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Abstract

The buoyancy-driven interpenetration of two immiscible fluids in a differentially heated inclined

channel is investigated by solving the Navier-Stokes, the continuity and the energy equations along

with CahnHillard equation to track the interface. Fluids are separated by a partition and suddenly

allowed to mix under the action of gravitational force. The governing equations are solved on

staggered grid finite volume approach with second order accuracy in time integration. A parametric

study is conducted to investigate the effects of Reynolds number, Bond number, Marangoni number,

density ratio, viscosity ratio and temperature difference between the walls (∆T ) on flow dynamics of

interface instability between two immiscible fluids. Results shows that increasing Reynolds number,

Bond number, (∆T ) , density ratio and decreasing viscosity ratio destabilizes the flow dynamics

by increasing the intensity of vortical structures and‘mixing’ of the fluids. The flow dynamics

of vortical structures are altered by temperature gradient between the walls in comparison with

isothermal system. The critical Bond number is identified as beyond which the flow dynamics

becomes unstable leading to increasing the mixing of the fluids. The present results are matching

well with the results available in the literature.
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Chapter 1

Introduction

The interpenetration of two immiscible fluids in an confined inclined channel under the action of

gravitational force is frequently encounter in many industrial and natural phenomena and thus

has been investigated by several authors in the past research. Consider two immiscible fluids having

different density and viscosity occupying the upper and lower half of an inclined channel and initially

separated by a partition. At time, t = 0, the partition is suddenly removed and the fluids are allowed

to mix by the action of the gravitational force. Several problem had been studied in past based on

isothermal and non isothermal system with immisicible fluid in different types of geometry. The

influence of combined buoyancy and thermal convection in immiscible liquid layers occurs in many

industrial applications, such as alloying techniques, processing of ceramics and semiconductors that

frequently involves molten and gaseous phases.

1.1 Litrature survey

In litrature survey analysis of two immiscible fluid had done by several anthers , e.g.[1, 2, 3, 4, 5, 6]

This problem is frequently referred to as the “lock-exchange” problem [3, 7, 8, 9]. This phenomenon

not only plays an important role in the design of chemical and petroleum engineering processes [1, 2],

but also helps in understanding various natural systems in oceanography and atmospheric sciences

[10].

The “lock-exchange” problem Figure 2.1 has been investigated experimentally [3, 11, 12, 13, 14]

and numerically [9, 5] by considering fluids having equal viscosity, although viscosity differential

between fluids can have significant effect on the dynamics of the unsteady mixing process, which

was recently investigated by Redapangu et al. [6]. The dimensionless parameters characterizing the

flow in this problem are density contrast characterized by Atwood number, At ≡ (ρ1−ρ2)/(ρ1 +ρ2),

the tilt angle, θ (measured from horizontal) and the viscosity ratio of the two fluids, µr(≡ µ1/µ2),

wherein ρ1, µ1 and ρ2, µ2 are the densities and viscosities of fluids ‘1’ and ‘2’, respectively. It is

important to note here that all the above mentioned studies are for isothermal systems, although in

most of the industrial applications this phenomena encounter with temperature gradient between the

fluids and also in geometry having differentially heated boundaries. This is the subject of the present

investigation. However, we shall discuss the dynamics associated with the isothermal systems first

before discussing the previous works on non-isothermal systems.
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1.1.1 Isothermal system

In isothermal “lock-exchange” flows [12], three types of flow regimes and mixing patterns were

observed depending on the values of the tilt angle. In channel with tilt angles (90◦ ≥ θ ≥ 25◦),

increasing θ decreases the magnitude of the front velocity of the high and low density fluids moving

in the opposite directions. The front velocity (Vf ) depends on the local density contrast across

the interface. In this regime, flow and mixing are influenced by two distinct processes due to the

components of the gravitational force along the axial and transverse directions of the channel. The

former one accelerates the two fluids into each other at comparable velocities. During this motion,

the interface separating the two fluids becomes unstable giving rise to the Kelvin-Helmholtz(KH)

type instabilities, and consequent transverse mixing, which in turn decreases the front velocity.

However, later one has an opposite effect by acting to segregate the two fluids and increases the

front velocity. For lower tilt angles (25◦ > θ > 8◦) the front velocity is nearly constant, with a value

approximately equals to 0.7
√
Atgd, where g is the gravitational acceleration and d is a characteristic

dimension (diameter of the pipe considered). For near horizontal channel (θ < 8◦) the flow transitions

to a third regime where the two fluids move as counter-current Poiseuille flows; the front velocity

increases with increasing the value of the tilt angle. In this regime, the flow dynamics is a result

of the balance between buoyancy and wall friction. Hallez and Magnaudet [9] numerically studied

the buoyancy-induced mixing of two fluids in circular, rectangular and square geometries, and found

that the flow dynamics are more coherent and persistent in two than in three dimensions, which in

turn give rise to more intense mixing and long-lasting flow structures in two-dimensional than in

three dimensional geometries. Sahu and Vanka [5] investigated interpenetration of two immiscible

fluids in a tilted channel using a lattice Boltzmann method (LBM). They conducted a parametric

study by varying Atwood number, Reynolds number, tilt angle and surface tension. Their results

compared well with the previous experimental results [3, 11, 12]. Meiburg and co-workers [15, 16]

also studied the “lock-exchange” flows in the context of turbidity currents. Next we discuss the

related works conducted on non-isothermal systems.

