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We consider stochastic rotational dynamics of a single magnetic domain in an external magnetic
field, at constant temperature. Starting from the appropriate Langevin equation of motion, we cal-
culate entropy production along stochastic trajectories to obtain fluctuation theorems, by presenting
several possibilities of choosing conjugate trajectories. One of these choices gives entropy production
in the reservoir that is consistent with prediction from Fokker-Planck equation. We further show
the relation between heat absorbed and entropy production in the reservoir, using stochastic energy
balance. For a time-independent field, the magnetization obeys Boltzmann distribution, however,
also supports an azimuthal current making the dynamics inherently non-equilibrium. We use nu-
merical simulations to obtain distribution functions for entropy production along trajectories which
show good agreement with the detailed fluctuation theorem.

PACS numbers: 05.40.-a, 05.40.Jc, 05.70.-a

I. INTRODUCTION

With miniaturization of memory devices like the mag-
netic read head and random access memory, thermal
fluctuations start to play non-trivial role in their per-
formance, e.g., by activating magnetization reversal of
ferromagnetic clusters [1]. The impact of thermal noise
is stronger in smaller devices [2], with the intensity in-
versely proportional to system size. The thermally in-
duced magnetization fluctuations will act as a fundamen-
tal limit to the performance of submicron magnetoresis-
tive devices. Thus it becomes crucial to understand the
impact of thermal fluctuations, in order to reliably use
small magnetic devices [3–8].

Recent theoretical developments allows us to describe
equilibrium and non-equilibrium properties of small sys-
tems under strong thermal fluctuations in terms of
stochastic thermodynamics [9–11]. Defining stochas-
tic counterparts of thermodynamic observables, e.g.,
stochastic energy, work, heat, and entropy characterizing
individual trajectories in phase space relied on quantities,
statistical averages of which denote the thermodynamic
variables. Several equalities involving these quantities
have been derived in last two decades [12–19]. It was
identified that negative entropy producing trajectories
are a possibility, but exponentially suppressed with re-
spect to positive entropy producing trajectories and the
corresponding equality is known as detailed fluctuation
theorem [20–27]. A related integral fluctuation theorem,
and the Jarzynski equality that relates equilibrium free
energy difference to non-equilibrium work done was de-
rived [12, 23]. Many of these theorems have been verified
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against experiments on colloids and granular matter [28–
31], and successfully used to obtain free energy landscape
of bio-polymers like RNA [32, 33]. Stochastic thermo-
dynamics has recently been extended to describe active
Brownian particles that derives their motion using inter-
nal energy source or ambient fuel [34–38].

In a previous study, work distribution functions of a
single spin obeying Glauber dynamics was obtained un-
der various protocols of changing magnetic field [39]. The
focus of current paper is to study stochastic thermody-
namics of the simplest miniaturized magnetic system, a
single domain magnetic particle or macrospin, undergo-
ing Langevin dynamics in presence of an external mag-
netic field [40, 41]. A sufficiently small ferromagnetic
particle may have a single domain where all the spins
are aligned along a specific direction via the exchange
interaction. This super-paramagnetic particle at tem-
peratures below the blocking temperature, behaves like
a single spin entity with magnetization ~m. Due to the
small system size the dynamics of such a spin is strongly

influenced by the thermal noise ~h(t).

In the following section we present the Langevin dy-
namics of such a macrospin. Using Fokker-Planck equa-
tion we obtain the time-evolution of stochastic entropy
to show that upon averaging, the total entropy produc-
tion becomes positive as required by the second law of
thermodynamics. Starting from the stochastic equation
of motion, we then derive expressions for entropy produc-
tion in the system and in the heat bath along stochastic
trajectories. This allows us to derive fluctuation theo-
rems involving entropy production. We present several
possibilities of choosing the conjugate trajectories, and
discuss their implications. In presence of a constant mag-
netic field, the system shows a curious dichotomy. While
the axial component of probability current vanishes and
the probability distribution obeys Boltzmann statistics,
the azimuthal current remains finite [3], which in turn
supports a positive entropy production. We obtain the
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FIG. 1: (Color online) A typical trajectory of magnetization

~m in presence of a magnetic field ~H = Hẑ with H = 1 and a
Langevin heat bath at temperature kBT = 1, obtained from
numerical simulations. The arrow heads denote the direction
of motion.

probability distribution of entropy production, using nu-
merical simulations of the model. This distribution func-
tion obeys the detailed fluctuation theorem.

