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I. TOPOLOGICAL CONFINEMENT OF SKYRMIONS

The special topology defining all skyrmionic vector fields is characterized by the possibility to continu-

ously deform their domain space to a spherical shape, while retaining their image (homotopy of the vector

field to the identity map of the sphere, illustrated in Fig. 1 of the main text).1 For integer Skyrmion number

N , the boundary of the domain space is mapped to one of the poles of the sphere, and an area in the interior is

mapped to the other pole. These two areas, called domains, are smoothly connected by a closed loop domain

wall. Both the inner domain and the domain wall never touch any boundary of the domain space; they are

confined in all dimensions by the outer domain. Most often, the combination of inner domain and domain

wall exhibits particle-like properties, and the corresponding quasiparticles are called Skyrmions. We point

out that the definition of Skyrmions is independent of the mechanisms leading to their physical stabiliza-

tion. In particular, there are subtle differences between the spin structures of bubbles and chiral Skyrmions,

which possibly lead to distinct physical properties.2 The topological mass determined in this work, however,

is associated with the finite extent of the Skyrmions, which is a common property of all Skyrmions.

II. THEORETICAL BACKGROUND

Here we show how our experimental results are embedded in a preexisting theoretical framework on

Skyrmion gyrotropic motion, which we will shortly review. In particular, we will give a short summary

of the key results of Refs. 2, 12, and 17 of the main paper.

Already in 1973, Thiele3 derived from theoretical arguments that rigid bubbles experience a force per-

pendicular to their velocity. Later, Papanicolaou and Tomaras4 provided an intuitive explanation of this phe-

nomenon by showing that the Skyrmion number of a magnetic structure can be interpreted as an intrinsic

angular momentum of the structure. The resulting equation of motion for the centre of the structure, the

so-called Thiele equation, reads

G× Ṙ+DṘ− ∂RU = 0. (1)

This equation has proven extremely useful and valid for the description of low frequency bubble dynam-

ics as well as of low and high frequency vortex dynamics (vortices are structures with Skyrmion number

2

N = ±1/2). However, the equation has recently been challenged by micromagnetic simulations of bubble

dynamics in the GHz regime.5 In their theoretical study, Moutafis et al.5 suggested that the detailed shape of

the bubble motion is not a smooth spiral as predicted by Eq. (1), but rather a hypocycloid with five cusps per

turn (as visible in Fig. 2b). A movie of this simulated irregular gyration is attached.

The surprising shape of the bubble trajectory could be explained in 2012 by Makhfudz et al.6 by extending

Eq. (1) by a second order temporal derivative of R. As discussed in the chapter IX, the second order differ-

ential equation has two solutions, one describing a clockwise motion and one describing a counter-clockwise

motion. If both frequencies are different in magnitude, and if the higher frequency mode (say, ωh) has a

smaller amplitude than the lower frequency mode (ωl), then the superposition of both modes is a hypocycloid

with |ωh/ωl|+ 1 cusps per cycle.

As common in physics, the presence of a second order temporal derivative is associated with inertia, and

the coefficient of this second order term is called ”effective mass“. To explain the source of this mass, the

authors describe the motion of the bubble by suitable spin waves propagating along the domain wall (that

separates the bubble interior from the environment). To realise such waves, the spins in the domain wall

have to tilt within the plane of the magnetic film out of their equilibrium orientation (that is, tangential to the

domain wall), which is energetically unfavourable because it creates magnetic volume charges (divergence

of the magnetisation). The energy associated with such a tilt of the spins can be described by an effective

anisotropy, the so-called transverse anisotropy. This phenomenon is generic for domain walls, straight or

curved, and leads to inertia, as argued by Döring already in 1948.7

The theory by Makhfudz et al. thus predicts that the mass of the bubble is equivalent to the Döring mass of

its domain wall. However, we find that the mass of the bubble is at least five times larger than this prediction.

The discrepancy must be an additional source of inertia. In our model, this inertia comes from the possibility

of the confined bubble to perform other collective excitations, such as the so called breathing. This breathing,

which corresponds to an expansion and shrinking of the total areal extent of the bubble, is clearly visible in

the attached movie of the simulated gyration. In this simulation, the breathing is synchronous to the cusps of

the trajectory, supporting our claim of a relation between the inertia-induced cusps and the breathing of the

bubble.

Recently, Mochizuki has suggested by simulations that chiral Skyrmions show the same characteristic gy-
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ration at the GHz scale.8 He has found a clockwise rotational mode (ωCW ≈ 0.6GHz), a counter-clockwise

rotational mode (ωCCW ≈ 1.1GHz), and a breathing mode (ωBR ≈ 0.8GHz). The presence of both chiral

modes unambiguously points to the presence of inertia, and the given values are similar to our observations,

corroborating our conclusion that the inertia reported by us is a common feature of all skyrmionic spin struc-

tures.

III. MOVIE OF THE BUBBLE DYNAMICS

In the following section, we present the complete set of dynamic magnetic images used to obtain the

bubble trajectory presented in Fig. 2 of the main text. The images are sorted chronologically by their time

delay. They are presented individually in Fig. 1 and in a compressed movie attached to this document. The

time delay of each image is indicated by a coloured dot in the top-right of each image in Fig. 1 and by a sketch

of the pulse shape in the top of each frame of the movie. The movie presents the images at a constant frame

rate, i.e., the time between two images of the movie does not correspond to the time delay between these

images. The images show a number of details beyond the motion of one of the bubbles discussed in the main

text. These features are interesting by themselves, but not significant for the interpretation of the observed

trajectory of the bubble, as we shall see next:

The most important observation is the presence of a second bubble in all frames of the movie. In contrast

to the bubble that we discuss in the main paper, this bubble seems to be immune against the external excitation

and against the stray field of the third domain. This behaviour can be explained by a particularly deep and

steep local potential minimum in which the bubble is trapped. The tiny motion within such a potential is

beyond our resolution. For the present case, since we are interested in the motion of an individual bubble,

this pinning of the second bubble is actually highly desirable; without any significant dynamic changes, the

interaction between the two bubbles is fully described by a static offset in the magnetostatic potential U .

This means that the interaction between the two bubbles significantly alters the total potential of the moving

bubble, but this total potential remains static and it can locally be approximated by a parabola. That is, in the

laboratory frame, the moving bubble behaves effectively like an isolated magnetic Skyrmion. The stiffness of

the local parabolic potential is a fitting parameter in our analysis, which means that we do not have to know

4

Figure 1 |Collection of all dynamic images acquired. The coloured dot in the top-right corner of each

images indicates the time delay of the respective image, as defined in Fig. 2b of the main text.

the type or strength of the interaction between the two bubbles. We furthermore note that this situation of just

one moving object is totally different from previous experiments on vortex pairs (e.g., Ref. 9), where both

entities are moving in the laboratory frame. Another important distinction to the rotating vortex experiment is

that bubbles, in contrast to vortices, interact only through stray fields; at the observed distances, the bubbles

are not coupled by the magnetic exchange interaction. This is an inherent property of skyrmionic structures:

as discussed in detail in section I, Skyrmions are localized objects. This means that two Skyrmions that do not

touch each other cannot interact via a local coupling such as the exchange energy. Only the non-local dipolar

coupling can mediate an interaction between Skyrmions (Skyrmions are thus asymptotically free). This is one

of the properties that make these objects interesting for storage devices.

