In search for the best wavelet for denoising low SNR RF
Signal for FMCW Radar Altimeter

Venkateshwar Kosgi

A Dissertation Submitted to
Indian Institute of Technology Hyderabad
In Partial Fulfillment of the Requirements for
The Degree of Master of Technology

ARG AR S gexEe

Indian Institute of Technology Hyderabad

Department of Electrical Engineering

June, 2014



Declaration

| declare that this written submission represents my ideas in my own words, and
where other’s ideas or words have been included, | have adequately cited and
referenced the original sources. | also declare that | have adhered to all principles of
academic honesty and integrity and have not misrepresented or fabricated or
falsified any idea/data/fact/source in my submission. | understand that any violation
of the above will be a cause for disciplinary action by the Institute and can also
evoke penal action from the sources that have thus not been properly cited, or from

whom proper permission has not been taken when needed.

" (Signature)

VENKATESHWAR KOSGI
(Student Name)

EE12M1040
(Roll No)

ii



Approval Sheet

D SwR RF
This Thesis entitled T4/ _Seavch of Rest comveletfor Denaising A Low sk €

= St L\_l'(’ FC\(
sy LW KATESHOAR K0S G is approved for the degree of Master of T&chnology oy Altime
from IIT Hyderabad. (EE12LM\DYO) ‘ a J() N

A

(Dr. Ch. Sobhan Babu) Member
Dept. of Computer Science and Engineering
Indian Institute of Technology Hyderabad

Ly

(Dr. Ashudeb Dutta) Member
Dept. of Electrical Engineering
Indian Institute of Technology Hyderabad

hiblbosyy

(Dr. Ami,/(charyya) Adviser
Dept. of Electrical Engineering
Indian Institute of Technology Hyderabad

Y4

(Dr. Ketan P. Detroja) Chairman
Dept. of Electrical Engineering
Indian Institute of Technology Hyderabad

iii



Acknowledgements

First and foremost, 1 would like to sincerely thank Dr. Amit Acharyya for support as
my advisor. It has truly been an honor to work with him on the cutting edge of
research in the field of Wavelets, Discrete Wavelet Transform and their
Applications. His strong work ethic and creative thinking is contagious to me and
will influence me throughout my professional career. | would also like to thank my
friends and colleges who have helped me in making this project successful.

Next, 1 would like to express my gratitude to my Organization DRDO, which has

given me such an opportunity to do my Master’s Degree at [IT-Hyderabad.

Finally, I want to thank my father, mother, and wife, my lovely little daughter
K.K.S.Kriti, Brothers and Sisters. Their support is the source of power to pursue my
goal. | am eternally grateful to them for emotional support. | am also thankful to all
the staff and officials of IITH for their help and kind support in times of need.

iv



Dedicated to

God, My Family members, True Friends and Gurus



Abstract

This research project / thesis proposes the best wavelet for Denoising under low
Signal to Noise Ratio (SNR) conditions and Discrete Wavelet Transform
Architecture based design for RF signal denoising, targeting the real time
applications like FMCW (Frequency Modulated Continuous Wave) Radar Altimeter
used in Anti-Radiation Missiles, Smart Bombs, Fighter aircrafts, Helicopters etc.,
and other Defense and RF carrier based applications like Cellular communication.
DWT (Discrete Wavelet Transform) & IDWT(Inverse DWT) Architecture Models
designed in MATLAB for the wavelets under study like dmey, coifl, sym2, &
debouches db1l, db2, db3, db4, db6. The reconstructed signal results after denoising
are compared in various aspects. The results show that db3 is the best wavelet for
denoising application point of view. Finally the db3 based architecture design
implemented in VHDL(VHSIC Hardware Description Language) and the simulation
results compared, synthesis has been done using Xilinx ISE Design suite targeting
an FPGA.

This project involves study and implementation of De-noising algorithms using

Discrete Wavelet Transform.

In a system the signal to noise ratio (SNR) is important for reliable information
retrieval. Analysis of signals with poor SNR may lead to wrong interpretation of
results. Conventional techniques like filtering in time domain and frequency domain

has its own limitations in estimating and characterizing noise.

Wavelet transforms is a very useful tool in the analysis of non-stationary signals.
Wavelet transform has been used in signal processing fields such as de noising or
data compression. This method consists of decomposing the data recursively into a
sum of details and approximations at different levels of resolution. The details
represent the high frequency components while the approximations represent the

low frequency components of the signal.
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The unwanted frequencies are eliminated by zeroing the output of the filter
corresponding to those frequencies, and where signal corresponding to altitude
information has no effect. The decomposed wavelet coefficients smaller than given
amplitude is suppressed by means of thresholding and finally the data is transformed

into the original domain using inverse wavelet transform.

To achieve low complexity, low complexity multiplier is implemented and
combinational circuit for repeated use in VHDL Program apart from selecting db3 as
best choice (having less number of filter coefficients) and only 80 samples only
selected for denoising and found sufficient to recover the wanted difference signal

representing altitude information.

By DWT based Denoising using db3 improved SNR appx. 5db more compared to
conventional methods and Correlation, Regression, R? statistics gave very good

results compared to filter methods even with 80 samples.

The difference signal which is useful for altitude information is a Non-Stationary
Signal. Hence as DWT is very much suitable for such signals and time information
is very important (where conventional methods like FT fails to provide time where
the frequency of interest found) for strategic missile applications like Anti-Radiation
Missiles, and smart bombs, which are used to destroy enemy radars, communication

networks and infrastructure.
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Chapter 1

Introduction

1.1 Motivation

Wavelet Transform (WT) has wide range of emerging applications including
Communication systems, Digital Signal Processing, Bio-Medical Engineering and
many other diversified fields. With a curiosity to know DWT based denoising for
defense applications it is found that to denoise the low SNR signal with DWT
architecture using best wavelet almost no literature is present on denoising with best
wavelet for FMCW Radar altimeter application. If at all altitude detections is done, it
is by conventional filtering methods and followed by FT. But it can be easily
understood that for advanced applications like strategic missiles applications like anti-
radiation missiles, smart bombs and other similar applications, where the missile
trajectory needs altitude information (which is non-stationary) accurately along with
time under low SNR situations where baseband difference signal output from mixer
becomes difficult to deal with because of challenges that exists in removing
unwanted signals or Denoising.

With a aim to use DWT based denoising for such applications and to compare how
well it can perform compared to conventional filtering method this project is taken up.

1.2 Literature Survey

While doing literature on applications of DWT for denoising, it is found that the
important applications of RF signal denoising like altimeter for defense applications
like Aircrafts (Civil & Military), Missiles, still the conventional approach only
followed, i.e filtering and Fourier Transform, whereas better methods for low SNR
cases involving non-stationary signal like DWT can be used with best suitable

applications. Following are important points understood from literature survey.
1.2.1 Outcome of Literature survey:
There are two main types of Radar altimeters

1. FMCW (Frequency Modulated Continuous Wave) Radar Altimeter
2. Pulse Radar altimeter



The differences between CW, FMCW, Pulsed Radar altimeters are as explained

below.
CW Radars:

They have disadvantage that they cannot measure distance, because they lack the
timing mark necessary to allow the system, to time accurately the transmit and

receive cycle and convert the measured round-trip-time into range
FMCW Radars:

In order to correct for time marking problem, phase or frequency shifting methods
can be used. In the frequency shifting method, a signal that constantly changes in
frequency around a fixed reference is used to detect stationary objects and to
measure the range. In such a Frequency-Modulated Continuous Wave radars
(FMCW), the frequency is generally changed in a linear fashion, so that there is an
up-and-down or a saw tooth-like alternation in frequency. If the frequency is
continually changed with time, the frequency of the echo signal will differ from that
transmitted and the difference Af will be proportional to round trip time At and so
the range R of the target too. When a reflection is received, the frequencies can be
examined, and by comparing the received echo with the actual step of transmitted

frequency, we can do a range calculation similar to using pulses:

FMCW Pulse

a) Used for lower altitudes a) Used for long ranges

b) Low power requirement b) High power requirement
c) Less complex c) More complex

d) Better resolution d) Less resolution

e) Applications: All the aircrafts (military &
civil) , Strategic missiles like Anti-

Radiation Missiles , Smart bombs.

e) Applications: Satellite applications, e.g :
to measure the topography of ocean

surface.