II. MODEL

The stochastic dynamics of a magnetic particle with

magnetization ~m under an external field ~H and in contact
with a heat-bath is described by the Landau-Lifshitz-
Gilbert (LLG) equation

d~m

dt
= γ ~m ×

[
~H + ~h(t)− η d~m

dt

]
, (1)

where γ denotes the gyromagnetic ratio. The Langevin
heat bath is characterized by the viscous dissipation

−η d~m/dt, and the Gaussian white noise ~h(t) the com-
ponents of which obey 〈hi(t)〉 = 0, 〈hi(t)hj(t′)〉 =
2D0δijδ(t− t′) with D0 = ηkBT/V , where T is the tem-
perature, and kB Boltzmann constant, and V denotes
the volume of the magnetic particle [3]. Here compo-
nents i, j denote the cartesian x, y, z coordinates. We as-

sume that the statistical properties of ~h(t) are isotropic.

In the above equation ~H denotes the conservative field
~H = −∂U/∂ ~m where U = −~m. ~H is the Gibb’s free en-
ergy per unit volume. The macrospin undergoes a relax-
ation dynamics in the Langevin heat bath, settling into

an average unidirectional precession around the field ~H.

We assume the amplitude of the magnetization m =
|~m| remains unchanged. The angular dynamics of the in-
stantaneous orientation of magnetization (θ, φ) on a unit

sphere determined by LLG equation can be written as

∂θ

∂t
= h′m(Hθ + hθ)− g′

m

sin θ
(Hφ + hφ)

∂φ

∂t
= g′

m

sin θ
(Hθ + hθ) + h′

m

sin2 θ
(Hφ + hφ)

(2)

with

g′ =
1/γ

m[(1/γ2) + η2m2]
, h′ =

η

(1/γ2) + η2m2
,

where Hθ = −(1/m)∂θU , Hφ = −(1/m sin θ)∂φU are
the components of external magnetic field such that
~H = θ̂Hθ+ φ̂Hφ, and hθ = hx cos θ cosφ+hy cos θ sinφ−
hz sin θ, hφ = −hx sin θ sinφ+ hy sin θ cosφ are the com-
ponents of stochastic fields. For generality, here we as-
sumed U(θ, φ). The statistical properties of cartesian co-

ordinates of Gaussian white noise ~h were given above. It
should be noted that the radial component of the stochas-
tic field hr = hx sin θ cosφ+ hy sin θ sinφ+ hz cos θ does
not appear in the angular motion of magnetization.

A. Fokker-Planck equation and entropy production

As the amplitude of magnetization |~m| is conserved
during the dynamics, its instantaneous orientation (θ, φ)
can be represented by a point on the unit sphere. A
statistical ensemble of such points on the surface of a
sphere can be described by surface density W (θ, φ, t).
The corresponding Fokker-Planck equation is expressed
as [3]

∂W

∂t
= −~∇Ω. ~JΩ, ~JΩ = θ̂Jθ + φ̂Jφ (3)

where the two-dimensional divergence on the surface of

the unit sphere ~∇Ω. ~JΩ = 1
sin θ

∂
∂θ (sin θJθ) + 1

sin θ
∂
∂φJφ, Ω

denotes a solid angle. The two components of dissipative
current are expressed as [3]

Jθ = m[h′Hθ − g′Hφ]W + k′∂θW

Jφ = m[g′Hθ + h′Hφ]W − k′

sin θ
∂φW. (4)

In the above relations, h′ and g′ play the role of mobility,
and k′ = D0m

2(h′2 + g′2) plays the role of diffusivity for
angular dynamics.

