 − 1)

∂3u

∂x3

+O[(∆t)3, (∆t)2(∆x), (∆t)(∆x)2, (∆x)3]

(4.13)

The dissipative term in the above equation, i.e., even-order derivative terms ∂2u
∂x2

is actually
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the artificial viscosity term implicitly embedded in the numerical scheme. It prevents the

solution from going unstable due to the oscillations caused by the dispersive terms i.e. odd-

order derivative terms ∂3u
∂x3

. But for variable velocity problems, the MacCormack scheme

often does not have enough artificial viscosity implicitly in the algorithm, and the solution

will become unstable unless more artificial viscosity is added explicitly to the calculation,

which makes the solution more inaccurate. Therefore, there is a trade off involved. The

artificial viscosity formulation is explained in Appendix A.

4.5 TVD Scheme

Numerical schemes of second and even higher orders of accuracy have oscillatory behavior.

This oscillatory behavior creates errors in the solution, which can lead to non-physical val-

ues of quantities which are physically bounded. Godunov (1959) introduced an important

concept known as monotonicity to characterize numerical schemes. Monotonicity means no

new extrema should be created other than those which are already present in the initial

solution. That is the maxima in the solution must be non-increasing and minima nonde-

creasing. Oscillating solutions are non-monotonic. For non-linear equations [24] introduced

the concept of bounded total variation and the Total Variation Diminishing criteria. The

principal condition of TVD schemes is that the total variation of the solution, defined as

TV =
∑
i

|Ui+1 − Ui| (4.14)

for a scalar conservation equation, should decrease with time. The TVD property ensures

that unwanted oscillations are not generated in the solution and monotonicity is preserved,

which allows strong shock waves to be accurately captured without any spurious oscillations

of the solution. In TVD schemes limiters or limiter functions prevent unwanted spurious

solutions in the region of high gradient. Limiters maintain the original higher order dis-

cretization of the numerical scheme in the smooth flow regions, but in the regions of high

gradients and /or strong discontinuities the limiter has to reduce the order of the scheme

by adding high numerical dissipation to prevent the generation of spurious extrema.

A detail study and implementation work on TVD schemes has been done by Furst [25].

The properties of TVD described by [24] is valid only for the one-dimensional case. In fact

Goodman and LeVeque show in [26], that the TVD property in multidimensional case is

only a first order accurate. In spite of their result, many methods based on one-dimensional

high order TVD methods were constructed for practical problems. While, they are not

TVD, they usually remain high order for smooth solutions and do not generate oscillations

near discontinuities. Coquel and Le Floch derive in [27] weak BV (Bounded Variation)

estimates to extend the concept of TVD to multi-dimension case. This approach has been

used by [25, 28] in his various works to extend the concept to MacCormack Scheme. The
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present implementation of TVD MacCormack scheme has been inspired by their work.

4.5.1 TVD MacCormack Scheme

Total variation diminishing (TVD) is a property of certain discretization schemes used to

solve hyperbolic partial differential equations. The concept of TVD was introduced by Ami

Harten [24]. We have use a TVD scheme based on the work done in published literature

[29, 30, 28]. We describe the pros and cons of this scheme in the following subsection.

After the predictor and corrector steps the MacCormack scheme presented above can

be updated to TVD form by appending to the right hand side of Eq. 4.11 the TVD-type

viscosity term: We use ijk notation in this section for cell-center.

Wn+1
ijk = wn+1

ijk +DW 1
ijk +DW 2

ijk +DW 3
ijk (4.15)

DW 1
ijk,DW

2
ijkandDW 3

ijk are the part of artificial dissipation in the direction of index i, j

and k respectively.

We use the artificial viscosity terms in the form

DW 1
ijk =

[
Ḡ1+

(
r1+
ijk

)
+ Ḡ1−

(
r1−
i+1jk

)] (
Wn
i+1jk −Wn

ijk

)
−
[
Ḡ1+

(
r1+
i−1jk

)
+ Ḡ1−

(
r1−
ijk

)] (
Wn
ijk −Wn

i−1jk

) (4.16)

where,

r1+
ijk =

Wn
ijk −Wn

i−1jk

Wn
i+1jk −Wn

ijk

, r1−
ijk =

Wn
i+1jk −Wn

ijk

Wn
ijk −Wi − 1jkn

(4.17)

Ḡ1±(r1±
ijk) =

1

2
C(νijk)

[
1− Φ(r1±

ijk)
]

(4.18)

where,

Φ(rijk) = max(0,min(2rijk, 1)) (4.19)

C(νijk) =

νijk(1− νijk) for νijk ≤ 0.5

0.25 for νijk > 0.5
(4.20)