So, FMCW Radar Altimeter is targeted for Denoising in view of Defense applications.

1.2.2 Major Challenges / Problems in FMCW Received signals

1.2.3

a.

a. Because of existence of phase noise, thermal noise and frequency jitter
lead to a non-static frequency spectrum

b. Baseband signal is dominated by the leaky ramp frequency which strongly
interferes with received signals.

c. The ramp signal is mirrored into the baseband spectrum and limits the
traditional signal processing performance

d. Due to the steep down-ramp edges that are present in the baseband signal
spectrum will have strong peaks at the overtone frequencies (2™
Harmonic) of the ramp frequency

e. Received signal strength is several magnitudes smaller

More about FMCW Radar
Signal timing is critical to accuracy. (one microsecond error results in a distance
error of almost 500ft.)
Position accuracy is directly related to the accuracy of the timing device used, so is
important.
FMCW is considered a much more accurate and therefore safer technology.
Inaccuracies may occur over mediums with less than perfect reflectivity qualities
(deep snow, ice) or over rapidly changing terrain.
Radio altimeter technology is employed in military applications, most commonly in
low-flying craft to avoid radar detection
Most radio altimeter units operate between 4.2 and 4.4GHz in frequency, but only
use 150 megahertz within that range.
Despite the proliferation of Global Positioning Satellite (GPS) technology, almost

all civil aircraft still carry and use at least one radio altimeter due to legislative

restrictions on the use of GPS.


http://www.wisegeek.com/what-is-gps.htm

1.2.4 Characteristic features of an FMCW radar:

The distance measurement is done by comparing the actual frequency of the received signal
to a given reference (direct transmitted signal)

The duration of the transmitted signal is much larger than the time required for measuring

the installed maximum range of the radar
By suitable choice of frequency deviation per time unit the radar resolution can be varied
With the length of the time of the frequency shift, the maximum range can be varied

A ferrite circulator shall make the separation of transmit and receive path, when using a

single antenna

But using of separate transmitting and receiving antennas is much cheaper in today's

commonly used patch antennas in strip-line technology

1.3 Contribution of Thesis
1.3.1 Why DWT based Denoising?

FT gives the spectral content of the signal, but it gives no information regarding
where in time those spectral components appear. Therefore, FT is not a suitable
technique for non-stationary signal

STFT gives a fixed resolution at all times

In WT the width of the window is changed as the transform is computed for every
single spectral component, which is probably the most significant characteristic of
the wavelet transform.

The difference signal which is useful for altitude information is a Non-Stationary
Signal. Hence as DWT is very much suitable for such signals and time information
is very important for strategic missile applications like Anti-Radiation Missiles, and
smart bombs, which are used to destroy enemy radars, communication networks and
infrastructure.

DWT has inherent Denoising & Data compression advantages

1.3.2 The main aim of the project is to cover the following points:
a. To understand which signal is used for altimeters.
b. To study & overcome Challenges by signal denoising

c. Finding of best wavelet for DWT based denoising


http://www.radartutorial.eu/17.bauteile/bt33.en.html

d. Existing method is not Robust to noise-to overcome that

e. To denoise the low SNR signal with DWT architecture using best
wavelet (No literature is present on denoising with best wavelet for
altimeter application )

f. To compare existing conventional filtering method

1.3.3 Project Stages and activities performed:

The main work of the project is divided in to two stages consisting of important
activities as listed below. The required outcome is achieved by the contributions
made in various stages.

Stage:1 (activities for finding best wavelet)

e Finding out the best wavelet among dbl, db2, db3, db4, db6, dmay ,
sym2, coifl

e Analysis and Synthesis filter bank architecture development for above
wavelets by MATLAB Programming

e Suppressing the unwanted signals from mixed signal in decomposition
e Reconstructing the signal

e Comparison of reconstructed signals for all of above wavelets to
choose the best

OUTCOME: db3 is found as the best choice

Stage:2 (activities for Denoising using best wavelet)

e Modeling of low SNR RF Signal and denoising using db3 based DWT

architecture and by thresholding

e Comparing o/p SNR and other parameters to that of conventional 3
stage HPF

e Study with 1280 samples & 80 samples using MATLAB Models and
VHDL implementation and synthesis, comparison of VHDL output with
that of MATLAB.

e Implementing of the model ( 80 samples) in VHDL and simulation
e Comparing the VHDL o/p result with that of MATLAB o/p, Synthesis

OUTCOME: db3 based DWT found superior in terms of SNR and other
Parameters



1.3.4 The major programing tasks performed by using MATLAB, and VHDL

MATLAB Modelling

a. |I/P Signal modeling

b. Analysis & Synthesis Filter banks modeling
c. Denoising

d. Simulations

VHDL Modelling targeting an FPGA Using Xilinx

» Architecture development for Analysis and Synthesis filter banks

+ Denoising

« Simulations

»  Synthesis
1.4 Thesis Organization
Chapter 1: Is the introduction describing the motivation behind the work, literature
survey, objectives and contributions of the present work.

Chapter 2: In this introductions to Wavelet theory is covered and it describes of basics
DWT and IDWT

Chapter 3: In this basic principles of operation of FMCW Radar altimeter is covered.

Chapter 4: Denoising using DWT & IDWT architectures with various wavelets is
discussed to identify best wavelet by comparing with conventional filter and discussing the

results

Chapter 5: Describes Experimental Setup for FMCW received signal modelling &

simulations and other signal specifications used.

Chapter 6: In this is it is discussed about Denoising of FMCW Radar altimeter RF signal
with 3 level DWT Architecture using best wavelet i.e db3 , comparison with conventional 3

stage HPF method, results and Conclusions.



Chapter 2

Introduction to Wavelet Theory

2.1 What are wavelets?

A wavelet is a waveform of effectively limited duration that has an average value of
zero. Sinusoids do not have limited duration -- they extend from minus to plus
infinity. And where sinusoids are smooth and predictable, wavelets tend to be

irregular and asymmetric.

Sine wave Wavelet (10db)

2.2 What is Wavelet Analysis?

For many signals, FOURIER ANALYSIS is extremely useful because the signal's
frequency content is of great importance. So why do we need other techniques, like

wavelet analysis?

Fourier analysis has a serious drawback. In transforming to the frequency domain,
time information is lost. When looking at a Fourier transform of a signal, it is
impossible to tell when a particular event took place. If the signal properties do not
change much over time -- that is, if it is what is called a stationary signal -- this
drawback isn't very important. However, most interesting signals contain numerous

non stationary or transitory characteristics: drift, trends, abrupt changes, and



beginnings and ends of events. These characteristics are often the most important

part of the signal, and Fourier analysis is not suited to detecting them.

Amplitude

o -

Amplitude

Transform

Time Frequency

Everywhere around us are signals that can be analyzed. For example, there are
seismic tremors, human speech, engine vibrations, medical images, financial data,
music, and many other types of signals. Wavelet analysis is a new and promising

set of tools and techniques for analyzing these signals.

2.3 Why Wavelet Transform?

Firstly, what is a transform and why is it needed?