1.1.2 Non-isothermal systems

Several authors[17, 18, 19, 20, 21] investigated the effects the thermal convection in multiphase

flows involving immiscible fluids by considering the temperature gradient along and normal to the

interface. Prakash & Koster [17] studied thermal convection of two immiscible liquids in a container,

which is differentially heated along the interface. They found that the flow pattern observed in their

experiment agrees well with those obtained theoretically. Liu et al. [18] numerically studied the

thermocapillary convection in a rectangular channel having temperature gradient normal to the

interface of two immiscible liquids in the context of crystal growth. They found that the flow

structure and temperature field are symmetric with respect to interface. It was concluded that

by adjusting viscosity, conductivity of the fluids and thickness of the layers one could get desired

flow patterns. Koster & Nguyen [22] showed that the appearance of two counter-rotating natural

convection rolls in a system where the temperature at the left and right walls lie below and above

the density inversion temperature, or vice-versa. The unsteady laminar natural convection with

internal heat generation in rectangular container with water as a working fluid and temperature

gradient along the interface is investigated by Hossain & Rees[21]. The top and bottom walls are

2



considered to be adiabatic. The effects of both heat generation and variations in the aspect ratio

are investigated.

1.1.3 Miscible flow combination

Different type of studies have been conducted in miscible configurations such as displacement of

one fluid by another fluid in channels,pipes,core-annular flows,hele-show cells and porous media.

Experimentally studied density-driven instabilities between miscible fluids in a vertical Hele-Shaw

cell,effect of tilt angle θ and differential viscous fluid combination reported in [23, 24]. The fluid

having different density with more dense fluid is on top and less dense fluid on bottom subjected to

gravitational force. The gravitational force have two component acts in axial and transverse direction

which cause fluid to flow in channel. Increasing angle θ reduces transverse mixing of fluids. This

is because buoyancy forces across the tube section stabilizing the interface between the fluids and

reduces KelvinHelmholtz(KH) instabilities. In some of the stable system combination [25] gravity

forces plays very important role in flow dynamics. They observed that when the gravity forces

are neglected the flow dynamics does not depend on the direction of the displacement and when we

consider the gravity effect interface becomes flat and finger like structures are formed at intermediate

regime of channel. At this condition buoyancy and viscous forces are identical or balanced.

1.1.4 Immiscible flow combination

Sahu[26] Studied buoyancy induced in interpenetration of two immiscible fluids in tilted channel.

The fluid is considered as incompressible and performed the analysis for isothermal system using

lattice Boltzmann method (LBM). They observed when there is decrease in fluid viscosity it will

increases Reynolds number and magnitude of front velocity. They studied the effect of parameters

like Atwood number, Reynolds numbers, tilt angles and surface tension on flow dynamics between

immiscible fluid.

Liu and Villers[18, 19] carried out experimental study on different fluid combination. In rectan-

gular channel fluids are filled and side walls are heated at different temperature. Unrealistic fluid

combination like having equal diffusivity and viscosity are considered. It shows flow structure and

temperature field are symmetric in nature. (There will circulation from hot to cold wall and this is

caused interfacial surface tension and temperature). Two dimensional laminar natural convection

problem is studied in following work [20, 27, 28, 29]. The effect of instabilities is more when their

is variation in density than viscosity. Linear stability analysis of two fluids which are initially mo-

tionless, viscous immiscible are confined between horizontal isothermal solid surfaces and subject

to both density and surface-tension gradient(Marangoni)i.e. driving mechanisms is studied. It is

found that flow and temperature field strongly depend upon internal heat generation parameter

(absorption/generation) and wall temperature. When the fluids are heated from top, the buoyancy

mechanism is stabilizing for most wave numbers, including the critical one. Heating from bottom

leads to buoyancy driven flow for critical Marangoni number. when we consider density inversion

condition deformation of the interface was not strongly affected by density inversion parameter (I),

Rayleigh number(Ra), but it strongly affected by Marangoni effects (Ma), i.e., by thermocapillary

driven-flow.
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Redapangu et al.[30]studied the effects of viscosity differential on buoyancy-induced interpen-

etration of two immiscible fluids in a tilted channel using a two-phase lattice Boltzmann method

implemented on a graphics processing unit. The effects of viscosity differential on the flow structures,

average density profiles and front velocities are studied. Relatively stable fingers are observed for

high viscosity ratios. The intensity of the interfacial instabilities and the transverse interpenetration

of the fluids are seen to increase with decreasing viscosity differential of the fluids. The Navier Stokes

and continuity equations coupled to two convective-diffusion equations for the concentration of both

the scalars through concentration-dependent viscosity are solved using a finite-volume approach.