νijk =
∆t

∆x
Ψ
(
min

(∣∣∣u(1)
ijk − cijk

∣∣∣ , ∣∣∣u(1)
ijk

∣∣∣ , ∣∣∣u(1)
ijk + cijk

∣∣∣)) , cijk =

√
γ
Pijk
ρijk

(4.21)

Ψ (z) =

|z| for |z| > εe
z2+ε2e

2εe
for |z| ≤ εe

, εe = 1e−3 (4.22)

where ∆xijk is the approximation of the length of the cell ijk in the direction i computed as
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∆xijk =
2V olijk

~S
i+

1

2
jk

− ~S
i−

1

2
jk

(4.23)

and u
(1)
ijk is the velocity in the direction i evaluated as

u
(1)
ijk =

〈
~S
i+

1

2
jk

− ~S
i−

1

2
jk

, (uijk, vijk, wijk)

〉
∣∣∣∣∣∣~Si+1

2
jk

− ~S
i−

1

2
jk

∣∣∣∣∣∣
(4.24)

where, 〈·, ·〉denotes usual inner product on Rm.

In terms of letter notation,

∣∣∣∣∣∣~Si+1

2
jk

− ~S
i−

1

2
jk

∣∣∣∣∣∣ is same as
∣∣∣~Sw∣∣∣+

∣∣∣~Se∣∣∣.

For DW 2
ijkandDW 3

ijk, we use similar formulae. The time step can be chosen either as

same used for the MacCormack scheme or by using the following so-called CFL conditon

∆t = CFLmin
1

|u(1)ijk|+cijk
∆xijk

+
|u(2)ijk|+cijk

∆yijk
+
|u(3)ijk|+cijk

∆zijk

(4.25)

Analogically, (u(2) and ∆y) and (u(3) and ∆z) are the velocity and the length of the cell in

the direction of the change of index j and k.

Special Treatment at Boundary: The r calculation at cell-centre ijk require five-

grid stencil Eq. (4.17) and (4.16). Thus, for the cells next to boundary or interface slabs, the

calculation will require the conservative variable value at grid point which does not exist.

Thus, for such r at present an adhoc treatment is done. We take corresponding value of r

at nearby cell. This is expected to work well for problems which have no discontinuity at

boundary or interface. But the accuracy of the solution is not good. It can be seen through

Fig. 4.3.

For the cell next to the boundary/interface, we require modification in TVD formulation

(since, we have only one fictious cell). In this thesis, we could not arrive at a formulation

which gives accurate results. So, we have used the artificial viscosity formulation discussed in

Sec. 4.4.1 and presented in Appendix A at the boundary and interface slabs. This diminishes

the purpose of TVD scheme at the boundary and interface. For this case, through numerical

experiment we had to determine the correct values for the artificial viscosity parameters

Cx, Cy and Cz. It comes out to be Cx = Cy = Cz = 0.9. These analysis can be seen through

Fig. 4.4. The experiments performed are for the case mentioned in Sec. 5.1.
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Figure 4.3: Density plot for TVD schemes to decide for better TVD method (Problem Case:
1 [3])

Figure 4.4: Density plot for TVD schemes to decide for correct coefficient for AV (Problem
Case: Sec. 5.1
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4.6 Advection Upstream Splitting Method (AUSM)

AUSM is developed as a numerical inviscid flux function for solving a general system of con-

servation equations and especially it is used to simulate hyperbolic conservations equations.

It is based on the upwind concept and was motivated to provide an alternative approach to

other upwind methods, such as the Godunov method, flux difference splitting methods by

Roe, and Solomon and Osher, flux vector splitting methods by Van Leer, and Steger and

Warming. It was first presented by Liou and Steffen [20].

We present here the AUSM+-up of Liou (2006) [19]. The token used “-up”will be clear

after the scheme formulation is made. The scheme has been formulated in terms of the

time-dependent Euler equations and relies on splitting the flux vector F into a convective

component F(c) and a pressure component F(p). For the x-split three dimensional flux we

have

F(w) =



ρu

ρu2 + P

ρuv

ρuw

ρu(E + P )


=



ρu

ρu2

ρuv

ρuw

ρuH


+



0

P

0

0

0


≡ F(c) + F(P ) (4.26)

where, w represents conservative variables.