Mathematical transformations are applied to signals to obtain further information
from that signal that is not readily available in the raw signal. Let us consider a time-
domain signal as a raw signal, and a signal that has been "transformed™ by any of
the available mathematical transformations as a processed signal. There are a
number of transformations that can be applied, among which the Fourier transforms
are probably by far the most popular. Most of the signals in practice are TIME-
DOMAIN signals in their raw format. That is, whatever that signal is measuring, is
a function of time. In other words, when we plot the signal one of the axes is time
(independent variable), and the other (dependent variable) is usually the amplitude.
When we plot time-domain signals, we obtain a time-amplitude representation of
the signal. This representation is not always the best representation of the signal for
most signal processing related applications. In many cases, the most distinguished
information is hidden in the frequency content of the signal. The frequency

spectrum of a signal is basically the frequency components (spectral components)



of that signal. The frequency spectrum of a signal shows what frequencies exist in

the signal.

Intuitively, frequency is the rate of change of a particular parameter. If the parameter
changes rapidly, then it is said to possess a HIGH frequency and if it changes slowly
it is said to possess a LOW frequency. If this parameter does not change at all, then
we say it has zero frequency, or no frequency. Frequency is measured in

cycles/second, or with a more common name, in "Hertz".
Let us compare the following figures with different frequencies.

The first one is a sine wave at 3 Hz, the second one at 10 Hz, and the third one at 50
Hz.

1000

Figure 2.2
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Figure 2.3

So how do we measure frequency, or how do we find the frequency content of a
signal? The answer is FOURIER TRANSFORM (FT). If the FT of a signal in time
domain is taken, the frequency-amplitude representation of that signal is obtained. In
other words, we now have a plot with one axis being the frequency and the other
being the amplitude. This plot tells us how much of each frequency exists in our

signal.

The following figure shows the FT of the 50 Hz signal:

0o RO0 2800
Frequenc, Hz

200 300 400
‘lFrEQLJenc-,",.F'—H:

Figure 2.4

Note that two plots are given in Figure 2.4. The bottom one plots only the first
half of the top one. Due to reasons that are not crucial to know at this time, the

10



frequency spectrum of a real valued signal is always symmetric. The top plot
illustrates this point. However, since the symmetric part is exactly a mirror image of
the first part, it provides no additional information, and therefore, this symmetric

second part is usually not shown.

Why do we need the frequency information?

Often times, the information that cannot be readily seen in the time-domain can be
seen in the frequency domain. Consider an ECG signal (Electro Cardiograph,
graphical recording of heart's electrical activity). The typical shape of a healthy ECG
signal is well known to cardiologists. Any significant deviation from that shape is
usually considered to be a symptom of a pathological condition. This pathological
condition, however, may not always be quite obvious in the original time-domain
signal. Cardiologists usually use the time-domain ECG signals which are recorded
on strip-charts to analyze ECG signals. Recently, the new computerized ECG
recorders/analyzers also utilize the frequency information to decide whether a
pathological condition exists. A pathological condition can sometimes be diagnosed
more easily when the frequency content of the signal is analyzed. This, of course, is
only one simple example why frequency content might be useful. Today Fourier
transforms are used in many different areas including all branches of engineering.
There are many other transforms that are used quite often by engineers and
mathematicians. Hilbert transform, short-time Fourier transform, Wigner
distributions, the Radon Transform, and of course our featured transformation, the
Wavelet Transform, constitute only a small portion of a huge list of transforms that
are available at engineer's and mathematician's disposal. Every transformation
technique has its own area of application, with advantages and disadvantages, and

the wavelet transform (WT) is no exception.

For a better understanding of the need of the WT let's look at the FT more closely.
FT (as well as WT) is a reversible transform, that is, it allows going back and
forwarding between the raw and processed (transformed) signals. However, only

either of them is available at any given time. That is, no frequency information is

11



available in the time-domain signal, and no time information is available in the
Fourier transformed signal. The natural question that comes to mind is that is it

necessary to have both the time and the frequency information at the same time?

The answer depends on the particular application and the nature of the signal in
hand. Recall that the FT gives the frequency information of the signal, which means
that it tells us how much of each frequency exists in the signal, but it does not tell us
when in time these frequency components exist. This information is not required

when the signal is so-called stationary.

Signals whose frequency content does not change in time are called stationary
signals. In other words, the frequency content of stationary signals does not change
in time. In this case, one does not need to know at what times frequency

components exist, since all frequency components exist at all times!!! .

Example:

X(t) = cos(2*pi*10*t) +cos (2*pi*25*t) +cos (2*pi*50*t) +cos(2*pi*100*t) is a
stationary signal, because it has frequencies of 10, 25, 50, and 100 Hz at any given

time instant.

This signal is plotted below:

nl
| | |"J ! F|

,. |
}r ...... ||]|}|||HIJ| |||J ||

i 200 400 500
Time, ms I

Figure 2.5

And the following is its FT:

12
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Figure 2.6

The top plot in Figure 2.5 is the (half of the symmetric) frequency spectrum of the
signal in Figure 2.4. The bottom plot is the zoomed version of the top plot, showing
only the range of frequencies that are of interest to us. Note the four spectral
components corresponding to the frequencies 10, 25, 50 and 100 Hz.

Contrary to the signal in Figure 2.4, the following signal is not stationary. Figure
2.7 plots a signal whose frequency constantly changes in time. This signal is

known as the "chirp" signal. This is a non-stationary signal.

1000

Figure 2.7
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Example:

Figure 2.8 plots a signal with four different frequency components at four different
time intervals, hence a non-stationary signal. The interval 0 to 300 ms has a 100 Hz
sinusoid, the interval 300 to 600 ms has a 50 Hz sinusoid, the interval 600 to 800 ms

has a 25 Hz sinusoid, and finally the interval 800 to 1000 ms has a 10 Hz sinusoid.

1000

Tlrlle m‘-}
Figure 2.8

And the following is its FT:

_ r. L' LW“

1 0 |_| 150 200 50 =00 250 400
Frequency, Hz

Figure 2.9

The ripples are due to sudden changes from one frequency component to another,

which have no significance. Note that the amplitudes of higher frequency

14



components are higher than those of the lower frequency ones. This is due to fact
that higher frequencies last longer (300 ms each) than the lower frequency

components (200 ms each).
For the first signal, plotted in Figure 2.5, consider the following question:
At what times (or time intervals), do the frequency components occur?

Answer: At all times! Remember that in stationary signals, all frequency
components that exist in the signal exist throughout the entire duration of the signal.
There is 10 Hz at all times, there is 50 Hz at all times, and there is 100 Hz at all

times.

Now, consider the same question for the non-stationary signal in Figure 2.7 or in

Figure 2.8.
At what times the frequency components occur?

For the signal in Figure 2.8, we know that in the first interval we have the highest
frequency component, and in the last interval we have the lowest frequency
component. For the signal in Figure 2.7, the frequency components change
continuously. Therefore, for these signals the frequency components do not appear

at all times!

Now compare the Figures 2.6 and 2.9. The similarity between these two spectrums
should be apparent. Both of them show four spectral components at exactly the same
frequencies, i.e., at 10, 25, 50, and 100 Hz. Other than the ripples, and the difference
in amplitude (which can always be normalized), the two spectrums are almost
identical, although the corresponding time-domain signals are not even close to each
other. Both of the signals involve the same frequency components, but the first one
has these frequencies at all times, the second one has these frequencies at different
intervals. So, how come the spectrums of two entirely different signals look very
much alike? Recall that the FT gives the spectral content of the signal, but it gives

no information regarding where in time those spectral components appear.

15



Therefore, FT is not a suitable technique for non-stationary signal, with one

exception:

FT can be used for non-stationary signals, if we are only interested in what spectral
components exist in the signal, but not interested where these occur. However, if this
information is needed, i.e., if we want to know, what spectral component occur at
what time (interval) , then Fourier transform is not the right transform to use. For
practical purposes it is difficult to make the separation, since there are a lot of
practical stationary signals, as well as non-stationary ones. Almost all biological
signals, for example, are non-stationary. Some of the most famous ones are ECG
(electrical activity of the heart, electrocardiograph), EEG (electrical activity of the

brain, electroencephalograph), and EMG (electrical activity of the muscles).

