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Abstract 

 

Long chain branching (LCB) in any polymerization is of profound importance. It 

helps in improving certain properties such as melt strength and strain hardening. 

Branched polymers are, therefore, having different characteristics than linear 

polymers. In addition to having good end use properties, they are well suited for 

various processing applications such as blow molding, thermoforming, extrusion 

coating etc. As real world applications demand different extents of branching of 

polymers for different applications, this study aims to perform an investigation for a 

controlled way of long chain branching of polymers with enhanced properties.  

The main goal of this research is, therefore, three fold; viz. i) Finding the optimal 

process conditions for the desired combination of conflicting objectives, ii) 

Development of a kinetic model for long chain branched polypropylene system 

based on the available experimental data from open literature and simultaneously 

performing the multi objective optimization for the desired combination of 

conflicting performance objectives within experimental limits, and iii) Development 

of Kriging based surrogate model to replace the first principles based 

computationally expensive model to save execution time, while performing the 

multi objective optimization task for a highly non-linear, multi-modal search space.  

First, a batch optimization study for the bulk polymerization of vinyl acetate has 

been considered to find optimal process conditions for imparting LCB in polymer 

architecture. A theoretical study has been conducted with a validated model to 

observe the effect of live radical concentration on long chain branching as this is an 

important factor for branching in polymer molecule via ‘chain transfer to polymer’ 

route. In order to obtain better polymer product in less time at various temperatures, 

a need was observed to perform a multi-objective optimization study as the selected 

objectives were conflicting in nature. Owing to the complex nature of moment based 

species balance equations and molecular weight distribution function, elitist non-

dominated sorting genetic algorithm (NSGA II), a well-established multi-objective 

evolutionary algorithm, has been employed as an evolutionary optimization method 

to generate the Pareto optimal (PO) solutions. Objectives such as (i) minimization of 
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gel point conversion time, (ii) maximization of molecular weight and (iii) 

maximization of number average degree of branching (Bn), can be simultaneously 

achieved, where the solutions were obtained within the experimental range of 

polydispersity index (PDI) and weight average molecular weight (Mw) given in the 

open literature. Results show a wide range of process choices satisfying process 

objectives and constraints, both in low as well as high temperature regions. 

Polypropylene (PP) is world’s second largest industrial polymer and has potential to 

replace many non-biocompatible polymers in several applications. LCB in PP is one 

of the possible ways of customizing its properties for new applications. 

Unfortunately, to the best of our knowledge there is no validated mechanism for 

incorporation LCB in PP. Unlike polyethylene, PP is far difficult a candidate for 

LCB incorporation as well. In this thesis, a kinetic model has been proposed to 

describe the propylene polymerization process with long chain branching for a twin 

catalyst system to fit the experimental findings available in open literature for 

molecular weights, polydispersity index of atactic polypropylene, isotactic 

polypropylene and grafting density at different catalyst, cocatalyst concentrations. 

Kinetic parameters are estimated by real coded genetic algorithm (another 

evolutionary optimization technique) from the same set of experimental data. The 

validated model has the capability of predicting the branching density as a function 

of catalyst addition pattern, catalyst ratios and copolymerization time within 

experimental limits. Further, the validated model has been used to calculate the 

molecular weight long chain branching distribution. Parametric sensitivity study has 

also been conducted to analyze the effect of kinetic parameters on the long chain 

branching formation and other molecular properties of the polymer. Pareto optimal 

solutions for long chain branched polypropylene with the binary catalyst system are 

obtained by adapting non-dominated sorting genetic algorithm for a particular multi-

objective setup. The optimization objective is to produce polymer having high 

molecular weight and grafting density (expressed as number of macromonomers per 

1000 back bone monomer units) in minimum polymerization time. Addition 

amounts of two catalysts and cocatalyst, second catalyst addition time and total 

polymerization time are taken as decision variables with relevant process constraints 

(taken from experimental conditions and findings) that take care of model validity 
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over prescribed operating range. A wide variety of process choices have been 

obtained for the optimization set up which shows betterment in process 

performance.  

Despite the established superiority in finding the global and well spread Pareto 

optimal (PO) points, the need of more numbers of function evaluations for 

population based evolutionary optimization techniques leads to a computationally 

demanding proposal. The case becomes more demanding when the function 

evaluations are carried out using a first principle based computationally expensive 

model, making the proposal not suitable for online usage of the application. In this 

work, a Kriging based surrogate model has been proposed to replace a 

computationally expensive model to save execution time while performing an 

optimization task. A multi-objective optimization study has been carried out for the 

bulk vinyl acetate polymerization with long chain branching using these surrogate as 

well as expensive models and Kriging PO solutions similar to those found by the 

first principle models are obtained with a close to 85% savings in function 

evaluations. 
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Nomenclature 

 

aPP Atactic polypropylene  

b          Number of branches per molecule 

Bn           Number average degree of branching 

H
1C  Hydride activated complex 

Me
2C  Methylated catalyst activated complex 

cat1 First catalyst concentration (mol/L) 

cat2 Second catalyst concentration (mol/L) 

cocat Cocatalyst concentration (mol/L) 

j

nD       Dead polymer chains of length “n” belonging to generation j 


nD

 aPP macromonomer concentration of chain length “n” (mol/L) 

mn,DP
  Number average degree of polymerization of mth class polymer chains  

mw,DP
 Weight average degree of polymerization of mth class polymer chains 

GD Grafting density 

I , [I]    Initiator and initiator concentration, mol/l 

iPP Isotactic polypropylene 

LHS     Latin hypercube sampling 

ki1 Initiation rate constant (L/(mol.min)) 

kβ β-H elimination constant (1/min) 

kβr Reversible chain transfer to metal rate constant (L/(mol.min)) 

kp1 Propagation constant for the first catalyst system (L/(mol.min)) 

αklcb Effective long chain branching rate constant (L/(mol.min) 

ka2 Activation rate constant for the second catalyst system(L/(mol.min)) 

ki2 Initiation rate constant for the second catalyst system (L/(mol.min) ) 

kp2 Propagation rate constant for the second catalyst system (L/(mol.min)) 

kd2 Deactivation rate constant for the second catalyst system (L/(mol.min)) 

kal Chain transfer to cocatalyst for second catalyst system (L/(mol.min)) 
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kri1 Re-initiation of hydride metal complex (L/(mol.min)) 

kd         Initiator decomposition rate constant, min−1 

kfm       Chain transfer to monomer rate constant, L/(mol.min) 

kfp        Chain transfer to polymer rate constant, L/(mol.min ) 

kdb        Terminal double bond rate constant, L/(mol.min) 

kI          Initiation rate constant, L/(mol.min) 

kp         Propagation rate constant, L/(mol.min) 

ktc        Termination by combination rate constant, L/(mol.min) 

ktd        Termination by disproportionation rate constant,L/(mol.min) 

[M] Monomer concentration (mol/L) 

MISO  Multiple input single output 

Mn       Number average molecular weight, g/mol 

Mw      Weight average molecular weight, g/mol 

Pn aPP live polymer of chain length ‘n” (mol/L) 

j

nP       Live polymer chains of length “n” belonging to generation j  

PDI     Polydispersity index 

PO      Pareto optimal 

Qn,i iPP copolymer of chain length “n” and “i” long chain branches (mol/L) 

Rn,i Dead iPP copolymer: Chain length “n” and “i” long chain branches  (mol/L) 

RAM   Random access memory 

RMSE Root mean square error 

R2       Coefficient of determination 

 tp Polymerization time (min) 

T         Temperature, K 

Wi(n)   Weight fraction of polymer population of ith class 

Wtotal(n) Overall weight fraction of polymer population 

0  Zeroth moment of aPP live polymer (mol/L) 

1  First  moment of aPP live polymer  (mol/L) 

2  Second  moment of aPP live polymer  (mol/L) 



0μ  Zeroth moment of aPP macromonomer  (mol/L) 
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

1μ  First  moment of aPP macromonomer  (mol/L) 



2μ  Second moment of aPP macromonomer  (mol/L) 

0μ  Zeroth moment of live polymer (mol/L) 

1μ  First  moment of live polymer  (mol/L) 

2μ  Second  moment of live polymer (mol/L) 

0  Zeroth moment of dead polymer (mol/L) 

1  First  moment of dead polymer  (mol/L) 

2  Second  moment of dead polymer  (mol/L) 

j

iμ        ith moment of living polymer from jth generation (mol/L) 

j

i       ith moment of dead polymer from jth generation (mol/L) 

m0,μ  Zeroth moment of live polymer of mth class  (mol/L) 

m1,μ
    First  moment of live polymer of mth class  (mol/L) 

m2,μ
Second  moment of live polymer mth class  (mol/L) 

m0,
 Zeroth moment of dead polymer of mth class (mol/L) 

m1,
 First  moment of dead polymer of mth class (mol/L) 

m2,
 Second  moment of dead polymer mth class (mol/L) 

 ψ        Correlation matrix for all observed data 

         Correlation matrix between new predicted point and old points 

 m       Spreading coefficient of correlation for monomer 

 i        Spreading coefficient of correlation for initiator 

 t        Spreading coefficient of correlation for temperature 

         Standard deviation value 

  µ        Mean value 

 



μ        Optimum mean value for which likelihood is maximized 
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

       Optimum standard deviation value for which likelihood is maximized 

        Cumulative distribution function 

         Normal density function  
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Chapter 1 
 

Introduction 

   

 

1.1 Motivation 

   Branched polymers exhibit enhanced polymer processing properties as compared to their 

linear counterparts of similar molecular weight and this fact provides the former 

considerable edge over the latter for many practical applications. Branched polymers are 

characterized by high strain hardening, tensile strength, relaxation time and low density [1]. 

One such example is polypropylene (PP), which can be preferred over many other 

thermoplastics (that are currently in use but not bio-compatible) for applications which need 

light weight and reasonable thermal and chemical resistant properties. Branching in 

polypropylene, when possible to be introduced in controlled fashion, can have a large 

impact since PP is the second largest commercially important synthetic polymer in 

consumption after polyethylene. However, the polypropylene produced by the Ziegler-Natta 

and metallocene are highly linear [2]. Polymers produced by the former catalyst exhibit 

good processability due to the multiple active site behavior. But, it has lower mechanical 

properties [3]. Polymers produced by the latter one exhibit narrow molecular weight 

distribution (MWD) with good mechanical properties. Due to the poor shear thinning 

behavior of these polymers, processability is very difficult. After the discovery of constraint 

geometry metallocene catalyst, branched polyolefin synthesis was made possible due to its 

unprecedented control over the microstructure of the polymer [4-10]. The unique feature of 

this catalyst is that it incorporates the macromonomers in to the growing chain to create the 

branches. The lack of attention in the direct synthesis of long chain branched polypropylene 

(LCB PP) is due to the limited knowledge of embedded chemistry to produce the LCB PP 

[11]. To overcome this, various post reactor technologies, e.g. reactive extrusion [12] and 

electron beam irradiation [13], have been developed. LCB polymers prepared by these 

methods are complex and sometimes difficult to control the extent of branching in them. It 
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is also possible to increase the LCB levels by using the dual catalysts in the same reactor, 

where one catalyst is capable of forming macromonomers while the second catalyst in the 

reactor is incorporated as LCB on to the growing chain. This type of binary catalyst systems 

in a single reactor has shown to be effective for one step production of long chain branched 

polyethylene [14-15].  

   Though various experimental in situ polymerization  techniques of synthesizing PP with 

branching are in progress [6, 10, 11, 16, 17], one of the theoretical approaches might be the 

modeling of LCBPP with a proposed mechanism which can validate experimental results 

and then using that validated model to optimize and control the extent of branching. 

Developing a mechanistic model for such a polymer system is going to be very helpful 

because in this process, the details of the system can be understood and the properties of the 

polymer can controlled in a better manner. Calculation of molecular weight distribution 

(MWD) is very important for this kind of modeling of polymerization system as the MWD 

can be directly related to many of the properties of the polymer. The generic approach 

towards mechanistic modeling of polymerization system is to assume a kinetic mechanism, 

from which one can derive the net rate of formation of live and dead polymers. Calculation 

of the molecular properties dynamically inside the reactor leads to a very large set of 

ordinary differential equation - initial value problems (ODE-IVPs) to accommodate high 

degree of polymerization. Moment based modeling is generally applied to the live and dead 

polymers to reduce it to a lower order system. Next, the MWD can be calculated by 

fractionation of total polymer into various classes [18] based on the long chain branching 

(LCB) content (linear, LCB=1, LCB=2, etc.). With a model of such capability in place, the 

final aim is ideally to find out the optimal process conditions to get the desired combination 

of various objectives (e.g. simultaneous minimization of polymerization time, maximization 

of weight average molecular weight and number average degree of branching) obeying 

certain process and phenomenological constraints. Real life scenarios demand simultaneous 

attainment of number of above-mentioned objectives as opposed to single objective which 

can be conflicting to one another. A set of trade-off solutions, known as Pareto optimal (PO) 

solutions, can be obtained by solving the multi-objective optimization problem (MOOP). 

These PO solutions provide multiple alternatives, known as non-dominated solutions, to a 

decision maker from which a single solution can be chosen based on some additional 

information available at a higher level. Evolutionary optimization methods which have 

certain edges over their classical counter parts to find better quality PO solutions, are proven 

to be better candidates for solving several ill / well-behaved (e.g. convex as well as non-

convex) MOOPs under different scenarios. 
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   As mentioned earlier, evolutionary algorithms (EAs) are found to be very reliable and 

practical while seeking the solutions of a MOOP. One the one hand, these algorithms offer 

promise to find the global PO front in presence of several local ones, while the aspect of 

finding out a set of well spread PO solutions in the given objective space is the other strong 

edge these techniques have over their competitors (primarily the classical techniques) [19]. 

Despite the aforementioned distinctions, EAs, when used with the above-mentioned 

computationally expensive polymer models, requiring more time for each function 

evaluation. This will demand significantly long time to find the PO solutions, translating the 

approach to be less practical for real world online applications. The reason for high 

computational burden in these evolutionary algorithms is the repetitive function evaluations 

for each candidate solution, which cannot be avoided because these algorithms work with a 

population of solutions. The quality of the Pareto spread may be compromised if these 

functions evaluations are reduced by considering a budget cut in the population size [19]. 

One of the ways to reduce the computational burden might be to replace the 

computationally expensive model by another model or set of models that consume relatively 

less time, called meta-model or surrogate model [20-25]. The challenge lies in the fact of 

developing a surrogate model that has a reasonable balance of agility and reliability, an 

inherent trade off in any model building exercise while mimicking complex phenomena. 

 

1.2 Research Objective 

   The main objective of this thesis is to develop an experimentally validated kinetic model 

for the long chain branched polypropylene (LCBPP) system by using dual catalyst system 

and use the model for performing multi-objective optimization (MOO) for the desired 

combination of conflicting objectives. A critical review of literature reveals that 

 Models of LCB for PP system with a proposed mechanism which can match 

experimental results is not available in the literature though few modeling efforts are 

reported without experimental validation. 

 Use of experimentally validated models in optimizing operational process parameters 

while controlling the extent of branching, therefore, is even rarer. 

 Reduction in execution time (i.e. for PVAc model) for the optimization formulation to 

make the application as a candidate for better online usage is not very ubiquitous. 

 

In view of the above motivating factors, the specific research objectives of this work were:  

 Perform multi-objective optimization for the desired combination of conflicting 

objectives by using evolutionary optimization method for the highly branched 
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polyvinyl acetate (PVAc) system which is manufactured by free radical 

polymerization. The system of PVAc has been chosen here as a test case for 

incorporating the phenomenon of branching because branching in PVAc is 

relatively well-understood and a large amount of validation data are available 

for this system. 

 

 Develop a kinetic model to describe the branched polypropylene system with 

two single site catalysts, where one is capable of forming macromonomers, 

while the second one grafts these macromonomers into the growing chain to 

create branches and validate the same with experimental data. 

 

 Perform MOOP to obtain the Pareto optimal solutions for the developed 

branched polypropylene system while handling several conflicting objectives by 

keeping the decision variables within the ±10% experimental range to control 

the model extrapolation errors and analyze and compare the results with the 

existing literature data. 

 

 Develop Kriging based surrogate models to partially or completely replace the 

original expensive model to reduce the number of function evaluations while 

performing MOOP by the evolutionary optimization technique. 

 

1.3 Organization of Thesis 

This thesis consists of 8 chapters and is organized as follows: 

 

Chapter 1 presents the introduction, research objectives and organization of thesis. 

 

Chapter 2 contains the literature review of multi-objective optimization studies of various 

polymerization systems and kinetic modeling of branched polyvinyl acetate (PVAc) system. 

This is followed by the literature review on the branched polyolefin systems. Finally, it 

contains various surrogate based modeling techniques. 

 

Chapter 3 discusses about the polymer basics, various types of chain growth polymerization 

and various methods to calculate the molecular weight distribution for the long chain 

branched polymers, i.e. numerical fractionation method, partition according to the number 

of branches and fixed pivot technique. 
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Chapter 4 describes the kinetic scheme adopted and the related modeling procedure to 

provide a link between the molecular architecture and polymer properties for the bulk free 

radical polymerization of vinyl acetate. Further, the simulation results of multi-objective 

optimization and its rationale behind the formulation of the problem is provided.   

 

Chapter 5 discusses about the development of experimentally validated kinetic mechanism 

for the long chain branched polypropylene system by the binary catalyst system, where one 

catalyst responsible for forming macromonomers, while the second one copolymerizes the 

macromonomers to create branches into the growing chain.  

 

Chapter 6 deals with the multi-objective optimization of long chain branched polypropylene 

system, which discusses the simulation results of multi-objective optimization to produce a 

polymer of high molecular weight and grafting density (number of macromonomers per 

1000 back bone monomer units) in less polymerization time. 

 

Chapter 7 describes the Kriging based surrogate model to replace a first principle based 

computationally expensive model (i.e. PVAc model) to save execution time while 

performing an optimization task. In the surrogate modeling exercise, Kriging models have 

been developed first for each of the objective functions and constraints one at a time. Pareto 

optimal solutions are compared with the original first principle model. 

 

Chapter 8 deals with the concluding remarks of the thesis.  
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Chapter 2 
 

Literature review 

   

 

2.1 Branched polymers 

The molecular architecture of a polymer determines various end use properties. For 

example, branched polymers are usually linked with improved processing characteristics, 

high melt strength and low melt flow index (MFI) [1] as compared to their linear 

counterparts. Branched polymers are also characterized by high strain hardening, tensile 

strength, relaxation time and low density [1]. As branched polymers are having different 

properties than linear ones, there has been some literature on manufacturing of different 

kind of branched polymers. For instance, Nagasawa et al. [26] performed detailed study on 

methods to manufacture specific branched polymers which include star and comb shaped 

polymers. Some examples for branched and linear free radical polymerization are 

extensively used in literature.  For instance, kinetic modeling of poly (methyl methacrylate) 

is performed by Krajnc et al. [27] using tetraphenyl biphosphine as an initiator. In addition, 

work is there in literature using different types of initiator and monomers differ in number 

of functional groups. Kinetic modeling and experimental validation for hyperbranched 

polymerization of methyl methacrylate is performed by Simon et al. [28]. Keramopoulos et 

al. [29] gave example of poly(methyl methacrylate) using diffusion controlled free radical 

polymerization. Furthermore Achilias et al. [30] also performed study on diffusion 

controlled free radical polymerization of methyl methacrylate and styrene using different 

initiators. Low density polyethylene (LDPE) is largely used in literature as examples of 

branched polymers. Different kind of initiators, reactors and operating conditions are 

studied for polymerization of ethylene. High pressure polymerization of ethylene using 

continuous stirred tank reactor (CSTR) is performed by Pladis and Kiparissides [18]. 

Moreover, study also performed on modeling of LDPE in tubular and autoclave reactors by 
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Zhou et al. [31]. One other example is Poly vinyl acetate (PVAc), which is a highly 

branched thermoplastic polymer. It is manufactured by free radical polymerization of vinyl 

acetate and used as raw material for preparation of polyvinyl alcohol and polyvinyl acetate 

phthalate. PVAc is used as a film forming ingredient in water based paints and also known 

as wood glue. Since this structure-property relationship is of profound importance, it is 

necessary to examine the kinetics and the effect of process operating conditions on polymer 

molecular properties. There are several studies on the polymerization of vinyl acetate. 

Thomas [1] conducted batch experiments for polymerization of vinyl acetate at two 

different temperatures with different initiator conditions. The various properties such as 

molecular weight and number average degree of branching were calculated. Tobita et al. 

[32] used monte-carlo method to investigate the branching in batch polymerization process. 

There are also few studies on solution polymerization with different solvents. Solution 

polymerization using t-butanol is studied by Chatterjee et al. [33]. Timothy et al. [34] used 

different solvents for batch polymerization and investigated their effect on various 

properties of PVAc. 

 

   Molecular weight and long chain branching (MW-LCB) distribution is of great interest as 

it is directly related to the polymer properties.  There are several methods in the literature to 

calculate this. Teymour and Campbell [35] gave numerical fractionation which can be 

applied in both pre and post gelation polymerization. In this method, polymer is divided into 

linear and branched chains. During the beginning of polymerization, linear polymer 

dominates and when a branch is added to the linear polymer, it is termed as first generation. 