By introducing the Mach number and enthalpy

M = u
a , H = E+P

ρ

we write,

F(c) = M



ρa

ρau

ρav

ρaw

ρaH


≡M F̂

(c)
(4.27)

The face straddles two neighboring cells labeled by subscripts “L”and “R”, respectively,

namely left and right of the interface. The values of various variable at the face is denoted

by subscript “1/2”. In defining the flux at face (say F1/2), the scheme take

F1/2 = F
(c)
1/2 + F

(p)
1/2 (4.28)

where the convective flux component is given by

F
(c)
1/2 = M1/2[F̂

(c)
]1/2 (4.29)

with definition
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[•]1/2 =

[•]L if M1/2 ≥ 0

[•]R if M1/2 < 0

The flux vector in Eq. 4.29 is upwinded as per the sign of face Mach number M1/2. The

convective terms are upstream-biased using the velocity implied in the face Mach Number.

For this reason Liou and Steffen call their scheme AUSM, which stands for Advection

Upstream Splitting Method.

The face Mach number is given by the splitting

M1/2 = M+
L +M−R (4.30)

with the positive and negative component yet to be defined. The splitting of the pressure

flux components depends on the splitting of the pressure itself, namely

P1/2 = P+
L + P−R (4.31)

For the splitting of Mach number and pressure we follow the formulation presented in

Liou (2006) [19]. The objective of doing this was to make the earlier version of AUSM to

be uniformly valid for all speed regimes.

The final algorithm for flux calculation is given as follows AUSM+ − up.

1. We define

ML = VL
a1/2

, MR = VR
a1/2

where, Vi = ~Vi · n̂

The corresponding speed of sound at the interface is given by

a1/2 = aL+aR
2 or, a1/2 = min(âi, âR)

where, âi =
a∗L

max(a∗L,VL) , âR =
a∗R

max(a∗R,−VR)

where, a∗ is defined as the speed of sound based on total enthalpy(Ht). And is given

as a∗ =
√

2(γ−1)
γ+1 Ht.

2. M̄2 =
V 2
L+V 2

R
2a1/2

,

M2
o = min(1,max(M̄2,M2

∞)) ∈ [0, 1],

fa(Mo) = Mo(2−Mo) ∈ [0, 1],

A pressure diffusion term Mp, is introduced to enhance calculations of low Mach

number flow. It is defined as

Mp = −Kp
fa
max(1− σM̄2, 0)PR−PL(ρa)1/2

,

where, 0 ≤ Kp ≤ 1, σ ≤ 1 and ρ1/2 = ρL+ρR
2
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Thus,

M1/2 = M+
(4)(ML) +M−(4)(MR) +Mp

where, M±(4)(M) =

M
±
(1) if |M | ≥ 1

M±(2)(1∓ 16βM∓(2)) otherwise

where,

M±(1)(M) = 1
2(M ± |M |)

M±(2)(M) = ±1
4(M ± 1)2

3. P1/2 = P+
(5)(ML)Pi + P−(5)(MR)PR + Pu

where, P±(5)(M) =

 1
MM

±
(1) if |M | ≥ 1

M±(2)[(±2−M)∓ 16αMM∓(2)] otherwise

where, Pu is the velocity diffusion term similar to interface Mach number defined in

step 2. Pu = −KuP
+
(5)(Mi)P

−
(5)(MR)(ρL + ρR)(faa1/2)(uR − uL)

where, 0 ≤ Ku ≤ 1

4. α = 3
16(−4 + 5f2

a ) ∈ [−3
8 + 3

16 ],

β = 1
8 , Kp = 0.25, Ku0.75 and σ = 1.0

5. The mass flux at the interface has the following form

ṁ1/2 = a1/2M1/2

ρL if M1/2 ≥ 0

ρR otherwise

6. Finally, the flux vector is written as

F1/2(w) = ṁ1/2

wL if w1/2 ≥ 0

wR otherwise
+ P1/2 (4.32)

The value of the conservative variables wL and wR are the left and right states at the

face. They are obtained using MUSCL extrapolation formula[2]. Considering non-uniform

structured grid, we have used second order volume extrapolation. At the cells next to the

boundary we use simple zero-order extrapolation, i.e. we have 1st order accuracy at the

boundary. For the multi-block approach, we have maintained second-order accuracy at the

block interface using center-difference approach. We have also tried with single and double

upwind approach. But, the center-difference has been given best results in terms of accuracy

and stability.