Once again please note that, the FT gives what frequency components (spectral
components) exist in the signal. When the time localization of the spectral
components is needed, a transform giving the TIME-FREQUENCY
REPRESENTATION of the signal is needed.

ULTIMATE SOLUTION: WAVELET TRANSFORM

2.4 WAVELET TRANSFORM

It provides the time-frequency representation. Wavelet transform is capable of
providing the time and frequency information simultaneously, hence giving a time-
frequency representation of the signal. For example, in EEGs, the latency of an
event-related potential is of particular interest (Event-related potential is the
response of the brain to a specific stimulus like flash-light, the latency of this
response is the amount of time elapsed between the onset of the stimulus and the
response).The knowledge of Short Time Fourier Transform (STFT) is essential to
study WT since the WT was developed as an alternative to the STFT.

16



2.4.1 SHORT TIME FOURIER TRANSFORM:

In an effort to correct the deficiency caused by Fourier analysis, Dennis Gabor
(1946) adapted the Fourier transform to analyze only a small section of the signal at
a time -- a technique called windowing the signal. Gabor's adaptation, called the
Short-Time Fourier Transform (STFT), maps a signal into a two-dimensional

function of time and frequency.

window
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The STFT represents a sort of compromise between the time- and frequency-based
views of a signal. It provides some information about both when and at what
frequencies a signal event occurs. However, you can only obtain this information
with limited precision, and that precision is determined by the size of the window.
While the STFT compromise between time and frequency information can be useful,
the drawback is that once you choose a particular size for the time window, that
window is the same for all frequencies. Many signals require a more flexible
approach -- one where we can vary the window size to determine more accurately

either time or frequency.

There is only a minor difference between STFT and FT. In STFT, the signal is
divided into small enough segments, where these segments (portions) of the signal
can be assumed to be stationary. For this purpose, a window function ""w"" is chosen.
The width of this window must be equal to the segment of the signal .This window
function is first located to the very beginning of the signal. That is, the window
function is located at t=0. Let's suppose that the width of the window is ""T"* sec. At
this time instant (t=0), the window function will overlap with the first T/2 seconds
(Assume that all time units are in seconds). The window function and the signal are
then multiplied. By doing this, only the first T/2 seconds of the signal is being

chosen, with the appropriate weighting of the window (if the window is a rectangle,
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with amplitude "1", then the product will be equal to the signal). Then this product is
assumed to be just another signal, whose FT is to be taken. In other words, FT of
this product is taken, just as taking the FT of any signal. The result of this
transformation is the FT of the first T/2 seconds of the signal. If this portion of the
signal is stationary, as it is assumed, then there will be no problem and the obtained

result will be a true frequency representation of the first T/2 seconds of the signal.

The next step would be shifting this window (for some t1 seconds) to a new
location, multiplying with the signal, and taking the FT of the product. This

procedure is followed; until the end of the signal is reached by shifting the window

with "t1" seconds intervals. Consider the following non stationary signal

Amplitude

400 B0O0 L 1000
Time I

Figure

In this signal, there are four frequency components at different times. The interval 0
to 250 ms is a simple sinusoid of 300 Hz, and the other 250 ms intervals are
sinusoids of 200 Hz, 100 Hz, and 50 Hz, respectively. Apparently, this is a non-

stationary signal. Now, let's look at its STFT:
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Note that the graph is symmetric with respect to midline of the frequency axis.
Remember that, although it was not shown, FT of a real signal is always symmetric,
since STFT is nothing but a windowed version of the FT, it should come as no
surprise that STFT is also symmetric in frequency. The symmetric part is said to be
associated with negative frequencies, an odd concept which is difficult to
comprehend, fortunately, it is not important; it suffices to know that STFT and FT

are symmetric.

Note that there are four peaks corresponding to four different frequency
components. Also note that, unlike FT, these four peaks are located at different
time intervals along the time axis. Remember that the original signal had four

spectral components located at different times.

Now we have a true time-frequency representation of the signal. We not only know
what frequency components are present in the signal, but we also know where they

are located in time.

The problem with STFT is the fact whose roots go back to what is known as the
Heisenberg Uncertainty Principle. This principle originally applied to the

momentum and location of moving particles, can be applied to time-frequency
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information of a signal. Simply, this principle states that one cannot know the exact
time-frequency representation of a signal, i.e., one cannot know what spectral
components exist at what instances of times. What one can know is the time
intervals in which certain band of frequencies exist, which is a resolution

problem.

The problem with the STFT has something to do with the width of the window
function that is used. To be technically correct, this width of the window function is
known as the support of the window. If the window function is narrow, then it is

known as compactly supported.

Narrow windows give good time resolution, but poor frequency resolution. Wide
windows give good frequency resolution, but poor time resolution; furthermore,
wide windows may violate the condition of stationary. The problem, of course, is a
result of choosing a window function, once and for all, and uses that window in the
entire analysis. The answer, of course, is application dependent: If the frequency
components are well separated from each other in the original signal, than we may
sacrifice some frequency resolution and go for good time resolution, since the
spectral components are already well separated from each other. However, if this is
not the case, then a good window function could be more difficult than finding a
good stock to invest in.

By now, it is quite evident how the wavelet transforms have come into play.

NUMBER OF DIMENSIONS: Wavelet analysis can be applied to two-

dimensional data (images) and, in principle, to higher dimensional data.

2.5 CONTINUOUS WAVELET TRANSFORM

The continuous wavelet transform was developed as an alternative approach to the
short time Fourier transforms to overcome the resolution problem. The continuous
wavelet transform (CWT) is defined as the sum over all time of the signal
multiplied by scaled, shifted versions of the wavelet function. The CWT equation is

as follows:
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C(scale, position) = Lf{t)w(scale, position, t)dt

The results of the CWT are many wavelet coefficients C, which are a function of
scale and position. Multiplying each coefficient by the appropriately scaled and

shifted wavelet yields the constituent wavelets of the original signal.

Transform

Signal Constituent Wavelets of different scales and positions

2.5.1 SCALING:

Scaling a wavelet simply means stretching (or compressing) it. To go beyond
colloquial descriptions such as "stretching,” we introduce the scale factor, often
denoted by the letter ‘a’. If we're talking about sinusoids, for example, the effect of

the scale factor is very easy to see.
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The scale factor works exactly the same with wavelets. The smaller the scale factor,

the more "compressed" the wavelet.
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It is clear from the diagram that, for a sinusoid, the scale factor is related (inversely)
to the radian frequency. Similarly, with wavelet analysis, the scale is related to the

frequency of the signal.
The main differences between the STFT and the CWT:

1. The Fourier transforms of the windowed signals are not taken, and therefore
single peak will be seen corresponding to a sinusoid, i.e., negative frequencies are

not computed.

2. The width of the window is changed as the transform is computed for every single
spectral component, which is probably the most significant characteristic of the

wavelet transform.
2.5.2 SHIFTING:

Shifting a wavelet simply means delaying (or hastening) its onset.

| Mk | L
Wavelet function Shifted wavelet function
wit) wit—k)
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2.6 DISCRETE WAVELET TRANFORM

Calculating wavelet coefficients at every possible scale is a fair amount of work, and
it generates an awful lot of data. What if we choose only a subset of scales and

positions at which to make our calculations?

It turns out, rather remarkably, that if we choose scales and positions based on
powers of two -- so-called dyadic scales and positions -- then our analysis will be
much more efficient and just as accurate. We obtain such an analysis from the

discrete wavelet transform (DWT).

An efficient way to implement this scheme using filters was developed in 1988 by
Mallat. The Mallat algorithm is in fact a classical scheme known in the signal
processing community as a two-channel sub band coder. This very practical filtering
algorithm yields a fast wavelet transform -- a box into which a signal passes, and out

of which wavelet coefficients quickly emerge. Let's examine this in more depth.