If two first generation chains combine together, from that point it is considered as second 

generation and so on. Transition from one generation to other continues by geometric 

growth. In case, the terminal double bond reaction is assumed to be important, the 

assumption (i.e. geometric growth) in “Numerical Fractionation” method may not be valid. 

The main drawback of this method is that the branches may keep on adding without getting 

transferred to the next generation. Arzamendi and Asua [36] has modified the Numerical 

Fractionation method and applied to emulsion polymerization systems. Pladis and 

Kiparissides [18] developed  a comprehensive model for the calculation of molecular weight 

long chain branching distribution in free radical polymerization, which is based on the 

fractionation of the entire polymer population based on the number of branches (i.e. 

classes). For each class, moment based modeling is applied for live and dead polymer 

chains to reduce the number of equations. From this technique, one can calculate average 

polymer properties like Mn, Mw, Bn etc. MWD is calculated for each class (i.e. having same 
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long chain branching (LCB)) by Wesslau distribution [18] using the above mentioned 

numerical technique (i.e. partition according to number of branches). The overall MWD is 

the weighed sum of MWDs of individual class. Here, the class number is increased by chain 

transfer to polymer reaction and reaction with terminal double bond as they increase long 

chain branching (LCB). In chain transfer to polymer reaction, internal radical is formed 

from dead polymer chain by hydrogen abstraction [37]. Monomer units present in the 

reactor attack the internal radical leading to formation of LCB. Meimaroglou et al. [38] 

compared the results between two-dimensional fixed pivot technique [39] and monte-carlo 

[32] in batch mode. In fixed pivot technique, two-dimensional sectional grid method is 

applied to solve the population balance equations. In this method, degree of polymerization 

and long chain branches per polymer chain were discretized into a number of two-

dimensional finite elements. The resulting continuous discrete rate equations for live and 

dead polymer chains were solved to calculate average weight and branching in the polymer. 

Asteasuain et al. [40] used transform technique, probability generating function (PGF) to 

mass balances that describe free radical polymerization reactions.  PGF balance equations 

are constructed and resulting transforms are inverted by using different methods to recover 

the complete molecular weight distribution. In the present work, method of moments is used 

to get the tractable set of equations from a high dimensional problem. Adopted model for 

batch free radical polymerization consists of stiff ordinary differential equations and is 

solved using LIMEX DAE [41] solver. Model is validated with experimental studies [1] and 

other numerical technique [18]. Numerical fractionation according to number of branches 

[18] is used to get the branching parameter and molecular weight-long chain branching 

distributions. 

 

   Significant numbers of experimental and theoretical studies have been conducted for 

various free-radical long chain branched systems. As another example, long chain branched 

polyethylene can be produced by free radical polymerization in a tubular reactor at high 

pressure and high temperature conditions [42]. In general, Zeigler Natta and metallocene 

catalysts are known to produce highly linear polymers. After the discovery of constraint 

geometry catalyst, branched polyolefins synthesis was made possible. The unique feature of 

constraint geometry metallocene is that it incorporates the macromonomers into the growing 

chain [6, 10, 16]. The lack of attention in synthesizing long chain branched polypropylene 

(LCB PP) is due to the limited knowledge of embedded chemistry to produce the LCB PP. 

To overcome this, various technologies, e.g. reactive extrusion [12] and electron beam 

irradiation [13] have been developed. LCB polymers prepared by these methods are 
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complex and sometimes the degree of branching of the resultant polymer is very difficult to 

control. Due to the advantage of metallocene technology, Weng et al. [6] have synthesized 

long chain branched isotactic polypropylene (iPP) by the incorporation of in situ vinyl 

terminated macromonomers. The experiments are conducted at low and steady propylene 

concentration to allow accumulation of macromonomers in the reactor so that the 

probability of incorporation of macromonomers to the growing polymer chain increases. 

Shiono et al. [10] copolymerized atactic polypropylene (aPP) macromonomer with 

propylene by an isospecific metallocene catalyst. They used rac-Me2Si(2-

MeBenz[e]Ind)2ZrCl2, the best isospecific catalyst available for the incorporation of 

macromonomers, for this purpose. Ye and Zhu [16] produced LCB PP with isotactic back 

bones and atactic side chains using binary catalyst system. Here, the catalyst (1) produces 

vinyl terminated macromonomers (having terminal double bonds) and the catalyst (2) 

copolymerizes the polypropylene macromonomers with propylene. Under this mechanism 

the chains that have terminal unsaturation are inserted into the growing polymer chain to 

produce LCB PP. LCB PP has been produced by Paavola et al. [17] by using non-

conjugated diene comonomers, where the diene monomer provides a reactive functional 

group along the backbone to ease branching. Polymers produced by this method exhibit 

broad molecular weight distribution with a polydispersity index value greater than 5. 

Langston et al. [11] produced long chain branched isotactic polypropylene by metallocene 

catalyst and T-reagent. They conducted experiment by the combination of rac-Me2-Si(2-

Me-4-Ph-Ind)ZrCl2/MAO as catalyst and p-(3-butenyl)styrene as T-reagent. In the presence 

of hydrogen, T-reagent acts as comonomer as well as chain transfer agent. LCB PP 

produced by this method has branching density of the order of ~3.3 per 10000 carbon atoms. 

On the production of branched polyethylene, there has been considerable progress. 

Beigzadeh et al. [43] produced long chain branched polyethylene with binary metallocene 

catalyst system (2-ArN=C(Me)]2C5H3N}FeCl2/MMAO (1) and rac-Me2Si(2-

MeBenz[e]Ind)2ZrCl2/MMAO (2)) and observed the extent of long chain branching by 

varying the two catalysts in the reactor. Zou et al. [44] synthesized long chain branched 

polyethylene by homo polymerization of ethylene with nickel 𝞪-diimine catalyst. They 

observed the influence of temperature and Al/Ni ratio on molecular weight and degree of 

long chain branching [44] in this work. Mathematical models have also been developed to 

explain long chain branched polyolefins. Mehdiabadi et al. [45] developed mathematical 

model for the general olefin polymerization in a series of two CSTRs, in which 

macromonomers produced in the first reactor is copolymerized with the propylene in the 

second reactor to produce PP with high LCB density. The Monte Carlo models have been 



10 

developed for branched polyolefins which are made with two single site catalysts [46]. 

Soares and Hamielec [47] developed a simple analytical expression to calculate molecular 

weight distribution of chain length and long chain branching of polyolefins in a steady state 

CSTR. Modeling study has been conducted by Zhu and Li [48] with the use of binary 

metallocene catalyst system to obtain highly comb-branched polymers in steady state CSTR 

and obtained an olefin polymer of narrow molecular weight distribution with a maximum 

polydispersity index of 2.25. By this catalyst systems, back bone and side chains provide a 

theoretical polydispersity index of 2 (Schulz-Flory distribution) [48] only. Yiannoulakis et 

al. [49] explained from comprehensive dynamic model for the construction of molecular 

weight long chain branching distribution by numerical fractionation technique for olefin 

polymerization. Iedema et al. [50] predicted branching densities and bimodal molecular 

weight distributions of polyethylene for mixed systems with a constrained geometry 

metallocene catalyst in a semi batch reactor by using Galarkin finite element method. Read 

and Soares [51] obtained the molecular weight and long chain branching distribution for 

polyolefins made with two single-site metallocene catalysts in a CSTR. A detailed review of 

mathematical models to explain the polymer microstructure with single site catalysts is 

given by Soares [52]. The validation of these models with experimental data is still to be 

done to satisfaction [52]. 

 

2.2 Multi-objective Optimization 

Multi-objective optimization techniques are excellent candidates to find out optimal 

solutions that are conflicting in nature, e.g. simultaneous attainment of maximum molecular 

weight and grafting density in less polymerization time in a polymerization set up. It is 

known that polymer with higher molecular weight can be obtained in higher polymerization 

time; on the contrary, the objective is to attain polymers with higher molecular weight in 

less time - there is the conflict. Moreover, to maintain the competitive advantage, it is more 

apparent that enterprises need to produce products in such operating conditions that solve 

multiple conflicting operating objectives simultaneously than attaining only one goal. Multi-

objective optimization works are, therefore, gaining popularity to solve optimization 

problems in the polymerization domain, which are quite often conflicting in nature, over last 

few decades. The early efforts to solve multi-objective optimization problems in polymer 

reaction engineering go back to the works of Tsoukas et al. [53] and Fan et al. [54]. These 

studies are primarily based on the Pontryagin’s maximization principle to find solutions to 

the optimal control problems where various single objective optimization based methods are 

used to transform the original multi-objective optimization problems to obtain the Pareto 
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optimal (PO) solutions. There are benefits of using evolutionary optimization methods for 

solving multi-objective optimization problems. These population based methods attack the 

multi-objective optimization problems using a vector approach where all objectives are 

considered simultaneously as opposed to the single objective optimization approaches for 

solving multi-objective optimization problems. Multiple numbers of well spread PO 

solutions can be obtained in single optimization run using these evolutionary approaches. 

One such earlier efforts is the multi-objective optimization study of optimal control of 

industrial nylon-6 semi-batch reactor [55], where evolutionary algorithms are shown to 

work better than conventional Pontryagin maximization principle [55] based approaches to 

solve multi-objective optimal control problems. In another example, Raha et al. [56] 

investigated the effect of NaOH addition as a catalyst in semi-batch mode for epoxy 

polymerization, which was otherwise considered as a batch operation. Detailed optimal 

control studies have been performed by Mitra et al. [57] and Majumdar et al. [58] with 

relevant process constraints to find out optimal addition profiles for various other reactants 

that further support semi-batch operation as compared to conventional batch process. As 

another example, Majumdar et al. [59] maximized the degree of polymerization and 

concentration of desired species in minimum polymerization time for the poly (propylene 

terepthalate) system with a titanium based catalyst using evolutionary algorithms. Mitra et 

al. [60] considered different alternatives for catalysts and carried out optimization study 

with various sets of process objectives with newly estimated kinetic parameters. Sundaram 

et al. [61] and Upreti et al. [62] studied optimal control for polymethylmetha acrylate 

system using bi-functional initiator in a non-isothermal reactor. Multi objective optimization 

of an industrial low density polyethylene tubular reactor has been conducted by using 

genetic algorithm and its jumping gene adaptations [63]. Most of these literature show 

superiority of evolutionary methods to solve multi-objective optimization problems as 

compared to other classical optimization techniques for solving problems related to 

polymerization which is otherwise also shown for solving other chemical engineering multi-

objective optimization problems. A thorough review of various such works from 

polymerization domain can be found in the literature [64-67].  

 

2.3 Surrogate Modeling 

Evolutionary algorithms (EAs) [68-69] are found to be very reliable and practical while 

seeking the solutions of a multi-objective optimization problem. On the one hand, these 

algorithms give promise to find the global PO front in presence of several local ones, while 

the aspect of finding out a set of well spread PO solutions in the given objective space is the 
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other strong edge these techniques have over their competitors (primarily the classical 

techniques) [19]. Despite the aforementioned distinctions, EAs, when used with first 

principle based computationally expensive models, requiring more time for each function 

evaluation, demand significantly long time to find the PO solutions, translating the approach 

to be less practical for real world online applications. The reason for high computational 

burden in these evolutionary algorithms is the repetitive function evaluations for each 

candidate solution, which cannot be avoided because these algorithms work with a 

population of solutions. The Quality of the Pareto spread may be compromised if the 

numbers of functions evaluations are reduced [19]. One of the ways to alleviate the 

computational burden is to replace the first principle based computationally expensive 

model by another model or set of models that consume relatively less time, called meta-

model or surrogate model [70]. The challenge lies in the fact of developing a surrogate 

model is that it has to have a reasonable balance of agility and reliability, an inherent trade 

off in any model building exercise while mimicking a complex phenomenon. 

 

   A detailed survey of fitness approximation of various techniques has been conducted by 

Jin [71]. An approximation can be achieved widely at three levels: problem approximation, 

function approximation and approximation at the level of the algorithms [20]. In problem 

approximation, the given problem itself is replaced by an easy-to-solve new problem [72]. 

In function approximation, an implicit or explicit function based black box model is 

formulated between inputs and outputs which can approximately capture the behavior of the 

original function and makes the system faster. Evolutionary approximation, the next in 

order, can be achieved in the algorithmic level of evolutionary routine. For instance, the 

fitness value of offspring children can be estimated by fitness value of their parents etc. 

[73]. The approach of function approximation has been emphasized here. There have been 

several techniques for function approximations in literature such as response surface [74], 

multivariate adaptive regression splines [75], Kriging [22-25], artificial neural networks 

[70], radial basis functions [76-77] and support vector regressions [75] to name a few. 

 

   The challenge lies here is how can we develop a high fidelity surrogate model with less 

number of function evaluations. It is, therefore, very important to use function evaluations 

carefully while building the surrogates so that the quality of the optimal solution is not 

compromised. In conventional optimization, this is known as model management [78] or 

evolution control in evolutionary computation [79]. There are several ways in literature for 

model management or evolution control. For example, function evaluation can be 
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completely replaced by surrogate model [78] or function evaluations can be used for a few 

generations (controlled generations) or for a few individuals in a population (controlled 

individually) and the rest using surrogate model [79-80]. Dellino et al. [23] compared the 

various metamodeling strategies in a case study of the design of a component of the 

injection system for compressed natural gas (CNG) engines, where Kriging surrogate has 

been used. Jin et al. [81] gave the framework for controlled evolution which guarantees the 

correct convergence while reducing the computational burden. Nain and Deb [70] used 

controlled generation approach, fixed number of expensive model calculations followed by 

fixed number of surrogate model usage, to use feed forward neural network model with an 

evolutionary algorithm for several multi-objective optimization case studies and observed 

the savings up to 50%. Mitra and Majumder [20] extended this approach by introducing 

automatic transition between surrogate and expensive model calculations while solving a 

multi-objective optimization study of iron ore induration process. Surrogates have found 

their usage in rolling rod product design where expensive finite element models (FEM) have 

been replaced by the combination of design of experiments (DOE) and response surface 

models (RSM) for multi-objective optimization study [82]. Li et al. [24] utilized the Kriging 

assisted multi-objective genetic algorithm (K-MOGA) and observed the Pareto with 

approximately 50% lesser number of function calls as compared to the conventional genetic 

algorithm. Here, some of the population points are evaluated by Kriging surrogate model 

instead of first principle model, based on criteria related to model accuracy. Li [25] 

developed an improved Kriging assisted multi-objective genetic algorithm (Circled Kriging 

MOGA, i.e.CK-MOGA) and concluded that CK-MOGA exhibited improved performance 

in terms function calls as compared to the K-MOGA. In an another study, Li et al. [83] 

compared various surrogate modeling techniques such as radial basis function, artificial 

neural network, Kriging, support vector regression and multivariate regression splines 

where the support vector regression is found to be the best in terms of robustness and 

accuracy while carrying out the optimization of a job shop design problem. Several works 

started surfacing in literature about surrogate associated multi-objective optimization for 

various applications, crashworthiness design [84], structural dynamics [85] and draw-bead 

design [86] etc. to name a few. Giri et al. [87] suggested building different models of 

varying structures using ANN and genetic programming before focusing on a particular 

parsimonious model considering the tradeoff between the model complexity and accuracy. 

 

   Kriging (Gaussian process regression) surrogate model has been used to replace the 

expensive model to reduce the computational burden due to its superior prediction accuracy 
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as compared to the other models [88]. Gaussian process based infill criteria such as expected 

improvement [22, 89] has been used to build the surrogate model. Chi et al. [90] used the 

NSGA II [19] to generate Pareto between prediction mean and uncertainty. These Pareto 

points are further clustered to give experimental data to be conducted for the next iteration. 

2.4 Tendency modeling 

A more exhaustive model, which focuses the estimation beyond the experimental range, is 

necessary. This model is also referred as “tendency modeling”. It is a non-linear, lower 

order, dynamic model that approximates the kinetic relationships of a process using the 

experimental data along with basic knowledge of the process [91-93]. The model structure 

and parameters are updated as more data becomes available. 
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Chapter 3 
 

Introduction to Polymerization 

techniques, Methods and Solver  

  

 

This chapter deals with the polymer theory and various methods to calculate the 

molecular weight distribution of branched polymer systems. 

3.1 Polymer Theory 

Polymers are high molecular weight materials formed by smaller repeating units called 

monomers. The molecular properties of the polymers are characterized in terms of 

molecular weight distribution (MWD), polydispersity index (PDI) etc. These molecular 

properties completely depend on the formulation (monomers, initiators, catalysts etc.), the 

polymerization technique (free radical, coordination etc.), reactor (i.e. batch, tubular reactor, 

CSTR etc.) and process conditions (temperature, time, concentration) [94]. For example, the 

catalyst design is the key to success of any industrial process for olefin polymerization. This 

is because the catalyst finally determines how the monomers will be linked in the polymer 

chain [94], eg. Polymers produced by the Ziegler-Natta catalyst exhibit good processability 

as compared to the metallocene due to the multiple active site behavior. Methods to 

calculate MWD are extremely important. Some of these methods are explained below 

 

3.1.1 Molecular weight distribution 

Polymers consist of chains of various lengths and they are characterized by molecular 

weight distribution (MWD). Polymer properties strongly depend on MWD, e.g. mechanical 

strength of the polystyrene improves with increase in its molecular weight. Although the 

properties of the polymers strongly depend on the overall MWD, they can often be 

characterized by the average molecular weights based on number and weight. 



16 

   Number average molecular weight: 

                                     


















1n

nn

1n

nn

n

)P(D

)Pn(D

M                                            (3.1)    

   Weight average molecular weight: 

                                      


















1n

nn

1n

nn

2

w

)Pn(D

)P(Dn

M                                          (3.2) 

Where nP and nD  represent the number of moles of live and dead polymer chains of length 

n and mw is the molecular weight of the monomer unit. Live polymer can have the 

capability to further grow, while the dead polymer cannot grow further. The ratio of weight 

average and number average molecular weights gives the value of polydispersity Index 

(PDI=Mw/Mn). This value gives the idea of the broadness of the MWD. Since the structure 

property relationship is directly related to the complete MWD, the construction of MWD for 

branched polymer by various computational methods has been described in section 3.3.    

 

3.1.2 Architecture 

Polymers can be classified as linear, branched and cross-linked networks in terms of their 

architecture as shown in Table 3.1. In linear polymers, the monomer units are arranged in a 

linear fashion. Branched polymers include star like, comb like and hyper branched 

(extensive branching) polymers. In cross-linked polymers, polymer chains are linked 

together to form a three dimensional network. 
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Table 3.1: Polymer architectures [91] 

 

           Linear 

 

               Branched 

 

    

                                                Comb branched 

 

 

                    Star branched  

 

 

                       Hyper branched  

 

 

 

                 Cross-linked  

 

 

 

3.1.3 Chain growth polymerization 

In this polymerization, monomers can join active chains. Monomers contain carbon-carbon 

double bonds, e.g. propylene, ethylene, styrene etc. The chain activity can be commenced 

either by a catalyst or an initiator. According to the type of active center, chain growth 

polymerization [94] can be classified as: 

 Free radical polymerization 

 Coordination polymerization 

 Anionic polymerization 

 Cationic polymerization  

 Free radical polymerization 

In free radical polymerization, active center is a free radical, which is formed from an 

initiator. Reaction proceeds by the addition of monomer units to the active end of the 

growing chain. The growth of these chains can be terminated by the transfer of the radical to 
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other compounds like monomer, chain transfer agent, polymer or/and bimolecular reaction 

between the radicals. 

 

Coordination polymerization 

In this, a suitable catalyst is required for polymerization. Monomer units are inserted 

between the catalyst site and growing chain, for the reaction to proceed. Coordination 

polymerization catalysts include Ziegler-Natta, transition metal catalysts and metallocenes. 

The microstructural properties of the polymer can be well controlled by the type of the 

catalyst. For example, due to the multiple sites present in the catalyst like Ziegler-Natta 

catalysts, polymer of non-uniform properties can be produced. 

 

Anionic polymerization 

It requires the initiators that provide the initiator anions. These anions will only attack those 

monomers, whose electrons can be moved in such a way that monomer anion results, e.g. 

cyclic monomers such as ethylene oxide, glycolide etc. In this polymerization kinetic 

mechanism, termination mechanism is not included because macroanions grow until all 

monomers in the reactor are polymerized. This is also called living polymerization. 

Polymers produced by this exhibits very narrow molecular weight distributions. 

 

Cationic polymerization 

In cationic polymerization, carbenium salts produces cationic initiators, Lewis acids, react 

with monomer to give monomer cations. The monomers having electron donating groups 

can only participate in this type of polymerization, e.g.: isobutene. 
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3.2 Kinetic Scheme and Mathematical model 

The reaction scheme considered in this section is taken from Butte et al. [95] (Table 3.2). 

 

Table 3.2: Kinetic Mechanism 

 

 

 

 

 

 

 

 

 

 

 

  

Where Pn and Dn represent live and dead polymer chains of length “n”. Net rates of 

formation of live and dead polymer chains can be derived from the above kinetic 

mechanism and are shown in Equations (3.3) and (3.4). 
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lower order system of equations can be derived using the method of moments approach [18] 

instead of solving the above large set of equations (e.g. 40000) using following definitions 

as shown in Equations 3.5 - 3.6.  