Here The pressure-driven displacement of one fluid (initially filled inside a channel) by another (in-

jected at the inlet) in a horizontal channel is studied. Both the fluids are the same, but consist of

two scalars in different proportion[31].

1.2 Motivation

In spite of the large number of studies that investigated thermal convection, mixing and interpene-

tration of two immisicible fluids in a inclined channel with temperature gradient have not be investi-

gated in literature. Also in most of the previous studies considered systems with stable temperature

gradient such that the lighter fluid overlays the heavier fluid. Hence the present investigation has

been motivated to understand the interface deformation for unstable system where a heavier fluid

is overlying a lighter one in an inclined channel having differentially heated walls.

1.3 Objectives of present study

The objective of present study is to understand the interface deformation for unstable system where

a heavier fluid is overlying a lighter one in an inclined channel having differentially heated walls.

The problem statement of the current study is summarized as follows,

• To study the effect of interface instability between two immiscible fluids in a inclined channel.

• To study the effect of Reynolds number on interface instability.

• To study the effect of surface tension.

• To study the effect of viscosity ratios.

• To study the effect of surface tension variation with temperature and density ratios.

4



1.4 Outline of the thesis

In the present work , the numerical simulation of tow immiscible fluids is conducted using Finite

volume method. The instability patterns arise in the flow due to gravity forces acting on channel

i.e. in axial and in transverse direction. A brief background relevant application and a extensive

literature survey on the problem considered and discussed in Chapter 1.

In Chapter 2, mathematical formulation of the current multiphase Finite volume method is for-

mulated. All the governing equation which used in numerical simulation is studied. Numerical

methodology used to solve the problem is discussed in this chapter.

The contours of Reynolds number, deferentially heated wall temperature, Bond number, vis-

cosity, Marangoni number,and density variation of fluids are plotted of two dimensional channel in

Chapter 3.

Finally, the whole study presented in summarised and concluded in Chapter 4.
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Chapter 2

Governing equations and

Numerical methods

Consider buoyancy-driven flow of two immiscible liquids in an inclined two-dimensional confined

channel of length, L and height, H having differentially heated rigid and impermeable walls as

shown in Figure 2.1 . The walls at y = 0 and y = H are maintained at temperature Th and Tc,

respectively, and the walls at x = (0, L) are adiabatic. The liquids are assumed to be Newtonain

and incompressible. A rectangular coordinate system (x, y) to model the flow dynamics, where x

and y denote the axial and transverse coordinates, respectively. The flow dynamics is governed by

continuity, incompressible Navier-Stokes equations along with energy equation. The diffuse interface

method [4] is used to track the interface separating the immiscible fluids; the Cahn-Hillard equation

for the volume fraction of the lighter fluid, C is solved for this purpose.

Figure 2.1: Schematic diagram presenting the initial equilibrium configuration. The aspect ratio of
the channel is 1 : 40.
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2.1 Governing equations

2.1.1 Continuity and CahnHilliard equations

It is assumed as unsteady two dimensional incompressible laminar flow between immiscible fluids (A

and B) with different density and viscosity. Similar to the VOF method, the volume fraction of one

of the fluids is used to indicate the composition of the two components in a volume element in the

domain. If the volume fraction of component A is denoted by C (0 ≤ C ≤ 1) (we have consider as

0 can be taken for heavier fluid and 1 for the lighter fluid),the local averaged density,viscosity and

thermal conductivity values given by,

ρ = CρA + (1− C)ρB

µ = CµA + (1− C)µB

K = CKA + (1− C)KB

In this case, when an amount of fluid A flows out of an interface volume element due to interfacial

diffusion, there will also be an amount of fluid B of the same volume that would enter the volume

element at the same time, and vice versa. It can be given by jB = −jA so the the volume diffusive

flux of the two species are of equal magnitude, but of opposite sign. It is therefore convenient to

introduce the notation j = jA and j = −jB .

The continuity equation given by,

∇ · u = 0 (2.1)

Convective CahnHilliard equation for volume fraction given by,

∂C

∂t
+ u · ∇C −∇ · j = 0 (2.2)

2.1.2 Momentum equation

The Navier Stokes equation,

ρ(
∂u

∂t
+ u · ∇u) = −∇p+∇ · (µ(∇u+∇uT )) + F (2.3)

In above equations, u = (u, v) denotes the velocity field in which u and v represent the axial and

transverse velocity components, respectively, p is the pressure field, t denotes time, and F is the

combined body and surface forces per unit volume, which include the gravity and surface tension

forces given by,

F =
φ∇C
Bo

(1−MT )− ρ~j, (2.4)

where ~j represents the vertical direction, φ is chemical potential, given by ε−1σαψ′C − εσα∆C,

wherein ψ(C) = C2(1− C2)/4 is the bulk energy density, σ is the coefficient of surface tension, and