Another interesting observation is the change of shape and contrast of the tracked bubble. During the

presence of the third domain, the tracked bubble elongates to a stripe-like shape, which can be viewed as

an higher order excitation.6 Such a behaviour during extreme excitation is not described well within the

limitations of our point-like quasiparticle model of the Skyrmion motion underlying Eq. (1) of the main paper.

A possible explanation for the asymmetric extension of the bubble is an anisotropic potential landscape, in
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which the energy required to increase the length of the domain wall (which separates the black bubble from

its white surrounding) is offset by a gain in potential energy. However, we point out that these elongated

states are observed only during the presence of the third domain and thus do not play a role in the part of the

later trajectory that we analyze. The change of contrast of the tracked bubble (in particular compared to the

stationary bubble) can have multiple reasons. Most notably, if the bubble shrinks in size below the spatial

resolution, it appears less saturated in the image. That is, bubble breathing is a likely reason for the observed

fluctuations of the colour saturation. Other possible reasons for the change of contrast include the motion of

the bubble during the X-ray exposure and a small spatial variation of the position of the bubble during the

109 exposures corresponding to a given time delay. Hence, we cannot make fully conclusive claims on the

origin of the contrast fluctuations. However, it should be emphasized, that while the existence of breathing is

important for the behavior of the bubble, the strength of our analysis (and the reason we chose this theoretical

approach) lies on the fact that we base our results on fitting the trajectory of the bubble. Therefore, our results

remain robust.

Finally, we point out that the third domain does not retract to the notch at the edge of the disk before

it disappears. Rather, the domain detaches from the edge and forms a third bubble in the bulk of the disk.

In contrast to the other two bubbles, this bubble has a very short lifetime. The ability to annihilate shows

that this bubble is not topologically protected. Thus, we conclude that this bubble has a Skyrmion number

of N = 0 (the spin structure of an N = 0 bubble is depicted in the inset of Fig. 2a). It is remarkable that

we were able to repeat such a creation and annihilation of an N = 0 bubble about 1010 times. This shows

that we can control and investigate bubbles with different topology, which is not possible in materials with

chiral Skyrmions (these are limited to N = 1 Skyrmions). Therefore, our experimental setup (including the

material) is an ideal playground to study skyrmionic spin structures.

IV. TRAJECTORIES OF BUBBLES WITH VARIABLE |N |

Here we show that the dynamics of a Skyrmion, in particular its trajectory, is characteristic for its topology

and its Skyrmion number N . We simulate the trajectories of bubbles with variable |N |, which allows us to

identify the measured trajectory in the main paper with the simulated |N | = 1 bubble.

6

We have simulated the dynamic excitation and relaxation of |N | = 0, 1, 2, 3, 4 and 5 bubbles, using the

parameters of Moutafis et al.5 and the MICROMAGNUM simulation software.10 Larger N Skyrmions (so called

hard bubbles) are highly unlikely to be found in our material due to its small quality factor of Q = 0.86(6).13

Also, we start with energetically relaxed initial configurations, that is, we do not include any non-topological

defects, such as non-winding vertical Bloch lines. While these defects can exist, they are very rare,13 and are

expected to annihilate during the first excitation.

The Skyrmion number N of the magnetisation configuration m = m(x, y), where m is a unit vector along

the local magnetisation, is calculated for all simulation steps by N = (8π)−1
∫

dxdy n with the topological

density n = εµν(∂µm × ∂νm) · m.5,6 Note that the sign in this formula is not consistently defined in the

literature, and that, for our definition and an axially symmetric structure with polarity p and winding number

W , it can be simplified to N = 1/2pW .5

A spiralling trajectory, as observed in the measurements presented in the main paper, is only seen in the

simulation of the |N | = 1 bubble. For all other topologies, the trajectories are more irregular: they cross

themselves several times, and go through the potential minimum or spiral away from the equilibrium position

in some instances. Therefore, we conclude that the observed trajectory in Fig. 2 of the main text corresponds

to an |N | = 1 bubble.

We also note that, in contrast to the simulation in Fig. 2B, the measured trajectory in Fig. 3 of the main text

is smooth and without spikes. This is due to the fact that, in the measurement, the higher frequency mode has

a larger amplitude than the lower frequency mode at all times of the measured gyration. Due to the stronger

damping of the higher frequency mode, the ratio of the amplitudes of the modes eventually reverses. The

theoretical fit shows a transition to a hypocycloidal trajectory at t = 16.2 ns, accompanied by a change of

the global sense of rotation from CW to CCW. The global amplitude at that stage is however expected to be

smaller than 0.5 nm, which is below our spatial resolution and therefore cannot be observed experimentally.

7

6	 NATURE PHYSICS | www.nature.com/naturephysics

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS3234

© 2015 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys3234


which the energy required to increase the length of the domain wall (which separates the black bubble from

its white surrounding) is offset by a gain in potential energy. However, we point out that these elongated

states are observed only during the presence of the third domain and thus do not play a role in the part of the

later trajectory that we analyze. The change of contrast of the tracked bubble (in particular compared to the

stationary bubble) can have multiple reasons. Most notably, if the bubble shrinks in size below the spatial

resolution, it appears less saturated in the image. That is, bubble breathing is a likely reason for the observed

fluctuations of the colour saturation. Other possible reasons for the change of contrast include the motion of

the bubble during the X-ray exposure and a small spatial variation of the position of the bubble during the

109 exposures corresponding to a given time delay. Hence, we cannot make fully conclusive claims on the

origin of the contrast fluctuations. However, it should be emphasized, that while the existence of breathing is

important for the behavior of the bubble, the strength of our analysis (and the reason we chose this theoretical

approach) lies on the fact that we base our results on fitting the trajectory of the bubble. Therefore, our results

remain robust.

Finally, we point out that the third domain does not retract to the notch at the edge of the disk before

it disappears. Rather, the domain detaches from the edge and forms a third bubble in the bulk of the disk.

In contrast to the other two bubbles, this bubble has a very short lifetime. The ability to annihilate shows

that this bubble is not topologically protected. Thus, we conclude that this bubble has a Skyrmion number

of N = 0 (the spin structure of an N = 0 bubble is depicted in the inset of Fig. 2a). It is remarkable that

we were able to repeat such a creation and annihilation of an N = 0 bubble about 1010 times. This shows

that we can control and investigate bubbles with different topology, which is not possible in materials with

chiral Skyrmions (these are limited to N = 1 Skyrmions). Therefore, our experimental setup (including the

material) is an ideal playground to study skyrmionic spin structures.

IV. TRAJECTORIES OF BUBBLES WITH VARIABLE |N |

Here we show that the dynamics of a Skyrmion, in particular its trajectory, is characteristic for its topology

and its Skyrmion number N . We simulate the trajectories of bubbles with variable |N |, which allows us to

identify the measured trajectory in the main paper with the simulated |N | = 1 bubble.