2.6.1 ONE STAGE FILTERING - APPROXIMATIONS AND DETAILS

For many signals, the low-frequency content is the most important part. It is what
gives the signal its identity. The high-frequency content, on the other hand, imparts
flavor or nuance. Consider the human voice. If you remove the high-frequency
components, the voice sounds different, but you can still tell what's being said.
However, if you remove enough of the low-frequency components, you hear
gibberish.

In wavelet analysis, we often speak of approximations and details. The
approximations are the high-scale, low-frequency components of the signal. The

details are the low-scale, high-frequency components.

The filtering process, at its most basic level, looks like this.
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The original signal, s, passes through two complementary filters and emerges as

two signals.

Unfortunately, if we actually perform this operation on a real digital signal, we wind
up with twice as much data as we started with. Suppose, for instance, that the
original signal S consists of 1000 samples of data. Then the resulting signals will
each have 1000 samples, for a total of 2000.

These signals A and D are interesting, but we get 2000 values instead of the 1000
we had. There exists a more subtle way to perform the decomposition using
wavelets. By looking carefully at the computation, we may keep only one point out
of two in each of the two 2000-length samples to get the complete information. This

is the notion of down sampling. We produce two sequences called cA and cD.

D | =1000samples (L_ ®—ch
lﬁﬁﬂ.&ama!e& mo.a.samme&

The process on the right, which includes down sampling, produces DWT
coefficients. To gain a better appreciation of this process, let's perform a one-stage
discrete wavelet transform of a signal. Our signal will be a pure sinusoid with high-
frequency noise added to it. Here is our schematic diagram with real signals inserted

into it.
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The MATLAB® code needed to generate s, cD, and cA is

s = sin (20.*linspace (0, pi, 1000)) + 0.5.*rand (1, 1000);
[cA, cD] = dwt(s,'db2");

Where db2 is the name of the wavelet we want to use for the analysis.

Note that the detail coefficients cD are small and consist mainly of a high-frequency
noise, while the approximation coefficients cA contain much less noise than does

the original signal.

[length (cA) length (cD)]
Answer =501 501.

You may observe that the actual lengths of the detail and approximation coefficient
vectors are slightly more than half the length of the original signal. This has to do
with the filtering process, which is implemented by convolving the signal with a
filter. The convolution "smears™ the signal, introducing several extra samples into

the result.
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2.6.2 MULTILEVEL DECOMPOSITION

The decomposition process can be iterated, with successive approximations being
decomposed in turn, so that one signal is broken down into many lower resolution

components. This is called the wavelet decomposition tree.

[
I—GA1—I cD;
l—cag—l cDs

GA;; GD3

Looking at a signal's wavelet decomposition tree can yield valuable information.
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Fig: Frequency spectrum by decomposing
2.6.3 WAVELET RECONSTRUCTION

We've learned how the discrete wavelet transform can be used to analyze, or
decompose, signals and images. This process is called decomposition or analysis.
The other half of the story is how those components can be assembled back into the
original signal without loss of information. This process is called reconstruction, or
synthesis. The mathematical manipulations that effect synthesis is called the inverse
discrete wavelet transform (IDWT).

L
— O
O

—-0

Where wavelet analysis involves filtering and down sampling, the wavelet
reconstruction process consists of up sampling and filtering. Up sampling is the
process of lengthening a signal component by inserting zeros between samples.
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2.6.4 RECONSTRUCTION FILTERS

The down sampling of the signal components performed during the decomposition
phase introduces a distortion called aliasing. It turns out that by carefully choosing
filters for the decomposition and reconstruction phases that are closely related (but
not identical), we can "cancel out" the effects of aliasing. The low- and high-pass
decomposition filters (L and H), together with their associated reconstruction filters

(L'and H'), form a system of what is called quadrature mirror filters
2.6.5 RECONSTRUTING APPROXIMATIONS AND DETAILS

We have seen that it is possible to reconstruct our original signal from the
coefficients of the approximations and details. It is also possible to reconstruct the

approximations and details themselves from their coefficient vectors.

Decomposition Reconstruction

Extending this technique to the components of a multilevel analysis, we find that
similar relationships hold for all the reconstructed signal constituents. That is, there

are several ways to reassemble the original signal:

28



I_ Ay —] Dy S =A;+D,
Reconstructed
Signal As Ds = Ag+ Dy + Dy
Components I_ _l

Where S is the signal, A;, A2, A3... are the Approximations and D1, D, Ds... are
the Details.

2.7 DIFFERENT TYPES OF WAVELETS
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Chapter 3

3.1 Basics of FMCW Radar Altimeter

Radar Altimeter is also called as RF Altimeter or Radio Altimeter.

Radar Altimeter:_It is an instrument for determining elevation / altitude / range
for the Applications like Aeroplanes, Helicopters, Missiles, Satellites etc.. The
types of Radar altimeter are Pulse modulated, Frequency Modulated Continuous

Wave (FMCW) Radar altimeter.

3.1.1 FMCW Radar Altimeter:

* It is considered as a much more accurate and therefore safer technology for
applications other than in satellites & FMCW radar in general is cheaper and it

uses Continuous transmitting energy.

» Sweeping of carrier frequency is done between the two frequencies and with the
length of the time of the frequency shift, the maximum range can be varied

+ It uses the time taken for a radio signal to reflect from the surface back to the

aircraft to measure the distance above ground

» The distance measurement is done by comparing the actual frequency of the

received signal to a given reference (direct transmitted signal)

3.1.2 Applications of FMCW Radar altimeter:

* Is used to measure height above ground level during landing in
commercial and military aircraft, altitude of missiles during level flights.

» It is also a component of terrain avoidance warning systems, warning the
pilot if the aircraft is flying too low, or if there is rising terrain ahead

1_

Aircraft

7] [RX]

Reflected
wave
(delayed)

Incident
wave

2 * altitude

Delay= ————
y Speed-of-light

Radio altitude
)

Runway |
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1. Aradio altimeter uses separate transmitter and receiver to differentiate
received reflected waves from the original transmitted waves.

Fig3.1: Showing Radar
Altimeter application
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Fig.3.2: Tx, Rx signals used to get altitude information.

3.1.3 Range formulae

R =co- |At|= co- |Af
2 2-(df/dt)

Where:

co = speed of light = 3-10% ™/,

At = measured time-difference [s]

R = distance (altimeter to terrain) [m]

df/dt = transmitters frequency shift per unit time
Af=measured frequency-difference [Hz]

The reflected signal is a noisy one and hence denoising is very important process
to be done before estimation of altitude / range is done.

In general Digital signal processing is done for denoising and extracting received
signal. For this, the method proposed in this paper i.e DWT Based denoising with
db3 wavelet (even at low SNR cases) also can be used for noisy received signal in
FMCW Radar Application. The Tx, Rx signals can be represented as

Transmitted signal (with saw tooth FM modulation):

+
L

si(t) = cos(2mfct + 2w fidT)

Received Signal (delayed):
Sr(t) = St(t-td)
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Mixer process : St(t) *Sr(t) = Cos(ft+fr)-Cos(ft-fr)
Af = fr- ft=Base band frequency

Fig.3.3: Functional block diagram having DSP Block
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Chapter 4

4.1 Denoising using DWT & IDWT architectures with
Various wavelets

A three level of Decomposition and Reconstruction is shown in below figures 4.1 &
4.2.

If we have a sequence of discrete values s(n) = carrier + noise, sampled from a
continuous function s(t) at intervals of ts. A discrete wavelet transform step
decomposes the sequence S(n) into two sequences a' and d* by means of a low-pass
_filter h = (h,)=h0 and a high-pass filter g = (gn)=h1 followed by a down sampling
of order 2. The sequence a® is called approximation and contains low-frequency
information of s(n). The sequence d* is said to be the details and contains high-
frequency information. h and g are called Decomposition filters.