ε is the measure of interface thickness, α is a constant [32]. This momentum balance has been widely

used in DI models. An attempt to combine a rough approach for the derivation of the CahnHilliard

equation for solenoidal velocity fields with that of the Navier Stokes equations has been presented

by Boyer, but it involves several approximations for a specific flow configuration.
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2.1.3 Energy equation

ρCp(
∂T

∂t
+ u · ∇T ) = ∇ · (K∇T ) (2.5)

Using Boussinesq approximation βA and βB are defined as,

β(A,B) = − 1

ρ(A,B)

(
∂ρ(A,B)

∂T

)
p

(2.6)

Now by varying the density of two fluids and the temperature difference at end wall, we will get

averaged density,viscosity and thermal conductivity of two fluids given by,

ρ∗ = C(1− β1∆T ) + (1− C)ρr(1− β2∆T ) (2.7)

µ∗ = (C + (1− C)µr)e
−T (2.8)

K∗ = C + (1− C)rk (2.9)

Where ρr density ratio ρB
ρA

, µr is viscosity ratio µB

µA
and rk conductivity ratio kB

kA
.

Following scales are used to nondimensionalize the governing equations,

X∗ = x
L , Y ∗ = y

L , U∗ = u
U , V ∗ = v

U , P ∗ = p
ρAu2 , µ∗ = µ

µA
,

T = T ∗(Th − Tc) + Tc

where the tildes removed from dimensionless quantities,Th and Tc are the temperatures of the hot

and cold walls, respectively; U is the characteristic velocity, given by
√
gH; g being the acceleration

due to gravity, µA, ρA and KA are the viscosity, the density and the thermal conductivity of fluid

A (lighter fluid) at the reference temperature, Tc respectively.

2.2 Non-dimensionalized form of equations

Continuity equation

∇ · u = 0 (2.10)

Volume fraction equation
∂C

∂t
+ (u · ∇)C =

1

Pe
∇ · (M∇φ) (2.11)

Momentum equation

ρ(
∂u

∂t
+ u · ∇u) = −∇p+

1

Re
∇ · (µ(∇u+∇uT )) +

ρ

Fr2
+
φ∆C

B0
(2.12)

Energy equation
∂T

∂t
+ u · ∇T =

1

RePr
∇ · (K∇T ) (2.13)
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Definitions and Concepts of dimensionless numbers

• Reynold number(Re)= The Reynolds number is defined as the ratio of inertial force to viscous

force. It signifies whether the flow is laminar or turbulent.

Reynold number(Re) = ρUH
µ Where, Velocity (U)=

√
gH

• Peclet number(Pe)= The peclet number is defined as the ratio of advective transport rate to

the diffusive transfer rate. It shows the transport phenomena of fluid in flow.

Peclet number (Pe) = LU
McΦc

Where, Mc and Φc are characteristic values of mobility and

chemical potential.

• Bond number(Bo)= The Bond number is a measure of the importance of surface tension forces

compared to body forces.

Bond number (Bo) = ρgL2

σ Where, L is characterstic length and σ is the surface tension

of the interface.

• Prandtl number(Pr)= Prandtl number is defined as the ratio of momentum diffusivity (kine-

matic viscosity) to thermal diffusivity.

Prandtl number (Pr) =
µCp

K

• Froude number(Fr)= It is defined as the ratio of a characteristic velocity to a gravitational

wave velocity. It can be defined as the ratio of a body inertia to gravitational forces.

Froude number (Fr) = U√
gH

• Marangoni number (Ma)= The Marangoni effect (also called the Gibbs Marangoni effect) is

the mass transfer along an interface between two fluids due to surface tension gradient.

Marangoni(Ma) = 1
σ0

dσ
dT

2.2.1 Initial condition and boundary

Initially at t=0, concentration of lighter fluid C=1, heavier fluid is C=0. Governing equations

(2.10-2.13) are solved using no-slip and no-penetration boundary conditions at all the walls and the

Neumann boundary conditions are imposed at the boundaries for concentration field. The walls at

y = 0 and y = 1 are maintained at temperature Th and Tc, respectively, and Neumann boundary

conditions for temperature are used at the rest of the boundaries. The numerical method used

in the present study is similar to the one of Ding et al. [4]. The reader is also referred to the

supplementary material of for an extensive validation of the present code. In addition, we have

ensured that convergence is indeed achieved upon mesh refinement.
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2.3 Numerical method

A staggered grid finite-volume approach is incorporated in order to solve the system of equations

(2.10)-(2.13). The scalar variables (the pressure and the volume fraction of the lighter fluid) are

defined at the cell-centers and the velocity components are defined at at the cell faces, respectively.

A weighted-essentially-non-oscillatory (WENO) scheme is used for discretization of the advective

term in Eq. (2.12), and a central difference scheme is used to discretize the diffusive term. The

Adams-Bashforth and the Crank-Nicholson methods are respectively used for the advective and

second-order dissipation terms in Eq. (2.11) is used in order to achieve second-order accuracy in the

temporal discretization. In the solver, the initial conditions are prescribed as discussed above. Then

the Cahn-Hillard equation (Eq. (2.12)) is first solved and the concentration filed is updated using

the velocity field at previous time-steps (nth step). The velocity field is then updated to next time

step ((n+ 1)th step) by solving Eq. (2.11) in conjunction with the continuity equation (Eq. (2.10)).