6

We have simulated the dynamic excitation and relaxation of |N | = 0, 1, 2, 3, 4 and 5 bubbles, using the

parameters of Moutafis et al.5 and the MICROMAGNUM simulation software.10 Larger N Skyrmions (so called

hard bubbles) are highly unlikely to be found in our material due to its small quality factor of Q = 0.86(6).13

Also, we start with energetically relaxed initial configurations, that is, we do not include any non-topological

defects, such as non-winding vertical Bloch lines. While these defects can exist, they are very rare,13 and are

expected to annihilate during the first excitation.

The Skyrmion number N of the magnetisation configuration m = m(x, y), where m is a unit vector along

the local magnetisation, is calculated for all simulation steps by N = (8π)−1
∫

dxdy n with the topological

density n = εµν(∂µm × ∂νm) · m.5,6 Note that the sign in this formula is not consistently defined in the

literature, and that, for our definition and an axially symmetric structure with polarity p and winding number

W , it can be simplified to N = 1/2pW .5

A spiralling trajectory, as observed in the measurements presented in the main paper, is only seen in the

simulation of the |N | = 1 bubble. For all other topologies, the trajectories are more irregular: they cross

themselves several times, and go through the potential minimum or spiral away from the equilibrium position

in some instances. Therefore, we conclude that the observed trajectory in Fig. 2 of the main text corresponds

to an |N | = 1 bubble.

We also note that, in contrast to the simulation in Fig. 2B, the measured trajectory in Fig. 3 of the main text

is smooth and without spikes. This is due to the fact that, in the measurement, the higher frequency mode has

a larger amplitude than the lower frequency mode at all times of the measured gyration. Due to the stronger

damping of the higher frequency mode, the ratio of the amplitudes of the modes eventually reverses. The

theoretical fit shows a transition to a hypocycloidal trajectory at t = 16.2 ns, accompanied by a change of

the global sense of rotation from CW to CCW. The global amplitude at that stage is however expected to be

smaller than 0.5 nm, which is below our spatial resolution and therefore cannot be observed experimentally.

7

NATURE PHYSICS | www.nature.com/naturephysics	 7

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS3234

© 2015 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys3234


-10

-5

0

5

10

-10 -5 0 5 10

∆x [nm]

∆
y

[n
m

]

a

-10 -5 0 5 10

b

-10 -5 0 5 10

c

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

d

-3 -2 -1 0 1 2 3

e

-3 -2 -1 0 1 2 3

f

Figure 2 | Simulated trajectories of bubbles with variable Skyrmion numbers. Trajectories (∆x,∆y)

of the centre of magnetisation of the bubbles are shown for |N | = 0 in a, for |N | = 1 in b, for |N | = 2

in c, for |N | = 3 in d, for |N | = 4 in e, and for |N | = 5 in f,. The insets in a–c show configurations of

the in-plane components of the spins of the bubble that correspond to the respective Skyrmion number. The

simulations have been performed for negative N . For positive N , the trajectories are spatially inverted. Only

the |N | = 1 bubble moves on a spiralling trajectory around the equilibrium position. The total simulation

time is 15 ns. The excitation is applied for the first 0.2 ns, and the respective part of the trajectories is plotted

with red lines.
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V. SKYRMION GYRATION IN ANHARMONIC POTENTIALS AND UNDER THE APPLICATION OF EX-

TERNAL FIELDS

For our analysis of the observed Skyrmion gyration and, in particular, for determining the inertial mass,

we use a parabolic approximation for the potential the Skyrmion moves in. To confirm the validity of our

assumption and to check the general applicability of our results, we have simulated gyrating bubble Skyrmions

in various kinds of realistic anharmonic potentials. These include: (i) gyrations in elliptically shaped elements

of variable size simulating harmonic potentials with different potential stiffness along the x and y direction

and (ii) gyrations in circularly shaped elements with periodic anisotropy modulations, simulating pinning with

variable strength and lateral extent. Our simulations reveal that the impact of the anharmonic perturbations to

the pinning potential on the inertial mass density are small and that the mass density can be reliably deduced

using our model.

We furthermore simulated the gyration of bubble Skyrmions of variable size. We find that the mass density

does not depend on the diameter of the Skyrmion, showing that the equation of motion is universal and

remains unchanged when the Skyrmion moves through various geometries where confining potentials modify

its equilibrium size.

A. Anisotropic harmonic potentials

To simulate anisotropic potentials, we utilize the fact that the bubble is repelled by the boundary of the

magnetic element. We have simulated bubble gyrations in elliptical elements with variable semi axes sx and

sy, following Suppl. IV and Ref. 5. In addition, we have applied magnetic bias fields in the perpendicular

direction to modify the size of the bubble, similar to the real situation in the experiment. The maximum

external field that we have applied is 4 kA/m, which is slightly below the critical field at which the bubble

collapses, so we probe the full parameter space.

As in the experiment, we determined the mass of the bubble by fitting its trajectory after the excitation is

switched off (here for t = 200 ps) and thereby extracting the eigenfrequencies. The mass density is the mass

divided by the domain wall area. As in the experiment, the domain wall is estimated by 2tFilm
√
πA, where

tFilm it the film thickness and A is the surface area of the bubble. The resulting mass densities (normalized to
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time is 15 ns. The excitation is applied for the first 0.2 ns, and the respective part of the trajectories is plotted

with red lines.
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H [kA/m] sx [nm] sy [nm] ρm/ρm,0

0 80 80 1.00

0 100 80 0.98

0 100 100 1.01

40 80 80 0.97

40 100 80 1.00

40 100 100 0.99

Table I |Mass densities ρm of bubbles in elliptical potentials. The mass density is listed as a function of

external bias field H and elliptical semi axes sx and sy of the confining element. The mass density is nor-

malized to the mass density of a bubble in a circular disk of 80 nm radius without applied field (first line).

the mass of case 1, the unperturbed bubble in a circular disk) can be found in table I. The data reveals that

the mass density of the bubble neither depends on the size of the bubble nor on the anisotropy of a harmonic

confining potential.

B. Anharmonic potentials – the impact of pinning

In section III, we have argued that there is substantial pinning present in our magnetic element. In fact,

we utilize the pinning (and not the boundary of the element) to confine the motion of the bubble and study its

relaxation on a gyrotropic trajectory. In our analysis, we have assumed the pinning potential to be parabolic.

The excellent agreement of the data with this model is a strong indicator for the validity of this assumption.

However, the real potential will have some anharmonic component, and it is a priori unclear how large the

error for the determined mass is that is caused by such anharmonic perturbations.

To mimic pinning-like fluctuations of the potential, we have simulated gyrating bubbles in many magnetic

elements with a variety of spatially dependent perpendicular anisotropy distributions

K = K0 +∆K cos(2πx/λ) cos(2πy/λ), (2)
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Figure 3 | Initial configurations for the simulations. a-c, Periodic modulations of the perpendicular

anisotropy, mimicking pinning on all relevant length scales (examples show configurations for λ = 5nm

in a, for λ = 25 nm in a, and for λ = 100 nm in c). d, Initial magnetic configuration in the disk. All simula-

tions are started with a bubble of 36 nm radius centered in the disk of 80 nm radius

where K0 is the anisotropy constant of the homogeneous material, ∆K is the strength and λ is the wavelength

of the modulation. Simulations were performed for values of ∆K/K between 3% and 10% and periodicities

λ between 5 nm and 100 nm, which is in line with possible structural variations causing such anisotropy

modulation (such as given by grain size, surface roughness, lithography patterning precision, disk diameter,

etc.).11 With a bubble radius of 36 nm and a maximum excursion of 10 nm, the chosen values for λ cover

all important length scales, and a anisotropy variation of ±10% is more than we would expect in our low

pinning material.12 Examples of the anisotropy modulations are depicted in Fig. 3, where the colour encodes

the anisotropy strength.