 

                                                                                                                            (3.5)               

                       

                                                                                                                            (3.6) 

 

From the above definitions, 0th, 1st and 2nd moments of the live and dead polymers can be 

derived (Equations 3.7 to 3.12). 
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The other rate equations for initiator, primary radical, monomer and solvent are shown 

below. 
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3.3 Methods to calculate MWD 

Calculation of MWD of final product is very important since it can be directly used to 

calculate the end use properties. The MWD of a polymer is a record of the kinetic history of 

the reactions which occurred during the polymer buildup. Some of the methods to construct 

MWD of the polymer have been discussed in this section. 

 

3.3.1 Numerical Fractionation  

This method was proposed by Teymour and Campbell [35]. In numerical fractionation 

method, the entire polymer population is divided into linear and branched generations. 

Again, the latter one is subdivided into various generations according to the geometric 

growth. In the beginning stage of polymerization, linear polymer dominates. If branching 

reaction occurs, this is referred to as first generation. Second generation will only occur 

when two first generation chains connect together forming a single molecule. This molecule 

will add more linear and first generation before it reacts to form the second generation 

member. Higher generations will come into existence only when there is a reaction between 

lower generation members.  As the polymer molecule moves from one generation to the 

higher generation, the average size of polymer will grow geometrically. As the higher 

generation members react to form much larger polymer molecules finally, this leads to a 

generation of infinitely large molecule (i.e. formation of gels). 

 

The overall moment equations for live and dead polymers have been shown in the previous 

section. Population balance equations for linear, first generation and ith generation of live 

and dead polymers have been shown in Equations 3.17 to 3.22. 

 

Net formation for linear and branched live polymer: 
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Net formation of linear and branched dead polymer: 
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The rate equations for the leading moments of the active and inactive chains for each 

generation can be derived from the above population balance equations. 

 

Moment rates for linear live polymer chains: 
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Moment rates for first generation live polymer chains: 
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Moment rates for ith generation live polymer chains: 

i

fp

i

tdtc

i

fpfmfs

i

kkkkMkSk
dt

d
1000001

0 )()][][( 


                  (3.29) 

i

p

i

fp

i

tdtc

i

fpfmfs

i

MkkkkkMkSk
dt

d
02010011

1 ][)()][][( 


 (3.30) 



23 

)2]([

)()][][(

01

3020021
2

ii

p

i

fp

i

tdtc

i

fpfmfs

i

Mk

kkkkMkSk
dt

d









                  (3.31) 

Moment rates for linear dead polymer chains: 
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Moment rates for first generation dead polymer chains: 
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Moment rates for ith generation dead polymer chains: 
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The values of the kinetic parameters and initial concentrations used to construct the MWD 

are given in Table 3.3. 
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Table 3.3: Kinetic parameters and initial concentrations used for simulations [95] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To construct MWD, each set of moments for an individual generation (i.e. 0th, 1st, 2nd) is 

used. MWD of each class of polymer chains is calculated using a two-parameter model 

following Schultz-Flory distribution (Equation 3.39). Finally, all the distributions are added 

based on their contribution to yield the overall MWD. 

 

 

        

                                                                                                                       (3.41) 

 

 

The above mentioned equations have been solved by Runge-Kutta (RK) [96] type explicit 

numerical integration routine. FORTRAN code using RK technique to solve the above set 

equations is provided in Appendix A. Fig. 3.1 depicts the construction of MWD by the 

numerical fractionation method. The contributions of individual generations are shown 

under the overall MWD curve. The appearance of artificial shoulders at higher molecular 

weight is due to the accumulation of various chains with different number of branches in the 

Kinetic parameters Value 

fmk  9.07×10-2 L/(mol.sec)) 

fpk  0.5  L/(mol.sec)) 

dk  1.18×10-6 sec-1 

pk  500  L/(mol.sec)) 

tck  5.97×106 L/(mol.sec)) 

tdk  0 

f  1 

Initial concentrations Value 

M0 8.43 mol/L 

I0 0.001  mol/L 

S0 0  mol/L 
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first generation. More number of polymers comes under the first generation without being 

transferred to the higher generation. But, it requires very less computational effort. 

However, in some cases it is not possible to provide the correct MWD description (rise to 

artificial shoulders at higher molecular weight.). This method is based on the assumption 

that the transition from one generation to the next generation occurs only by a geometric 

growth (say, termination by combination reaction). If chain transfer to polymer and reaction 

with terminal double bonds are important, the assumptions are not sufficient.  

 

 

Figure 3.1: Chain length distributions at 65% monomer conversion 

 

3.3.2 Partition according to the number of branches 

The general free radical mechanism considered in this section is given in Table 3.4 [38]. In 

this method, the total polymer population is fractionated according to the number of classes, 

each class representing a polymer chain of similar long chain branching (LCB) content ( i.e. 

linear, LCB=1, LCB=2, etc.) [18]. 
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Table 3.4: Free radical kinetic mechanism  

 

 

 

 

 

 

 

 

 

 

 

 

 

Where Pb,n and Db,n represent the live and dead polymers of chain length n and number of 

branches b. According to this method, dynamic moment balance equations are derived for 

each class of polymer chains including overall polymer chains. Following the kinetic 

mechanism given in Table 3.4, one can calculate the net rates of formation for live and dead 

polymer chains of each class prior to the moment balance. The following population balance 

equations result (Equation 3.42 to 3.45) out of this exercise: 

Net rate of formation of linear live and dead polymer chains of length n: 
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Net rate of formation of “i” class live and dead polymer chains of length n: 
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After applying the moment based modeling for live and dead polymer chains of each class, 

the following equations will result. 

Moment rates for linear live polymer chains: 
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Moment rates for live polymer chains of “ith” class branched chains: 
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Moment rates for linear dead polymer chains: 
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Moment rates for “i” class branched dead polymer chains: 
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Total number of classes should be chosen properly for the complete construction of 

molecular weight distribution (MWD). This means that the sum of the first moments of all 

classes should be approximately equal to the overall first moment of the polymer [18]. In 

this technique [18], the class number does not change by the “propagation”, “chain transfer 

to monomer” and “termination by disproportionation” reaction mechanisms. Class number 

is increased by the “chain transfer to polymer”, “reaction with terminal double bond” and 

“termination by combination” reaction mechanisms. Kinetic constants used in the present 

study are shown in Table 3.5 [38]. The model equations describing the various molar 

species rates can be solved by LIMEX DAE [41] variable time step solver. Using the 

calculated moments of each class of the polymer, a two parameter Wesslau distribution [18] 

has been used to calculate weight chain length distribution (Equation 3.56). The overall 

molecular weight distribution is the weighted sum of all class distributions in the 

population. The program which is integrated with LIMEX solver has been provided in 

appendix B. Fig. 3.2 represents the MWD-LCB at different chain lengths for (number of 

average degree of branching) Bn= 0.9 and temperature of 80°C. Here, the molecular weight 

distributions of PVAc are plotted for different long chain branches (i.e. LCB = 0, 1, 2, 3, 4, 

5, 6).  It can be seen from this plot that the linear polymer (i.e. LCB = 0) dominates at the 

starting of polymerization followed by LCB = 1, 2 etc. This figure shows the information of 

LCB distribution for different chain lengths and the inset figure represents the overall 

MWD.                            
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Table 3.5 Kinetic parameters and initial concentrations used for simulations [38] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Molecular weight distribution at 80°C for Bn =0.9 for different long chain 

branching 

Kinetic parameters Value 

fmk  4.957×108 exp(-10480/RT)  (L/mol.min) 

fpk  5.177×108 exp(-11440/RT) (L/mol.min) 

dk  2.7×1016 exp(-30000/RT)   (1/min) 

pk  4.2 ×109 exp(-6300/RT)(L/mol.min) 

tck  1.62×1012 exp(-2800/RT)( (L/mol.min) 

tdk  0 

f  0.5 

Initial concentrations Value 

M0 12 mol/L 

I0 0.0001  mol/L 

S0 0  mol/L 
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3.3.3 Fixed Pivot Technique 

In this method, a 2-dimensional sectional grid was used [38] to solve the above population 

balance equations (Equations 3.40 to 3.43). This technique [39] was applied for calculating 

the polymer chain populations in a free radical polymerization reactor [38]. By using this 

method, the original infinitely large numbers of population balance equations were reduced 

to finite number of ODEs. This method has the capability to calculate the polymer 

concentration directly. Following the development of Kumar and Rama Krishna [39], 

Meimaroglou et al., [38] utilized this technique to calculate molecular weight distributions 

by discretizing the total polymer chain length and long chain branches per chain (LCB) into 

2-dimensional finite elements.  

Let Nn+1 and Nb+1 are the number of discrete points in total chain length domain and long 

chain branching domain. The symbols un(i) (i=1,2… Nn+1) and ub(j) (j=1,2… Nb+1) 

indicate the discrete values of chain length and long chain branches. Let us assume P(j,i,t) 

and D(j,i,t) be the molar concentrations of live and dead polymers in the center of 2-D 

element, which are defined by 4 discrete neighbor points ((un(i), ub(j)), (un(i), ub(j+1)), 

(un(i+1), ub(j)), (un(i+1), ub(j+1))). And the corresponding discrete values for total chain 

length and long chain branches are n(i) and b(j).  If new polymer chains are formed within 

2-D domain ((n(i), b(j)), (n(i), b(j+1)), (n(i+1), b(j)), (n(i+1), b(j+1)); Fig. 3.3), their 

concentrations are assigned to the 4 neighboring grid points. From this technique, the 

following continuous rate equations for active and dead polymers can be obtained. 
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The matrices A(i,k), B(i,k,m), C(j,l), T(j,l,q) and O(j,l,q) can be calculated by the following 

equations: 
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After calculating the live and dead polymer chains at the grid points, weight chain length 

distribution for a specific branching (i.e. b(j)) can be calculated by the following expression: 
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Overall molecular weight distribution can be calculated by sum of all distributions that 

corresponds to the grid points in the long chain branching domain (Equation 3.64).                      
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Figure 3.3: 2-D sectional grid used in Fixed pivot method [38] 

 

3.4 Solver 

 LIMEX is an extrapolation integrator for solving linearly-implicit differential-algebraic 

systems of the form 

                                               B (t,y) * y' (t) = f (t,y)  

where B is a (n×n)-matrix whose rank is less than or equal to n and y is the real array of size 

n. This value of y must be set at the starting point. On exit, y contains the solution at the 

final point.  (The discretization of LIMEX is based on the elementary linearly implicit Euler 

discretization 

                                    (B(t,y(k)) - h J ) (y(k+1) - y(k) ) = hf(t(k+1),y(k)) 

 Where h is the initial step size guess and J is the (approximate) Jacobian of the residual 

 

 

 

Combined with extrapolation, this one step method permits an adaptive control of step size. 

The efficiency of LIMEX mainly depends on the performance of the evaluation of the 

Jacobian and in particular on the solution of the linear systems. Throughout the solver a 
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local error control is implemented, which requires that the local error of a component y(i) is  

less than rTol * abs ( y(i) ) + aTol(i) (rTol=relative error tolerance, aTol=absolute error 

tolerance). This approach enables to specify more or less sensitive components of the 

solution vector. The code which is integrated with LIMEX solver has been provided in 

appendix B. In that, n and nz are the total number of equations and total number of odes, 

respectively. Since all equations are odes, n and nz are equal. For more information, the 

solver is provided in the web page http://www.zib.de. 
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Chapter 4 
 

Multi-Objective Optimization of Bulk 

Vinyl Acetate Polymerization with 

Branching  

  

  This chapter describes the kinetic scheme adopted and the related modeling procedure to 

calculate molecular properties of the polymer. Further, the simulation results of multi-

objective optimization and its rationale behind the formulation of the problem is provided. 

4.1 Introduction 

 In the present effort, bulk free radical polymerization of vinyl acetate, which is a highly 

branched polymer, is considered. The model is validated with the batch experiment for bulk 

vinyl acetate polymerization conducted by Thomas [1]. While using numerical fractionation 

technique in this study for calculating MWD, the entire polymer population has been 

fractionated based on the number of branches. For each class, moment based modeling is 

applied for live and dead polymer chains to reduce the number of equations. From this 

technique, average polymer properties such as number average molecular weight (Mn), 

weight average molecular weight (Mw), number average degree of branching (Bn) etc. are 

calculated. Finally, MWD is calculated for each class (i.e. having same long chain 

branching (LCB)) by Wesslau distribution [18] using the above mentioned numerical 

technique (i.e. partition according to number of branches) [18] and the overall MWD is 

calculated as the weighed sum of MWDs of individual class. Here, the class number is 

increased by chain transfer to polymer reaction and reaction with terminal double bond as it 

increases long chain branching (LCB). In chain transfer to polymer reaction, internal radical 

is formed from dead polymer chain by hydrogen abstraction [37]. Monomer units present in 

the reactor attack the internal radical leading to formation of LCB. It is important to note 
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that at higher monomer conversion, gel formation occurs and viscosity of the polymer 

increases. At this point, termination rate becomes slower and therefore rate determining. As 

the long chain branching and monomer conversion increase, number of classes should also 

be large to construct the complete MWD. There is a chance of forming gel at higher 

monomer conversion where there is a sudden rise in molecular weight, i.e. gel point. An  

empirical relation has been deduced between monomer conversion and temperature to 

predict the gel point. With such prediction in place, the final goal here is to find out the 

optimal process conditions to get the desired combination of various conflicting objectives 

avoiding the gel effect. Addition amounts of monomer and initiator in batch mode are to be 

decided by the optimization routine (decision variables). Simultaneous minimization of total 

polymerization time (tp), maximization of weight-average molecular weight (Mw) and 

number average degree of branching (Bn) are taken as objective functions (conflicting to one 

another). Pareto optimal (PO) or trade-off solutions for batch polymerization of vinyl 

acetate are obtained by real coded non-dominated sorting genetic algorithm II (NSGA II) 

[19], a well-established multi-objective optimization (MOO) technique.The rest of the 

chapter is organized as follows. Section 4.2 describes the kinetic scheme adopted and the 

related modeling procedure to provide a link between the molecular architecture and 

polymer properties. The rationale behind the formulation of the optimization problem is 

provided in section 4.3. Results of the optimization problem are presented in section 4.4 

followed by the concluding remarks in section 4.5. 

 

4.2 Model 

Thomas [1] used 2, 2 azobisisobutyronitrile (AIBN) as initiator with two different 

concentrations (i.e. 5×10-5 mol/lit and 1×10-4 mol/lit) at two different temperatures (i.e. 

60°C and 80°C) for the bulk polymerization of vinyl acetate. The general free radical 

polymerization kinetic model [38, 97] for PVAc considered in this chapter is given below.  
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                                                                                                                              (4.1) 

 

 

where Pb,n and Db,n represent live and dead polymer chains of length “n” and “b” long chain 

branches, respectively. The rate of formation of live and dead polymer chains from the 

above kinetic mechanism is derived and is given in chapter 3 (section 3.3.2).                                                                                                                               

This results in a large number of equations. To reduce the total number of equations, method 

of moments has been applied for live and dead polymer chains of each class (i.e. linear, 

single branch, two branches etc.) and they are defined by 

                                                                                                                       

                                                                                                                            (4.2)                                                                                                                     

                                            

                                                                                                                           (4.3)                                

                                                                                                                                                                             

Where, x and n represent moment number and chain length, respectively, and i represents 

the class number (i = 0, 1, 2, 3 etc.).  The resultant ordinary differential equations initial 

value problem (ODE-IVPs) is integrated by LIMEX DAE [41] variable time step solver. 

Polymer properties such as Mn and Mw are calculated from moments and are given by 

                                                                                                         (4.4)                                               

                                                      (4.5)                                                      

                                          

 In this technique [18], the class number does not change by the “propagation”, “chain 

transfer to monomer” and “termination by disproportionation” reaction mechanisms (see 

Equation 4.1). Class number is increased by the “chain transfer to polymer”, “reaction with 
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terminal double bond” and “termination by combination” reaction mechanisms (see 

equation 4.1). Kinetic constants used in the present study are shown in Table 4.1. 

 

Table 4.1: Kinetic constants used in the present study [38] 

kp 4.2 ×109 exp(-6300/RT)(L/mol.min) 

ktc 1.62×1012 exp(-2800/RT)( (L/mol.min) 

ktd 0 

kfm 4.957×108 exp(-10480/RT)  (L/mol.min) 

kfp 5.177×108 exp(-11440/RT) (L/mol.min) 

kdb 0.66 Kp 

kd 2.7×1016 exp(-30000/RT)   (1/min) 

 

 

4.3 Optimization problem formulation 

In the optimization formulation, monomer addition (u1) and initiator addition (u2) at zeroth 

time and temperature (T) are taken as decision variables, which are to be decided by the 

optimization routine. Improvement in certain properties of the polymer such as weight 

average molecular weight (Mw) and number average degree of branching (Bn) comes from 

the deterioration of other properties. For example, to get a polymer of high Mw and Bn, one 

has to compromise either polymerization time and polydispersity index (PDI). Minimization 

of total polymerization time, maximization of weight average molecular weight and 

maximization of number average degree of branching are taken as objective functions (case 

1: Table 4.2). Analysis of the above stated model reveals that live radical species in polymer 

population are responsible for branching in polymer via chain transfer mechanism. 

Maximization of concentration of live polymer and the effect of monomer and initiator 

addition on them can be the other study of importance (case 2: Table 4.3). In this case also, 

the decision variables are temperature, monomer and initiator addition amounts (u1 and u2) 

as presented earlier. Once temperature, monomer and initiator additions are decided by 

optimizer, monomer conversion at gel (autoacceleration) point is calculated by the empirical 

relation between monomer conversion and temperature (Equation 4.6). This 

autoacceleration leading to a sharp rise in the degree of polymerization [37], beyond which 

process is difficult to control. Gel point conversion (ConvGel) is dynamic in nature. 

 

                         ConvGel=1.47×10-3×T+0.32                                                    (4.6) 
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This equation is obtained from Fig. 4.1 of conversion vs. Mw at two temperatures. By taking 

the point at which Mw rises suddenly for two cases at two different temperatures, one may 

get the temperature dependency of gel point conversion by linear fitting. Based on the 

conversion value obtained at the gel point, the simulation is allowed to proceed up to 3% 

lesser than that conversion value to avoid gel effect at a particular temperature e.g. if the 

conversion value obtained at the gel point is 80% for a particular temperature, the 

simulation of the model is allowed to run up to 77% of the monomer conversion. All 

decision variables (T, u1 and u2) are bound so that they lie between their lower and upper 

bounds (denoted by the superscripts, min and max). The limiting values for the various 

constraints such as Mw, PDI are decided by the experimental study to avoid any 

extrapolation error arising from the model predictions [1]. The above model is integrated 

with NSGA II to perform multi-objective optimization. NSGA II is a nature-inspired 

evolutionary method for handling multi-objective optimization problems. As compared to 

classical techniques handling multi-objective optimization problems which generate single 

PO solution in single optimization run, NSGA II is established as a robust multi-objective 

optimization technique that can find a set of well-spread PO solutions in single simulation 

run [19].  

 

 

Figure 4.1: Comparison of molecular weight between the experimental values and the model 

prediction. 
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   In NSGA II, the decision variables are represented by chromosomes. As there are three 

decision variables in this case, a chromosome consists of three real values of decision 

variables (each decision variable called as gene). There are N such chromosomes (called 

population) present in each iteration (called generation) of NSGA II. In course of 

optimization, this population of candidate solutions is initially being created, classified, 

selected, preferred and modified from one generation to other before finally converging to 

the PO solutions. To start with, each chromosome in a population of size N is randomly 

generated which means three real valued genes (i.e.  u1, u2, T) are randomly created within 

their given bounds (expressed by superscript max and min). Once the values are created, 

objective functions and constraints are evaluated for the entire population from the model. 

For different values of u1, u2 and T, the model returns different sets of values of Mw, Bn. If 

they satisfy all the constraints, the solution is chosen as feasible, otherwise infeasible. From 

this parent population, a children population size of N is created by simulated binary 

crossover (SBX) and polynomial mutation operators [19]. Probability of mutation and 

crossover (i.e. pm= 0.1, pc= 0.9) are used in this study. As this is elitist approach, parent and 

children population are merged together which results into a total population size of 2N. 