The non-equilibrium Gibbs entropy S =
−kB

∫
dΩW lnW (θ, φ, t) where dΩ = sin θ dθ dφ de-

notes solid angle, suggests a definition of time dependent
stochastic entropy of the system s(t) = −kB lnW (θ, φ, t)
where the total entropy S = 〈s〉 is the ensemble average
of the stochastic entropy [24]. Thus the rate of change
in entropy ṡ ≡ ds/dt is

ṡ

kB
= −∂tW

W
− ∂θW

W
θ̇ − ∂φW

W
φ̇

= −∂tW
W

+
Jθ θ̇ + Jφ sin θ φ̇

k′W
− ṡr
kB

(5)
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where

ṡr
kB

=
m

k′

[
h′(Hθ θ̇ +Hφ sin θφ̇) + g′(Hθ sin θφ̇−Hφθ̇)

]
=

1

mD0

[
c1(Hθ θ̇ +Hφ sin θφ̇) + c2(Hθ sin θφ̇−Hφθ̇)

]
.

(6)

The first step in Eq.(5) identifies the explicit and implicit
time dependences. The second step is obtained by using
Eq.(4) to replace ∂θW and ∂φW . In obtaining the second
step in Eq.(6) we used k′ = D0m

2(h′2 + g′2), and the re-
lations c1 = h′/(h′2 + g′2), c2 = g′/(h′2 + g′2). Note that
the expression ṡr consists of terms with dimensions of
torque times angular velocity, similar to dissipated work
that one obtains from usual Langevin dynamics of par-
ticles. Interpreting sr as the entropy production in the
reservoir, the rate of change in total stochastic entropy,

ṡt
kB

=
1

kB
(ṡ+ ṡr) = −∂tW

W
+
Jθ θ̇ + Jφ sin θ φ̇

k′W
. (7)

The total entropy production Ṡt = 〈ṡt〉 should be ≥ 0
by second law of thermodynamics. The averaging here
involves two steps, one over trajectories, and the other
over all solid angles Ω. The trajectory average of the
components of angular velocity 〈θ̇| θ, φ, t〉 = Jθ/W and

〈sin θ φ̇| θ, φ, t〉 = Jφ/W [24]. The conservation of proba-
bility leads to

∫
dΩ ∂tW = 0. As a result,

Ṡt = 〈ṡt〉 =

∫
dΩ

J2
θ + J2

φ

k′W
≥ 0, (8)

where the equality requires both Jθ and Jφ to be zero, a
result expected from the second law of thermodynamics.

B. Fluctuation theorems

Now we proceed to derive entropy production along
stochastic trajectories. Physically, entropy production
characterizes the irreversibility of a path. Consider the
time evolution of a macrospin from t = 0 to τ0 through

a path X = [θ(t), φ(t), ~H(t)], assuming for the moment

a time-dependent protocol of controlling ~H. The mo-
tion along this trajectory is governed by stochastic forces

via the coupling with Langevin heat bath. Let us di-
vide the whole trajectory into i = 1, . . . , N segments
of time-interval δt such that Nδt = τ0. The transi-
tion probability p+

i (θ′, φ′, t + δt|θ, φ, t) on i-th infinitesi-
mal segment is governed by the Gaussian random noise

at i-th instant P (~hi) = (δt/4πD0)1/2 exp(−δt~h2
i /4D0)

where ~h2
i = h2

x + h2
y + h2

z calculated at that instant. For
ease of expression, let us denote the time-evolution of