This process is repeated as the time progress.

Figure 2.2: The schematic diagram of staggered grid

The time dependent non linear coupled partial differential equations were solved by considering

a 701 × 41, 2001 × 121 and 2562 × 66 grid depending on the different values of aspect ratio.The

convergence of the numerical solutions was verified by mesh refinement. In order to accurately

describe gradients in boundary layers, a non uniform grid in both the x and y directions is used.

There will following advantages to used finite volume method like

1. Numerical stability will be better it can take ∆t longer steady state can reached faster.

2. For complex stability need jn+1 to get that we need all in one loop by making semi implicit

as we can solve ω and Ψ in two seperate loops instead of solving both simultaneously in one

loop.

In book of Oosthuizen [33] study numerical simulations of steady state free convection heat transfer

in closed channel , totally filled with one liquid or gas. There will be different instabilities when

channel field with one liquid or gas. Flow structure is different. Now when a channel contain gas

the convective heat transfer rate can be low and radiant heat transfer may be significant but some

gases absorb and emits radiation in such case energy equation has to be modified.
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Chapter 3

Results and Discussion

Buoyancy-driven mixing of two immiscible fluids in a inclined heated channel is studied numerically.

The heated wall is maintained at a constant surface temperature (Th) and it is greater than the fluids

temperatures. The top or bottom wall is considered as heated wall and side walls are insulated.

We studied effects of various parameters like Reynolds number, wall temperature, surface tension,

viscosity ratio, Marangoni number and density ratio on flow dynamics of interface instability.

3.1 Grid independence test

Figure 3.1: The contours of the volume fraction C at t= 40 obtained using grids (a)701 × 41,
(b)2001× 121 and (c)2562× 66.
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The contours of the volume fraction of the lighter fluid, C for a typical set of parameters are

plotted at t = 40 for different grids. It can be seen that the results for 2001 × 121 and 2562 × 66

are nearly the same. In view of this agreement obtained for the finer meshes, we opted to use 2562

and 66 grid points in the x and y directions, respectively for the rest of the calculations presented

in this thesis.

(a) (b)
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x

0

0.2

0.4

0.6
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1

Cx

701x41
2001x121
2562x66

0 10 20 30 40
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0

0.2

0.4

0.6

0.8

1

Cx

701x41
2001x121
2562x66

Figure 3.2: The axial variation Cx at t= 40 obtained using grids (a)701 × 41, (b)2001 × 121 and
(c)2562× 66. for (a)top wall heated case and (b)bottom wall heated case.
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3.2 Effect of Reynolds number

We begin the presentation of our results obtained by studying the effects of Reynolds number. The

spatio-temporal evaluations of the contours of the volume fraction of the lighter fluid, C are plotted

for Re = 50, 100, 200 and 1000 are plotted in Fig. 3.3, 3.4 respectively. In each panel the results

for heated top and bottom walls are plotted along with the isothermal case. It can be seen that due

to the gravitational force acting in the axial direction, proportional to gsinθ, of the finger of the

heavier fluids penetrates into the region of the lighter fluid in the negative axial (x) direction. In

order to satisfy the conservation of mass the lighter fluid then moves in the positive x direction into

the region of the heavier fluid. This motion of the heavier and lighter in the opposite directions leads

to the development of mixed type of Kelvin-Helmholtz (KH) and Rayleigh-Taylor (RT) instabilities,

which in turn give rise to the vortical structures which enhance the interpenetration of the fluids.

On the other hand, the fluids are segregated due to the gravitational force acting in the transverse

direction, proportional to gcosθ. Thus the resultant complex dynamics observed in this figure is due

to the competition of the gravitational force acting in the axial and transverse directions.

Figure 3.3: Comparison of different Reynolds number at t=40.

Figure 3.4: Comparison of different Reynolds number obtained by finite volume(FV) method using
2562 and 66 grid points in x and y direction respectively, for channel of aspect ratio 1:40 at t=100.
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Figure 3.5: Effect of Reynolds number on axial variation of depth-average Cx at t=40

(a) (b)

0 0.2 0.4 0.6 0.8 1
y

0.2

0.4

0.6

0.8

Cy

Isothermal
Top wall heated

Bottom wall heated

0 0.2 0.4 0.6 0.8 1
y

0.2

0.4

0.6

0.8

Cy

Isothermal
Top wall heated

Bottom wall heated

(c) (d)