The scheme is called AUSM+-up. The suffix “u” is used to indicate the velocity diffusion

term (Pu) included in the pressure split of flux vector and the suffix “p” is used to indicate

the pressure diffusion term (Mp) included in the convective split part of the flux vector.
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4.7 Closure

In this chapter we have seen the various numerical schemes which can be used for the

study of compressible flows. Also, we saw the detail formulation of central scheme such as

MacCormack and TVD MacCormack and the upwind based scheme AUSM+-up. In the

following chapter, we will see the results, these various schemes gives and will also try to

derive appropriate conclusions of which scheme does better.
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Chapter 5

Results And Discussion

In this chapter we present the results obtained using the solver for different geometric

configurations and for different regimes of flow. The results are all compared with standard

benchmark and/or analytical results. The MacCormack scheme with artificial viscosity

(reffered as MacCormack), with TVD implementation (refereed to as TVD) and AUSM+-

up scheme (reffered as AUSM+) have been tested. The aim is to study the performance of

these scheme and validate the compressible flow solver module of Anupravaha. Since, the

solver is 3D-based, for all the 2D test-cases we have given a minimum of 4 cells thickness

in the z-direction and symmetry boundary conditions are applied on the two boundaries

normal to the z-direction.

5.1 Shock-tube Problem

Set-up

This problem ((P.N.352), [13]) comprises of a tube initially containing two regions of a

stationary gas at different pressures, separated by a diaphragm. At t = 0, the diaphragm is

removed instantaneously so that the pressure imbalance causes a unsteady flow containing

a moving expansion fan, shock and contact discontinuity. The problem can be solved

analytically as a 1-D case[31]. However, we solve the computational problem as a 2-D case,

and compare it with the 1-D analytical solution.The computational results were obtained

on a uniform grid of ∆x= 0.1m . A Courant number of 0.75 has been used.

Initial Condition

IC Part 1 Part 2

Pressure 100000 Pa 10000 Pa
Temperature 300K 300K
u velocity 0 0
v velocity 0 0
w velocity 0 0

43



Figure 5.1: Shocktube

Boundary Condition All boundaries are (slip) walls, while symmetry boundary con-

dition are implemented on surfaces on the z-plane.

The calculation was done to compare with analytical results previously derived for the

shocktube problem [31]. The analytical solution to the shock-tube problem at t = 0.0061s

is compared to the computational result at the centerline of the tube (see Fig. 5.2). It can

be seen that AUSM+ scheme has non-oscillatory solutions compared to the MacCormack

scheme. The advantage of using an upwind scheme compared to a central scheme is self-

evident here. The expansion shock occurring on the left has been captured accurately.

However, the AUSM+ scheme is less accurate compared to MacCormack in capturing the

position of the compression shock. The MacCormack scheme with TVD has been successful

in removing the oscillatory solutions and is too diffusive. It has less accuracy compared to

the other schemes. Based on these and other tests, in rest of this thesis only the results

from AUSM+ and MacCormack scheme (with artificial viscosity) are presented.
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Figure 5.2: Plot along centre-line of shock-tube at 0.0061s
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5.2 Supersonic flow over a wedge

We now consider the supersonic flow over a 2-D wedge with wedge angle 150, as shown in

Fig. 5.3. The inflow conditions are summarized in Table 5.2 and the present results have

been compared with the analytical solution obtained from the standard (θ − β −M) chart

and the analytical oblique shock relationships (Ch. 3 of [31]). Courant number of 0.6 and

0.4 are used for AUSM+ and MacCormack, respectively.

Figure 5.3: Computational domain.

Boundary Conditions

Quantity Inflow Outflow

Pressure 101353 Pa (101353 Pa*)
Temperature 288.9 K -
U velocity 2.5 Mach -
V velocity 0 -
W velocity 0 -

Table 5.1: Boundary conditions for supersonic wedge

*Note: The solver explicitly asks for an outflow pressure but imposes this condition only

if the flow is sub-sonic there.

The steady-state contours of Mach number and static pressure are shown in Fig. 5.4. Under

the same flow condition the contours obtained by numerical computation done in Hirsch’s

book [1] is also shown in Fig. 5.4. The results downstream of the shock has been tabulated

in Table 5.2 where, P2/P1 corresponds to the downstream and upstream pressure ratio.

Point P refers to the point (1.495, 0.3) on the outflow plane. The analytical results are also

presented. The pressure contours are shown in Fig. 5.5.

Both the MacCorMack and AUSM+ gives similar results and both have high accuracy,

corresponding with the analytical results. AUSM+ scheme however gives a solution with

less oscillations.
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Figure 5.4: Contours for Mach Number

47



CoordinateX

C
o

o
rd

in
at

eY

0 0.5 1 1.5
0

0.5

1

1.5

Pressure

250000
240000
230000
220000
210000
200000
190000
180000
170000
160000
150000
140000
130000
120000
110000

(a) MacCormack Scheme

(b) AUSM+ Scheme.