Eq.(2) using the form θ̇ = Θ(θ, φ, ~H) and φ̇ = Φ(θ, φ, ~H)

where θ̇ = ∂tθ and φ̇ = ∂tφ. Thus the transition prob-
ability on i-th segment p+

i = J 〈δ(θ̇ − Θ)δ(φ̇ − Φ)〉 =

J
∫
d~hiP (~hi)δ(θ̇−Θ)δ(φ̇−Φ). The integration over the

Dirac-δ functions are performed after writing ~hi in terms
of its spherical polar components with the constraint that
the radial part of the stochastic fluctuation is set to zero.
This is required as the magnitude of magnetization is
assumed to be constant. The quantity J denotes the
Jacobian of transformation J = det[∂(hθ, hφ)/∂(θ, φ)].
This can be evaluated easily within the Stratonovich dis-
cretization of Eq.2. The probability of a full trajectory

in time-forward evolution is P+ =
∏N
i=1 p

+
i .

It is possible to choose conjugate dynamics and tra-
jectories in several ways [11, 42]. In choosing the time-
reversed trajectory, let us first start from the angular dy-
namics Eq.(2). In order to characterize the irreversibil-
ity of time-forward path, we initiate the time-reversed
trajectory from the micro-state characterized by the fi-

nal value of control field ~H reached at the end of time-
forward path, and trace it back. Thus we consider the

time-reversed trajectory X† = [θ(τ0−t), φ(τ0−t), ~H(τ0−
t)], considering θ, φ and ~H as even functions under time
reversal [43]. The time-reversed trajectory includes re-

versal of sign of all the odd variables θ̇ and φ̇. The prob-
ability of time-reversed path may again be divided into
N segments such that the probability of full trajectory

P− =
∏N
i=1 p

−
i where p−i = J

∫
d~hiP (~hi) δ(θ̇ + Θ(τ0 −

t) ) δ(φ̇+ Φ(τ0− t) ). The Jacobian of transformation be-
ing independent under time-reversal drops out from the
ratio p+

i /p
−
i .

Thus the ratio of these two probabilities of the forward

and reverse trajectories is given by P+

P−
= exp(∆sr/kB)

where (see Appendix A)

∆sr
kB

=
1

mD0

∫ τ0

0

dt
[
Hθ(c1θ̇ + c2 sin θ φ̇) +Hφ

(
c1 sin θ φ̇− c2θ̇

)]
,

(9)

with c1 = h′/(h′2 + g′2), c2 = g′/(h′2 + g′2). Let us
assume that the trajectories considered above describe

evolution from initial steady state described by a dis-

tribution Wi(θi, φi, ~Hi) to a final state Wf (θf , φf , ~Hf ).
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We consider the quantity R = WiP+/WfP−, which de-
notes the ratio of probabilities of time-forward and time-
reversed evolution along all such trajectories. In a situ-
ation obeying time-reversal symmetry R = 1, denoting
equilibrium and hence produces no entropy. Deviation of
R from unity leads to entropy production.

The change in stochastic entropy of the system ∆s =
sf − si = kB ln(Wi/Wf ). This is a state function and
depends on the exact initial and final micro-states. On
the other hand, the change in entropy in the reser-
voir depends on the trajectory and is given by ∆sr =
kB ln(P+/P−) [44]. The total entropy change ∆st =
kB lnR = kB ln(WiP+/WfP−) = ∆s + ∆sr. This rela-
tion readily leads to the integral fluctuation theorem [11],
〈e−∆st/kB 〉 = 1. Note that in deriving this relation,∑
X ≡

∑†
X is used, meaning that the transformation

from time-forward path X to time-reversed path X† has
a Jacobian of unity [43]. Further, in a steady state the
total entropy change along a time-forward path ∆sf is
equal and opposite to that along the time-reversed path,
∆sf (X) = −∆sr(X

†). Using this, one obtains the fol-
lowing detailed fluctuation theorem [16, 23]

ρ(∆st) = e∆st/kBρ(−∆st). (10)