In Fig. 4, we plot the mass density (normalized to the mass of the unperturbed bubble) as a function of the

modulation strength and modulation wavelength. As in the experiment, we use the two frequency harmonic

model to fit the simulated trajectories, as shown in Fig. 5. As in the experiment we use the extracted frequen-

cies to obtain the mass density for different pinning (the combinations of pinning strength and lengthscale for

which we extracted this information are shown in Fig. 4). We do not consider data where only one mode is

present (quantitatively, if the other mode has an initial amplitude of smaller than 1 nm), because both modes

are required to determine the mass and two modes are present in the experiment.

The main observation that can be obtained from Fig. 4 is that the impact of the exact pinning details

(strength and periodicity of the anharmonic potential) on the mass density is very small. We thus conclude

that our analysis of realistic deviations of the pinning potential from the harmonic approximation shows that
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etc.).11 With a bubble radius of 36 nm and a maximum excursion of 10 nm, the chosen values for λ cover
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which we extracted this information are shown in Fig. 4). We do not consider data where only one mode is
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are required to determine the mass and two modes are present in the experiment.

The main observation that can be obtained from Fig. 4 is that the impact of the exact pinning details
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Figure 4 |Bubble mass density as a function of pinning length scale and strength. The graph shows the

mass density of the bubble ρm determined using the method presented in the main article as a function of

pinning modulation periodicity λ and pinning strength ∆K. Mass and pinning strength are normalized to

the unperturbed mass ρm,0 and the average perpendicular anisotropy constant K0, respectively.

the lower limit for the mass density derived from the experimental data is reliable. Our method to determine

the mass is thus robust against pinning details and does not rely on the harmonicity of the potential. Therefore,

the lower limit for the mass density is a universal constant of our particular material; it neither depends on

pinning, nor on the shape of the magnetic element, nor on any other perturbations of the local potential.

C. Skyrmion motion under the application of external fields

In the main paper we claim that the large mass of the Skyrmion originates in the storage of energy through

a variation of the Skyrmion’s size. Naturally, this leads to the question how the mass depends on the size of

the Skyrmion. To answer this question, we have performed simulations of gyrating bubbles in a static external

magnetic field that alters the equilibrium diameter of the bubble. Essentially, we find that the mass density
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Figure 5 |Bubble trajectories that show good agreement with the theoretical model. The graph shows

the trajectory for ∆K/K = 10% and λ = 60 nm. The trajectory shows clear deviations from a pure sine

wave, i.e., both eigenmodes are present with a considerable amplitude. The theoretical model is able to de-

scribe the data well.

is independent of the actual size of the bubble, see Fig. 6. The variation of the mass density with the bubble

radius is smaller than 3 % within the whole stability range of the bubble. That means that the equation of

motion does not change when a Skyrmion moves in various geometries, where confining potentials can alter

the size of the Skyrmion, i.e., the equation of motion is universal.
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pinning, nor on the shape of the magnetic element, nor on any other perturbations of the local potential.
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wave, i.e., both eigenmodes are present with a considerable amplitude. The theoretical model is able to de-

scribe the data well.

is independent of the actual size of the bubble, see Fig. 6. The variation of the mass density with the bubble

radius is smaller than 3 % within the whole stability range of the bubble. That means that the equation of

motion does not change when a Skyrmion moves in various geometries, where confining potentials can alter

the size of the Skyrmion, i.e., the equation of motion is universal.

13

NATURE PHYSICS | www.nature.com/naturephysics	 13

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS3234

© 2015 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys3234


1.505

1.51

1.515

1.52

1.525

1.53

1.535

1.54

28 30 32 34 36 38 40 42 44

ρ
[e

-8
kg

/m
2
]

R [nm]

Figure 6 |Evolution of the inertial mass density of a bubble Skyrmion as a function of its radius. The

mass density was derived from the frequencies of a simulated gyrotropic motion. The radius of the bubble at

rest R was varied using a global static out-of-plane bias magnetic field. Smaller or larger radii are unstable

with the used simulation parameters and geometry.

VI. DETERMINATION OF THE DÖRING MASS DENSITY

The Döring mass is so far the only known source of inertia in magnetism. This concept is based purely on

local magnetostatic energies. Here we calculate the magnitude of the Döring mass for our material and show

that non-local contributions have to be considered for explaining the inertia of skyrmionic spin structures, as

these non-local terms dominate the effective mass measured here.

The Döring mass density mD of a straight Bloch domain wall is calculated via mD = M2
s (1+α2)/(K⊥γ

2∆0).13

Here, α is the viscous (Gilbert) damping, ∆0 =
√

A/Ku,eff is the domain wall width parameter of a Bloch

wall with exchange stiffness A and effective out-of-plane anisotropy constant Ku,eff, and K⊥ is the transverse

anisotropy constant associated with a small tilt of the in-plane angle ψ of the spins from the energetically

favourable ψ = 0 Bloch wall towards the unfavourable ψ = π/2 Néel wall. This anisotropy K⊥ is often

approximated by K⊥ = µ0M
2
s /2,13 which is, however, only valid for a single domain wall in an infinite,

uniform, and magnetically homogeneous sample. For our multilayer stacks of finite thickness, we obtain K⊥

14

from numerically solving its stray field integral, only assuming a Bloch wall of the same width ∆0 in each

layer. For our specific multilayer stack, we find K⊥ = 0.07(2)µ0M
2
s , which is comparable to the effective

out-of-plane anisotropy Ku,eff = 0.09(1)µ0M
2
s . The in-plane tilt of the spins in the top- and bottommost

layers leads only to minor corrections to this result (increase of the mass density by less than 20 % if 10 of

the 30 layers are fully in-plane magnetised).

Superconducting quantum interference device (SQUID) measurements of our material yield a saturation

magnetisation of Ms = 1.19(3)× 106 A/m. The Bloch domain wall width parameter ∆0 is determined by

the comparing small angle X-ray scattering (SAXS) Bragg peaks of a stripe domain continuous film of our

magnetic multilayer with the scattering from a simulated domain profile. We find ∆0 = 11(2) nm. For the

damping we assume a conservative (i.e., large) estimate of α = 0.2, based on previous studies on similar Co/Pt

multilayers.15 With all these parameters, we arrive at a Döring mass density of mD = 3.5(8)× 10−8 kg/m2,

which is (within the error bars) a factor five smaller than the mass density of the bubble. A similar difference

in mass density between theoretical calculations and numerical simulations has been reported before,6 but

the discrepancy could not be explained. What we demonstrate here is that the larger mass originates from a

non-local contribution to inertia that arises from the Skyrmion topology.