0 0.2 0.4 0.6 0.8 1
y

0.2

0.4

0.6

0.8

Cy

Isothermal
Top wall heated

Bottom wall heated

0 0.2 0.4 0.6 0.8 1
y

0.2

0.4

0.6

0.8

Cy

Isothermal
Top wall heated

Bottom wall heated

Figure 3.6: Effect of Reynolds number on transverse variation of depth-average Cy at t=40
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Figure 3.7: Effect of Reynolds number on axial variation of depth-average Cx at t=100 as (a,b,c,d)
corresponds to Re=50,200,100,1000 respectively
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Figure 3.8: Effect of Reynolds number on transverse variation of depth-average Cy at t=100
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Inspection of Fig. 3.3 reveals that the presence of heated wall, irrespective of the situations

whether the top or bottom walls are heated, reduces the instabilities as compared to the isothermal

case due to thermal convection. As expected, the comparison of the top and bottom wall heated

cases shows that the flow dynamics is more unstable in case of bottom wall heated case. This is due

to the fact that when the bottom wall is hotter than the top wall, the fluids near the bottom wall

becomes lighter and moves in the upward direction due to the gravitational force, which enhance the

interpenetration of the lighter fluid into the region of the heavier fluid in the transverse direction. It

can also be seen that increasing Reynolds number increases the intensity of instabilities and small-

scale structures, which in turn increases the ‘mixing’ of the fluids. Close inspection of Fig 3.5(a) also

reveals that for lower value of Reynolds number at later times (see e.g. t = 100) Fig.3.7(a) the speed

of the heavier fluid is slower than that of the lighter fluid. This effect is more prominent for the top

wall heated case. However, for Re = 1000 the inertial effects is significant and the asymmetrical

effect observed for Re = 100, which arises due to thermal convection is minimized.

The axial variation of average concentration Cx along the length of the channel is shown in Fig.

[3.5-3.8] for Re = 50, 100, 200 and 1000. From these plots higher magnitude and more oscillations are

observed in isothermal flows than non isothermal flows at Re = 100. The magnitude and spreading

length increases with increase in Reynolds number. Higher magnitude and more oscillations are

observed in non isothermal flows than isothermal flows at high Reynolds number Re = 1000.
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3.3 Effect of wall temperature

Figure 3.9: Comparison of wall temperature counters obtained by finite volume(FV) method using
2562 and 66 grid points in x and y direction respectively, for channel of aspect ratio 1:40 at t=100
as (a),(b) corresponds to Re=558.6, 1000 respectively
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Figure 3.10: Effect of wall temperature on axial variation of depth-average Cx at t=100 fig
(a),(b)Re=558.6,1000 respectively

The counters shows that variation of wall temperature in Fig. 3.9 at t=100. It shows that

instabilities were reducing as temperature increase and its more in bottom wall heated case at

Re=1000. We studied convection at ∆T= 5,10,20 and 40 at Re=558.6,1000. Fig. 3.10 shows axial

variation of depth-average Cx at t=100, with ∆T=10,20 and 40. More focus will be on Re=1000

and which discussed is further in brief below at different time steps.
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Figure 3.11: The spatio-temporal evaluation of contours of the volume fraction of the lighter fluid,
C for different values wall temperature at (a) t = 40, (b) t = 60 and (c) t = 100
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Figure 3.12: Effect of heated wall temperature at different time t=40,60,100 with bottom heating
as (a),(b)and(c) at ∆T=20,40 respectively

As the thermal convection is more for bottom-wall heated case, we considered only this case to

investigate the effects of temperature difference between the top and bottom walls ∆T = Th − Tc
The spatio-temporal evaluations of C are plotted for K(A,B) =0.2 and 0.4 which correspond to

∆T = 200C and ∆T = 400C for β = 10−3. It can be seen that due to the increase in buoyancy

force with the increase in the temperature gradient between the wall, the intensity of the interfacial

instabilities increases. Close inspection of Fig. 3.11 also reveals that increasing ∆T (i.e increasing

buoyancy) increases the axial velocity of the fingers. Thus axial spreading length increases with

increasing ∆T . The axial variations of the transverse averaged volume fraction of the lighter fluid,

Cx for different valus of ∆T are shown in Fig. 3.12 This plot shows that the spreading length

increases with increasing in ∆T at every time.
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3.4 Effect of surface tension

Figure 3.13: Comparison of different Bond number t=40

Figure 3.14: Comparison of different Bond number obtained by finite volume(FV) method using
2562 and 66 grid points in x and y direction respectively, for channel of aspect ratio 1:40 at t=100

We investigate the effect of surface tension in Fig. [3.13-3.14]as t=40,100 respectively, where the

contours of the volume fraction of the lighter fluid, C are plotted for Bo = 100, 1000 and 100000

for isothermal, top-wall and bottom-wall heated cases. Increasing Bo means decreasing surface

tension, if we keep the other scale same. Rest of the parameter value are Re=1000,Ma=0, Pr=7,