We present three more choices of conjugate trajectories
and their consequences. Instead of considering Eq.(2) as
the one governing dynamics, if we go one step back and
consider the original macrospin dynamics Eq.(1), we see

that both ~m and ~H are odd functions under time reversal.
Denoting the path probability of such an asymmetric re-

verse trajectory X† = [−~m(τ0−t),− ~H(τ0−t)] with P(1)
− ,

the ratio P+/P(1)
− = exp(∆s

(1)
r /kB) where

∆s
(1)
r

kB
=

c1
mD0

∫ τ0

0

dt
[
Hθ θ̇ +Hφ sin θ φ̇

]
. (11)

Similarly as above, it can be shown that ∆s
(1)
t = ∆s +

∆s
(1)
r obeys the integral fluctuation theorem. As the

external driving ~H in the present case is not symmet-
ric under time reversal, the detailed fluctuation theorem
will have the form ρ(∆st) = e∆st/kBρ†(−∆st) where ρ†

denotes the probability calculated along the conjugate
trajectory.

For the choice of conjugate trajectory in which ~H alone

changes sign such that X† = [~m(τ0 − t),− ~H(τ0 − t)], de-

noting the path probability of conjugate trajectory P(2)
− ,

one obtains the ratio P+/P(2)
− = exp(∆s

(2)
r /kB) where

∆s
(2)
r

kB
=

c2
mD0

∫ τ0

0

dt
[
Hθ sin θ φ̇−Hφθ̇

]
. (12)

Again, ∆s
(2)
t = ∆s + ∆s

(2)
r obeys the integral and the

appropriate detailed fluctuation theorems.
The third alternative is to consider conjugate trajecto-

ries in which ~m alone changes sign, i.e., X† = [−~m(τ0 −

t), ~H(τ0− t)]. Denoting the probability of conjugate tra-

jectory P(3)
− , one obtains P+/P(3)

− = 1, i.e., the corre-

sponding stochastic entropy for trajectory ∆s
(3)
r = 0.

The resultant total entropy ∆s
(3)
t = ∆s also obeys the

integral and detailed fluctuation theorems.
Among the various possible choices of entropy associ-

ated to stochastic trajectories, the definition of ∆sr in
Eq.(9) obtained from using the time-reversed trajectory
in (θ, φ)-space, directly leads to the expression ṡr in Eq.6
obtained from Fokker-Planck equation. Note that the
derivation of ṡr in Eq.6 does not depend on any partic-
ular choice of conjugate trajectory, rather only on the

dynamics. Also, ∆sr = ∆s
(1)
r + ∆s

(2)
r . In the following,

we further explore meaning of entropy production in this
system.

C. Detailed balance condition

Let us now discuss the detailed balance condition, and
its implications. In presence of an uniaxial external field,
the potential energy per unit volume U(θ) = −Hm cos θ,
i.e., Hφ = 0 as ∂φU = 0. Assuming the same uniaxial
symmetry in probability distribution W (θ, t) as in po-
tential energy U(θ), ∂φW = 0, leading to a Jφ that is
independent of φ such that ∂φJφ = 0 (see Eq.4). Thus
the Fokker-Planck equation reduces to

∂W (θ)

∂t
=

1

sin θ

∂

∂θ
(sin θ Jθ), (13)

an equation independent of the variable φ. There-
fore, the equilibrium detailed balance in the θ-
space requires vanishing of the dissipative current
Jθ = 0 leading to the canonical Boltzmann distri-
bution W = W0 exp[−U(θ)/kBT ]. Note that this
equilibrium allows for the presence of a divergence-
less current in the azimuthal direction Jφ =
−g′(∂θU)W0 exp[−U(θ)/kBT ] [3]. This is due to the
breakdown of time-reversal symmetry by external mag-
netic field leading to an average unidirectional preces-
sional motion along φ. In this state, though Jθ = 0,
Jφ 6= 0. The loss of time-reversal symmetry leads to

non-equilibrium entropy production Ṡt > 0 [Eq.(8)], al-
though maintaining the equilibrium distribution in W (θ).
In Ref.[45] an illustrative example, similar to the current
situation was considered, in which a two-dimensional par-
ticle in a harmonic trap obeying Boltzmann distribution
undergoes rotational motion due to externally applied
torque.