From this merged population, N solutions are forwarded to the next generation based on 

non-dominated sorting and crowded tournament selection operation [19]. While comparing 

two solutions (say, solution 1 and solution 2), if solution 1 is better than solution 2 in terms 

of all objective functions, solution 1 is said to dominate solution 2. Similarly, another case 

could be solution 2 dominating solution 1. If none of them dominates, they are called non-

dominated solutions. To obtain such fronts, each of the solutions is compared with all other 

solutions in the population. The solutions which are not dominated by any other solutions 

are classified as non-dominated solutions of rank 1. After deleting these solutions, the entire 

population is again sorted based on non-dominance and the solutions found are named as 

non-dominated solutions of rank 2. In this manner, the feasible solutions of the entire 

population are sorted first. If this process creates some m fronts, the infeasible points are 

targeted next for ranking and they are numbered m+1 onwards based on ascending degree of 

overall constraint violation. Since only N slots are available for accommodation, not all 

solutions can be accommodated and for this, the crowded tournament selection has been 

used. Binary tournament selection picks up two candidate solutions randomly and the one 

having better ranking is selected. Since infeasible solutions get an inferior rank, feasible 

solutions are always preferred to infeasible solutions. Infeasible solutions can be repaired by 

the genetic operators to convert to feasible solutions in the next generation. If both of them 

are happened to be from the same front and feasible, the one having higher crowding 
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distance is selected. Crowding distance is a metric which provides some idea of the solution 

being crowded by neighboring solutions. Higher the crowding distance, the solution is less 

crowded by neighbors and vice versa. The newly obtained population with N candidate 

solutions is used to generate a new children population in the next generation and this 

procedure continues with predefined number of generations (Ngenmax) before the final PO 

solutions (rank 1 solutions in generation number Ngenmax) are emerged. Values of NSGA II 

parameters used in this case are: Ngenmax = 40, N (population size) = 70, distribution index 

for real coded crossover = 0.01, distribution index for real coded mutation = 0.01. The 

algorithm mentioned in Table 4.4 represents the NSGA II optimization routine in the 

present study. Since three objective functions are involved, a small population size may not 

lead to a well spread Pareto. However, a large population size is also not recommended 

since that leads to more number of function evaluations. So, a population size has 70 has 

been chosen. Changes in population size, crossover probability and mutation probability do 

not lead to any significant change in PO solutions. 

 

Table 4.2: Batch multi-objective optimization problem formulation: Case 1 

max

min

PDIPDI
MwM

tMinimize
nBMaximize

Maximize

w

poly

w
M




 

 

          The values of ui
min, ui

max and temperature (decision variables) are: 

;0.10min
1 u

  ;0.14max
1 u  

                 
;050.3min

2  Eu ;045.1max
2  Eu  

;333min KT  ;353max KT   
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Table 4.3: Batch multi-objective optimization problem formulation: Case 2 

max

min

0

PDIPDI
MwM

tMinimize
nBMaximize

Maximize

w

poly






 

         

           The values of ui
min, ui

max and temperature (decision variables) are: 

;0.10min
1 u

  ;0.14max
1 u  

                
;050.3min

2  Eu ;045.1max
2  Eu  

;333min KT  ;353max KT   
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Table 4.4: NSGAII algorithm adopted in the present optimization study [19] 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

   

 

 

8. Ngen <  Ngenmax 

7. For all N chromosomes, solve the model by LIMEX DAE 

solver and compute all objective functions and constraints to 

determine feasible solutions. 

6. There may exist more solutions in the last front than the available slots. Calculate 

crowding distance of each chromosome in the last front. The chromosome with 

larger crowding distance wins. Crowding distance of any solution i gives the 

information of density of solutions that surrounded by i. 

5. Feasible solutions are sorted based on the principle of non- dominance which 

results in different fronts (i.e.i=1,2,3..etc.).As only N slots are available to 

accommodate, the slots are filled from lowest front (i.e.1). 

4.Tournament selection, crossover, mutation operators are used to get children 

chromosomes of population size N. Merge parent and children population 

which results total chromosomes of population size 2N. 

3. Population of chromosomes of size N with real random values are initialized 

in predefined bounds. Compute the fitness and constraints of each chromosome 

(having three genes, u
i
(i.e. i=1,2), T) by LIMEX DAE solver. 

 

2. Initialize Ngen=0 

1.Input data: 

N, Ngenmax, Pm,Pc, 
maxmin , ii uu (i=1,2), 

maxmin ,TT  

Yes 

 Go to step 4 

No 

Stop 



44 

4.4 Results and discussion 

4.4.1 Model validation 

Polymer properties such as Mn, Mw, Bn are validated [106] with the experimental results of 

bulk polymerization of vinyl acetate [1] at two different temperatures (60°C and 80°C) and 

two different initiator concentrations (0.00005 mol/L and 0.0001 mol/L) using the numerical 

fractionation method [18] (i.e. from linear to different levels of LCB = 0, 1, 2, 3 etc.). Total 

number of classes has to be chosen properly for the complete construction of molecular 

weight distribution (MWD). This means that the sum of the first moments of all classes 

should be approximately equal to the overall first moment of the polymer [18]. Fig. 4.1 

shows the experimental validation of Mn and Mw with the model used in this study. At 

higher monomer conversion, the rate of termination becomes slower due to increase in 

viscosity. From Fig. 4.1, it is also evident that at higher temperature, molecular weight of 

the polymer is less. The probable reason is the faster termination of live radicals at 80°C 

(due to higher termination rate) and this results in the formation of small polymers thus the 

molecular weight remains comparatively lower. The faster termination at 800C is due to the 

lower average life time of live radical as compared at 600C. Fig. 4.2 depicts that Bn 

increases with monomer conversion due to the prominent role of chain transfer to polymer 

and terminal double bond reactions as more live radicals are participating in these reactions. 

Since both these figures show the very importance of live radicals in the reaction medium, 

Fig. 4.3 shows the profile of live radical concentration with respect to number average 

degree of branching (Bn) (for two different temperatures). Since the onset polymerization, 

live polymer concentration increases rapidly due to faster initiator decomposition, and this is 

more at 80°C compared to 60°C (faster initiator decomposition at higher temperature). 

Afterwards, live polymer concentration decreases with increase of Bn due to faster 

termination of live polymer to dead polymer. It is evident from here that Bn increases more 

rapidly at 60°C than at 80°C. This is due to early termination at 80°C than at 60°C, which 

leads to the formation of polymers with less LCB at higher temperature. As the monomer 

conversion increases, increase in Bn became more at 80°C compared to 60°C. This may 

account for the fact that the lower termination rate is the natural outcome of the process, as 

and when large number of high molecular weight polymer molecules accumulates in the 

reactor at 60°C. 

 

   Fig. 4.4 represents the MWD-LCB at different chain lengths for Bn= 0.9 and temperature 

of 80°C. Here, the molecular weight distributions of PVAc are plotted for different long 
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chain branches (i.e. LCB = 0, 1, 2, 3, 4, 5, 6).  It can be seen from this plot that the linear 

polymer (i.e. LCB = 0) dominates at the starting of polymerization followed by LCB = 1, 2 

etc. This figure shows the information of LCB distribution for different chain lengths and 

the inset figure represents the overall MWD. The small shoulder (inset figure) in overall 

MWD curve indicates the signature of long chain branching. Overall MWD is calculated 

from the weighed sum of individual MWDs (i.e. LCB = 0, 1, 2, 3, 4, 5, 6). 

 

 

Figure 4.2: Comparison of number average degree of branching between the experimental 

value and the model prediction. 
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Figure 4.3: Live radical concentrations vs. number average degree of branching at different 

temperatures. 

 

 

Figure 4.4: Molecular weight distribution at 80°C for Bn =0.9 for different long chain 

branching 
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4.4.2 Optimization 

After getting some information about the general trends of the PVAc polymerization in 

Figs. 4.1 to 4.4, the next level of investigation leads to optimizing the process performance, 

which has been formulated in previous section. The main purpose of these optimization 

studies is to find the optimal process conditions to maximize long chain branching before 

the gel point is reached because long chain branched polymers exhibit enhanced processing 

properties compared to the linear polymers with same molecular weight. Multi-objective 

Pareto solutions for the first optimization case (case 1) are obtained among three conflicting 

objectives and shown in Fig. 4.5. As pointed out earlier, multi-objective optimization 

problems have more than one solution and it is difficult to distinguish among them. These 

solutions are known as non-dominated solutions and all of them are equally important 

solution. The conflict among these solutions is clear as improvement in certain objective 

comes at the cost of other objective. For example, if the operator chooses the operating 

conditions for more Mw and Bn, she/he sacrifices in terms of more processing time. These 

solutions are generally a wide range of alternatives to a process engineer and each point in 

the Pareto is associated with a particular operating condition. Based on different 

requirements (requirement can be defined by a set of values of Mn, time and Bn), the reactor 

can be run with different optimized process operating conditions. Solutions for performance 

objectives in Fig. 4.5 and the corresponding process conditions on various objectives are 

represented in Fig. 4.6(a) to 4.6(c). These figures can act as truth table to a process engineer. 

This kind of process analysis, which is achieved here by multi-objective optimization study 

of the polymerization process, is generally achieved in a shop-floor by collecting data from 

the process over a very long time and thereby gaining experience to operate it. We can 

explain this kind of trends in the similar lines of batch simulation study. Low temperature 

gives a polymer of high Mw (Fig. 4.1 and Fig. 4.6) due to slow termination of live radical 

species. All points are scattered in Figs. 4.6a to c, which is due to large variation in initial 

initiator concentrations (Fig. 4.6b). But, at high temperature, the rate of branching increases 

(Fig. 4.6c) after certain conversion possibly due to increase in chain transfer to polymer and 

terminal double bond mechanisms, which grew faster with temperature. Thus to find a 

polymer of more Bn with more Mw, the optimization routine prefers the entire temperature 

range as lower temperature prefers higher Mw and higher temperatures choose higher Bn. It 

can be noticed from Fig. 4.2 that Bn increases rapidly after a certain conversion even with a 

low temperature case. So, low temperature can also result higher Bn provided the conversion 

is on the higher side. As a choice, low temperature is thus a safer choice as long as 

conversion is high. This trend has a limit as gel point conversion has to be avoided at any 
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cost and for that reason, such operation poses a process control challenge. Needless to say 

that at higher conversion, measurement as well as control of the process is difficult because 

of the higher viscosity of the reaction medium. 

 

Figure 4.5: Multi-objective PO solutions for case 1 

 

Figure 4.6: Variation of decision variables w.r.t. objective functions for case 1 
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  Optimization exercise brings out the process conflicts to understand the process better and 

thus sharpening the further definition for more in-depth studies. It can be observed 

throughout this study that polymer molecular weight and long chain branching are related to 

the live polymer concentration. So, to find a polymer of higher branching, concentration of 

live polymer needs to be increased. The second multi-objective optimization study (case 2) 

has, therefore, been performed to see the impact of the process conditions on live polymer 

and polymer properties. PO solutions for this case are shown in Fig. 4.7 and the 

corresponding effect of decision variables (addition of monomer, initiator and temperature) 

on those objective functions are shown from Figs. 4.8a to c. As the live radical 

concentration is maximized, most of the points with faster processing time are moved to 

higher initiator concentration region to allow formation of more radicals and high 

temperature to achieve more Bn value. But for this situation, polymerization time is also 

more (Fig. 4.8a) to achieve polymer of higher molecular weight. At higher temperature 

range, optimizer has chosen more initial initiator concentration. This is due to the increase 

in conversion at higher initiator concentration. However, the molecular weight is reported to 

be less due to higher live radical concentration because of smaller polymer formation. 

Another subtle thing to be noticed that the PO solutions of the second optimization problem 

are less scattered compared to those of the first problem. This proves that the second 

optimization definition is more precise and solution for the first one has helped a lot to 

define more focused objective. In other polymer systems also, similar learning can be found 

in literature i.e. the overall process objectives help in defining more precise formulation, 

thus giving more information about the system [58]. 
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Figure 4.7: Multi-objective PO solutions for case 2. 

 

 

 

Figure 4.8: Variation of decision variables w.r.t. objective functions for case 2. 
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   It is also evident that from Figs. 4.6a-c and Figs. 4.8a-c, monomer concentration does not 

show much effect on polymerization time and polymer molecular properties on bulk free 

radical polymerization. In both cases (case 1 and case 2), the amount of initial initiator 

concentration and temperature are playing prominent role in deciding polymer molecular 

properties. Moreover, all parameter values and variable ranges have been tightly maintained 

within the limits of experimental conditions [1] so that the optimization results remain 

realistic. Moment based modeling with further complications like branching for bulk 

polymerization for PVAc finally reveals many optimum operating conditions and some 

conflicting situations through a detailed simulation study. 

 

4.5 Conclusion 

NSGA II has been utilized to find optimal process conditions for batch vinyl acetate 

polymerization process. Polymer properties such as overall Mn, Mw and Bn, are calculated 

by fractionation of polymers according to number of branches and validated with 

experimental data available in open literature. Maximization of weight average molecular 

weight and number average degree of branching have been attained along with simultaneous 

minimization of processing time without violating the relevant process constraints. 

Monomer addition, initiator addition and reaction temperature are taken as decision 

variables within prescribed experimental bounds. Initiator addition is found to be 

completely dependent on temperature and processing time. For the first optimization study, 

optimizer has provided wide range of initiator and temperature values to maximize 

branching and molecular weight. So, an operator can get many optimal choices to operate 

the reactor at different point in time based on the optimality criteria set. The second 

optimization case results in another variety of solutions at relatively higher temperature 

range with higher live radical concentration. In short, looking at varying scenario faced by 

today’s process operator, batch vinyl acetate polymerization process has been revisited with 

additional capability of controlling the degree of branching and optimum sets of operating 

conditions have been identified with a trade-off between conflicting process objectives for a 

range of temperatures.  
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Chapter 5 
 

Modeling of propylene polymerization 

with long chain branching  

  

The objective of this chapter is to develop a kinetic model of the long chain branched 

polypropylene system to replicate the experimental data available in literature which is 

probably the first step to build a model before it can be scaled up for pilot study and 

thereafter for industrial practices. 

5.1 Introduction 

In this work, we have chosen the example of LCB PP (isotactic back bones and atactic side 

chains) with binary catalyst system (2-ArN=C(Me)]2C5H3N}FeCl2/MMAO (1) and rac-

Me2Si(2-MeBenz[e]Ind)2ZrCl2/MMAO (2)) [16] and presented a model which can validate 

experimental findings [16]  with a newly proposed kinetic mechanism. In the chosen 

example, the catalyst (1) is capable of forming short chain atactic polypropylene 

macromonomers (having terminal double bonds) and the catalyst (2) can copolymerize 

propylene with macromonomers to form LCB PP. In this mechanism, both short chain 

atactic polypropylene macromonomer formation and copolymerization of propylene with 

macromonomers occur simultaneously in the same reactor to form LCB PP which has a 

potential to produce LCB PP with lesser fixed and operating cost. General single site 

coordination mechanism has been chosen for the two-catalyst system.  

 

  Modeling study has been conducted by Zhu and Li [48] with the use of binary metallocene 

catalyst system to obtain highly comb-branched polymers in steady state CSTR and 

obtained an olefin polymer of narrow molecular weight distribution with a maximum 

polydispersity index of 2.25. By this catalyst systems, back bone and side chains provide a 

theoretical polydispersity index of 2 (Schulz-Flory distribution) [48] only. However, Ye and 
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Zhu [16] obtained aPP macromonomers with polydispersity index to the order of 1.3 during 

their experiments which the above mentioned model [48] cannot explain. It has been 

identified that by taking the reversible chain transfer step, the molecular weight distribution 

becomes narrow [98] for the aPP macromonomers (with a polydispersity index nearer to 

1.3) as compared to Schulz-Flory distribution. So, the idea of Hustad et al. [98] has been 

borrowed, which leads to a polydispersity index value less than 2 as opposed to Schulz-

Flory distribution [48]. From the kinetic model derived from the proposed mechanism, the 

net formation of the live and the dead polymers has been derived next. Due to the resultant 

large number of equations, moment based modeling has been applied and the 0th, 1st and 2nd 

order moments for the live and the dead polymers have been derived. These equations are 

highly non-linear ODEs, which are solved here using an established open source DAE 

solver (LIMEX) [41]. Kinetic parameters are estimated by minimizing the sum of the square 

of the error between the experimental and simulated values of variety of molecular 

properties such as weight average molecular weight (Mw), polydispersity index (PDI) of 

isotactic polypropylene and atactic polypropylene as well as grafting density (number aPP 

side chains per 1000 isotactic backbone monomer units) by real coded genetic algorithm 

(RCGA) [19]. The rationale behind the choice of this evolutionary algorithm is its 

established capability of finding global optimum as compared to the classical optimization 

techniques. To construct molecular weight distribution (MWD) of polymer species, 

Teymour and Campbell [35] have developed “Numerical Fractionation” method. In this 

method, polymer is divided into linear and branched chains. Branched polymer chains are 

again divided into number of generations according to the geometric growth. Finally the 

molecular weight distribution of the LCB PP has been calculated by the fractionation of 

total polymer population into a series of classes, each class representing the same long chain 

branching content [49]. In this method, total polymer population is classified into different 

classes based on the same number of long chain branches (i.e. LCB=0, LCB=1, LCB=2 

etc.). 

 

5.2 Model 

  Experimental runs [16] were conducted at 25°C and 1 atm. propylene pressure in 200 ml 

of toluene solvent. There are very few articles in the open literature about the kinetics of 

long chain branched polypropylene [45, 48, 99]. None of them are validated against 

experimental data. The newly proposed kinetic scheme for the two-catalyst system 

considered in the present effort is shown in Table 5.1. This kinetic scheme consists of 
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catalyst activation, initiation, propagation, chain transfer reactions and catalyst deactivation, 

in which, C1 and C2 represent the active sites of the catalyst (1) and (2), respectively. 

Monomer concentration in toluene has been calculated by Redlich-Kwong-Soave equation 

of state for vapor–liquid phases in equilibrium [100-101]. Pn and Dn
= represent the live and 

the unsaturated dead polymers (macromonomers) for atactic polypropylene of chain length 

n, whereas, Qn,i and Rn,i represent the live and the dead polymer chains of LCB PP having n 

numbers of chain length  and i numbers of long chain branches (isotactic backbone and 

atactic side chains). The main chain transfer mechanism for 1/MMAO is β-hydride 

elimination [102] which produces vinyl terminated macromonomers and re-initiation occurs 

with the activated hydride catalyst complex. Reversible chain transfer mechanism has been 

considered to achieve polymer with narrow molecular distribution instead of Schulz-Flory 

distribution (polydispersity index = 2.0), which is more common for single site catalysts 

[48]. While for the II/MMAO, chain transfer to MMAO was dominant to avoid the 

formation of dendrimers [48]. Second order deactivation has been considered for this which 

may be due to bimolecular deactivation [103-104]. This catalyst (2) has the capability of 

producing backbone (main chain) chains and at the same time it can connect the 

macromonomers as side chains to produce LCB PP. From this kinetic mechanism, one can 

derive the rate of formation of the live and the dead polymers to describe the molecular 

properties of the polymer. Then, method of moments has been applied to reduce to a system 

of lower number of differential equations. Apart from the moment equations, net formation 

of vacant active sites and chain transfer agent consumption rate etc. are derived as shown in 

Table 5.2. This is based on the statistical representation of molecular weights (e.g. Mn and 

Mw) of the polymer in terms of the moments of the live, the dead polymers (as shown in 

Equation 5.1) and the moments of the aPP live and the aPP dead polymers (as shown in 

Equation 5.2).  Number average molecular weight (Mn), weight average molecular weight 

(Mw) and PDI are represented by Equation 5.3 and grafting density is represented by 

Equation 5.4. 

 

                                                                                                                 (5.1) 

 

                                                                                                                 (5.2) 

 

                                                                                                                   (5.3)    
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                                                                                                                   (5.4)  

 

Table 5.1: Kinetic Scheme for the two catalyst systems  
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Table 5.2:  Moment rates of live and dead polymer chains for the 2 catalyst systems 
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   Atactic polypropylene units with terminal double bond (i.e. vinyl terminated 

macromonomers), which are produced by the catalyst (1), are incorporated as side chains 

with propylene in the presence of the catalyst (2) during copolymerization and this leads to 

the formation of the LCB PP. The extent of long chain branching completely depends on the 

addition methods (more specifically the time of catalyst additions) and the ratio of the 

concentrations of the catalysts [16]. For example, say, if these catalysts are added together 

and once in the beginning, the extent of long chain branching becomes zero [16]. This may 

be due to precipitation of iPP around the active sites or low concentration of 

macromonomer, which inhibits the diffusion of macromonomer [16]. On the other hand, if 

the time interval between their additions is more, branching density is found to be high [16]. 

Based on this fact, we introduced one more parameter (i.e. ), describing the above 

mentioned diffusion effect, into the modeling system apart from the kinetic constants which 

are to be found out during the parameter estimation stage. The parameter  is a 

dimensionless parameter which depends on the catalyst addition time and the ratio of the 

concentrations of these catalysts. Without this parameter , grafting density predictions are 

much away from the experimental data.  

 

The resultant model equations are solved by the LIMEX DAE [41] solver. Model is 

integrated with RCGA [19] to estimate kinetic parameters and the additional parameters  

and  (another parameter representing percentage of active sites in a catalyst defined later). 

These parameters are optimized by minimizing an error expression (e) derived through the 

comparison of experimental and simulated data as shown in Equation 5.5. Here the error 

expression comprises sum of the squares of the normalized error between the experimental 

and simulated values of weight average molecular weight (Mw), polydispersity index (PDI) 

of iPP and aPP and grafting density (GD, i.e. number of aPP side chains per 1000 iPP back 

bone units). 
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 Here each of the first four components in the above error function (e) are summed for five 

data sets (experimental runs) and the last component is summed for three data sets (GD 

given for three experimental runs). 