Figure 5.5: Contours for Pressure
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Ratio’s Analytical MacCormack AUSM+

P2/P1 2.468 2.468 2.468
T2/T1 1.322 1.322 1.317
ρ2/ρ1 1.867 1.866 1.869
Mach 1.874 1.873 1.877

Shock angle (in deg.) 36.945 35.976− 38.213 35.85− 37.95

Table 5.2: Validation with analytical solution
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5.3 Steady Shock Reflection Problem

Considered here is the problem of an oblique shock, generated by a supersonic flow over

a sharp wedge, and the subsequent reflections between the wedge surface and a flat plate

located oblique to the wedge. The problem is taken from the study done by Wang et al.

[32]. The computational domain for the problem is shown in Fig. 5.6. The inlet flow has a

Mach no. of 2.9.

INLET

Inviscid Wall

Outlet

Inviscid Wall

Figure 5.6: Computational domain.

Boundary Conditions

Quantity Inlet Outflow

Pressure 0.714 Pa 0.714 Pa
Temperature 0.002488 K -
U velocity 2.9 -
V velocity 0 -
W velocity 0 -

Table 5.3: Boundary conditions for Shock reflection Problem

The result is validated with the reference. The Mach contours from the MacCormack

and AUSM+ schemes of Anupravaha and the analytical results with second order solution

of [32] are shown in Fig. 5.7. The positions of the shock has been accurately predicted

by the present calculations. The AUSM+ scheme is less diffusive and non-oscillatory and

is seen to be more accurate than the MacCormack Scheme. The values of pressure and

Mach number at various points shown in the exact solution inset in Fig. 5.7 are tabulated

in Table 5.4. Both the AnuPravaha schemes are seen to be accurate.
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(a) MacCormack Scheme (AnuPravaha)

(b) AUSM+ Scheme. (AnuPravaha)

(c) Reference Wang et.al [32].

Figure 5.7: Contours for Mach Number
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Quantity MacCormack AUSM+ Analytical

Region 1
P = 0.714
M = 2.9

P = 0.714
M = 2.9

P = 0.714
M = 2.9

Region 2
P = 1.528
M = 2.378

P = 1.528
M = 2.378

P = 1.529
M = 2.357

Region 3
P = 2.9333
M = 1.943

P = 2.933
M = 1.943

P = 2.934
M = 1.942

Region 4
P = 5.204
M = 1.552

P = 5.204
M = 1.551

P = 5.204
M = 1.551

Loc. A 1.89units 1.9units 1.9units

Loc. B 2.94units 2.95units 2.9units

Table 5.4: Values in various regions : Loc. A refers to position of the 1st reflection, Loc. B
refers to position of 2nd reflection

52



5.4 External Flow over NACA0012 Airfoil

To validate the code for complex geometry, we have taken the case of NACA 0012 airfoil.

We study the external flow at Mach Number of 0.5, 0.8 and 1.2. Thus, we try to validate our

code against the subsonic, transonic and supersonic regimes of the flow, a major objective of

this thesis. The computational domain for the NACA Aerofoil considered is shown below.

The following three are the cases considered.

FF = Inflow

FF = Inflow

OutflowInflow

Airfoil = Inviscid Wall

Figure 5.8: Computational domain and Mesh.

5.4.1 Mach 0.5, Angle of Attack (α = 0◦)

This is a subsonic case involving external flow. We have used velocity-driven boundary

condition for inlet and far-field. The boundary conditions are tabulated in Table 5.5.

Quantity Inflow Outflow

Pressure 100000 Pa 100000 Pa
Temperature 300 K -
U velocity 173.594 -
V velocity 0 -
W velocity 0 -

Table 5.5: Boundary conditions for NACA 0012 M = 0.5, α = 0◦
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The result is validated against the results obtained by Furmanek [33]. The value of

coefficient of pressure along the airfoil surface is plotted and compared with the reference in

the Fig. 5.11. The Mach contours are shown in Fig. 5.10. In most airfoil cases, it is easier

to accurately capture pressure compared to velocities or Mach numbers. which is a vector.

An unrealistic boundary layer occurred at the airfoil surface due to some bugs in the code

like improper update of interface slabs value. One such result can be seen for M = 1.2

in the Fig. 5.9. The major bug was the index calculation for the north and south face in

the compressible code was not matching the data structure notation of AnuPravaha Solver.

Thus, in Fig. 5.12, we next compare the Mach Number plot with the results obtained from

FLUENT using the implicit version of the AUSM+ scheme. MacCormack scheme is more

accurate compared to AUSM+ scheme.

Figure 5.9: Mach Number contours with the bug in the code for M = 1.2 and α = 0◦.
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(b) AUSM+ Scheme.