Let us now obtain the simplified expression of entropy
production in reservoir, in presence of the uniaxial sym-
metry such that Hφ = 0. The expressions for h′ and g′

lead to the identities c1 = ηm2, c2 = m/γ. Using these
relations and D0 = ηkBT/V in Eq.(9) one finds

∆sr
kB

=
mV

kBT

∫ τ

0

dt

[
Hθ θ̇ +

1

mηγ
Hθ sin θ φ̇

]
. (14)
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FIG. 2: (Color online) (a) The data points show equilibrium
probability distribution W (θ) obtained from numerical inte-
gration of Eq.(2) of magnetization amplitude m = 1 at Hẑ
with H = 1, and kBT = 1. The dashed line denotes the ana-
lytic function W0 exp(cos θ) describing the equilibrium distri-
bution. (b) Azimuthal current Jφ as a function of polar angle
θ.

For a time-independent external field ~H = Hẑ, the
initial and final states are denoted by the equilibrium
probability distribution Wi,f = W0 exp[−U(θi,f )/kBT ],
and the change in system entropy

∆s

kB
= [U(θf )− U(θi)] = −Hm[cos θf − cos θi]. (15)

D. Stochastic energy balance

To calculate the stochastic energy gain dU/dt =

− ~H.d~m/dt − ~m.d ~H/dt, we need a closed form expres-
sion for d~m/dt. By taking a cross product of ~m with
both sides of the LLG equation, Eq.(1), one obtains

~m× d~m

dt
= γ ~m× (~m× ~He) + ηγm2 d~m

dt
,

where ~He = ~H+~h(t), and we used ~m.d~m/dt = 0 as m2 is
constant. Using this relation back in the LLG equation,
we get

d~m

dt
= mg′ ~m× ~He − h′ ~m× (~m× ~He). (16)

Then it is straightforward to show that the rate of change
in energy U̇ ≡ dU

dt is given by

U̇ = −mg′ ~H.(~m× ~h) + h′ ~He.[~m× (~m× ~H)]− ~m. ~̇H.

Here, rate of work done by the magnetic field is Ẇ =

−~m. ~̇H, and U̇ = q̇+Ẇ where q denotes the heat absorbed

10−5

10−4

10−3

10−2

10−1

1

10

-10 0 10 20 30 40

ρ
(∆

s t
)

∆st

2.56τ
5.12τ
10.24τ
20.48τ
40.96τ

FIG. 3: (Color online) Probability distribution of total
entropy production ρ(∆st) calculated in the presence of
a constant external field Hẑ with H = 1. The cal-
culations are performed after collecting data over τ0 =
2.56, 5.12, 10.24, 20.48, 40.96τ .

from the reservoir per unit volume. This is a stochastic
version of the first law of thermodynamics. Given that

the external field ~H = Hẑ, and using the transformations
shown in appendix Eq.(A2), we get

q̇ = −m2[g′Hhφ + h′Hθ(Hθ + hθ)] = −mHθ θ̇ (17)

where in the last step we used the evolution of axial angle
θ from Eq.(2). Thus the total heat absorbed over a time

period τ would be ∆Q = V
∫ τ

dt(−mHθ θ̇). Comparing

with Eq.(11), it is clear that ∆s
(1)
r = −∆Q/T . Thus

one may interpret ∆s
(1)
r as the entropy production due

to heat absorbed by the reservoir. We recover heat as the
quantity associated with time-reversed trajectories where

the direction of external field ~H is also reversed, along
with ~m. The situation is equivalent to the requirement
of reversal of external flow direction in Ref. [42].