 

  For most of the classical optimization techniques, based on the initial guess, the solution 

may stick to a local minimum present in the near vicinity of the valley where the initial 

solution is provided. Rather than a single point, RCGA works with a number of solutions 

(called chromosomes) and to start with, these solutions are generated randomly within the 

bounds provided for the optimizing parameters. So, the initial number, say N, of candidate 

solutions form the initial population where each chromosome is composed of all the 

optimizing parameters, called decision variables (i.e., kinetic parameters,  and). In a 

population, the fitness function (1/(1+error)) for each chromosome is computed by solving 

the model equations for the different sets of parameter values for different chromosomes. 

By using the tournament selection operator, a mating pool is created. The entire population 

is divided into two classes of solutions i.e. feasible (solutions which obey constraints) and 

infeasible solutions (solutions which violate constraints). Two solutions are randomly 

picked and feasible solutions are preferred over the infeasible solutions. Among feasible 

solutions, the one with better fitness function is preferred whereas solution with less 

constraint violation is preferred among infeasible solutions. New chromosomes for the next 

generation are generated by using crossover and mutation operator on the mating pool 

candidates [19]. This procedure is repeated till the maximum number of generations, say 

Nmax is reached.  

 

 The parameter  depends on various other parameters such as the time gap between the two 

catalyst additions, ratio of catalyst 1 to catalyst 2 initial concentrations and 

copolymerization time. Based on the different  values predicted by the optimizer for 

different experimental conditions, an empirical relation has been developed for , which is a 

function of time gap between the two catalyst additions, cat1/cat2 ratio and copolymerization 

time (time starting after the second catalyst is added till completion of polymerization) and 

is shown in Equation 5.6. From this, it is evident that if two catalysts are added at a time, the 

value of  is zero signifying the scenario where no aPP macromonomers attack iPP as 

evident in the experimental findings. If the time gap between the catalyst additions and the 

ratio of concentrations of catalyst 1 and catalyst 2 are more, more macromonomers will be 

grafted to iPP backbone [16] which is due to accumulation of more macromonomers in the 
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reactor before the addition of the catalyst (2). It is worthwhile, to mention, that the major 

significance of  is to correct the kinetics for the fact that all macromonomers will not be 

available to attack the iPP backbone because of diffusional limitations. This value is not 

dependent on concentration of iPP. In kinetics, .klcb represents the effective long chain 

branching rate constant. 

 

  )t6752.15t319.32()
cat

cat
α 21

37.1

2

1
(

837.0

1t
9-104.75                     (5.6)     

 Here t1 is catalyst (2) addition time and t2 is copolymerization time and cat1 and cat2 

represent catalyst 1 and catalyst 2 concentrations. 

 

 Following the effort of Pladis and Kiparissides [18], molecular weight long chain branching 

distribution (MW-LCBD) for the binary catalyst system is calculated by the fractionation of 

the total polymer based on the same long chain branching content (i.e. linear, 1 LCB, 2 LCB 

etc.). According to this method, one can derive dynamic balance equations for the live and 

the dead polymers of each class. The net rate of formation of the linear as well as the 

branched isotactic polypropylene chains of the live and the dead chains is represented in 

Table 5.3 where, the first subscript represents the chain length and the second subscript 

represents branching. Method of moments has been applied again to each class to reduce the 

large number of equations to the tractable set of equations as represented in Table 5.4. 

Molecular weight distribution (MWD) of each class, calculated by Schultz-Flory two 

parameter model [49], is shown in Equation 5.7. Overall molecular weight distribution is 

calculated by the weighed sum of distributions for all such classes. 

Table 5.3: Net formation of linear, branched live and dead polymer chains 
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Table 5.4: Moment rate equations for linear, branched live and dead polymer chains 

Linear live and dead chains: 

 

 

 

 

 

 

      

 

                                                                              

 

 

   Branched live and dead polymer chains: 
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Here (r)mw denotes the mth class weight fraction of the polymer with a degree of 

polymerization of r, mn,DP and
mw,DP represent the number average and weight average 

degree of polymerization, respectively. As the number of classes are increasing, PDI of each 

class (

mn,DP

mw,DP , i.e.< 2) of the polymer decreases [49]. 

 

5.3 Results and discussion 

Polymer properties such as Mw, PDI of aPP macromonomers and iPP copolymers along 

with grafting density of aPP macromonomers to the back bone of iPP polymer are validated 

with the experimental results [16]. The kinetic scheme proposed in this paper (Table 5.1) is 

based on the following assumptions: (i) Two-catalyst system acts as single center catalyst 

individually; (ii) Deactivation of the catalyst (2) results from bimolecular deactivation 

[103]. Deactivation of catalyst (1) is neglected as this does not show much impact on the 

model predictions. Generally, sensitivity of model can be reduced by considering the less 

number of parameters. If more number of parameters is involved in the model, uncertainty 

of the model increases. With less number of parameters, model will become more robust. 

Catalyst (1) system propagates via 2,1 insertion mechanism which produces 1-propenyl 

ended macromomonomers followed by β-H elimination [102]. Two types of saturated end 

groups have been identified [16]: n-butyl and 3-methyl-n-butyl groups. Termination 

mechanism by β-H elimination leads to the iron- hydride formation and n-butyl end group is 

generated by the 1,2 insertion of propylene monomer to the iron hydride followed by 2,1 

insertion of propylene monomer [102]. Small and Brookhart [102] explained the formation 

of 3-methyl-n-butyl group which is formed by 2,1 insertion of propylene monomer into an 

iron isobutyl species (formed by activating the iron complex with MMAO, the cocatalyst). 

The polymers produced by this catalyst system exhibit narrow molecular weight distribution 

with a PDI value around 1.3. By the single site catalyst system, polymer can be produced 

with a theoretical PDI value of 2 [98]. To obtain a polymer with very narrow molecular 

weight distribution (as observed in the experimental findings) instead of Schulz-Flory 

distribution, the step of chain transfer to the metal should be made reversible to get the 

Poisson distribution [98]. As the catalyst (1) system produces macromonomers (polymers 

with terminal unsaturation), the chain transfer mechanism might be occurring by transfer to 

metal or monomer. By increasing Al/Fe ratio, percentage of catalyst active sites also 

increases, i.e.
1

cat
1

C  , where, 
1

cat is the moles of catalyst introduced, 
1

C is the moles 

of catalyst sites activated and is the efficiency factor varies from 0 to 1 [99]. The 
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estimation of parameter  has been included in the parameter estimation exercise (Equation 

5.1). Experimental and model predictions of aPP macromonomers are represented in Table 

5.5. In this table, first 4 experimental runs had Al/Fe ratio of 1000, while 5th run had Al/Fe 

ratio of 3000. So, for the first four runs, optimization routine returns  = 18.97%, while for 

the last case, the optimization routine returns  = 88.8%. As the parameters are determined 

by parameter estimation exercise, the effort was to obtain parameters that lead to minimum 

error between the model prediction and experimental results. In the Table 5.5, all PDI values 

are obtained in the range of 1.3 to 1.4 by considering fast reversible chain transfer 

mechanism, which is in line with experimental results [16]. 

 

Table 5.5: Experimental and predicted Mw, PDI of aPP macromonomers 

RunNo. aPP 

Experiment 

aPP 

Predicted 

% error 

Mw
 

(kg/mol) 

PDI Mw
 

(kg/mol) 

PDI Mw PDI 

1 3.6 1.3 4.4 1.4 -22.2 -7.7 

2 3.6 1.4 3.2 1.34 13.3 4.3 

3 3.3 1.3 4.5 1.4 -36.4 -7.7 

4 3.1 1.3 2.5 1.34 19.4 -3.1 

5 3.0 1.3 2.6 1.33 13.3 -2.3 

6 3.4 1.3 2.5 1.34 26.4 -3.1 

 

 Catalyst (2) system (2/MMAO) copolymerizes aPP macromonomers with the propylene 

monomer. It generates backbone chains and connects the side chains at the same time to 

obtain the comb branched polymers. This catalyst should favor termination reactions other 

than  -hydride elimination to avoid the formation of dendrimers [48]. So, we considered 

chain transfer to MMAO and bimolecular deactivation of live polymer chains [103] in the 

proposed mechanism. Estimated kinetic parameters for the kinetic scheme are shown in 

Table 5.6. Based on the best knowledge of the author, there are no data available in the 

literature for the rate constants of the LCB PP system, which is validating with the 

experimental data. As the concentration of cocatalyst increases, polymer chain length 

decreases due to chain transfer to cocatalyst. Here the cocatalyst (MMAO) concentration is 

present in much higher amount than the catalyst (Zr) concentration. Hence the term 

“kal×[MMAO]” may be assumed as constant during the polymerization. For the first 4 runs, 

the value of this constant is higher than the last run, since cocatalyst concentration is less for 

the last run as compared to the first four runs. Due to this, the predicted weight average 

molecular weight of the last run is higher than the first four runs (we call this case as case1; 
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Table 5.7). In case 1, effect of bimolecular deactivation on Al/Zr ratio has not been 

considered. So, the present model (case 1) can predict the influence of MMAO 

concentration in the chain transfer reactions. As Al/Zr (cocatalyst/catalyst) ratio increases, 

more chain length polymers will be produced due to weaker bimolecular deactivation. This 

builds a rationale of considering the effect of cocatalyst/catalyst ratio on the deactivation 

constant. In the modeling of PP system, Ochoteco et al. [103] considered the effect of MAO 

concentration on deactivation assuming that the deactivation constant is a function of MAO 

concentration which decreases with the increase in MAO concentration. In case 1 study, 

dependence of bimolecular deactivation on Al/Zr ratio is not considered and molecular 

weights are under estimated for the first 2 runs even though this ratio is high compared to 

other runs. So, in another case (we call this case as case 2), the effect of bimolecular 

deactivation constant on Al/Zr ratio is considered [103]. Two such ratios are there (i.e. Al/Zr 

= 5000, 7500) and the deactivation constant is estimated considering the effect of these two 

ratios on it and is represented in Table 5.8. It can be noticed from Table 5.8 that as Al/Zr 

ratio increases, there is a decrease in bimolecular deactivation leading to the production of 

polymers with more chain length. Experimental and model comparison of molecular 

weights and polydispersity index of iPP by considering the effect of Al/Zr ratio on 

bimolecular deactivation is depicted in Table 5.7. For the first 2 runs where the Al/Zr ratio 

is 7500, higher chain length polymers are obtained due to weaker bimolecular deactivation 

of live polymer chains as compared to the other 3 runs. Predictions for grafting density 

values (number of aPP side chains per 1000 iPP backbone monomer units) for different runs 

are shown in Table 5.9. Model predicted values for the first three runs seem to have in good 

agreement with the experimental values. Grafting density values for the last two runs are 

predicted from the model (experimental data not available) and these values are compared 

with the melting points [16] of the iPP copolymer since the experimental values are not 

available for them. As the long chain branching density increases, melting point of the 

copolymer decreases [16] because of higher participation of aPP in the overall polymer 

architecture. Higher melting point of the 4th run compared to the 3rd run indicates lower 

branching density. Similarly, higher melting point of the 5th run indicates fewer amounts of 

aPP macromonomers being grafted into the iPP back bone. Grafting density of aPP 

macromonomers to the iPP copolymer depends on the second catalyst addition time, the 

catalyst 1/catalyst 2 (i.e. Fe/Zr) molar ratio and the copolymerization time. By comparing 

the 1st run with the 2nd run, where the catalyst ratio is maintained same and the time interval 

between the two catalyst additions is only changed, the effect of time interval on the 

grafting density of aPP macromonomers in the copolymer can be identified. If more time is 
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allowed before the catalyst (2) addition, more amounts of aPP macromonomers are available 

to be copolymerized with the iPP. This is due to the accumulation of more amounts of aPP 

macromonomers in the reactor before the catalyst (2) addition [16]. Similarly, by comparing 

the 4th and the 5th runs, for a constant catalyst (2) addition time, the effect of catalyst ratio on 

grafting density can be identified (grafting density is more due to high catalyst 1/catalyst 2 

ratio). Validation results of 6th run has been provided, which is not included in the parameter 

estimation exercise. The value of aPP Mw will not show much impact on the copolymer 

molecular weight (due to very low molecular weight of aPP Mw as compared to the iPP 

Mw) and grafting density. Fig. 5.1 depicts such variability i.e. the variation of grafting 

density and  with the time gap between the two catalyst additions for different catalyst 

ratios for a copolymerization time of 90 minutes. 

 

Figure 5.1: Effect of time gap between the two catalyst additions, Fe/Zr ratio on  and 

grafting density 
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Table 5.6: Kinetic rate constants for first and second catalyst systems 

i1k
 

4.7789×103(L/(mol.min)) 

 

p1k
 

1.0659×106(L/(mol.min)) 

 

βk
 

8.9738×107(1/min)) 

 

rk 
 

8.3145×106(L/(mol.min)) 

 

ri1k
 

1.4799(L/(mol.min)) 

 

a2k
 

8.8243×102(L/(mol.min)) 

 

i2k
 

6.5754×103(L/(mol.min)) 

 

p2k
 

9.4277×107(L/(mol.min)) 

 

lcbk
 

8.3375×108(L/(mol.min)) 

 

alk
 

8.5325×104(L/(mol.min)) 

 

ralk
 

13.9312×104(L/(mol.min)) 

 

d2k
 

22.7379×1010(L/(mol.min)) 

 

Table 5.7: Experimental and predicted Mw, PDI of iPP copolymer for case 1 and case 2 

Run 

No. 

iPP 

Experiment 

iPP 

Predicted 

(case 1) 

iPP 

Predicted 

(case 2) 

    % error 

Mw  

(kg/mol) 

PDI Mw 

(kg/mol) 

PDI Mw 

(kg/mol) 

PDI Mw PDI 

1 631.8 2.7 563.3 2.3 632 2.2 -0.03 18.5 

2 564.7 2.5 474.9 2.29 544 2.2 3.66 12 

3 447.3 2.3 535.3 2.33 485 2.4 -8.42 -4.34 

4 395.2 2.4 422.6 2.3 378 2.4 4.35 0 

5 514.4 2.3 620 2.3 554 2.4 -7.69 -4.34 

6 548.8 2.5 682 2.1 595 2.1 -8.41 16 

 

Table 5.8: Bimolecular deactivation constant w.r.t. Al/Zr ratio 

Al/Zr 
d2k (L/(mol.min) 

 

7500 12.6322×1010 

5000 56.8449×1010 
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Table 5.9: Various experimental runs along with the comparison of experimental [16] 

grafting density with the model predictions 

Run 

Number 

Zr:Fe:Al  Zr 

(μM) 

Grafting Density Melting  

Point  

% error 

Experimental  Simulated Grafting 

density 

1 2:15:15000 10 8.4 8.2 144.4 2.38 

2 2:15:15000 10 1.7 1.7 148.6 0 

3 3:15:15000 15 8.6 7.5 145.6 12.79 

4 3:15:15000 15  0.31 149.7  

5 3:5:15000 10  0.008 153.5  

6 1:15:15000 5 0 0 155.1  

 

   Calculation of molecular weight long chain branching distribution is very important 

because it has a large impact on rheological and mechanical properties of the polymer. Fig. 

5.2 depicts the molecular weight distributions of branched iPP copolymer calculated by 

fractionation of polymers based on number of branches [49]. This is for the 2nd experimental 

run and corresponds to the grafting density value of 1.7 (of aPP macromonomers). In this 

figure, weight chain length distributions of linear and branched polymers are shown. The 

computational time requirement for the numerical fractionation method depends on the total 

number of classes required for the construction of MWD. Number of classes increases with 

the extent of branching also. Total number of classes required for this case was found to be 

around 20. Total number of classes has to be chosen properly for the construction of MWD. 

This has been established for a particular number of classes for which the sum of the first 

moments of all classes is approximately equal to the overall first moment of the iPP 

copolymer. Variation of weight average degree of polymerization and polydispersity index 

of each class of polymer chains, corresponding to Fig. 5.2, is represented in Fig. 5.3. It can 

be noticed from Fig. 5.3 that the weight average chain length increases linearly as the 

number of classes increases. On the other hand, polydispersity index decreases and reaches 

around the value of 1.1 as the number of long chain branches increases. However, 

polydispersity index of linear polymer chains obtained a theoretical value of 2 [98].  
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Figure 5.2: Molecular weight distributions for the 2nd run 

 

 

Figure 5.3: Variation of weight average degree of polymerization and polydispersity index 

with respect to class number 
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  The sensitivity study of the kinetic parameters has been carried out for run 1 to see the 

effect of long chain branching density and weight average molecular weight of the iPP 

copolymer. The effect of .klcb on aPP macromonomer grafting density and molecular 

weight of the copolymer is shown in Fig. 5.4. It can be evident that the rate of 

macromonomer insertion increases as the klcb increases. This in turn means an increase in 

the value of klcb / kp2 and long chain branching density and thereby the number of classes 

required for the construction of MWD. However, there is a small increase in molecular 

weight of the copolymer which is due to the fact that the molecular weight of attacking 

macromonomers is very less as compared to the molecular weight of isotactic backbone 

units. If kp2 (propagation rate constant) is increased, the ratio of macromonomer insertion 

rate to propagation rate decreases, which results decrease in the grafting density as well. 

However, there is a linear increase in molecular weight of the copolymer which is depicted 

in Fig. 5.5. This is due to the high propagation rate of propylene monomer to the back bone 

of iPP polymer. Cocatalyst (MMAO) concentration plays an important role on the molecular 

weight of the iPP copolymer. Fig. 5.6 illustrates the effect of kal on the molecular weight 

and the long chain branching content. Molecular weight of the polymer is decreased due to 

the high chain transfer rate to cocatalyst. However, grafting density of aPP macromonomers 

is almost constant. This may be due to the fact that the rate of macromonomer insertion and 

the rate of propagation are not affected by the cocatalyst. However, higher molecular weight 

polymers can be produced with the decrease of bimolecular deactivation (Fig. 5.7). 

Sensitivity analysis reveals that grafting density is strongly influenced by the long chain 

branching reaction (i.e. reaction with macromonomer) and copolymer propagation reaction. 

Similarly, iPP Mw strongly depends on propagation reaction, chain transfer reaction and 

bimolecular deactivation reaction. 
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Figure 5.4: Effect of  klcb on Mw and grafting density 

 

 

Figure 5.5: Effect of kp on Mw and grafting density 
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Figure 5.6: Effect of kal on Mw and grafting density 

 

 

 

 

Figure 5.7: Effect of kd2 on Mw 
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5.4 Conclusion 

A mathematical model with a newly proposed chemical mechanism for a LCB PP (isotactic 

back bones and atactic side chains) system with twin catalysts has been presented in this 

work which can validate the available experimental results [16]. The proposed model can 

predict the molecular properties such as molecular weight, PDI and grafting density by the 

tandem action of the two catalyst system with different Al/Zr ratio, cocatalyst concentration 

and Fe/Zr ratio. Following important points are revealed out of this modeling exercise: (i) 

Molecular weight of the iPP copolymer is found to depend on the cocatalyst concentration 

(due to chain transfer reaction) and the cocatalyst/catalyst ratio (due to the bimolecular 

deactivation). (ii) Grafting density depends on the catalyst (2) addition time, Fe/Zr ratio and 

copolymerization time. (iii) If more time is allowed before the catalyst (2) addition, long 

chain branching content is increased in the copolymer due to accumulation of more amounts 

of aPP macromonomers in the reactor. (iv)By increasing the Fe/Zr ratio, more aPP 

macromonomers are grafted to the back bone of iPP because of the higher macromonomer 

concentration in the reactor. Sensitivity analysis reveals that grafting density is strongly 

influenced by the long chain branching reaction (i.e. reaction with macromonomer) and 

copolymer propagation reaction. Similarly, iPP Mw strongly depends on propagation 

reaction, chain transfer reaction and bimolecular deactivation reaction. The model captured 

the iPP Mw, PDI, grafting density and aPP PDI well except deviations in aPP Mw as 

compared to the experimental data. In literature, Mw value of 280.5 kg/mol and PDI of 2.22 

has been reported with the binary catalyst system [48]. The model agrees well quantitatively 

with the PDI value and similar order of magnitude with Mw value. 
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Chapter 6 
 

Multi-objective Optimization of Long 

Chain Branched Propylene 

Polymerization  

   

This chapter deals with the multi-objective optimization of long chain branched 

polypropylene system, which discusses the simulation results of multi-objective 

optimization to produce a polymer of high molecular weight and grafting density (number 

of macromonomers per 1000 back bone monomer units) in less polymerization time. 