Figure 5.10: Mach Contour for M=0.5

Figure 5.11: Pressure Coefficient along the wall: Comparison for M = 0.5 and α = 0◦.
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Figure 5.12: Mach Number along the wall for M = 0.5 and α = 0◦.

56



5.4.2 Mach 0.8, Angle of Attack (α = 1.25◦)

This is a transonic case of external flow. We have used velocity-driven boundary condition

for inlet and far-field. The boundary conditions are tabulated in Table 5.7.

Quantity Inflow Outflow

Pressure 101325 Pa 101325 Pa
Temperature 273.15 K -
U velocity 264.967 -
V velocity 5.782 -
W velocity 0 -

Table 5.6: Boundary conditions for NACA 0012 M = 0.8, α = 1.25◦

The result is validated against the results obtained by Arias et al. [34]. The value of

the coefficient of pressure along the wall is plotted and is compared with the reference in

Fig. 5.13. The MacCormack scheme failed to give a stable and accurate result. The X-Mach

contours are compared with that of the reference in Fig. 5.14 and Fig. 5.15. Our results are

in well agreement with the literature.

Figure 5.13: Pressure Coefficient along the wall: Comparison for M = 0.8 and α = 1.25◦.
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Figure 5.14: Mach Contours in x-direction for M = 0.8, α = 1.25◦ from [34].
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Figure 5.15: Mach Contours in x-direction using AUSM+ Scheme of AnuPravaha.
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5.4.3 Mach 1.2, Angle of Attack (α = 0◦)

This is a supersonic case involving external flow. We have used supersonic inflow boundary

condition at the inlet and far-field.

Quantity Inflow Outflow

Pressure 100000 Pa 100000 Pa
Temperature 300 K -
U velocity 416.63 -
V velocity 0 -
W velocity 0 -

Table 5.7: Boundary conditions for NACA 0012 M = 1.2, α = 0◦

The result is validated against the results obtained by Arias et al. [34]. The value of

coefficient of pressure along the wall is plotted and is compared with the reference in the

Fig. 5.16. The Mach contours from AnuPravaha are shown in Fig. 5.17 and Fig. 5.18 for

MacCormack and AUSM+ schemes. In Fig. 5.19, we next compare the Mach Number plot

with the results obtained from FLUENT using the implicit version of AUSM+ scheme. We

see here the AnuPravaha MacCormack and AUSM+ scheme gives similar results and are

close to the FLUENT solutions.

Figure 5.16: Pressure Coefficient along the wall: Comparison for M = 1.2 and α = 0◦.

59



CoordinateX

C
o

o
rd

in
at

eY

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-1

-0.5

0

0.5

1

Mach

1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Figure 5.17: Mach Contours for M = 1.2 using MacCormack Scheme (AnuPravaha).
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Figure 5.18: Mach Contours for M = 1.2 using AUSM+ Scheme (AnuPravaha).
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Figure 5.19: Mach Number along the wall for M = 1.2 and α = 0◦.
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5.5 Internal flow in a channel with a circular Bump

We now take a case considering internal flow.It consists of a channel of height L and length

3L, with a circular arc of length L and thickness equal to 0.1L, along the bottom wall, as

shown in Fig. 5.20. For the subsonic and transonic cases we use a pressure-driven inlet

boundary condition. For initializing the flow-field, we have used free-stream conditions.

The inlet x-velocity is calculated by numerical-extrapolation from the interior domain. Its

specification in the problem below is indicative for Mach Number of the flow at the inlet

and is used in numerical algorithm. We used a Courant number of 0.5 for cases below. The

MacCormack scheme again has convergence difficulty for the transonic case.

L

3L

Inflow

Wall

Wall

Outflow

0.1 L

Figure 5.20: Computational Domain.

5.5.1 Subsonic Case

The inlet Mach number is chosen equal to 0.5. We provide total pressure and total temper-

ature at inlet w.r.t. the static condition, so as to get inlet Mach Number equal to 0.5. This

is as per our boundary condition discussion is Sec.3.2.2 under pressure-driven flow section.

At outflow we use the free-stream condition (static condition). The boundary conditions

are summarized in Table 5.8 and the solver results have been compared with the study done

by Rincon et al. [35].