4.2 MATLAB MODEL FOR DENOISING
The filtering process can be modeled / written as
a'=[s(n) @ h] |2, followed by left shift by 2
d'=[s(n) @ g] |2, followed by left shift by 2

@ indicates circular convolution, and | indicates down sampling.

In a numerical implementation, a sequence of finite length is convoluted with filters
h and g, which are also of finite length (one talks of FIR filters). For the convolution
to be well defined, the signal has to be extended (padded) at both ends e.g.
periodically or by zeros.
The down sampling operator | p, maps a sequence (xn) to the sequence (yn) = (Xpn),
i.e. only every p-th sample is kept. S(n) can be reconstructed from a* and d* by
means of the reconstruction filters g0, g1 and up sampling
or say

h=90and § =gl ie.

Reconstructed output = y,= (a'12 @ ho+ (d'12 @ 7

The up sampling operator 1 inserts zeros into a sequence.
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Figure 4.1: 3 levels of a DWT decomposition filter bank algorithm. The sequence
s(n) is split into details d*, d* and d® and an approximation a®=0(a® will be made as 0
to eliminate unwanted low frequency that lie in a*> approximation)

a’ > 12 *h a’ > 12 *h a' = 12" Y

> 12H"g a2+ 12 *g d' > 12 H g

Figure 4.2: 3 levels of a DWT reconstruction filter bank algorithm. The sequence Y,
is reconstructed from details d*, d? and d® and an approximation a* (was made=0).

Unwanted signal frequency of known range (in this case10Hz si%)nal) is removed by
making the corresponding filter coefficients ( in this case a°) as zero and we
reconstruct the signal.

The decomposition & reconstruction filter coefficients for various wavelets under
study like dmey, coifl, sym2, & debouches dbl, db2, db3, db4, db6 can be
generated in MATLAB and used along with signal as inputs , i.e. for e.g. for db3
wavelet we use following to generate decomposition low and high pass filters
coefficients h0, hland reconstruction low and high pass filter coefficients g0,g1.

dwtmode('per’);
wname='db3";
[h0,h1,g0,91] = wfilters('db3");

Input mixed signal that is to be denoised is generated as

s(n)=160Hz sine wave (carrier ) + 10Hz sine wave (as noise). Signal frequency in
this case is chosen more than noise frequency, as this is quite common in microwave
frequency applications such as FMCW Radar, cellular communications etc..

As the carriers of communication systems are of basic sine of cosine wave, and
noise if it is of similar in nature and of more amplitude, it will be difficult case of
signal separation and any realistic signal can be represented as a combination of
sine/cosine waves. Most of the noisy signals seen practically are confined to known
range of frequency, hence the basic input mixed signal chosen is two sine waves of
160Hz (carrier or message) and 10Hz (Noise) are selected keeping a view of
microwave communications, in which the noise will be of lower side of the
frequency range of operation.
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Denoising was done by making approximation coefficients to zero to remove
unwanted frequency components. In this case it is output of third stage analysis filter
bank. Now, a very important activity is modeling of analysis and synthesis filter
banks of wavelet chosen, which is very essential for Hardware architecture design in
VHDL and prior to which MATLAB model is proved.

4.2.1 Decomposition filter function Model

Input Mixed Signal of Filter coefficients of
selected SNR & sampled Decomposition filters
at selected sampling (High pass/ low pass)
frequency (or i/p from of wavelet of Interest say
previous LPF stage) db3

f Process function block \
[Circular Convolution|

[ Circ. Left shifting by 2 |

kl Down sampling |j

A 4 \ 4
Approximation Detail coefficients
coefficients (if LPF) (if HPF)

4.2.2 Reconstruction filter functional Model

Approximation coefficients Detail coefficients from
(set to 0) from 3" stage of corresponding
decomposing Decomposition stage

[or i/p from Previous
reconstruction stage ]

v v
LPF coeffi. Of Up Up HPF coeffi. Of
Reconstruction sampling sampling Reconstruction
\ 4 \ 4 \ 4 \ 4
Circular convolution | Circular convolution
\ 4 Y
Addition & circular left
shift by 2
v
O/P to Next
Stage of
Reconstruction
or Final O/P
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4.3 MATLAB CODE (of main functionality), SNR=0.1 (-20dB) with sampling
frequency fs=1280Hz & db3 wavelet

£s=1280;

if rem(fs,2)==0; fs=fs-1;end;
ts =1/fs;

t=0:ts:1;

c=60* (sin(2*pi*160*t)+1);
ns=600* (sin(2*pi*10*t)+1);
s=(c+ns);

Q

v Decomposition and reconstruction filters

dwtmode ('per') ;
wname="'db3"';

[hO,hl,g0,gl] = wfilters('db3");

c_out=convwoconv (s, h0) ;

x0 lpfc=c out';

x0 lpfc=circshift (x0 lpfc,-2);
%Circular left shift

a0 = x0 1pfc(2:2:1ength(x0 1lpfc)):;
% downsampling

functionc_out=convwoconv (x,h)

[rx cx]=size (x);
[rhch]=size (h);
ifrx>cx x=x';end;
ifrh>ch h=h';end;
m=length (x);
n=length (h);
X=[x,zeros(1l,n)];
H=[h, zeros (1,m) ];
fori=l:n+m-1
Y(1)=0;

for j=1:m
if(i-3+1>0)

Y (1) =Y (1)+X () *H (i-3+1);
else

end

end

end

y=Y/128;

y=floor (y);
lx=length(x);
ly=length(y);

yl=y (1lx+1l:end);
lyl=length(yl);
yl=[yl zeros(l,ly-1yl)1;
y(lx+l:end)=0;
c_out=yl+y;
c_out=c out(l:1x);
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Reconstruction algorithm

y3r = zeros(l,2*length(w2));
y3r(l:2:2*length(w2)) = w2 (l:length(w2));

% Up sampling
y3r_inv=y3r';

$to calculate cconv(y3r_inv,gl)

c_out=convwoconv (y3r inv,gl);
yr3c=c_out';

alr = xr3c + yr3c;
alr=circshift(alr,-2);

Plotting of reconstructed signal

a=alr;

N1=2"nextpow2 (length(a)) *2;

az=abs (fft(a,N1));

f1=(0:N1/2-1)* ((fs) /N1);

figure;

plot (fl,az (1:N1/2));
title('WL=db3, £s=1280, reconstructed signal s (rec)');

figure;
[v_azidx az]=max(az) ;
stem(ceil (f1(idx az)),ceil(v_az), 'b-0");

Denoising and Reconstruction is experimented with dmey, coifl, sym2, &
debouches dbl, db2, db3, db4, db6 wavelets at various sampling frequencies (
more than nyquist rate) i.e. 512, 1120, 1280Hz. SNR of the input signal varied from
0.1 to 0.0333 (i.e. noise amplitude is 10 times to 30 times that of carrier). All these
results of denoised signal are tabulated in Table-1 & denoised result need to contain
only 160Hz component. Based on these results the individual wavelet performance
is listed out as follows.

Best Results:

Whname =db3, fs=1280 (No. of filter coefficients: 6)
Wname =db4, fs=1280 (No. of filter coefficients: 8)
Whname =db6, fs=1280 (No. of filter coefficients: 12)
Whname =dmey, fs=1280 (No. of filter coefficients: 102)

Note: db3 is the best because it offers excellent result & has few no. of filter coefficients.
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Keeping in view of Hardware complexity, the wavelet that has less no of filter
coefficients is finalized i.e. db3 is the best choice among all.