6.1 Introduction 

In this chapter, an example of LCBPP that is produced by a binary catalyst system has been 

considered. The experimental details of this binary catalyst system can be found from the 

work of Ye and Zhu [16]. The aim here is to develop a model with a mechanism which can 

validate the given experimental data [16] and then use the model to optimize and control the 

degree of branching of the polymer. Single site coordination mechanism has been 

considered to model this system. The detailed kinetic model has been given in chapter 5. In 

the optimization exercise, the validated model is extended to find the optimal values of 

addition of catalysts and cocatalyst, second catalyst addition time that minimizes the total 

polymerization time while maximizing the iPP copolymer Mw and grafting density, 

simultaneously. Multi-objective optimization techniques are excellent candidates to find out 

optimal solutions that are conflicting in nature. It is known that polymer with higher 

molecular weight can be obtained in higher polymerization time; on the contrary, the 

objective is to attain polymers with higher molecular weight in less time - here lies the 

conflict. Moreover, to maintain the competitive advantage, it is more apparent that 

enterprises need to produce products in such operating conditions that solve multiple 

conflicting operating objectives simultaneously than attaining only one goal. Multi-
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objective optimization works are, therefore, gaining popularity to solve optimization 

problems in the polymerization domain over the last few decades. Since, the three objectives 

mentioned above are conflicting in nature, there is a need to find out the optimal process 

conditions to get the desired combination of these conflicting objectives. To cater this, a 

multi-objective optimization study has been performed using well established non-

dominated sorting genetic algorithm II (NSGA II) [19] to find the PO solutions. PO (Pareto 

optimal) solutions are the set of solutions given by multi-objective optimization problem 

(MOOP) which are non-dominating in nature. This study can be extremely beneficial for 

operating branched polypropylene reactors that can lead to the desired results with optimal 

operating conditions. 

 

6.2 Problem Formulation and Optimization Procedure 

Addition amounts for the two catalysts (u1 and u2) and cocatalyst (MMAO) (u3), time of 

addition for the second catalyst (u4) and the total polymerization (tp) (70 min. to 180 min.) 

are considered as decision variables for the optimization problem. These decision variables 

are to be decided by the optimization routine while attaining simultaneous minimization of 

total polymerization time, maximization of Mw and maximization of GD. As these 

objectives are conflicting in nature, solving the multi-objective optimization problem helps 

in obtaining the PO or trade off solutions among various conflicting objectives. The above 

mentioned problem formulation with relevant constraints is shown in Table 6.1. The 

constraint bounds in the optimization problem formulation have been chosen completely 

based on the experimental values [16] to avoid extrapolation errors of the model. For 

example, aPP PDI experimental values are 1.3 and 1.4 respectively. The constraint limit for 

this has been chosen less than or equal to 1.45. In this, case 1 represents the multi objective 

optimization formulation based on the decision variable values of experimental run no. 1 

whereas, case 2 is based on the entire experimental range. This case 2 multi-objective 

optimization study has been extended based on the process performance improvement in the 

case 1. To find a polymer in less processing time, one may get less Mw and GD. A multi-

objective optimization study for LCBPP is, therefore, performed here to obtain trade off 

solutions in the above-mentioned conflicting scenario. To reduce the extrapolation errors, 

the bounds on the decision variables are fixed at the ±10% of the experimental values [16] 

and additional constraints are posed (Table 6.1). All decision variables [16] are forced to lie 

within the lower and upper bounds to obtain a realistic final solution. Multi objective 

optimization (MOOP) has been performed by integrating the validated model with a well-

established multi optimization routine, real coded non-dominated sorting genetic algorithm 
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(NSGA II) [19]. The rationale behind selecting NSGA II over other multi-objective 

evolutionary algorithms is the success of NSGA II on various complicated practical 

problems in the past.  

Table 6.1: Multi-objective optimization problem formulation 
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6.3 Results and discussion 

All experimental runs [16] were conducted at 1 atm. propylene pressure and 25°C in 200 ml 

toluene solvent and various molecular properties such as Mw, PDI (of aPP, iPP- copolymer) 

and grafting density were determined. Propylene concentration in toluene is calculated by 

Soave-Redlich-Kwong (SRK) equation of state for vapor–liquid phases in equilibrium [100-

101]. Kinetic parameters, those are estimated by the parameter estimation exercise as 

explained earlier, are presented in chapter 5. Once the parameters are estimated, the model 

is ready for use in optimization of process operating conditions within the experimental 

range. As the first catalyst produces only macromonomers, β-hydride elimination 

mechanism has been considered as the chain transfer step [102]. Percentage of catalyst 

active sites for the first catalyst system (1/MMAO) is calculated by 
1

CatC1  , [99] 

where Cat1 represents the number of moles of catalyst introduced, C1 is the moles of catalyst 

active sites and   is the efficiency factor.   
depends on the cocat/cat1 (Al/Fe) ratio e.g. as 

the ratio increases, number of moles activated catalyst sites also increases. For the second 

catalyst system (2/MMAO), the mechanism of chain transfer to cocatalyst and bimolecular 

deactivation of live polymers have been considered [99]. Compared to the second catalyst 

concentration, the cocatalyst (MMAO) is found to be present in much higher amount [16]. 

So, the term “kal  [MMAO]” is considered to be constant [99] during the polymerization. 

Polymer chain length increases with the decrease in cocatalyst concentration, which is due 

to lower chain transfer to cocatalyst. The effect of cocatalyst (MAO) on bimolecular 

deactivation has been considered in literature [103]. Decrease in bimolecular deactivation 

has been observed with increase in cocatalyst/catalyst ratio [103]. In the present effort, the 

effect of MMAO/Zr (cocat/cat2) ratio on bimolecular deactivation has been taken into 

account. This rate constant is estimated by considering the related experimental values (i.e. 

cocat/cat2=5000, 7500) and shown in chapter 5. With the decrease in this value, bimolecular 

deactivation increases that leads to produce polymers of lower chain length. In the present 

work, the adopted model has been validated with the experimental [16] findings and the 

result is represented in Table 6.2. Model predictions for polymer properties for all 

experimental runs are found to corroborate experimental data reasonably well. Higher 

molecular weight polymers are obtained for the first two runs, which are due to lower 

bimolecular deactivation as compared to the last three runs (Table 6.2). While comparing 

between the 3rd and 5th runs (of same cocat/cat2=5000), 5th run has provided higher chain 

length polymers. This is due to high chain transfer to cocatalyst in case of 3rd run as 

compared to the 5th run. Grafting density predictions are also shown in Table 6.2. As 
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explained earlier, this value completely depends on the time gap between the two catalyst 

additions, two catalyst ratios and copolymerization time. For run1, grafting density value is 

more as compared to the value in run 2, which is due to more time gap between two catalyst 

additions, while same cat1/cat2 ratio has been maintained. Similarly, by comparing 3rd and 

4th run of (having similar catalyst concentrations), 4th run has lower long chain branching 

density. This is due to less macromonomers present in the reactor because of less time gap 

between two catalyst additions. However, no experimental data for grafting density are 

available for the 4th and 5th runs. These values are predicted from the model. Lower 

branching density of 4th run as compared to the 3rd run indicates higher melting point [16], 

which is in line with experimental observations. By comparing the 4th and 5th runs of having 

the same time gap between the two catalyst additions and copolymerization time with 

varying cat1/cat2 ratio, 4th run shows more grafting density value compared to the 5th run 

(Table 6.2) due to more cat1/cat2 ratio. In the same table, validation results of 6th run has 

been provided, which is not included in the parameter estimation exercise. 

 

Table 6.2: Comparison of model predicted values with experimental [16] data. 

Run

No. 

cat1 

(μM) 
 

cat2 

(μM) 

 

Al 

(M) 
 

Second 

catalyst 

addition 

time (min) 

 aPP  

Experiment  
   aPP  

   Predicted 

Mw×10-3 

(gm/mol) 

PDI Mw×10-3 

(gm/mol) 

PDI 

1 75 10 0.075 90 3.6 1.3 4.4 1.4 

2 75 10 0.075 30 3.6 1.4 3.2 1.34 

3 75 15 0.075 120 3.3 1.3 4.5 1.4 

4 75 15 0.075 30 3.1 1.3 2.5 1.34 

5 16.67 10 0.05 30 3.0 1.3 2.6 1.33 

6 75 5 0.075 0 3.4 1.3 2.5 1.34 

 

Run 

No. 

iPP 

Experiment [16] 

iPP 

Predicted 
 

 Mw×10-3 

(gm/mol) 

PDI Mw×10-3 

(gm/mol) 

PDI 

1 631.8 2.7 632 2.2 

2 564.7 2.5 544 2.2 

3 447.3 2.3 485 2.4 

4 395.2 2.4 378 2.4 

5 514.4 2.3 554 2.4 

6 548.8 2.5 595 2.1 
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Run No. GD Melting      

Point [16] 

 Experiment  Predicted 

1 8.4 8.2 144.4 

2 1.7 1.7 148.6 

3 8.6 7.5 145.6 

4  0.31 149.7 

5  0.008 153.5 

6             0 0 155.1 

 

   After the model is validated with the experimental data, it has been extended to 

investigate the optimal process operating conditions to attain specific objectives as 

described in Table 6.1. First of all, one might be curious to see whether optimization result 

can give any better solution than the experimental results. First a targeted optimization 

search is done in a narrow decision variable space to figure out the performance similar or 

better than run 1 (Table 6.1: case 1). Multi-objective optimization study is carried out for the 

run 1 experimental range (i.e. within ±10% of the experimental process conditions; 

henceforth called as case 1). The set of Pareto optimal solutions for population of 100 is 

represented in Fig. 6.1. Polymerization time is arranged in ascending order in terms of an 

ordered chromosome number (Fig. 6.1a). Fig. 6.1b and 6.1c represent the remaining two 

objective functions by using the same ordered chromosome numbers as shown in Fig. 6.1a. 

This way of representing the objectives helps to see the embedded trade-off among 

objectives. These are multiple numbers of optimal solutions competing with each other. No 

single solution can be pointed as better than other solution in terms of overall objectives. 

While comparing two solutions (say, a and b), if one objective for a solution (solution a) 

looks better than another solution (solution b), this would definitely have some compromise 

in some other objective (i.e. other objective of solution a might be inferior to solution b). In 

that sense, all these solutions are equally important and none of them can be discarded right 

away. From this figure, with ~8% increase in first catalyst concentration, grafting density is 

more as compared to the experimental run 1 in less polymerization time (see Table 6.3). 

That means, as the ratio of two catalysts increases (cat1/cat2), grafting density also increases. 

This grafting density also strongly depends on second catalyst addition time. One has to 

allow certain span of copolymerization time to get more iPP Mw. Based on these results; 

certain process improvement (in terms of Mw, PDI) has been obtained. So, multi-objective 

optimization study has been extended to the entire range of experimental data (henceforth 

called as case 2) to see more variety of process performance as well as improving the same 

strictly within the experimental limits. 
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Figure 6.1: Results of three objective functions of case1 (a) tp (in ascending order) (b) 

corresponding values of GD, and (c) iPP Mw. 
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Table 6.3: Process performance with various decision variables for case 1 

Data set Fe 

(μM) 

Zr  

(μM) 

cocatalyst 

(M) 

polymerization 

time (min) 

Mw×10-3 

(gm/mol) 

GD 

Experimental 75 10 0.075 180 631.8 8.4 

MOOP 82.3 9.83 0.0751 178 648 8.92 

MOOP 82.3 9.5 0.0716 178.4 666 8.9 

 

  Fig. 6.2 depicts the multi-objective PO solutions for the above mentioned three conflicting 

objectives for the entire range of experimental data. All decision variables are kept within 

the ±10% experimental range to control the model extrapolation errors because the 

estimated kinetic parameters are valid for a certain range of operating conditions. These PO 

solutions are projected into the individual two dimensional planes to have better 

understanding of the situation. Experimental points of run 1 and run 3 (which have GD>8) 

are represented in the same plot as filled points (circled points). A significant number of PO 

solutions are found better than the experimental points. The corresponding decision 

variables (amount of first catalyst, second catalyst, cocatalyst and second catalyst addition 

time) have been presented in Figs. 6.3a – d in different shades. Fig 6.3a represents PO 

solutions with the first catalyst concentration (Fe) as decision variable. Figs. 6.3b, 6.3c, 6.3d 

are the same PO solutions where second catalyst concentration (Zr), cocatalyst 

concentration and second catalyst addition time have been taken as decision variables, 

respectively. We can characterize these PO solutions and can find an interesting trend 

among the decision variables. If we concentrate on grafting density alone, we can see higher 

grafting density can be achieved by maintaining operating conditions with higher values of 

cat1/cat2 ratio (Fe/Zr) as well as higher second catalyst addition time. The amount of first 

catalyst addition (in Fig. 6.3) spans across medium to higher range, whereas other decision 

variables are present across the entire ranges. As told earlier, this is due to increase in the 

ratio of the first catalyst to second catalyst, which leads to more GD. Similarly, the time 

minimization occurs for higher values for u1 (first catalyst) and moderate values for u2, u3, 

u4. Of course, one has to see for a solution considering all three objectives in mind because 

settling for higher grafting density and iPP Mw may lead to solutions with poor time 

productivity. From the PO set given in Fig. 6.3, a particular solution can be chosen based on 

decision maker’s preference and corresponding trends among the decision variables can be 

found out. This kind of optimal trend can be extremely useful for an operator to run a plant 

without much intervention of mere qualitative perceptions. 
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Figure 6.2: PO solutions for case 2 (x: Time (min.), y: Grafting density, z: iPP Mw 

(gm/mol)). 

 

Figure 6.3a-d: PO solutions with total search space consisting of widely varying scenarios 

(u1: first catalyst concentration, u2: second catalyst concentration, u3: cocatalyst 

concentration, u4: time gap between the two catalyst additions) for case 2. 
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  The PO solutions presented in Fig. 6.3, along with their corresponding values of ratio of 

catalyst 1 to catalyst 2, grafting density and second catalyst addition time are shown in Fig. 

6.4 with varying copolymerization time (presented in shades). A primary look at the figure 

divides the points into two regions: 1: solutions with less copolymerization time and less 

catalysts ratio; 2: solutions with medium to high copolymerization time and high catalysts 

ratio. In the first region, their GD and second catalyst addition times are found to be quite 

varying. In the other region, the variation is found less for GD as well as for second catalyst 

addition time. Moreover, with lower catalyst ratio, the optimizer has chosen more time gap 

between the two catalyst additions to achieve more GD at a less copolymerization time. 

However, lesser value of iPP Mw is obtained in less copolymerization time as evident from 

Fig.6.5. In the same figure, the solutions which are grouped by an ellipse have almost 

similar copolymerization time.  In case of these solutions, high Mw points appear for low 

cocatalyst concentration. This is happening due to low chain transfer to cocatalyst. Multi-

objective optimization leads to multiple number of trade-off solutions as opposed to a single 

solution in case of single objective optimization. Trade-off among solutions is clear as 

improvement in certain objective comes at the cost of deterioration in other objectives. 

However, at the end of the optimization study, one has to choose only one solution as the 

solution of choice and this selection needs decision maker’s knowledge about how to 

prioritize among various objectives. The formulation given in Table 6.1 could have been 

also presented by optimizing grafting density and polymerization time and constraining the 

Mw to some higher value in the commercial range instead of considering Mw in the 

objectives. This is because in commercial operation one would be interested to produce 

polymer with same quality in terms of Mw. However, the formulation presented in Table 6.1 

is more beneficial when the decision maker is not sure whether there exists a Pareto solution 

at a particular value of Mw (say, 500 kg/mol). In these cases, it is better to see at what 

different values of Mw the solution exists and then decide which value of Mw (may be 490 

kg/mol) to be chosen. For a clear depiction, polymerization time vs. grafting density has 

been plotted in Fig. 6.6 to show different polymers of almost similar molecular weight (e.g. 

Mw=670000 gm/mol to 676000 gm/mol). 
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Figure 6.4: Variation of grafting density with the ratio of the two catalysts, second catalyst 

addition time (tp-u4: copolymerization time). 

 

Figure 6.5: Effect of copolymerization time, cocatalyst/catalyst2 ratio on iPP molecular 

weight (u3: cocatalyst concentrations, points inside the circle are high molecular weight). 
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Figure 6.6: Polymerization time vs. grafting density for Mw=670000 gm/mol to 676000 

gm/mol. 

 

   As the molecular weight distribution (MWD) is of great interest due to its direct 

relationship with various polymer properties, MWD of two PO points are calculated. One of 

the ways to calculate the MWD for branched polymer is numerical fractionation, where the 

whole polymer population is classified into number of classes based on the number of 

branches [49] (e.g. linear polymers belong to zeroth class, polymers with one LCB go to 

class 1 and so on.). According to this method [49], the rates of moments have been derived 

for each class of live and dead polymer chains and are shown in chapter 5. MWD of each 

class of polymer chains is calculated using a two-parameter model following Schultz-Flory 

distribution (Equation 6.1). Once the individual distribution is achieved, the overall MWD is 

calculated by the weighed sum of all individual class distributions. In this method, the 

number of classes should be chosen properly to construct the complete MWD. The below 

mentioned convergence criteria has been applied for accurate construction of MWD 

(Equation 6.2). MWDs for the two Pareto points of having different Mw and GD are 

compared and shown in the Fig. 6.7, and the corresponding MWDs of grafted side chains is 

represented in Fig. 6.8. From this figure, it can be concluded that grafted side chains may 

exhibit very narrow molecular weight distribution. It is evident from this figure that high 

Mw plot exhibits wider MWD and shifted towards higher chain length as compared to the 

curve with lower Mw. 
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Where 
(r)wm  represents the weight fraction of the polymer chains of mth class with a 

degree of polymerization of r. 

 

 

 

Figure 6.7: MWD comparison for two different Pareto points. 
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Figure 6.8: MWD comparison of grafted side chains that corresponds to Fig. 6.7. 

 

6.4 Conclusion 

Multi-objective optimization has been formulated for various conflicting objectives with 

relevant constraints using the above validated model. Maximization of iPP weight average 

molecular weight and grafting density have been attained along with simultaneous 

minimization of total polymerization time without violating the process constraints. Real 

coded NSGS II has been used to find the multi-objective Pareto optimal solution and 

corresponding operating conditions. The optimization approach provided a wide variety of 

solutions in the entire terrain of search for this dual catalyst system. Two catalysts and one 

cocatalyst concentrations, time gap between the two catalyst additions and total 

polymerization time are used as decision variables. One of the objective functions, viz. 

grafting density, strongly depends on the time gap between the two catalyst additions, ratio 

of the two catalysts and copolymerization time. The optimization exercise not only leads to 

a variety of competitive process choices but also shows improvement in process objectives 

as compared to the existing literature data. Solutions originating from different regions of 

the PO set were considered and the possible reasons for their occurrence were analyzed in 

detail in terms of reaction mechanisms proposed. 
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Chapter 7 
 

Kriging Surrogate based Multi-

objective Optimization of Bulk Vinyl 

Acetate Polymerization with Branching  

   

In this chapter, the primary aim is to replace the computationally expensive model for a 

batch free radical polymerization of vinyl acetate process with a Kriging surrogate based 

faster model while solving a multi-objective optimization problem and observe the merits 

and demerits in this approach in terms of improvement in execution time and reliability of 

the obtained solutions. 

7.1 Introduction 

From the computationally expensive kinetic model for polyvinyl acetate (PVAc) [38, 106] 

molecular properties such as number average molecular weight (Mn), weight average 

molecular weight (Mw), number average degree of branching (Bn) etc. are calculated and 

validated with the batch experiment conducted by Thomas [1]. At high monomer 

conversion, there is a possibility of formation of gel causing a sudden rise in molecular 

weight and thereby choking of the reactor.  The target, therefore, is to find the optimal 

process conditions for various desired combinations of conflicting objectives (minimization 

of tp, maximization of Mw and Bn) avoiding the gel effect while honoring the constraints 

defined for Mw and PDI. Additions of monomer and initiator in the beginning and the 

temperature of the process are taken as the process conditions to be optimized (i.e. decision 

variables) for the above isothermal process. Gaussian process based individual Kriging 

models for objective functions and constraints are built first. This model building exercise 

starts with a relatively less number of input-output data points for training the intermediate 

crude surrogate model, whose accuracy is improved further by adding additional data points 

at locations (i.e. infilling) where the model needs improvement. This process is continued 
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till the desired model accuracy is achieved. Gaussian process based infill criteria such as 

expected improvement of the intermediate crude Kriging model is used to determine the 

location where the model needs further improvement. The ability to find the size of input-

output data required to build a parsimonious surrogate model and the locations where the 

data is required are the outperforming features that the Kriging possesses over ANN. 

Population based real coded non-dominated sorting genetic algorithm-II (NSGA-II) [19] has 

been used to obtain the PO solutions among the above mentioned conflicting objectives 

using the Kriging based surrogate models as well as the expensive model. The final 

surrogate based PO solutions are compared with those obtained using the expensive first 

principle models and the aspects of fastness in model execution without losing the rigor of 

the model built are analyzed. 

 

7.2 Optimization problem formulation 

The kinetic recipe for the polymerization of vinyl acetate is given in chapter 4. In the 

present formulation, batch addition amount of monomer (M) and initiator (I), temperature to 

be maintained during the isothermal process of polymerization (T) are taken as decision 

variables. The aim here is to obtain polymer of high Mw and Bn in minimum tpoly (Table 7.1). 

Once decision variables (M, I and T) are decided by the optimization routine, conversion at 

gel point is calculated [106] from the empirical relation between monomer gel point 

conversion and temperature which is shown in Equation 7.1. 