VII. SKYRMION IN A WIRE

In the following section, we discuss the application of our Skyrmion particle model for the case of a wire

geometry model, which has recently been proposed as a memory device,16 in particular after the nucleation

and annihilation of Skyrmions became under control.17–19 In particular, we show the impact of the mass term

on this kind of dynamics.

We assume a magnetic wire in x direction with a confining parabolic potential in y direction (with stiffness

K). A driving force F (t) acts on the x position of the Skyrmion. The Skyrmion motion, according to Eq. (1),

is then given by

Mẍ−Gẏ +Dẋ = F (t) (3)

Mÿ +Gẋ+Dẏ +Ky = 0, (4)

where the parameters M,G, and D are the Skyrmion mass, the z component of the gyrovector, and
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The Döring mass is so far the only known source of inertia in magnetism. This concept is based purely on

local magnetostatic energies. Here we calculate the magnitude of the Döring mass for our material and show

that non-local contributions have to be considered for explaining the inertia of skyrmionic spin structures, as

these non-local terms dominate the effective mass measured here.

The Döring mass density mD of a straight Bloch domain wall is calculated via mD = M2
s (1+α2)/(K⊥γ

2∆0).13

Here, α is the viscous (Gilbert) damping, ∆0 =
√

A/Ku,eff is the domain wall width parameter of a Bloch

wall with exchange stiffness A and effective out-of-plane anisotropy constant Ku,eff, and K⊥ is the transverse

anisotropy constant associated with a small tilt of the in-plane angle ψ of the spins from the energetically

favourable ψ = 0 Bloch wall towards the unfavourable ψ = π/2 Néel wall. This anisotropy K⊥ is often
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damping we assume a conservative (i.e., large) estimate of α = 0.2, based on previous studies on similar Co/Pt

multilayers.15 With all these parameters, we arrive at a Döring mass density of mD = 3.5(8)× 10−8 kg/m2,

which is (within the error bars) a factor five smaller than the mass density of the bubble. A similar difference

in mass density between theoretical calculations and numerical simulations has been reported before,6 but

the discrepancy could not be explained. What we demonstrate here is that the larger mass originates from a

non-local contribution to inertia that arises from the Skyrmion topology.

VII. SKYRMION IN A WIRE

In the following section, we discuss the application of our Skyrmion particle model for the case of a wire

geometry model, which has recently been proposed as a memory device,16 in particular after the nucleation

and annihilation of Skyrmions became under control.17–19 In particular, we show the impact of the mass term

on this kind of dynamics.

We assume a magnetic wire in x direction with a confining parabolic potential in y direction (with stiffness

K). A driving force F (t) acts on the x position of the Skyrmion. The Skyrmion motion, according to Eq. (1),

is then given by

Mẍ−Gẏ +Dẋ = F (t) (3)
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Figure 7 | Simulated mass-dependent trajectories of Skyrmions in a wire. The graph shows the trajec-

tories of two Skyrmions, one massive (red line) and one massless (blue line). Both Skyrmions start at (0, 0)

and propagate to the right (positive x). Points along the lines indicate the position in time steps of 1 ns. Both

Skyrmions travel the same distance, but the massless one propagates significantly further perpendicular to

the wire axis.

the damping, respectively. We choose, consistent with our experimental data, M = 2× 10−21 kg, G =

10−12 kg/s, D = 7× 10−13 kg/s, and K = 3.5× 10−3 N/m (M and D are estimates from the lower lim-

its determined in the experiments). We move the Skyrmion, initially at rest, with a tp = 5ns long and

F = 3.5× 10−11 N strong single rectangular-shaped driving force pulse (where the strength is estimated

to yield a maximum velocity vx,max = F/D of 50m/s). We plot the trajectory of this Skyrmion in Fig. 7,

alongside with that of a massless Skyrmion under the same conditions.

We observe, in agreement with micromagnetic simulations,17 that the Skyrmion is deflected perpendicular

to the wire axis (y direction). This is the effect of the gyrocoupling vector. The Skyrmion exponentially

approaches its equilibrium y position with a characteristic time constant τy. A massive Skyrmion shows

additionally small oscillations on this way, which we do not discuss in detail as it is not relevant for the

displacement that we are interested in. After approaching equilibrium, the Skyrmion moves with a constant

velocity in x direction, until the driving force is switched off. Directly afterwards, the velocity in x is ex-

16

ponentially damped off, and in y direction the Skyrmion returns to y = 0 with an exponential function, see

Fig. 8.

We find, by analyzing trajectories for a large set of variable parameters M,G,D,K, F, and tp, that there

is one single time constant for the motion in y direction, τy, and one for the motion in x direction, τx. We

furthermore find that the numerical solutions can be well approximated by

τx =
M

D
+

G2

KD
(5)

τy =
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KD
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D
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(8)

where the function f(M,D,G,K) is zero for M = 0 and small compared to the other contributions to τy

elsewhere. The ≈ sign means that we neglect the small oscillations in y. From these analytical trajectories

we can read the scaling for the propagation length xmax of the Skyrmion and for its maximum displacement

ymax perpendicular to the wire:

xmax =
F

D
tp (9)

ymax = −GF

KD
(1− exp (−tp/τy)) . (10)

The displacement perpendicular to the wire becomes problematic as soon as the Skyrmion approaches the

edge of the wire and thus risks being expelled. In an application, one therefore has to define a critical dis-

placement ycrit that must not be exceeded in order to guarantee that no Skyrmion is lost. If ycrit < ymax, i.e.,

for short and strong driving forces, we can use Eq. (10) to derive the maximum pulse length tp,max that is still

in agreement with the constraint on ymax, as illustrated in Fig. 8. From tp,max we directly obtain the associated
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Figure 7 | Simulated mass-dependent trajectories of Skyrmions in a wire. The graph shows the trajec-

tories of two Skyrmions, one massive (red line) and one massless (blue line). Both Skyrmions start at (0, 0)

and propagate to the right (positive x). Points along the lines indicate the position in time steps of 1 ns. Both

Skyrmions travel the same distance, but the massless one propagates significantly further perpendicular to

the wire axis.
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Skyrmion propagation xmax:
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Under the given constraint of a maximum tolerable transversal displacement, the longitudinal propagation

of a Skyrmion scales linearly with the time constant τy. For the Skyrmion investigated in the main paper,

G2/K = 2.9× 10−22 kg and thus the large mass term found by us dominates both time constants according

to τx ≈ τy ≈ τ := M/D, and thus xmax ∝ M . That is, the mass of a Skyrmion leads to a centrifugal force

that is important to avoid the Skyrmions from being expelled when moved with short and strong excitations

along a wire. With the correct quasi-particle model for magnetic Skyrmions provided here, it is now possible

to obtain analytical expressions for the motion of Skyrmions. Such direct and accurate understanding of the

effect of all parameters is key to determine which parameters should be tuned in order to produce a device

with a certain behaviour.
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Figure 8 | Simulated trajectories of Skyrmions in a wire with critical transverse displacement. a,

Transverse displacement y(t) and b, longitudinal propagation x(t). The critical transverse displacement ycrit

is sketched with the grey dashed line in (a). The red line depicts the trajectory of a massive Skyrmion that is

displaced by a tp = 5ns long and F = 3.5× 10−11 N strong pulse. The maximum transverse displacement

is below the threshold. The blue line shows the trajectory of a massless Skyrmion, moved by the same pulse.