θ = 600,Kr = 4.36,rd=1.4,µr=0.0031. It can be seen that for both the values of Bo considered the

flow dynamics is more stable in case of nonisothermal systems as compared to that of the isothermal

system. This is due to the fact that surface tension opposes the effect created by the gravitational

force in the axial direction. Like the gravitational force in the transverse direction, surface tension

prevents the motion of the fingers in the opposite direction. It can be observed that the interface is

almost stationary even at the later times for low value of Bo (high surface tension) considered. In this

case the effects of surface tension and gravitational force in the transverse direction counterbalance

with that of the axial component of the gravitational force. For Bo = 1000 (shown in Fig.3.14(b)) the

effect of surface tension is less as compared to Bo = 100 case (shown in in Fig. 3.14(a)). Therefore

although the interfacial instabilities appear, the intensity of these instabilities is much lower than

those observed in case of isothermal case. Close inspection also reveals that for higher Bo the axial

motion of the fingers becomes asymmetrical, and as the lighter fluid moves into the region of the

heavier fluid, a blob of the lighter fluid detached from the main finger, which moves in the upward

direction almost independently.
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3.5 Effect of viscosity ratio

Figure 3.15: Comparison of different Viscosity ratio obtained by finite volume(FV) method using
2562 and 66 grid points in x and y direction respectively, for channel of aspect ratio 1:40 at t=100
where fig (a,c,e)at µr=0.01 and(b,d,f)at µr=0.1

Figure 3.16: Comparison of different Viscosity ratio obtained by finite volume(FV) method using
2562 and 66 grid points in x and y direction respectively, for channel of aspect ratio 1:40 at t=100
where fig (a,c,e)at µr=1 and(b,d,f)at µr=10

The study was conducted based on different viscosity ratio as shown in counters [3.15-3.16] with

varying Bond number. From counters it mainly shows that as we increased viscosity beyond 10

stability increased more in wall heated case. There will be different fluid velocity of lighter and

heavier fluid. Stability is continuously increasing from µr=0.01, 0.1, 1 and 10.
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Figure 3.17: Effect of viscosity ratio on axial variation of depth-average Cx at t=100 as,
(a)(b)(c)and(d)µr=0.01, 0.1, 1, 10
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Figure 3.18: Effect of viscosity ratio on transverse variation of depth-average Cy at t=100,
(a)(b)(c)and(d) as µr=0.01, 0.1, 1, 10
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We investigate the effect of viscosity ratio. The contours of the volume fraction of the lighter

fluid, C for µr=0.01, 0.1, 1, and 10 are ploted in Fig. [3.15-3.16] at 100 respectively.It is to be noted

here that µr < 1 (µr > 1) represents the system where the heavier fluid is less (high) viscous. It

can be seen that increasing viscosity ratio has a stabilizing influence. A similar finding was also

observed by in case of pressure-driven flow in an inclined channel. It can also be seen that for µr ≤ 1

blob of lighter fluid is detached from the main finger of the lighter fluid and moves independently.

However, the dynamics is not observed for µr ≥ 1. The speed of the fingers is much lesser than

that of the isothermal case for µr=10. Fig. [3.17-3.18] shows the axial and transverse variation of

viscosity varying from µr=0.01, 0.1, 1, and 10. Oscillation were reducing as viscosity ratio increased

it implies stability increased. In this case the flow structure becomes more like two individual

Poiseuille flow and two stable fingers of the lighter and heavier fluids propagate in the upward and

download directions, respectively.
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3.6 Effect of Marangoni number and density ratio

Figure 3.19: Comparison of different Marangoni number and density Ratio obtained by finite vol-
ume(FV) method using 2562 and 66 grid points in x and y direction respectively, for channel of
aspect ratio 1:40 at t=100

Figure 3.20: Comparison of different Marangoni number and density Ratio obtained by finite vol-
ume(FV) method using 2562 and 66 grid points in x and y direction respectively, for channel of
aspect ratio 1:40 at t=50

Finally we have investigated the effects of Marangoni number and density ratio in Fig. [3.19-

3.20] where the contours of the volume fraction of the lighter fluid, C are plotted for isothermal

case, for different values of Ma=0, 0.1, and 0.3 and density ratio varying as 1.1, 1.132, 1.5 and 2.

All the results presented are correspond to the configuration when the bottom wall is heated. It

can be seen that increasing the value of the Marangoni number slightly increases the speed of the

propagating fingers and also increases the intensity of the instabilities and thereby increases the

‘mixing’ efficiency of the fluids. It can also be observed that increasing the density ratio increases

the spreading for all the cases.This is expected because the speed of the fingers depends on the local

density contrast across the interface. For density ratio, ρr=2.0 it can be observed that the flow

dynamics is completely dominated by the formation of the vortical structures which in turn give rise

to intense ‘mixing’ of the fluids.
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Chapter 4

Conclusions

The buoyancy-driven interpenetration of two immiscible fluids in a differentially heated inclined

channel has been investigated numerically. The effects of Reynolds number, Bond number, Marangoni

number, density ratio, viscosity ratio and temperature difference between the walls (∆T ) have been

reported. The following conclusions are derived from the investigations presented in this thesis.

• Interfacial instability which is mixture of Kelvin-Helmholtz (KH) and Rayleigh-Taylor (RT)

type instabilities have been observed due to motion of heavier and lighter fluids in the opposite

direction.

• The flow dynamics and instability patterns in non-isothermal systems are very different as

compared to those obtained in isothermal systems.