Quantity Inflow Outflow

Pressure 120141.8 Pa 101300 Pa
Temperature 302.4 K 288K
U velocity 174.287 -
V velocity 0 -
W velocity 0 -

Table 5.8: Boundary conditions for subsonic bump

The comparison for Mach contours for MacCormack, AUSM+ and the reference is shown

in Fig. 5.21. Fig. 5.22 shows the variation in Mach number along the upper and lower walls.
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(a) Isomach lines from [35]

(b) AUSM+ Scheme (AnuPravaha)

(c) MacCormack Scheme (AnuPravaha)

Figure 5.21: Mach Contour for M=0.5
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Figure 5.22: Variation of Mach number along lower and upper wall (M = 0.5)

As we do not get any shock, the solution is symmetric about the midchord. The result shows

that in subsonic regime the MacCormack scheme does better than the AUSM+ scheme. The

Courant number used for both the case is 0.5.
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5.5.2 Transonic Case

Here, we impose inlet Mach number equal to 0.675. At the outlet the free-stream condition

(static condition) is applied. The boundary conditions are summarized in Table 5.9 and the

solver results has been compared with Rincon et al. [35].

Boundary Conditions

Quantity Inflow Outflow

Pressure 137489.425 Pa 101300 Pa
Temperature 314.136 K 288K
U velocity 239.81 -
V velocity 0 -
W velocity 0 -

Table 5.9: Boundary conditions for transonic bump

The comparison for Mach contours for MacCormack, AUSM+ and the reference is shown

in Fig. 5.23. Fig. 5.24 shows the variation in Mach number along the upper and lower walls.

In Fig. 5.23 we can observe that the subsonic inlet flow is first expanded to a supersonic

region and then a shock wave is formed to match the subsonic condition at the outlet. The

maximum Mach number immediately before the shock is 1.36 and 1.4 for AUSM+ and

MacCormack scheme. These results are well in agreement with the reference solutions from

literature [35, 36]. The Courant number used for both the case is 0.5. MacCormack scheme

is quite unstable in transonic regime, one has to use a lower Courant number.

Note: For the Supersonic case we would have a supersonic condition at the exit, and

the case would be similar to the steady shock reflection problem validated earlier in Sec. 5.6.

So, the case was not done here.
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(a) Isomach lines from [35]

(b) AUSM+ Scheme (AnuPravaha)

(c) MacCormack Scheme (AnuPravaha)

Figure 5.23: Mach Contour for M=0.675
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Figure 5.24: Variation of Mach Number along lower and upper wall (M = 0.675)
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5.5.3 3D Case: Flow over re-entry capsule (Mach no. = 5, AOA = 4.66◦)

A ballistic reentry capsule has been considered to validate the solver for a complex geometry.

The vehicle consists of a blunt bicone with 20/25 degree cone angles. All the dimensions are

shown in Fig. 5.25. The mesh and the computational domain are shown in Fig 5.26. Inlet,

outlet and inviscid wall has been shown through red, green and blue colour respectively.

The free-stream pressure and temperature are 833Pa and 63K, respectively. Free-stream

Mach number is taken as 5.0 with angle of attack of 4.66. We specify free-stream pressure at

outflow, which actually has no role to play for a supersonic exit. The boundary conditions

based on these are summarized in Table 5.10. We validate the result with the study done

by [37]. In this study, the wind tunnel data [38] has been used for validation. We have also

included the result of the same test done using FLUENT (explicit AUSM plus scheme).

Figure 5.25: Re-entry vehicle model dimensions

Boundary Conditions

Quantity Inflow Outflow

Pressure 833 Pa 833 Pa
Temperature 63 K -
U velocity 792.88 -
V velocity 64.63 -
W velocity 0 -

Table 5.10: Boundary conditions

Fig. 5.27 shows the density contours. We can see from the density contour the presence

of bow shock. The numerical diffusion observed for the MacCormack scheme is larger

compared to AUSM+ schme. On the windward side the formation of second shock is

more pronounced in comparison to leeward side. The plot of Cp distribution along the

capsule wall is shown in Fig. 5.28. The x-axis is the Coordinate X of the flow domain along

the capsule wall. We can observe the higher pressure plot corresponds to the windward

side. At stagnation point, we get the maximum pressure and pressure remains constant
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Figure 5.26: Computational domain and mesh

along the surface of capsule till the second shock. The AUSM+ scheme is more accurate.

MacCormack with the default artificial viscosity coefficients fails in accuracy especially at

the stagnation point.
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(a) Isodensity lines from Nagdewe et al.(2009) [37] (b) Isodensity lines from fluent

(c) AUSM+ Scheme (AnuPravaha) (d) MacCormack Scheme (AnuPravaha)

Figure 5.27: Density Contours
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Figure 5.28: Variation of coefficient of pressure along the capsule wall
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Chapter 6

Conclusions and future work

Building on the earlier work of Nikhil Kalkote[39], we have created a stand-alone version

of the AnuPravaha Solver for computational flows. Several schemes were implemented on

the solver, and throughly validated for subsonic, transonic and supersonic cases. Boundary

conditions for complex and curved boundaries have also been implemented.