Now, the Skyrmion moves significantly over the threshold. To ensure that the Skyrmion is not expelled from

the wire, the pulse must be shorter (or weaker). The green line plots the trajectory of a massless Skyrmion,

excited with a tp = 0.9 ns long pulse. Now, the Skyrmion remains within the transverse tolerances. The

propagation along the longitudinal direction, however, is much shorter for the massless Skyrmion than for

the massive one, if both obey the restriction in y. The same holds if one reduces the pulse strength instead of

the pulse length.

VIII. EXPERIMENTAL METHODS

The sample was prepared as described in Refs. 12 and 14. The sample consists of a 350 nm thick silicon

nitride membrane of approximately 3 µm × 4 µm lateral dimensions. The back side of this membrane is

covered with a [Cr(5)/Au(55)]20 (thickness in nm) multilayer to block the incident X-rays (X-ray transmission
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Transverse displacement y(t) and b, longitudinal propagation x(t). The critical transverse displacement ycrit

is sketched with the grey dashed line in (a). The red line depicts the trajectory of a massive Skyrmion that is

displaced by a tp = 5ns long and F = 3.5× 10−11 N strong pulse. The maximum transverse displacement

is below the threshold. The blue line shows the trajectory of a massless Skyrmion, moved by the same pulse.

Now, the Skyrmion moves significantly over the threshold. To ensure that the Skyrmion is not expelled from

the wire, the pulse must be shorter (or weaker). The green line plots the trajectory of a massless Skyrmion,

excited with a tp = 0.9 ns long pulse. Now, the Skyrmion remains within the transverse tolerances. The

propagation along the longitudinal direction, however, is much shorter for the massless Skyrmion than for

the massive one, if both obey the restriction in y. The same holds if one reduces the pulse strength instead of

the pulse length.

VIII. EXPERIMENTAL METHODS

The sample was prepared as described in Refs. 12 and 14. The sample consists of a 350 nm thick silicon

nitride membrane of approximately 3 µm × 4 µm lateral dimensions. The back side of this membrane is

covered with a [Cr(5)/Au(55)]20 (thickness in nm) multilayer to block the incident X-rays (X-ray transmission
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Figure 9 | Sample topography as visible by the imaging X-rays. White indicates high X-ray transmit-

tance, black indicates high absorption. The object hole appears as a bright white circle. Within the object

hole the magnetic disk is found (dark gray). The disk is a circle with a small notch at the top, as indicated by

the yellow arrow.

at the used photon energy of 778 eV is less than 10−7). Three holes are etched in this layer down to the

silicon nitride membrane, comprising the object hole (800 nm wide) and two reference holes (50 nm diameter),

approximately 2 µm to 3 µm away from the object hole.

On the front side of the membrane, several features are prepared, aligned with respect to the object and

reference holes. Directly behind the object hole, a magnetic disk with 550 nm diameter with a small notch at

the top is positioned, see Fig. 9. The magnetic material is a Pt(2)/[Co68B32(0.4)/Pt(0.7)]30/Pt(1.3) (thickness

in nm) multilayer, which has been shown to be particularly suitable for pump-probe dynamic imaging of

intrinsically out-of-plane magnetised structures.12

Next, a Au nanowire with a 300 nm×300 nm square cross section is laid around the disk for magnetic ex-

citation. The cross section of this wire is chosen to achieve a 50Ω impedance, ensuring optimal transmission

of high frequency current pulses. The Au nanowire is shaped to a microcoil of 760 nm inner diameter, i.e.,

as tight as possible to the magnetic disk to generate a maximum magnetic field with a given current through

the coil. A current flowing through this microcoil generates a magnetic field at the position of the disk that is

reasonably uniform. The direction of the generated magnetic field is almost purely out-of-plane (z-direction).
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Figure 10 |Current pulse sent through the microcoil to excite the bubble dynamics. A positive current

generates a field that is favoring the magnetisation orientation inside the bubbles (black), whereas a negative

current generates a magnetic field that favors the white area surrounding the bubbles. Each coloured point

represents an acquired image and larger dots represent the images shown in Fig. 2c of the main paper.

The perpendicular anisotropy of the sample is not perfectly homogeneous. The anisotropy variation leads

to a modulation of the energy landscape for the presence of domain walls. That is, the energy of domain

walls is lower in some regions of the sample than in others. Hence, bubble domains are more likely to form

in these regions of lowest domain wall energy. We have utilized this effect to create a state with two bubbles

at deterministic rest positions by increasing the static external field slowly until all domains at positions of

higher energy have disappeared. The resulting field was −120 mT. At higher fields, all domains eventually

disappear and the sample attains to the uniform ferromagnetic state. At lower fields, more bubble domains

appear and elongate to stripe domains.

During the experiment, we injected bipolar current pulses with a current of ±52 mA through the microcoil.

The pulse shape is plotted enlarged in Fig. 10 and numerical data is provided in Table II. At maximum current,

this pulse creates a field at the position of the tracked bubble of Bz = ±35mT in the out-of-plane direction,

with a small in-plane component of Bx = −1.5mT and By = 6.5mT. The residual field gradient was

∂xBz = 8.7 µT/nm and ∂yBz = −45 µT/nm, pushing the bubble towards the centre of the disk.

Images of the induced bubble motion were recorded using time-resolved X-ray holography. Magnetic

images were obtained by illuminating the sample with circularly polarized X-rays at an energy tuned to the

Co L3 resonance (778 eV photon energy). At this energy, right-circularly polarized photons (positive helicity)
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Figure 10 |Current pulse sent through the microcoil to excite the bubble dynamics. A positive current

generates a field that is favoring the magnetisation orientation inside the bubbles (black), whereas a negative

current generates a magnetic field that favors the white area surrounding the bubbles. Each coloured point

represents an acquired image and larger dots represent the images shown in Fig. 2c of the main paper.

The perpendicular anisotropy of the sample is not perfectly homogeneous. The anisotropy variation leads

to a modulation of the energy landscape for the presence of domain walls. That is, the energy of domain

walls is lower in some regions of the sample than in others. Hence, bubble domains are more likely to form

in these regions of lowest domain wall energy. We have utilized this effect to create a state with two bubbles

at deterministic rest positions by increasing the static external field slowly until all domains at positions of

higher energy have disappeared. The resulting field was −120 mT. At higher fields, all domains eventually

disappear and the sample attains to the uniform ferromagnetic state. At lower fields, more bubble domains

appear and elongate to stripe domains.

During the experiment, we injected bipolar current pulses with a current of ±52 mA through the microcoil.

