P, Murali Krishna
(2014)
Energetics and Passive Dynamics of Quadruped Robot Planar Running Gaits.
PhD thesis, Indian Institute of Technology Hyderabad.
Abstract
Quadruped robots find application in military for load carrying over uneven terrain, humanitarian
de-mining, and search and rescue missions. The energy required for quadruped robot locomotion
needs to be supplied from on-board energy source which can be either electrical batteries or fuels
such as gasolene/diesel. The range and duration of missions very much depend on the amount
of energy carried, which is highly limited. Hence, energy efficiency is of paramount importance in
building quadruped robots. Study of energy efficiency in quadruped robots not only helps in efficient
design of quadruped robots, but also helps understand the biomechanics of quadrupedal animals.
This thesis focuses on the energy efficiency of planar running gaits and presents: (a) derivation of
cost of transport expressions for trot and bounding gaits, (b) advantages of articulated torso over
rigid torso for quadruped robot, (c) symmetry based control laws for passive dynamic bounding and
design for inherent stability, and (d) effect of asymmetry in zero-energy bounding gaits.
Actions (login required)
|
View Item |