 

Table 7.1 Optimization problem formulation 

 

 

 

 

 

          With decision variable bounds are:       

                        14;M 10      0.00015;I 0.00003  353KTK333   

                                  ConvGel (T) =1.47×10-3×T+0.32                                    (7.1) 

This empirical relation is obtained from the data of monomer conversion and Mw at different 

temperatures [38, 97]. Identifying the gel points at different temperatures from these curves 
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(where the sudden rise of Mw occurs, i.e. Trommsdorff effect), the temperature dependency 

of conversion can be obtained by linear fitting. Depending upon the gel point conversion 

value obtained at a temperature, the simulation is allowed to proceed up to 3% lesser than 

that conversion value to avoid the gel effect (i.e. for a specified temperature, if the monomer 

conversion at gel point is 80%, the simulation of the model is allowed to run up to 77% of 

the monomer conversion). All decision variables (M, I and T) are forced to lie between their 

lower and upper bounds. The limiting values for the various constraints such as Mw, PDI are 

decided by the experimental study [1] so that the prediction through optimization results is 

realizable.  

 

   Since the above moment based model is computationally expensive, performing multi-

objective optimization using this model becomes a prohibitive proposition. For example, 

when such an optimization is carried out with 70 candidate solutions for 40 generations 

using NSGA II, the execution time is of the order of 192 hours in an Intel(R) Xeon(R) CPU 

E5-2690 0 @ 2.90GHz (2 processors) 128 GB RAM machine. However, the main focus in 

this work is to replace the original expensive model with a surrogate model (i.e. Kriging) 

and carry out the same multi-objective optimization study for the desired conflicting 

objectives to analyze the extent of time advantage achieved by this approach within a 

reasonable prediction accuracy thereby making the application more amenable for using 

online. The choice of NSGA II as a multi-objective optimization technique is primarily 

based on its already established outperforming ability to find out the well spread near 

optimal Pareto solutions in single simulation run as compared to many classical as well as 

evolutionary techniques [19]. 

  

7.3 Kriging Model development 

In this section, a brief description of Kriging is given, which includes the formulation and 

implementation of the process of surrogate model building for the polymerization system. 

Let us consider the modeling of input – output relationship in case of one of the outputs i.e. 

polymerization time where the overall task is to build such models for each of the responses 

[tpoly, Mw, Bn, PDI] for the same input vector [M, I, T]. The proposition in Kriging assumes 

that the value of the response at a new point is uncertain before a sampling is performed at 

that point. This uncertainty can be modeled as a Gaussian random process with µ mean and 

 standard deviation. This means the value of the response at the point is typically µ with a 

variance of ±3. Similarly, we can say that two such new points, where responses are 
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uncertain, can be weakly correlated with each other, if they are away from each other, 

whereas the correlations are going to be very strong when they are close to each other. This 

goes with the assumption that the function being modeled through the responses is 

continuous. One of the ways of representing such correlations statistically is 

])|TT||II||MM|[exp(]t[tCorr ψ
2(l)(i)2(l)(i)2(l)(i)(l)

poly

(i)

poly
jjj

tim  
 
 (7.2)          

             

 Using the above equation, an n × n correlation matrix (ψ ) can be constructed for all 

observed n data, [M(i), I(i), T(i), 
)i(

polyt ; i = 1, 2, …, n] where tim  ,,  are the unknown 

parameters. The parameters μ, σ2 and
tim  ,,  are estimated by maximizing the log 

likelihood function [22, 89] generated by the above mentioned correlation coefficient 

ψ (Equation 7.3 excluding constant term). This action intuitively means that the function 

being modeled is most consistent with the data used. 
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Optimum values of μ and σ2 (Equation 7.4) can be obtained by keeping the derivatives of the 

Equation 7.3 with respect to μ and σ2 equal to zero. 
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Where tpoly is the column vector of size n that contains values of the response at each 

observed point and other variables 


μ  and 


2 are the maximum likelihood estimates [22] of 

mean and variance (Equation 7.4). By substituting Equation 7.4 into 7.3, the concentrated 

log likelihood function can be obtained as only function of ψ which in turn is function of 

the parameters s  

                   
|)ψlog(|

2

1
)log(

2

2 



n

                                                                     (7.5) 

  Since the above concentrated likelihood function now depends only on the 

parameters im  , and t , they can be estimated by an optimizer such as genetic algorithms 

while maximizing Equation 7.5 itself. This explains how to build a Kriging interpolator 

when n sets of data points are given.  
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At an unobserved new point M, I and T, Kriging prediction polyt


 is given by 

                    )1t( poly

1T





 μμt poly ψ                                                   (7.6) 

Where  is a correlation vector between observed points and a new prediction point. For an 

unobserved point, the mean square error ( )(2 x


s ) of the predictor calculated by standard 

stochastic process approach is given by 

                       






 









1T

1T
1T22 )1(

1)(
ψ1

ψ1
ψx


s                             (7.7)    

This is an approximate statistical error that the Kriging model has at any stage. This error is 

calculated from the curvature (second order derivative) information of the log likelihood 

function and using the idea of error is inversely proportional to the curvature. This means 

that more the curvature of log likelihood function at any point, more confident one is about 

the predicted value as compared to its neighboring points due to the stiff hill it forms with 

respect to its surrounding and this is synonymous to lesser error. This is an estimate of the 

statistical error that any n-point Kriging model can have at any stage whereas its mean can 

be given by polyt


. As this expression is a function of input vector (M, I, T), the error 

associated with any prediction from the n-point Kriging model for any input combination 

can be obtained from this expression. Using this error expression, various other entities of a 

Gaussian statistical model such as statistical lower bound, probability of improvement with 

respect to a given target and expected improvement (Equation 7.8) etc. can be easily 

calculated. Each of these measures can be utilized while selecting the location of the (n+1)th 

point (i.e. infilling) for the n-point Kriging model in a region where the model is having less 

confidence and more error and needs information to become more accurate. This way an 

existing model can be made more accurate incrementally by adding more and more points 

into it. In the present work, the algorithm mentioned below (Table 7.2) has been used to 

obtain four independent Kriging models (i.e. tpoly, Mw, Bn, PDI) for the bulk free radical 

polymerization of PVAc. At first, 3 points are chosen from the input space using latin 

hypercube sampling (LHS) and a Kriging model is built using these data sets (3 sets of 

inputs and outputs). After that, a point has been chosen from the input space based on 

maximization of expected improvement {E[I(x)} [22] (Equation 7.8: and are the normal 

cumulative distribution function and density function) and this point is added as a new point 

in the database of the input-output data. This way of adding points has been shown to have 
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the attribute of finding global optimum [22]. After re-tuning the Kriging model, metrics 

such as root mean square error (RMSE) and correlation coefficient (R2) are used to predict 

200 independently generated sample points by Latin Hypercube Sampling (LHS) [107]. 

This process of incremental model building while enriching the input-output database 

during several iterations has been stopped if the RMSE (due to its good global error 

estimate) [108], R2 and E[I(x)] values of the two consecutive intermediate models are close 

to a predefined tolerance limit (ε). It is worth mentioning that the validation set of 200 

independently generated sample points by LHS are only used to test the maturity of the 

model built; they are no way used to enrich the model. In this way, Kriging can determine 

the size of the input-output data required as well as the location of the new point addition. 

Similar procedure is repeated for the remaining three responses (Mw, Bn, PDI) to develop 

the corresponding Kriging models. The RMSE and R2 values for the four Kriging models 

are shown in Table 7.3. After developing the four independent Kriging models, the original 

PVAc model (expensive model) is completely replaced by these Kriging models to calculate 

objective functions and constraints while performing the multi-objective optimization of the 

problem given in Table 7.1.  
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Table 7.2 The algorithm used to develop (tune) Kriging model 

1. Generate 3 initial sample points by LHS 

[107]. 

 

2. Run PVAc model to obtain Mw, Bn, PDI and 

gel point conversion time. 

 

 
3. Tune 4 independent Kriging models (MISO). 

 

4. Calculate Kriging prediction with newly 

generated 200 points and calculate RMSE or R2 

metric. 

 

 

 

 

 

Stop 

 

Table 7.3: RMSE and R2 comparison of four different models 

Model Number Points/ 

Function Calls  

RMSE R2 

Polymerization Time 200 0.0091 0.9987 

Mw 9 0.0128 0.9957 

Bn 4 0.0133 0.9953 

PDI 4 0.0113 0.9882 

 

 

7.4 Results and discussion 

Moment based modeling approach is adapted to solve the mathematical model for batch 

bulk free radical polymerization system. The model is validated with experimental studies 

of Thomas [1] in terms of experimental data available on weight average molecular weight 

(Mw) and number average degree of branching (Bn) at two different temperatures and 

different initiator concentrations [106]. Before building the surrogate models of the given 

process, a sensitivity analysis has been carried out to see the effect of inputs on various 

Find x that maximizes E[I(x)] for 

the intermediate model. 
5. If RMSE or 

R2 acceptable 

No 

Yes 
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responses. While doing this, contour plots (Fig. 7.1 to 7.4) have been generated by keeping 

one of the input variables at a fixed value and varying the other two inputs to show their 

impacts on the values of responses. From these figures, it is concluded that monomer has 

less impact on the objective functions. Also, initiator and temperature has more influence on 

polymerization time (Fig. 7.1a) as compared to Mw, Bn and PDI (Figs. 7.2 to 7.4) on gel 

point conversion. The main objective in this work is to obtain the optimal process conditions 

for the desired combination of conflicting objectives before the gel point is reached in less 

computational time. For this purpose, a well-established multi-objective optimization 

technique real coded non dominated sorting genetic algorithm (NSGA II) [19] has been 

utilized. If the first principle model (i.e. PVAc model) is used to solve their objective 

functions, say for 40 generations with a population size of 70, the number of function calls 

needed is 2800 (70×40) which makes it computationally expensive due to the expensive 

function evaluation involved in the first principle model. This execution time is of the order 

of 192 hours in Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz (2 processors)  128 GB RAM 

machine. Based on several optimization runs, we come to a conclusion that the number of 

population mentioned above are necessary to obtain a well-spread Pareto and the generation 

number 40 is the point around which the PO solutions just gets saturated. Any PO solutions 

generated generation # 40 onwards provide no further improvement in the PO front. To 

reduce the computational effort, four independent Kriging models, one each for each of the 

responses, are developed to replace the physics driven expensive model. 
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Figure 7.1: Contour of the polymerization time versus two of the three variables, while 

maintaining the remaining one variable at base value. 

 

Figure 7.2: Contour of the Mw versus two of the three variables, while maintaining the 

remaining one variable at base value. 
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Figure 7.3: Contour of the Bn versus two of the three variables, while maintaining the 

remaining one variable at base value. 

 

Figure 7.4: Contour of the PDI versus two of the three variables, while maintaining the 

remaining one variable at base value. 
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As mentioned earlier, the model building process has been started with 3 initial points 

generated by low discrepancy LHS plan [107]. The model thus developed has an error as 

well as expected improvement expressions (Equations 7.7 and 7.8 respectively) for any 

unknown point which enables a user to find a point in the input space where the model is 

most unreliable. A sampling made at this point probably can improve the predictability of 

the model most. This process of addition of sampling points (infilling) continues till a model 

of desired accuracy is achieved. For providing ease in understanding, input design space 

(Figs. 7.5a, 7.5d and 7.5g), the surface plot of total polymerization time (Figs. 7.5b, 7.5e and 

7.5h) and prediction of Kriging model (Figs. 7.5c, 7.5f and 7.5i) have been shown for 

different intermediate stage models e.g. a 3 points starting Kriging model (Figs. 7.5a, 7.5b, 

7.5c), 52 point (Figs. 7.5d, 7.5e, 7.5f) and 200 points (Figs. 7.5g, 7.5h, 7.5i) Kriging models. 

In the Fig. 7.5, the first subfigure is expressed in terms of [M, I, T] triplet that shows the 

location of the sampling points, the second subfigure is the 3 dimensional  surface as well as 

contour plot of the response (tpoly in this case) in terms of two most significant inputs (T and 

I here as M has negligible effect on tpoly) and the third subfigure is the comparative plot 

between the predictions of the Kriging model and the expensive physics driven model for 

same 200 input points from the testing set. As evident from the Fig. 7.5, Kriging model 

predictions have improved as more numbers of infill points are added. Validation results for 

200 independent LHS points for four different Kriging models are presented in Fig. 7.6. 

This figure shows that the four surrogates generated are quite accurate (i.e. all points are 

close to the 450 line). While building the surrogate models, the total number of expensive 

function calls is found to be 417 (i.e. for tpoly, Mw, Bn, PDI, the individual expensive physics 

driven model has been called for 200, 9, 4, 4 times, respectively plus 200 function 

evaluations for creating the testing set). Here, one should note that the size of the testing set 

could have been reduced further to report further computational gain. As this testing set is 

the indication of the surrogate model built, no compromise has been made on the quality of 

the model. 
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Figure 7.5: Evolution of Kriging model for polymerization time with starting 3 points (a. 

Input space b. surface plot c. parity plot) and Intermediate 52 points (d. Input space e. 

surface plot f. parity plot) and final 200 points (g. Input space g. surface plot i. parity plot) 
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Figure 7.6: Validation results for different output variables using Kriging 

 

The above validated surrogate models have been utilized next to conduct multi-objective 

optimization of various conflicting objectives to reduce the computational burden by the 

original first principle model. Fig. 7.7 displays PO solutions by the Kriging model and first 

principle model for the desired combination of three conflicting objectives. These Pareto 

fronts are quite close to each other. As indicated earlier, the PO solutions of the first 

principle model need 2800 function evaluations (equivalent to a run of 192 hours) in 

Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz (2 processors) 128 GB RAM machine 

whereas the PO solutions of the Kriging model need only 417 function evaluations (~85% 

savings in function evaluations). As compared to function evaluation using expensive 

model, the time required to solve the optimization problem using Kriging model is 

miniscule. There are multiple numbers of solutions in Fig. 7.7 which are all optimal or 

equally important (known as non-dominated solutions). Trade-off among solutions is clear 

as improvement in certain objective comes at the cost of deterioration in other objective. For 

example, to find a polymer of high Mw or high Bn, one has to compromise for more 

processing time. However, at the end of the optimization study, one has to choose only one 

solution as the solution of choice and this selection needs decision maker’s knowledge about 

how to prioritize among various objectives [19]. Real coded NSGA-II provides the best 

feasible non-dominated solutions on the basis of optimization problem posed. In Fig. 7.7, 

the optimal sets of decision variable values [M, I, T] for the expensive model and Kriging 

model are different. Next, the expensive model is run for each of these PO solutions 
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obtained by Kriging model to measure the level of accuracy. This comparison is shown in 

Fig. 7.8, where the points in the 3-dimensional Pareto are projected upon the individual 2-

dimensional planes to show the level of accuracy in prediction. For the above PO solutions, 

accuracy of the surrogate model has been assessed by calculating the relative % error. Most 

of the points are within 3% error, while few points provide more than 3% error. Similarly, 

the parity plots between the predictions of the four independent Kriging models and the first 

principle model with respect to the Kriging PO solutions are presented in the Figs. 7.9(a) – 

7.9(d). 

 

 

     Figure 7.7: Pareto comparison of Kriging model with first principle model 
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Figure 7.8: Comparison of non-dominated points projected on individual 2D plane. 

 

Figure 7.9: Predicted points by Kriging models obtained from NSGA II with the 

corresponding first principle 
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7.5 Conclusion 

Simultaneous maximization of Mw, Bn and minimization of gel point conversion time have 

been considered in this study with the addition of monomer, initiator and reaction 

temperature as decision variables. While genetic algorithm based evolutionary optimization 

is a preferred method of choice for solving this kind of problems, it requires high 

computational time with expensive first principle model. To handle this situation, original 

expensive first principle model has been replaced by high fidelity, parsimonious Kriging 

based surrogate model. These Kriging models are built incrementally; starting with a few 

number of sampling points, further sampling locations are decided based on the 

maximization of expected improvement criterion of the statistical model built. As more 

sampling points are added based on this criterion, quality of the model improves and this 

kind of model building continues till a desired accuracy in model building is achieved. 

Kriging assisted multi-objective optimization has provided faster execution time (~ 85% 

saving in function evaluations) as compared to the first principle model within reasonable 

accuracy.  
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Chapter 8 
 

Conclusions and Future work 

  

 

8.1 Conclusions 

Significant contributions to multi objective optimization of branched polymers to find the 

optimal process conditions have been made in this research: 

 

    NSGA II has been utilized to find optimal process conditions for batch vinyl acetate 

polymerization process. Maximization of weight average molecular weight and number 

average degree of branching have been attained along with simultaneous minimization of 

gel point conversion time without violating the relevant process constraints (first 

optimization study). Monomer addition, initiator addition and reaction temperature are taken 

as decision variables within prescribed experimental bounds. Two multi objective 

optimization studies have been carried out. For the first optimization study, optimizer has 

provided wide range of initiator and temperature values to maximize branching and 

molecular weight. So, an operator can get many optimal choices to operate the reactor at 

different point in time based on the optimality criteria set. The second optimization case 

(maximization of live radical concentration and number average degree of branching in less 

gel point conversion time) results in another variety of solutions at relatively higher 

temperature range with higher live radical concentration. In short, looking at varying 

scenario faced by today’s process operator, batch vinyl acetate polymerization process has 

been revisited with additional capability of controlling the degree of branching and optimum 

sets of operating conditions have been identified with a trade-off between conflicting 

process objectives for a range of temperatures. 

 

      For the first time, a mathematical model has been developed with a newly proposed 

kinetic mechanism by using two single site catalysts that produced long chain branched 
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polypropylene (isotactic back bone and atactic side chains) which can validate the 

experimental data in open literature [16]. The proposed model can predict the molecular 

properties such as molecular weight, PDI and grafting density by the tandem action of the 

two catalyst system with different cocatalyst to catalyst ratios, cocatalyst concentration, two 

catalysts ratio and the time gap between the two catalyst additions. Following important 

points are revealed out of this modeling exercise: (i) Molecular weight of the iPP copolymer 

is found to depend on the cocatalyst concentration (due to chain transfer reaction) and the 

cocatalyst/catalyst ratio (due to the bimolecular deactivation). (ii) Grafting density depends 

on the catalyst (2) addition time, ratio of the two catalysts and copolymerization time. (iii) If 

more time is allowed before the catalyst (2) addition, long chain branching content is 

increased in the copolymer due to accumulation of more amounts of aPP macromonomers in 

the reactor. (iv)By increasing the first catalyst to second catalyst ratio, more aPP 

macromonomers are grafted to the back bone of isotactic polypropylene because of the 

higher macromonomer concentration in the reactor. 

 

    Multi-objective optimization has been formulated for various conflicting objectives with 

relevant constraints using the above validated model. Maximization of iPP weight average 

molecular weight and grafting density have been attained along with simultaneous 

minimization of total polymerization time without violating the process constraints. Real 

coded NSGS II has been used to find the multi-objective Pareto optimal solution and 

corresponding operating conditions. Optimization routine provided wide variety of solutions 

in the entire terrain of search for this dual catalyst system. Two catalysts and one cocatalyst 

concentrations, time gap between the two catalyst additions and total polymerization time 

are used as decision variables. One of the objective functions, grafting density, strongly 

depends on the time gap between the two catalyst additions, ratio of the two catalysts and 

copolymerization time. The optimization exercise not only leads to a variety of competitive 

process choices but also shows improvement in process objectives as compared to the 

existing literature data. Solutions originating from different regions of the PO set were 

considered and the possible reasons for their occurrence were analyzed in detail in terms of 

reaction mechanisms proposed. 

 

   Genetic algorithm based evolutionary optimization is a preferred method of choice for 

solving the above kind of problems; it requires high computational time with expensive first 

principle model (eg. Simultaneous maximization of weight average molecular weight (Mw), 

number average degree of branching (Bn) and minimization of gel point conversion time for 
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bulk polymerization of vinyl acetate have been considered in this study with the addition of 

monomer, initiator and reaction temperature as decision variables.). To handle this situation, 

original expensive first principle model has been replaced by high fidelity, parsimonious 

Kriging based surrogate model. These Kriging models are built incrementally; starting with 

a few number of sampling points; further sampling locations are decided based on the 

maximization of expected improvement criterion of the statistical model built. As more 

sampling points are added based on this criterion, quality of the model improves and this 

kind of model building continues till a desired accuracy in model building is achieved. 

Kriging assisted multi-objective optimization has provided faster execution time (~ 85% 

saving in function evaluations) as compared to the first principle model within reasonable 

accuracy.  

 

8.2 Future work 

Further elucidation of the kinetic mechanism behind the formation of long chain branched 

polypropylene is necessary via binary catalyst system is necessary. For this, more 

experimental data is necessary (for cross validation) to improve the kinetic mechanism. 

Conduction of further experimental study is necessary to solve the purpose. By doing so, 

prediction of atactic polypropylene (i.e. macromonomers) weight average molecular weight 

of the polymer with the experimental data can be improved. Experiments exploring very 

high grafting density are essential to know the possible limit of branching of polypropylene 

in bimetallic catalytic systems. Scarcity of available experimental data has left a clear 

possibility to improve the parameter estimation and subsequently widening the constraints 

to search for better process performances. In addition to that, investigating the individual 

classes, especially for highly branched cases can be taken as an important challenge, where 

more specific information, cause-effect relation can be revealed for the classes with higher 

LCBs. Uncertainty analysis of the estimated parameters is another area, which needs to be 

tackled inside the overall optimization frame work.  