However, the total entropy production in the reservoir,

consistent with Fokker-Planck equation, ∆sr = ∆s
(1)
r +

∆s
(2)
r where ∆s

(2)
r = (V/ηγT )

∫ τ
dtHθ sin θ φ̇ is due to

the precessional motion, where the term Hθ sin θ φ̇ has
the dimension of torque times angular velocity. Note that
the precessional part of entropy production is because of
the unidirectional torque due to the external magnetic

field ~H, which breaks the time-reversal symmetry. While
the resultant precessional current would be observable
from possible microscopic measurement of trajectories,
however, would not reflect in calorimetric measurements
that gives ∆Q. Thus this could be interpreted as a non-
thermal entropy production in reservoir.
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FIG. 4: (Color online) Ratio of probability distributions
of positive and negative entropy production ρ(∆st =
∆σ)/ρ(∆st = −∆σ) calculated from the data described in
the legend of Fig. 3. The solid line is a plot of the function
exp(∆σ/kB).

III. DISTRIBUTION OF ENTROPY
PRODUCTION

In this section, we numerically evaluate the distribu-
tion of total entropy production ∆st = ∆s+∆sr over tra-
jectories of various duration τ , at a steady state described
by a constant external field H acting along z-direction.
In this case Hθ = −H sin θ and Hφ = 0. We use second
order stochastic Runge-Kutta method to solve the LLG
equations Eq.2. We perform the simulations by setting
units such that the magnetization m = 1, strength of the
magnetic field H = 1, temperature kBT = 1 and using a
time-step δt = 0.01τ such that τ = 1/γ. To test the valid-
ity of the numerical integration we obtain the equilibrium
distribution W (θ) that shows exact match with analyti-
cal result W0 exp(−U(θ)/kBT ) with U(θ) = − cos θ and
kBT = 1 (Fig.2(a)). A typical equilibrium trajectory is
shown in Fig.1. This steady state supports a probabil-
ity current Jφ(θ) in the azimuthal direction [3] reflecting
an overall precessional motion of the magnetization in

clockwise direction around ~H (Fig.2(b)).
In Fig. 3 we show the probability distributions of en-

tropy production ρ(∆st) calculated from numerical in-
tegration of Eq. (2), and using Eq.s (14) and (15) for
the expression of ∆st = ∆s + ∆sr. The distributions
are calculated after collecting data over 107τ0 for various
durations of τ0. Appreciable probability of negative en-
tropy production is clearly visible. With increase in τ0,
the distribution broadens and the peak position shifts to-
wards higher values of entropy. From each ρ(∆st) curve,
we obtain the ratio of probabilities ρ(∆σ)/ρ(−∆σ) with
ρ(∆σ) = ρ(∆st = ∆σ) and ρ(−∆σ) = ρ(∆st = −∆σ).
As is shown in Fig. 4, this ratio shows good agreement
with the detailed fluctuation theorem ρ(∆σ)/ρ(−∆σ) =
exp(∆σ/kB).

IV. SUMMARY AND OUTLOOK

We obtained analytic expression for entropy produc-
tion in a macrospin starting from the Landau-Lifshitz-
Gilbert equations describing the system’s stochastic dy-
namics in contact with a Langevin heat bath. Using the
definition of time-dependent stochastic entropy, and the
appropriate Fokker-Planck equation we showed that the
total entropy production, after averaging, comes out to
be positive definite, in accordance with the second law
of thermodynamics. This calculation gave rise to a def-
inition of entropy production in the reservoir, which we
re-derived from time-reversed trajectory of the orienta-
tional dynamics of macrospin by treating the reversed
protocol of external magnetic field as an even dynami-
cal variable. This allowed us to derive an integral and
detailed fluctuation theorem. We further presented, sev-
eral other possibilities of conjugate trajectories and the
resultant expressions of relative action that contribute to-
wards total reservoir entropy. All these choices of conju-
gate trajectories lead to respective fluctuation theorems.