4.4 Signal Model & its frequency spectrum for best wavelet finding

Input Signal

160Hz carrier
200 T T

100 j
. ,‘Jl‘ﬂ‘Jl‘lllll':lhl‘zl‘ﬂ‘ﬂ‘m:MJI'alma”immmwmM“»”n‘h‘|||h’hht‘h‘Ht’h‘lL‘ltlll\J'.}Jl}ﬂ‘ﬂ‘ﬂul'
0 0.1 02 03 05 06 08 09 1

0.4 ; ! 07

10Hz noise wave
2000 T T T

1000 b

U 1 1 1 1 1 1 1 1 1
0 01 02 03 0O 05 06 07 08 08 1

modulated singal

2000

1000 5

Input Signal spectrum

. 105 Wl=db3 fs=1280 reconstructed signal s(rec)

X 9.892
Y: 3.838e+005
|

1F X 1599 -
Y: 3.737e+004
tm_ o
0k 1 1 i 1

1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

38



4

HPF O/P Signal

% 10 Jstage bottworth fil fs=1280,signalout fout3
4 T T T T T T T
|
a5f X 159.9
Y: 3.605e+004
3 L
25¢
oL
15
¥ 9.992
Y: 9426
Trm
05
U 1 1 T T 1 T
0 50 100 150 200 250 300 350
DWT O/P Signal
w10 \:‘\l’Li:dPSBg,jféF1230.recunstrucled signal s(rec)
4 ¥: 3.761e+004 T y T T
| |
351
3k
25F
2+
oy o
1+
05F
0 100 200 300 400 500 600

39




4.5 DWT Architecture denoising results using various wavelets
(SNR=0.1, -20db) with 0.03 signal and 0.3 noise level
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Wl=db4 fs=1280 reconstructed signal s,ec
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4.6 DWT performance parameters comparison of various wavelets for denoising

DWT coefficients

xX[n] £=0-~x
gln] h[n]
f=1/2 ~ 7 &@ é £=0 ~ 772
Level | \ glnl | [hln] |

f=nl4~nl2%2 i =0~ w4
Level 2

DWT coefficients g[ﬂ] h[n] |

f=m/8 ~ % % £=0 - w8
Level 3

DWT coefficients

If a signal under study is x(t) and its
sampled version having maximum
frequency component © radians is x[n].
then DWT can be obtained by filtering
and down sampling as shown below
called decomposition, where h[n], g[n]
are low pass and high pass wavelet
filters



Mixed signal SNR selected is 0.1 or -20dB

Note that due to successive subsampling by 2, the signal length must be a power of
2, or at least a multiple of power of 2, in order that the DWT scheme to be efficient.

The input X,Y data set (1280 Samples each) used to calculate Correlation,
Regression, R-Square values are:

Mixed signal => 160KHz (i.e X) pure sine wave (which is desired signal after
denoising the mixed signal ) + noise (5 KHz ramp and its 2"* harmonic component).
Amplitudes are selected such that SNR is -20dB.

Y=> denoised & reconstructed signal data using DWT or HP Filtering

The parameters results obtained using MATLAB are tabulated in Table-I

The input data set (1280 Samples)used to calculate correlation, regression, R-
Square values are

X=> 160Hz pure sine wave (which is desired signal after denoising the mixed
signal ) and

Y=> denoised & reconstructed signal data

4.6.1 The correlation, regression, R-Square parameters arrived at by
using following MATLAB Functions

tmps=zeros (length (X),1);
for i=1:1length (X)

tmps (1,1)= (X(i,1)-mean(X))*(Y(i,1)-mean(Y));
end

CORR = 100* ( (mean (tmps) )/ (std(X)*std(Y)));

REGR = regress(X,Y);

RSQR = 100* (1-( (norm(X-Y))/ (norm(X-mean(X)))));
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Table-1: Performance parameter comparison

Wavelet Correlation |Regression |R-square

Dbl (nfc=2) 66.4354552 [1.000195248 |25.30444455
Db2 (nfc=4) 98.4701111 |1.001659334 |83.01484430
Db3 (nfc=6) 99.8557156 [0.999193320 |96.36072248
Db4 (nfc=8) 99.9047657 [0.999267696 |98.14808313
Db6 (nfc=12) 99.9046037 |0.999186848 |98.13901349
Coifl (nfc=6) 98.6023453 |1.001307221 |83.80169801
Dmey (nfc=102) [99.9041269 |0.999170852 |98.11348185
Sym2 (nfc=4) 98.4701111 |1.001659334 |83.01484430

Note: nfc stands for number of filter coefficients of wavelet filter

B. Using 3 stage High Pass Butterworth filter to remove unwanted signal
frequencies.

X=> 160kHz pure sine wave and
Y=> 3 stage HP filter output for same mixed signal input

Table-11:

Filter Correlation | Regression | R-square
1° Order 80.7955393 | 0.790323 37.3726827
fc=160kHz

SNR i/p: -20db min

SNR O/P Results : a. With DWT denoising: 11db,

b. With HPF denoising: 5db

From the above results it is confirmed that for low complexity architecture having
less number of filter coefficients db3 wavelet is the best. So, this is selected for
denoising of FMCW Radar altimeter signal.
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Chapter 5

5.1 Experimental Setup and Signal specifications i.r.o FMCW
Radar signal for denoising

FMCW Radar Signal Modeling and Denoising Method using DWT with finalized
best wavelet db3 in MATLAB

I/p noisy signal to DWT based Denoising architecture consists of following for
MATLAB db3 wavelet based denoising Model.

Difference signal is (f-f) i.e Rx, Tx frequency difference (for 4Km altitude is
160KHz)

Noise: Ramp signal 5KHz + 10KHz (2" Harmonic) both with amplitude 10 times to
that of difference signal and White Gaussian Noise.

Sampling frequency for MATLAB to be 6 to 20 times in general so it is selected as
1280KHz and number of samples selected for casel is 1280, case2 is 80 and SNR,
Correlation, Regression, R-Square parameters are compared with filtered o/p of 3
stage Butterworth HPF with fc=20KHz.

Denoising is done by hard thresholding on detail coefficients to remove WGN
specifically and setting level 3 approximation coefficients to zero to remove 5KHz
and 10KHz components along with white noise.

I/P SNR : -26dB (for 1280 samples case)
-29.86dB (for 80 samples case)

nd
( fr—ft)+5KHz ramp+ 10KHz (2

Tx i/p ref. ft Harmonic) + White Gaussian

Denoised o/p

noise

‘1’ DWT+ denoising ‘1'
Filter for o & IDWT
(f-f)

Experimental Setup for Received signal for denoising of FMCW Rxd signal
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5.2 Specifications
» Transmit frequency would be 4GHz, Wavelet : db3 for DWT

» A baseband (distance) frequency of 160KHZ (for distance of 4 KM) is used

» Linear Ramp of 5KHz => a period tramp= 0.2 msec,

» df/dt => 1.2MHz for 0.2 msec of ramp period (in general)
» Two types of Noise:

a) Random Noise (Optional) : WGN (using randn function of MATLAB)
nd

b) Strong Ramp and its Harmonic leakage interference : 5KHz, 10KHz (its 2 harmonic)

» Two methods of Denoising studied

st
* High Pass Filter: 1 order High pass Filter, fc =20 KHz
* DWT Filtering and thresholding of random noise

» Two cases of study : 1280 samples & 80 samples

» Performance parameters : SNR, Correlation, Regression, R-Square

I/P SNR : Amplitudes of difference signal and Ramp and its harmonics selected such
That SNR of Mixed signal for two cases is

a. -26dB for 1280 samples case

b. -29.86dB for 80 samples case
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Chapter 6

6.1 FMCW Radar Signal Modeling and Denoising Method using DWT with
db3 in MATLAB and Comparison with 3 Stage Butterworth HPF

I/p noisy signal to DWT based Denoising architecture consists of following for
MATLAB db3 wavelet based denoising Model.

a. Difference signal is (f-f;) i.e Rx, Tx frequency difference (for 4Km altitude
is 160KHz)

b. Noise: Ramp signal 5KHz + 10KHz (2" Harmonic) both with amplitude 10
times to that of difference signal and White Gaussian Noise.