• The intensity of interfacial instabilities is very less as compared to those in isothermal case for

Re ≤ 200. This is due to thermal convection which acts to stabilize the flow.

• The bottom wall heated case is more unstable than the top wall heated for Re ≤ 200 due to

natural convection.

• The interfacial instability increases with increasing Reynolds number for both the isothermal

and non-isothermal cases.

• Intensity of instabilities increases with increasing the wall temperature. This is due to increase

in buoyancy force.

• Decreasing bond number (increasing surface tension) decreases the instability.

• The critical bond number is observed to be 100 for the set of parameter values considered

below which there is no instability.

• For the fixed set of parameter values, increasing viscosity ratio decreases the intensity of the

instabilities.

• Increasing Marangoni number increases the intensity of instabilities. This effect is significant

for higher density ratio.

• Increasing density ratio also increases the formation of vortical structures due to increase in

buoyancy force.
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[14] T. Séon and J. P. Hulin and D. Salin and B. Perrin and E. J. Hinch. Laser-induced fluorescence

measurements of buoyancy driven mixing in tilted tubes. Phys. Fluids 18, (2006) 041701.

[15] M. M. Nasr-Azadani, , and E. Meiburg. Turbidity currents interacting with three-dimensional

topography. J. Fluid Mech. 745, (2014) 409–443.

[16] M. M. Nasr-Azadani, B. Hall, and E. Meiburg. Polydisperse Turbidity Currents Propagat-

ing over Complex Topography: Comparison of Experimental and Depth-Resolved Simulation

Results. Comp. & Geosc. 53, (2013) 141–153.

[17] A. Prakash and J. N. Koster. Steady natural convection in a two-layer system of immiscible

liquids International Journal of Heat and Mass Transfer 40, (1997) 2799–2812.

[18] Q. S. Liu, B. Roux, and M. G. Velarde. Thermocapillary convection in two-layer systems.

International Journal of Heat and Mass Transfer 41, (1998) 1499–1511.

[19] D. Villers and J. K. Platten. Thermal convection in superposed immiscible liquid layers. Applied

Scientific Research 45, (1988) 145–152.

[20] A. Watson. The effect of the inversion temperature on the convection of water in an enclosed

rectangular cavity. Mechanical and Applied Math 25, (1977) 423–446.

[21] M. A. Hossain and D. a. S. Rees. Natural convection flow of water near its density maximum in

a rectangular enclosure having isothermal walls with heat generation Heat and Mass Transfer

41, (2005) 367–374.

[22] J. N. Koster and K. Y. Nguyen. Steady natural convection in a double layer of immiscible liquids

with density inversion International Journal of Heat and Mass Transfer 39, (1996) 467–478.

[23] J. Fernandez, P. Kurowski, P. Petitjeans, and E. Meiburg. Density-driven unstable flows of

miscible fluids in a Hele-Shaw cell J. Fluid Mech. 451, 239–260.

[24] T. Son, J.-P. Hulin, D. Salin, B. Perrin, and E. J. Hinch. Buoyant mixing of miscible fluids in

tilted tubes Phys. Fluids 16, (2004) L103–L106.

[25] R. Balasubramaniam, N. Rashidnia, T. Maxworthy, and J. Kuang. Instability of miscible

interfaces in a cylindrical tube Phys. Fluids 17, 052103.

[26] K. C. Sahu and S. P. Vanka. A multiphase lattice Boltzmann study of buoyancy-induced mixing

in a tilted channel Comp. & Fluids. 50, 199–215.

[27] R. K. P. Wang. Transient Buoyancy-Thermocapillary Convection in Two Superposed Immiscible

Liquid Layers. Numerical Heat Transfer Part A-applications - NUMER HEAT TRANSFER

PT A-APPL 30, (1996) 477–501.

[28] R. W. Zeren and W. C. Reynolds. Thermal instabilities in two-fluid horizontal layers. J. Fluid

Mech. 53, (1972) 305-327.

[29] Q. Chang and J. I. D. Alexander. Study of Marangoni-natural convection in a two-layer liquid

system with density inversion using a lattice Boltzmann model. Phys. Fluids 19, (2007) 102107.

26



[30] P. R. Redapangu, K. Chandra Sahu, and S. P. Vanka. A Lattice Boltzmann Simulation of

Three-Dimensional Displacement Flow of Two Immiscible Liquids in a Square Duct. Journal

of Fluids Engineering 135, (2013) 121,202–121,202.

[31] K. C. Sahu. Double diffusive effects on pressure-driven miscible channel flow: Influence of

variable diffusivity. International Journal of Multiphase Flow 55, (2013) 24–31.

[32] H. Ding, P. D. M. Spelt, and C. Shu. Diffuse interface model for incompressible two-phase flows

with large density ratios. Journal of Computational Physics 226, (2007) 2078–2095.

[33] P. H. Oosthuizen, D. N. P. D.), and D. Naylor. An Introduction to Convective Heat Transfer

Analysis. WCB/McGraw Hill, 1999.

27