The pulse shape is plotted enlarged in Fig. 10 and numerical data is provided in Table II. At maximum current,

this pulse creates a field at the position of the tracked bubble of Bz = ±35mT in the out-of-plane direction,

with a small in-plane component of Bx = −1.5mT and By = 6.5mT. The residual field gradient was

∂xBz = 8.7 µT/nm and ∂yBz = −45 µT/nm, pushing the bubble towards the centre of the disk.
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t [ns] x [nm] y [nm] t [ns] x [nm] y [nm] t [ns] x [nm] y [nm]

−14.41(5) −1(2) −2(2) 4.46(5) −23(2) −9(2) 6.46(5) 15(2) −1(1)

0.00(5) −3(1) 0(1) 4.56(5) −19(1) −9(1) 6.52(5) 16(3) −1(6)

0.51(5) 0(2) −8(1) 4.66(5) −17(1) −2(9) 6.68(5) 22(2) −4(2)

1.02(5) −22(2) −21(3) 4.67(5) −15(3) −6(2) 7.15(5) 10(1) −12(2)

3.20(5) −33(1) −42(3) 4.75(5) −15(3) −7(3) 7.15(5) 14(1) −12(2)

3.43(5) −33(3) −43(2) 4.81(5) −19(2) −11(1) 7.51(5) 8(2) −12(2)

3.44(5) −34(2) −40(3) 4.86(5) −16(2) −9(3) 7.69(5) 2(2) −8(3)

3.63(5) −30(2) −36(2) 4.93(5) −11(3) −1(5) 8.14(5) −1(2) −6(2)

3.84(5) −21(1) −27(3) 5.04(5) −11(2) −3(2) 8.48(5) −2(2) −7(1)

3.96(5) −30(1) −21(2) 5.14(5) −13(2) 5(4) 9.10(5) −4(2) −3(2)

4.01(5) −25(1) −20(1) 5.23(5) −11(3) 3(2) 10.10(5) −4(2) −1(1)

4.10(5) −25(2) −16(2) 5.24(5) −8(2) 3(2) 11.05(5) −1(2) −2(2)

4.17(5) −25(2) −16(3) 5.43(5) −6(3) 9(4) 12.12(5) −2(1) −5(2)

4.19(5) −23(2) −16(2) 5.43(5) −3(2) 4(2) 13.10(5) 1(4) 3(5)

4.22(5) −22(1) −15(1) 5.67(5) 0(5) 7(2) 13.14(20) 7(2) −1(2)

4.29(5) −18(1) −9(2) 6.13(5) 15(2) 5(3) 14.10(5) 3(1) −2(2)

4.38(5) −21(2) −9(1) 6.14(5) 17(2) 8(8)

Table II |Numerical values of the trajectory of the bubble, including estimated errors (standard deviation).

The data points corresponding to the images shown in Fig. 2c of the main paper are printed bold.

are absorbed more (less) if the magnetisation of the sample is parallel (anti-parallel) to the photon propagation

direction. The reverse is true for left-circularly polarized photons (negative helicity). This effect is called X-

ray magnetic circular dichroism. Hence, if we record a transmission image of the sample at this energy with

right and with left circular polarisation and subtract the images, we obtain an image with purely magnetic

information, where regions of positive net transmission (white) indicate that the magnetisation is pointing

22

anti-parallel to the propagation direction of the incident beam, whereas regions of negative net transmission

(black) indicate that the magnetisation is pointing in the opposite direction. This is how the magnetic images

shown are to be interpreted.

To obtain such a transmission image, we use X-ray holography, i.e., we record the far field scattering

pattern of the transmitted photons. This far field scattering pattern is related to the sample transmission

function through a Fourier transform. This Fourier space information is complex-valued, while the detector

can only record the amplitude. To measure the phase information, which is vital for a successful reconstruction

of the original transmission function, the two small reference holes serve as point-like sources for reference

beams. The interference of these reference beams with the primary beam from the magnetic sample shifts

the phase information to a detectable amplitude modulation. The reconstruction of such a hologram is then

obtained via a single inverse Fourier transform.20

Time-resolved imaging was achieved by using short (50 ps long) bunches of X-rays with a precisely defined

repetition rate. We used the exact same repetition frequency for the injected current pulses, such that the X-

rays arrived always at precise time delay with respect to the start of the current pulse. To obtain an image with

good contrast, we had to integrate over approximately 109 X-ray pulses.

The images of the movie were recorded one-by-one. That is, after completing the recording of an image

corresponding to time delay t1, we changed the arrival time of the current pulse to record another image

corresponding to a time delay t2. The series {t1, t2, t3, ..., tn} was chosen non-chronologically (e.g., t3 <

t1 < t2) to ensure that the changes between succeeding frames in the time-sorted movie are truly dynamical.

One major advantage of X-ray holography is that the imaging is inherently insensitive to drift: because the

reconstruction of the real space information involves a Fourier transform of the recorded data, a drift of the

sample with respect to the detector translates to a pure phase shift in the reconstruction. That is, a drifting or

vibrating sample reduces the overall contrast (because the final image is an average of many images that are

slightly phase-shifted with respect to one another), but the location of the reconstructed information does not

change.
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Table II |Numerical values of the trajectory of the bubble, including estimated errors (standard deviation).

The data points corresponding to the images shown in Fig. 2c of the main paper are printed bold.

are absorbed more (less) if the magnetisation of the sample is parallel (anti-parallel) to the photon propagation

direction. The reverse is true for left-circularly polarized photons (negative helicity). This effect is called X-

ray magnetic circular dichroism. Hence, if we record a transmission image of the sample at this energy with

right and with left circular polarisation and subtract the images, we obtain an image with purely magnetic

information, where regions of positive net transmission (white) indicate that the magnetisation is pointing
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anti-parallel to the propagation direction of the incident beam, whereas regions of negative net transmission

(black) indicate that the magnetisation is pointing in the opposite direction. This is how the magnetic images

shown are to be interpreted.
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Time-resolved imaging was achieved by using short (50 ps long) bunches of X-rays with a precisely defined

repetition rate. We used the exact same repetition frequency for the injected current pulses, such that the X-

rays arrived always at precise time delay with respect to the start of the current pulse. To obtain an image with

good contrast, we had to integrate over approximately 109 X-ray pulses.

The images of the movie were recorded one-by-one. That is, after completing the recording of an image

corresponding to time delay t1, we changed the arrival time of the current pulse to record another image

corresponding to a time delay t2. The series {t1, t2, t3, ..., tn} was chosen non-chronologically (e.g., t3 <

t1 < t2) to ensure that the changes between succeeding frames in the time-sorted movie are truly dynamical.

One major advantage of X-ray holography is that the imaging is inherently insensitive to drift: because the

reconstruction of the real space information involves a Fourier transform of the recorded data, a drift of the

sample with respect to the detector translates to a pure phase shift in the reconstruction. That is, a drifting or

vibrating sample reduces the overall contrast (because the final image is an average of many images that are

slightly phase-shifted with respect to one another), but the location of the reconstructed information does not

change.
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IX. DATA ANALYSIS

We have used the absence of drift to track the motion of the bubble with extremely high accuracy. The

bubble is defined as a region of connected pixels with common below-average intensity (i.e., pixels which

appear black in the image). The centre of the bubble is obtained by calculating the first statistical moment

(centre of “mass”) of all pixels of the bubble. This statistical method determines the centre with much higher

accuracy than the actual spatial resolution (which is about 40 nm for the reconstruction of the smaller reference

hole in our case14). The tracking precision is set by a statistical average and limited only by the noise level.