Sampling frequency for MATLAB to be 6 to 20 times in general so it is selected as
1280KHz and number of samples selected for casel is 1280, case2 is 80 and SNR,
Correlation, Regression, R-Square parameters are compared with filtered o/p of 3
stage Butterworth HPF with fc=20KHz.

Denoising is done by hard thresholding on detail coefficients to remove WGN
specifically and setting level 3 approximation coefficients to zero to remove 5KHz
and 10KHz components along with white noise.

I/P SNR : -26dB (for 1280 samples case)
-29.86dB (for 80 samples case)

6.1.1 Input Signal Model for FMCW Altimeter

160KHz signal

200
R
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1

X 10'3

white noise

mixed or noisy signal from mixer/ADC ofp

2000 T T T T T T T T T
0 WWMWMWWW”‘{
_2000 1 1 1 1 1 1 1 1 1
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

) 107

Pic: Screen shot of mixed signal to be denoised: Signal:160KHz carrier,
Noise:WGN+5KHz+10KHz , and noisy / mixed signal.
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6.1.2.  Input mixed / Noisy signal frequency spectrum having 5KHz,10KHz,
WGN(randn), difference signal 0f160KHz, 1280 samples, with fs=1280KHz.

«10° Wl=db3 fs=1280 reconstructed signal srec
4 T T T T T T T T

160KHz

05

0 A, " i i oo | L
14 16

o
(]
=N
[a7]
o
—_
o
o

%10

MATLAB Modeling for FMCW Altimeter Denoising
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6.2 Denoising

Denoising is done by hard thresholding on detail coefficients to remove WGN
specifically and setting level 3 approximation coefficients to zero to remove 5KHz
and 10KHz components along with white noise.

6.2.1. By setting approximation coef. A3=0: Removal of 5KHz &10KHz
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6.2.2 By setting detailed coef. d1, d?, d3thresholding such that the threshold is
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Pic: Showing amplitudes of signal alone in w0, w1, w2 detailed coefficients in

MATLAB
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6.2.3 By setting detailed coef. d1, dz, d3thresholding such that the threshold is
less than signal amplitude (below is noise signal alone is shown to decide
threshold)

2000 T T T T
- 1000 1
5
7] oF 4
4000 L . . . . .
1] 200 400 600 800 1000 1200 1400
4000 100 . . ; : . .
2000}, 1 s
< gl ] 2 0 V.43 1
2000 i ; : 3 g i 400 g A 3 g : 3
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5000 i i i i A ; i 400 i i A : ViEed i
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Pic: Showing amplitudes of noise alone in w0, wl, w2 detailed coefficients in
MATLAB to decide hard threshold level.

% Hard thresholding function in MATLAB
for i =1:1:1length(w0)
if abs(wO (1)) <= 7
w0 (i) =0;
end;
end;

6.2.4 Butterworth High Pass filter design using MATLAB FDA Tool, with

fc=20KHz
B e Do & s oo~ ot | © it
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6.2.5 HPF Coefficients generated by FDA Tool

File Edit Analysis Targets View Window Help
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Filter function implementation in MATLAB: here s is input mixed signal, y22

is filter output.

y22=filter(0.88366349398948019*[1 -1 0],[1 -0.7673269879789603701,5s) ;

6.3 Consolidated Results with 1280 & 80 sample cases after Noise reduction /
denoising using db3 based DWT and HPF (3 stage )

6.3.1 Results Table-111: Denoised o/p signal assessed parameter results

comparison

Db3 DWT(1280
samples)

HPF o/p
(1280)

Db3 DWT (80
samples)

HPF o/p (80)

Denoised signal SNR in dB

8.89

4.1

6.23

-4

Correlation 86 50.74 81.42 36.21
Regression 0.92 0.52 0.89 0.63
RA2 48.39 1.96 42.3 4.39
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6.3.2 HPF output for 1280 or 80 samples of mixed signal as input

HIGHPASS FILTER OUTPUT spectrum
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6.3.3 DWT (Using db3 architecture) output for 1280 or 80 samples of mixed
signal as input

x10% Wi=db3 fs=1280 reconstructed signal srec Wl=db3 fs=1280 reconstructed signal srec
T T T T 2500 T T " T
¥ 1.6e+005
L] Y2414
¥ 1.6e+005
¥: 3.513e+004 2000 1
Fig : 80
Fig:1280 1 i samples
samples case
case 1000 -
| *: 2.45+005
V5458
i j \/VV\/
MMMWWM 0 ' ; .
) 2 25 3 35
0s 1 15 2 25 3 35 5
5 3 10
310

Pic: Comparison of Denoised Outputs of MATLAB Models for 3 stage HPF
with fc=20K, and using DWT architecture with db3 wavelet

From the above results it is confirmed that for even at low input SNR the DWT

method using db3 wavelet gives very good results by improving SNR of the signal.

For low complexity architecture with less number of samples the performance is

still optimum. So VHDL architecture can be implemented with 80 samples and can

be used for denoising of FMCW Radar altimeter signal.
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6.4 Hardware Architecture Design using VHDL and Simulations:

A.VHDL Coding: Xilinx ISE Design suite 14.3 tool is used for FPGA as
target device, VHDL structural modules are developed to implement the
Hardware architecture of db3 Wavelet consisting of 3 stage Analysis and
Synthesis banks by designing high pass and low pass filters (decomposition
& Reconstruction) and component instantiation is done for 3 stages. A
module for file reading and feeding the data as i/p to decomposition and also
for writing into a txt file is designed. To reduce hardware complexity four
points are exercised in the code they are, a) ‘for’ loops are implemented by
counter method, b) multiplier is implemented using shifter and
add/subtraction in combinational logic subroutine, c) taking only 80 input
samples , d) db3 has less no. of filter coefficients. Further reduction is
possible by resource sharing like memories and registers.

6.4.1 VHDL Scree shots:

VHDL input signal reading from txt file : Screen Shot
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VHDL Simulation Screen Shot
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VHDL output txt file of reconstruction Plotted in MATLAG: Screen Shot
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6.4.2 Comparison of MATLAB & VHDL outputs

MATLAB RESULT VHDL RESULT
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Results of FMCW DWT-db3 based model of MATLAB & VHDL o/p are verified
and found satisfactory.

6.5 Applications :

The DWT with db3 wavelet based Denoising under low Signal to Noise Ratio
(SNR) conditions is very much suitable for FMCW Radar Altimeter used in Anti-
Radiation Missiles, Smart Bombs, Fighter aircrafts, Helicopters and other RF

carrier based defense applications and Cellular communications etc..

6.6 Conclusion:

In view of signals with low SNR and low complexity Hardware implementation,
among the various wavelets under study i.e dmey, coif, sym, & debouches such as
dbl, db2, db3, db4, db6, the best wavelet found is db3 (less no. of filter coefficients
for better results) giving excellent performance by virtue of various results. By
DWT based Denoising using db3 improved SNR appx. 5db more and Correlation,
Regression, R"2 statistics gave very good results compared to filter methods. With
less number of sample data also results are found satisfactory, which is very

important for low complexity hardware based application apart from denoising non-
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stationary signals for applications like FMCW Radar Altimeter, where in the method

of denoising is proven to give very good results. Following is conclusion point wise.

a. Out of dmey, coifl, sym2, & debouches dbl, db2, db3, db4, db6 wavelets, db3
delivers very good results for the denoising of target frequencies while
cancelling out unwanted harmonic of the ramp frequency and in view of low
complexity vs. better performance designers.

b. It outperforms over the HPF approach even under low SNR RF inputs, results in
improved SNR and other parameters.

c. With less number of sample data also results are found satisfactory, which is
very important for low complexity hardware based application apart from
denoising non-stationary signals for applications like FMCW Radar Altimeter,
where in the method of denoising is proven to give very good results.

d. The suggested technique is applicable in all FMCW radars which use periodic
ramp signals

Overall Conclusion : The simulations results found satisfactory, VHDL

Synthesis has been done. so one can use this method.
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