In the earlier part of this thesis we have used artificial viscosity in two ways, namely,

the traditional artificial viscosity approach and the TVD artificial viscosity approach. The

artificial viscosity approach is mainly used for structured meshes and its main advantage is

its simplicity and high-speed execution on modern computers. The TVD approach, although

theoretically more appealing, does not deliver the same accuracy as the traditional approach,

and therefore was not used in the later computations.

In the later part of the thesis, we have presented the upwind-based scheme AUSM+ -up.

This scheme proved to be most accurate and stable esp. in the transonic and supersonic

regime of the flow. In subsonic regime, the MacCormack scheme with traditional artificial

viscosity has done better.

We have incorporated the Far-Field boundary conditions with non-reflecting boundary

condition at the outlet and have implemented boundary conditions for curved surfaces.

At the end, we are presenting a standalone density-based solver catering for aerospace

applications exclusively.

We list down following points which can be used for future work.

1. AUSM+ -up scheme is more accurate and robust especially for transonic and super-

sonic regime. It does not have any empirical parameters such as artificial viscosity

coefficients.

2. A review of convergence criteria has to be performed. At present, our measure for

steady-state has been based on post-processing results.

3. For, turbo-machinery applications, Central schemes does better, thus TVD MacCor-

mack scheme can be revised for future use. Implementing pressure-based subsonic
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inlet condition using outgoing Riemann invariants can be considered.

4. Further validation of the present code can be made for more complex geometries and

for subsonic and transonic flow regimes.

5. Naiver-Stokes version of compressible flow with Turbulence models should be imple-

mented to cater well to real aerospace applications.

6. An implicit version of the code can be developed. Also, a 2D version of the code for

faster execution of two-dimensional cases is needed.

Our future goal is to develop an unstructured version of AnuPravaha for computation of

high-speed flows. A successful implementation of upwind-based AUSM+ scheme has given

us the confidence to start working in this direction. We hope to implement the Navier-Stokes

equation with turbulence model with the present solver.
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Appendix A

Artificial Viscosity Formulation

The following explains the artificial viscosity formulation which has been frequently used in

connection with the MacCormack technique. We show here the formulation for an unsteady,

two-dimensional equation.
∂U

∂t
= −∂U

∂x
− G

y
+ J (A.1)

where U is the solution vector, U =
[
ρ ρu ρv ρ(e+ V 2/2)

]
.

At each step of the time-marching solution, a small amount of artificial viscosity can be

added in the following form:

Sti,j = Cx

∣∣∣pti+1,j − 2pti,j + pti−1,j

∣∣∣
pti+1,j − 2pti,j + pti−1,j

(U ti+1,j − 2U ti,j + U ti−1,j)

+Cy

∣∣∣pti,j+1 − 2pti,j + pti,j−1

∣∣∣
pti,j+1 − 2pti,j + pti,j−1

(U ti,j+1 − 2U ti,j + U ti,j−1)

(A.2)

where we have taken, Cx = Cy = Cz = 0.12

Eq. A.2 is a fourth order numerical dissipation expression. On the predictor step Sti,j is

evaluated based on the known quantities at time t. On the corrector step, the corresponding

value of Sti,j is obtained by using the predicted (barred) quantities as S̄ti,j .

S̄ti,j = Cx

∣∣∣p̄ti+1,j − 2p̄ti,j + p̄ti−1,j

∣∣∣
p̄ti+1,j − 2p̄ti,j + p̄ti−1,j

(Ū ti+1,j − 2Ū ti,j + Ū ti−1,j)

+Cy

∣∣∣p̄ti,j+1 − 2p̄ti,j + p̄ti,j−1

∣∣∣
p̄ti,j+1 − 2p̄ti,j + pti,j−1

(Ū ti,j+1 − 2Ū ti,j + Ū ti,j−1)

(A.3)

where we have taken, Cx = Cy = Cz = 0.12
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The value of Sti,j and S̄ti,j are added at various stages of MacCormack scheme as shown

below with the help of calculation of density from the continuity equation. For this U = ρ.

On the predictor step,

ρ̄t+∆t
i,j = ρti,j +

(
∂ρ

∂t

)t
i,j

∆t+ Sti,j (A.4)

On the corrector step,

ρt+∆t
i,j = ρti,j +

(
∂ρ

∂t

)
a

v∆t+ S̄t+∆t
i,j (A.5)
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