We then focused particularly on the simplest
macrospin dynamics under an uniaxial time-independent

external magnetic field ~H = Hẑ. The system shows a
curious dichotomy in its steady state behavior. While
the distribution of polar angle W (θ) obeys the equilib-
rium Boltzmann distribution, the magnetization under-
goes precessional motion along φ- direction leading to
an azimuthal current Jφ(θ) [3]. As a result the sys-

tem produces entropy, even when the external filed ~H
is time- independent. This is an interesting scenario,
where one finds both an equilibrium distribution and en-
tropy production in a single system. We verified these
properties using direct numerical simulations. The dis-
tributions of entropy production, obtained from simula-
tions, obey the detailed fluctuation theorem. While the
contribution of non-thermal entropy production due to
precessional motion may be measurable, e.g., by using
Kerr microscopy [46, 47] to track the whole trajecto-
ries [θ(t), φ(t)], it will not appear in calorimetric mea-
surements as was shown by our energy balance condi-
tion. Whenever a system has circulation due to external
torque, with displacements perpendicular to force such
that the work done is zero, the circulation does not ap-
pear in energy balance, but would break time reversal
symmetry [45, 48]. Thus the calculations we presented
here regarding entropy production have wider implica-
tions. Our predictions for macrospin dynamics could be
verified from experiments on super-paramagnetic parti-
cles.
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Appendix A: Ratio of path probabilities

Discretizing the trajectories into i = 1, . . . , N seg-
ments, the ratio of probabilities of time-forward and tim-
reversed trajectories may be expressed as

P+

P−
= exp

[
− δt

4D0

∑
i

{~h2
i − (~hbi )

2}
]
. (A1)

Here ~hi denotes the stochastic field for time-forward tra-
jectory, and ~hbi denotes the same for time-reversed path.
In the above relation, it is understood that stochastic
fields are replaced by dynamical variables using the equa-
tions of motion Eq. 2. The following relations between
cartesian and spherical polar coordinates

hx = hθ cos θ cosφ− hφ csc θ sinφ

hy = hθ cos θ sinφ+ hφ csc θ cosφ

hz = −hθ sin θ (A2)

lead to {~h2
i − (~hbi )

2} = (h2
θ − hbθ

2
) + (h2

φ − hbφ
2
) csc2 θ

evaluated at i-th instant. In writing the above coordi-

nate transformations we ignored the radial component of
stochastic magnetic field hr, as it does not affect the an-
gular dynamics of magnetization. The relation between
time forward components of noise and dynamical vari-
ables are obtained from Eq.2

hθ =
c1
m
θ̇ +

c2
m

sin θ φ̇−Hθ

hφ = −c2
m

sin θ θ̇ +
c1
m

sin2 θ φ̇−Hφ sin θ. (A3)

The relation obeyed by the corresponding time-reversed
path

hbθ = −c1
m
θ̇ − c2

m
sin θ φ̇−Hθ

hbφ =
c2
m

sin θ θ̇ − c1
m

sin2 θ φ̇−Hφ sin θ. (A4)

This ultimately leads to

~h2
i−(~hbi )

2 = −4
Hθ

m
(c1θ̇+c2 sin θ φ̇)−4

Hφ

m
(c1 sin θφ̇−c2θ̇).

Thus we obtain the relation

P+

P−
= exp

[
δt

mD0

∑
i

{
Hθ(c1θ̇ + c2 sin θφ̇) +Hφ(c1 sin θφ̇− c2θ̇)

}]

= exp

[
1

mD0

∫ τ0

0

dt
{
Hθ(c1θ̇ + c2 sin θ φ̇) +Hφ(c1 sin θφ̇− c2θ̇)

}]
. (A5)
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