Since noise in X-ray holographic reconstructions has generally a long periodicity, the noise variation across

the bubble is small. We estimate the precision (i) by evaluating the reconstructions from both references

independently and assuming that the difference corresponds to one standard deviation, and (ii) by adding a

conservative estimate of the average spread of the data of 1.4 nm (which was derived by assuming a linear

trajectory in the time interval t ∈ [3.44 ns, 5.67 ns] and by calculating the standard deviation of the data from

a linear fit). This results in an average spatial accuracy of 2.3 nm for the determination of the centre of the

bubble.

The bubble trajectory is described by Eq. (1) of the main article. The solution of this equation of motion

is a coherent superposition of two damped oscillations (with eigenfrequencies ω1,2, damping time constants

τ1,2, and complex amplitudes A1,2) around an equilibrium position r0:

r(t) = A1 exp(iω1t− t/τ1) + A2 exp(iω2t− t/τ2) + r0(t), (13)

Here, the vector R = (X, Y ) is conveniently parametrised by the complex number r = X + iY . The

equilibrium position r0 is time-dependent due to an effective dynamical magnetic field gradient during the

pulse. The two amplitudes of the gyrotropic modes are defined by the initial position and velocity. All

parameters of Eq. (13) are determined from a fit to the experimental data, which is visualised by a coloured,

solid line in Fig. 3 of the main article.

In the fit, data points with t < 6 ns are weighted by half to compensate for the fact that there are signif-

icantly more data points in that region than at larger time delays. We include only data from the gyrotropic

part of the trajectory (data points with t > 4.5 ns). As outlined in the Supplemental Material of Ref. 6, the

ratio of the damping strengths equals the ratio of the respective frequencies, that is, τ2 = τ1ω1/ω2. The

24

equilibrium position r0 is shifted by a field gradient. The applied field pulse, of which only the negative

part coincides with the fit interval, has a weak gradient, and more significantly, the negative Bz during the

pulse causes a modification of the sample magnetisation, in particular a shrinking of the second bubble. The

modification of the stray field due to this shrinking leads to an effective field gradient of known direction

∂xB
(b)
z /∂yB

(b)
z = −1.5, ∂xB

(b)
z > 0, as determined from the observed positions of the two bubbles, but un-

known strength. For simplicity, we assume instantaneous modification of the second bubble by the field pulse,

and we approximate the pulse by a step function with a step at t1 = 6.45 ns, which equals the time where

the real pulse decays to half its maximum value after being switched off. We therefore have two distinct

constant values r1 := r0(t < t1) and r2 := r0(t ≥ t1), the latter corresponding to the static equilibrium

position, which is determined from the average of all positions after t > 9.5 ns. The value for r1 is ob-

tained from a fit to the data, and we constrain the parameters A1 and A2 for the two fit regions t < t1 and

t ≥ t1 to ensure the continuity of the total function in its value and its first derivative. We obtain the best

fit with ω1 = 1.00(13)GHz, τ1 = 3.2(6) ns, ω2 = −1.35(16)GHz, τ2 = 2.3(6) ns, and r1 = x1 + iy1 with

x1 = 5.1(8) nm and y1 = −10.2(15) nm.

The determined frequencies can be used to calculate the mass M of the bubble and the potential stiffness

K. Specifically, the equation of motion of the bubble (Eq. (1) of the main paper) can be written in scalar

complex coordinates r as

−Mr̈ + (D + iG) ṙ −Kr = 0. (14)

This is the equation of a damped harmonic oscillator, with the well-known solution

r(t) = A exp(iω̄1t) + B exp(iω̄2t) (15)

with

ω̄1,2 = iη ±
√

ω2
0 − η2, (16)

η = − 1

2M
(D + iG), (17)

ω0 =
√

K/M. (18)

The complex frequencies ω̄1,2 = ω1,2 + i/τ are measured in the experiment. To extract the mass parameter,
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we use the sum of the real frequencies:

ω1 + ω2 = Re(ω̄1 + ω̄2) (19)

= Re(G/M − iD/M) (20)

= Gz/M. (21)

Therefore,

M = G/(ω1 + ω2), (22)

where the z-component G of the gyrocoupling vector is obtained from static magnetometry measurements

(Ms = 1.19(3)× 106 A/m), the thickness of the magnetic material (tCo = 12.0(1) nm), and the Skyrmion

number (N = 1) through

G = −4πNtCoMs/γ (23)

= −1.03(2)× 10−12 N/m/s. (24)

We note that the previous equations are based on a definition of frequencies as positive if they correspond to

counter-clockwise motion, which is opposite to the definition used in Ref. 6.

Due to the large uncertainties in the frequencies, and in particular of the frequency sum Σω = (ω1+ω2) =

−0.4(2)GHz, we cannot determine a meaningful upper limit for the inertia of the bubble: within the error

bars, Σω = 0 and thus |M | = ∞ is possible. Also, the sign of Σω, and thus the sign of M , are not conclusively

determined by the data. However, we can derive a highly certain lower limit (confidence 99.999 94 %) for

the magnitude of the inertial mass, |M | > MLL. This is possible because M scales inversely with Σω, and

a upper limit for |Σω| therefore relates to a lower limit in M . Specifically, this lower limit is derived by

MLL = |G|/(|Σω| + 5σ(Σω)), where σ(Σω) denotes the standard deviation of Σω. The lower limit for the

areal mass density ρ, defined as the mass divided by the area of the domain wall of the bubble (circumference

times thickness), is given by ρLL = MLL/(2πtCor̄), where r̄ = 50(10) nm is the average radius of the bubble

and tCo = 12.0(1) nm is the total CoB thickness. Therefore, ρLL = 2.0(4)× 10−7 kg/m2 (where the error bar

represents our measurement uncertainty regarding the size of the bubble).

So far, our method relies on a parabolic approximation for the potential in which the bubble gyrates.

In reality, however, the potential can deviate from this approximate case. As detailed in Supplementary

26

Information V, our method of calculating the mass is robust against perturbations of the potential, provided

that the resulting trajectory has a functional form that is consistent with our two-frequency theoretical model.

Finally, we can estimate the dipole moment of the bubble d = 2.1(4)× 1016 Am2 given by the product of

the bubble area A = 7(3)× 10−15 m2 with the total CoB thickness tCo, the saturation magnetisation Ms, and a

factor 2 to account for the fact that the difference between the magnetisation of the inner and of the outer area

of the bubble is 2Ms. To shift a magnetic dipole in a parabolic potential by the distance r1, a field gradient of

∂rBz = Kr1/d is required. Our fit values show the presence of a strong gradient ∂xB
(r1)
z = 90(50) µT/nm

and ∂yB
(r1)
z = −170(100) µT/nm during the negative part of the pulse. We can write this field gradient as a

superposition of the gradient of the applied pulse excitation and an extra gradient. We attribute the presence

of this extra gradient to the shrinking of the second bubble during the negative field pulse and to a small

additional contribution from the re-alignment of the in-plane components of the spins near the surfaces all

over the disk. These in-plane components of the spins near the surfaces are expected in our material due to

its relatively small perpendicular anisotropy constant expressed by a quality factor of Q = 0.86(6), which is

defined as the perpendicular anisotropy constant Ku normalised to the magnetostatic energy µ0M
2
s /2.
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