 

A more exhaustive model, which focuses the estimation beyond the experimental range, is 

necessary. This model is also referred as “tendency modeling”. It is a non-linear, lower 

order, dynamic model that approximates the kinetic relationships of a process using the 

experimental data along with basic knowledge of the process [91-93]. The model structure 

and parameters are updated as more data becomes available. The main purpose of the 

tendency model is to find a direction towards optimum. Model validation is an important 
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issue in tendency modeling because these are approximate models. If process-model 

mismatch is there, it will effect on the optimization of the process. 

 

 The results of the final optimization formulation can further be connected to the melt 

rheology and its direct relation to the polymer architecture to incorporate more practicality 

into the problem. A more exhaustive study of the extensional flow behavior of LCB PP 

prepared by this approach is necessary. An assortment of LCB PP with varying molecular 

weights and branching densities should be used to understand the relation among branching 

density, strain hardening and extensional viscosity. 
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Appendices (Few Source Codes) 

 

 

Appendix A  

Fortran Code to solve ODEs (numerical fractionation) using RK technique 

 

 c ---------------------------------------------------------------------- 

 c Program for solving ODEs 

 c Based on the Runge Kutta method 

 c ---------------------------------------------------------------------- 

         

       program nf 

  real kp,kfp,kfm,kft,ktd,ktc,ki,t 

  integer counter,r 

  integer i,j,k 

  common /ani/ counter 

   

  parameter (dist=0.1) 

  parameter (maxi=180000) 

  real B,xn,xw,y 

  dimension B(29),xn(8),xw(8),y(8) 

  real z 

  dimension z(8) 

  real w(8,200000),wt(200000) 

       external runge4,x,find_fact  

  open (unit = 1, file = "rungekutta2.txt")  

  

  B(1)=8.43            ! monomer 

  B(2)=0.001          ! initiator 

  B(3)=0.0              ! solvent 

  B(4)=0.0 

  B(5)=0.0 

  B(6)=0.0 
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  B(7)=0.0 

  B(8)=0.0 

  B(9)=0.0 

  B(10)=0.0 

  B(11)=0.0 

  

  counter=1 

  do k=12,29 

      B(k)=0.0 

  end do  

  do j=1,maxi 

      t=j*dist 

   

      if(t.Le.Maxi)  then 

          call runge4(t,B,dist) 

 

        if(B(1).LE. 1.686) then 

        GO TO 40 

        end if 

      end if 

  end do  

   

 40    r=7 

      do i=1,3 

      xn(i)=B(r)/B(r-1) 

          xw(i)=B(r+1)/B(r) 

     z(i)=1/((xw(i)/xn(i))-1) 

           y(i)=(z(i)+1)/xw(i) 

      r=r+3 

      do j=1,200000,5 

              

          A= find_fact(nint (z(i))) 

  

               w(i,j)=(y(i)*(j*y(i))**z(i))*exp(-j*y(i))/ A 

      end do 



119 

         end do 

   do j=1,200000,5 

       wt(j)=(w(1,j)*B(7)+w(2,j)*B(10)+w(3,j)*B(13))/B(5)    

          WRITE(1,*) j, wt(j) 

      end do 

   

  close(1) 

  end  

 c ---------------------------------------------------------------------- 

 c Subroutine for runge kutta 

 c Input : tval, B, Step size 

 c ---------------------------------------------------------------------- 

  subroutine runge4(tval, B, step)   

      integer i 

      real tval      

      real B(29)  

      real h,step 

      real t1(29),t2(29),t3(29) 

      real k1(29),k2(29),k3(29),k4(29) 

      real fval1,fval2,fval3,fval4 

      h=step/2   

      do i=1,29  

      fval1 = x(tval,B,i) 

               k1(i)=step*fval1 

          t1(i)=B(i)+0.5*k1(i) 

      end do 

      do i=1,29 

          fval2 = x(tval+h,t1,i) 

          k2(i)=step*fval2 

          t2(i)=B(i)+0.5*k2(i) 

      end do 

      do i=1,29 

          fval3 = x(tval+h,t2,i) 

          k3(i)=step*fval3 

          t3(i)=B(i)+0.5*k3(i) 
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      end do 

      do i=1,29 

          fval4 = x(tval+step,t3,i) 

          k4(i)=step*fval4 

      end do 

      do i=1,29 

               B(i)=B(i)+(k1(i)+2*k2(i)+2*k3(i)+k4(i))/6.0 

      end do  

  return  

  end  

 c ---------------------------------------------------------------------- 

 c Function for calculating runge kutta  

 c Input : tval, B, p 

 c ---------------------------------------------------------------------- 

       function x(tval,B,p)  

  integer i,j,k,det 

  real sum1,sum2 

  integer p ,coun 

  real tval 

  real B 

  real R0,R1,R2,p0,p1,p2 

  real lam0 

  real B0,B1,B2  

  dimension R0(8),R1(8),R2(8),p0(6),p1(6),p2(6) 

  dimension B0(8),B1(8),B2(8) 

       dimension B(29) 

  real kp,kfp,kft,kfm,ktc,ktd,ki 

  integer n 

       real lval  

  common /ani/ coun 

  kp=500.0 

  kfp=0.50 

  kfm=0.09070 

  kft=0.0 

  ktd=0.0 
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  ktc= 5970000.0 

  ki=0.00000118 

  

  lval=(2*ki*B(2)/(ktc+ktd)) 

  lam0= SQRT(lval) 

  R0(1)=(kfm*B(1)+kft*B(3)+ktc*lam0+ktd*lam0)*lam0/(kfm*B(1)+ 

      &   kft*B(3)+(ktc+ktd)*lam0+kfp*B(5)) 

  

  R1(1)=(kp*B(1)*R0(1)+(kfm*B(1)+kft*B(3)+ktc*lam0+ktd*lam0+ 

      &  kfp*B(5))*lam0)/(kfm*B(1)+kft*B(3)+(ktc+ktd)*lam0+kfp*B(5))  

  

  R2(1)=(2*kp*B(1)*R1(1)+(kfm*B(1)+kft*B(3)+ktc*lam0+ktd*lam0+ 

      & kfp*B(5))*lam0)/(kfm*B(1)+kft*B(3)+(ktc+ktd)*lam0+kfp*B(5)) 

  

  R0(2)=(kfp*lam0*(B(7)+B(10)))/(kfm*B(1)+kft*B(3)+(ktc+ktd)*lam0+ 

      &   kfp*B(5)) 

  

  R1(2)=(kp*B(1)*R0(2)+kfp*lam0*(B(8)+B(11)))/(kfm*B(1)+kft*B(3)+ 

      &   (ktc+ktd)*lam0+kfp*B(5)) 

  

  if((B(7).eq.0).OR.(B(6).eq.0).OR.(B(10).eq.0).OR.(B(9).eq.0))then 

  R2(2)=(kp*B(1)*(R0(2)+2*R1(2)))/(kfm*B(1)+kft*B(3)+(ktc+ktd)*lam0 

      &    +kfp*B(5)) 

  

  else 

  R2(2)=(kp*B(1)*(R0(2)+2*R1(2))+kfp*lam0*B(8)*((2*B(8)/B(7))-(B(7) 

      & /B(6)))+kfp*lam0*B(11)*((2*B(11)/B(10))-(B(10)/B(9))))/(kfm*B(1) 

      &  +kft*B(3)+(ktc+ktd)*lam0+kfp*B(5)) 

       end if 

  

  if(p.eq.1)  then 

   x=-kp*lam0*B(1)-kfm*lam0*B(1) 

  end if 

  

  if(p.eq.2)   then 
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   x=-ki*B(2) 

  end if 

  if(coun.eq.1) then 

   do k=3,8 

     B0(k)=0.0 

   end do 

   do k=3,8 

     B1(k)=0.0 

   end do 

   do k=3,8 

     B2(k)=0.0 

   end do 

  end if 

  if(p.eq.3)   then 

   x=-kft*lam0*B(3) 

  end if 

  

  if(p.eq.4) then 

   x=(kfm*B(1)+kft*B(3))*lam0+ktc*lam0*lam0/2+ktd*lam0*lam0  

  end if 

  

  if(p.eq.5) then 

   x=kp*B(1)*lam0 

  end if 

  

  if(p.eq.6) then 

  x=(kfm*B(1)+kft*B(3)+ktd*lam0)*R0(1)-kfp*lam0*B(7)+kfp*B(5)*R0(1) 

      &   +ktc*R0(1)*R0(1)/2 

  end if 

  

  if(p.eq.7) then 

   x=(kfm*B(1)+kft*B(3)+ktd*lam0)*R1(1)-kfp*lam0*B(8)+ktc*R0(1)* 

      &   R1(1)+kfp*B(5)*R1(1) 

  end if 
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  if(p.eq.8) then 

   if((B(7).eq.0).OR.(B(6).eq.0))    then 

    x=(kfm*B(1)+kft*B(3)+ktd*lam0)*R2(1)+ktc*(R1(1)*R1(1)+R0(1)* 

      &      R2(1))+kfp*B(5)*R2(1) 

   

   else 

    x=(kfm*B(1)+kft*B(3)+ktd*lam0)*R2(1)-kfp*lam0*B(8)*((2*B(8)/ 

      & B(7))-(B(7)/B(6)))+ktc*(R1(1)*R1(1)+R0(1)*R2(1))+kfp*B(5)*R2(1) 

   end if 

  end if 

  

  if(p.eq.9) then 

  x=(kfm*B(1)+kft*B(3)+ktd*lam0+kfp*B(5))*R0(2)-kfp*lam0*B(10)+ktc* 

      &     R0(1)*R0(2) 

  end if 

   

       if(p.eq.10)   then 

    x=(kfm*B(1)+kft*B(3)+ktd*lam0+kfp*B(5))*R1(2)-kfp*lam0*B(11)+ 

      &       ktc*(R1(1)*R0(2)+R1(2)*R0(1)) 

  end if 

  

  if(p.eq.11)  then 

    if((B(10).eq.0).OR.(B(9).eq.0)) then 

     x=(kfm*B(1)+kft*B(3)+ktd*lam0+kfp*B(5))*R2(2)+ktc*(R2(2)*R0(1) 

      &       +2*R1(2)*R1(1)+R0(2)*R2(1)) 

    else 

     x=(kfm*B(1)+kft*B(3)+ktd*lam0+kfp*B(5))*R2(2)-kfp*lam0*B(11)* 

      &  ((2*B(11)/B(10))-(B(10)/B(9)))+ktc*(R2(2)*R0(1)+2*R1(2)*R1(1)+ 

      &   R0(2)*R2(1)) 

         end if 

  end if 

  if(p.GE.12) then 

    do i=3,8 

       sum1=0.0 

       sum2=0.0 
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        do j=1,i-1 

         sum1= sum1+ R0(j) 

         sum2= sum2+R1(j) 

        end do  

  R0(i)=(kfp*lam0*B1(i))/(kfm*B(1)+kft*B(3)+(ktc+ktd)*lam0+ 

      & kfp*B(5)) 

          

  R1(i)=(kp*B(1)*R0(i)+kfp*lam0*B2(i))/(kfm*B(1)+kft*B(3)+(ktc+ 

      &        ktd)*lam0+kfp*B(5)) 

   if((B1(i).eq.0) .OR.(B0(i).eq.0))  then 

     R2(i)=kp*B(1)*(R0(i)+2*R1(i))/(kfm*B(1)+kft*B(3)+(ktc+ktd)* 

      &          lam0+kfp*B(5)) 

  

    else 

     R2(i)=(kp*B(1)*(R0(i)+2*R1(i))+kfp*lam0*B2(i)*((2*B2(i)/B1(i)) 

      &   -(B1(i)/B0(i))))/(kfm*B(1)+kft*B(3)+(ktc+ktd)*lam0+kfp*B(5)) 

   end if 

   

        p0(i)=(kfm*B(1)+kft*B(3)+kfp*B(5)+ktd*lam0)*R0(i)-kfp*lam0*B1(i)+ 

      &       ktc*R0(i)*sum1+ktc*R0(i-1)*R0(i-1)/2 

  

        p1(i)=(kfm*B(1)+kft*B(3)+kfp*B(5)+ktd*lam0)*R1(i)-kfp*lam0*B2(i)+ 

      &       ktc*R0(i-1)*R1(i-1)+ktc*(R0(i)*sum2+R1(i)*sum1) 

      

    if((B1(i).eq.0) .OR.(B0(i).eq.0))    then 

    p2(i)=(kfm*B(1)+kft*B(3)+kfp*B(5)+ktd*lam0)*R2(i)+ktc*(R1(i-1) 

      & *R1(i-1)+R0(i-1)*R2(i-1))+ktc*(R2(i)*sum1+2*R1(i)*sum2+R0(i) 

      &    *sum2) 

     else 

     p2(i)=(kfm*B(1)+kft*B(3)+kfp*B(5)+ktd*lam0)*R2(i)-kfp*lam0* 

      &  B2(i)*((2*B2(i)/B1(i))-(B1(i)/B0(i)))+ktc*(R1(i-1)*R1(i-1) 

      & +R0(i-1)*R2(i-1))+ktc*(R2(i)*sum1+2*R1(i)*sum2+R0(i)*sum2) 

    end if 

  end do 

    det= p-11 
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    n=3 

        do while(det.GT.3)  

        det=det-3 

        n=n+1 

        end do 

       if(det .eq. 1)  then 

    x= p0(n) 

    else if (det .eq. 2) then 

    x=p1(n) 

    else if(det.EQ. 3) then 

    x= p2(n) 

    end if       

       end if    

     coun=coun+1 

  return 

  end  

 c ---------------------------------------------------------------------- 

 c Function for calculating factorial value 

 c Input : integer value 

 c Output: Output 

 c ---------------------------------------------------------------------- 

       function find_fact( m)           

   integer j 

   find_fact =1           

      do 10 j=2,m 

        find_fact=find_fact*j 

 10      continue 

 end   
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Appendix B 

Fortran Code to solve ODEs (partition according to number of branches) using 

LIMEX DAE solver 

 

 program rctngflows 

 implicit none     

       double precision y(225), ys(225), h 

       double precision Ropt(5), t_Begin, t_End 

       double precision aTol, rTol,sum1(200000) 

       integer n,r, i,i1,l, Iopt(30), IFail(3), IPos(225)  

  double precision w(35,200000),wt(200000) 

  real y1(35),z(35),xn(35),xw(35),xm(35),j 

  real findfact 

  double precision Bn,Bw,sigmasq(35),p,q,TT,TM,TI  

       external Fcn, Jacobian,findfact 

 

       n = 225                    ! Total number of equations 

       t_Begin = 0 

       t_End = 10000 

       h = 0 

       aTol = 1e-5 

       rTol = 1e-5       

 c------------ Initial Values ----------- 

  

       y(1) = 12.0         ! Momomer 

       y(2) = 0.0001      ! Initiator 

       y(3) = 0.0          ! solvent 

  y(4) = 0            !zeroth moment live 

  y(5) = 0            ! 1st moment live 

  y(6) = 0            ! 2nd moment live 

  y(7) = 0            ! zeroth moment dead 

  y(8) = 0            ! 1st moment dead  

  y(9) = 0            ! 2nd moment dead 
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  do i=10, 225 

   y(i)= 0 

       end do 

       do i=1,225 

          ys(i) =0 

       end do 

       do i = 1, 10 

          Iopt(i) = 0 

       end do 

       Iopt(8) = n 

       Iopt(9) = n 

       Iopt(10) = 1 

       Iopt(12) = 1 

       Iopt(13)= 1 

  Iopt(14)= 0 

  Iopt(15)=0 

  Iopt(16)=0 

  Iopt(17)=0 

  Iopt(18)=0 

  

       do i = 1, 5 

        Ropt(i)=0 

       end do 

  

       do i = 1, 225 

   IPos(i) = 0 

       end do 

    

       do i = 1, 3 

   IFail(i) = 0                                                               

       end do 

       open(unit=1,file='output.txt') 

       open(unit=101,file='output1.txt') 
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   do while(t_Begin.lt.t_End) 

        

    Bn=0.0 

  

        call XLIMEX( n,Fcn, Jacobian, t_Begin, t_End, y, ys,  

      &                  rTol, aTol, h, Iopt, Ropt, IPos, IFail) 

       

     do i= 1, 20 

             Bn=Bn+i*y(6*i+13) 

          end do 

    

        if(Bn .ge. 0.9) then 

         

    go to 40 

        end if 

       end do 

 

 40    r=14 

      do i=1,9 

      xn(i)=(y(r)+y(r-3))/(y(r-1)+y(r-4)) 

      xw(i)=(y(r+1)+y(r-2))/(y(r)+y(r-3)) 

          sigmasq(i)= ALOG(xw(i)/xn(i)) 

      xm(i)= ((y(r+1)+y(r-2))/(y(r-1)+y(r-4)))**0.5  

    

      r=r+6 

      do j=1,200000,5 

               

       p= LOG(j) 

  q= ALOG(xm(i)) 

       w(i,j)=(2*3.1428*j*j*sigmasq(i))**(-0.5)* 

      &    exp(-(p-q)**2/(2*sigmasq(i))) 

  

      end do 

         end do 
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     do j=1,200000,1 

      sum1(j)=0.0 

       

     end do 

   do j=1,200000,5 

              do i= 1, 9 

          sum1(j)=sum1(j)+w(i,j)*y(6*i+7)/y(8)         

      end do 

      write(1,*) j, sum1(j) 

          end do       

  close(1) 

       stop 

       end 

   c ---------------------------------------------------------------------- 

  Function for calculating LIMEX  

   c ---------------------------------------------------------------------- 

       subroutine Fcn(n, nz, t,y,f,b,ir,ic,FcnINfo) 

       implicit none 

        

       integer i,i1,i2,j,n, nz, ir(*),ic(*), FcnInfo 

       double precision t,y(*),f(*), b(*) 

  double precision kp,ktc,ktd,kfm,kfp,kdb,kd,kfs 

  double precision lam0(35),lam1(35),lam2(35) 

       double precision flam0(35),flam1(35),flam2(35) 

  double precision mu0(35),mu1(35),mu2(35) 

       double precision fmu0(35),fmu1(35),fmu2(35) 

  double precision sum,sum1,sum2,sum3,sum4,sum5,sum6 

  double precision sum7,sum8,sum9,sum10 

  real temp,fr       

       nz = 225                            ! number of odes 

 c------------------------------------------------------- 

 c      kinetic constants      

 c------------------------------------------------------- 

       temp=80+273 

  fr=0.5  



130 

       kp=4.2E9*exp(-6300/(1.98*temp)) 

       kd=2.7E16*exp(-30000/(1.98*temp)) 

       ktc=1.62E12*exp(-2800/(1.98*temp)) 

       kfm=4.957E8*exp(-10480/(1.98*temp)) 

       kfp=5.177E8*exp(-11440/(1.98*temp)) 

  ktd=0.0 

       kdb=0.66*kp  

  kfs=0.0 

        

 !       ODEs     

  f(1)= -kp*y(4)*y(1) 

  f(2)= -kd*y(2) 

  f(3)= -kfs*y(4)*y(3) 

  f(4)= 2*fr*kd*y(2)-(ktc+ktd)*y(4)*y(4) 

  f(5)= 2*fr*kd*y(2)-(kfm*y(1)+kfs*y(3))*y(5)+kp*y(1)*y(4)-(ktc+ktd) 

      & *y(4)*y(5)+kfp*(y(4)*y(9)-y(5)*y(8))+kdb*y(4)*y(8) 

   if(y(8) .eq. 0 .or. y(7) .eq. 0) then 

  f(6)= 2*fr*kd*y(2)-(kfm*y(1)+kfs*y(3))*y(6)+2*kp*y(1)*y(5)- 

      &  (ktc+ktd)*y(4)*y(6)+kfp*(-y(6)*y(8))+kdb*(2*y(5)*y(8)+y(4)*y(9)) 

       else  

       f(6)= 2*fr*kd*y(2)-(kfm*y(1)+kfs*y(3))*y(6)+2*kp*y(1)*y(5)- 

      & (ktc+ktd)*y(4)*y(6)+kfp*(y(4)* 

      &((y(9)/(y(8)*y(7)))*(2*y(9)*y(7)-y(8)*y(8)))-y(6)*y(8))+ 

      & kdb*(2*y(5)*y(8)+y(4)*y(9)) 

   end if 

  

  f(7)= (kfm*y(1)+kfs*y(3))*y(4)+(ktc/2+ktd)*y(4)*y(4)-kdb*y(4)*y(7) 

       f(8)= (kfm*y(1)+kfs*y(3))*y(5)+(ktc+ktd)*y(4)*y(5)-kdb*y(4)*y(8) 

      &      -kfp*(y(4)*y(9)-y(5)*y(8)) 

  

   if(y(8) .eq. 0 .or. y(7) .eq. 0) then 

       f(9)= (kfm*y(1)+kfs*y(3))*y(6)+(ktc+ktd)*y(4)*y(6)-kdb*y(4)*y(9) 

      &      +ktc*y(5)*y(5)+kfp*(y(6)*y(8)) 

  

   else 
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       f(9)= (kfm*y(1)+kfs*y(3))*y(6)+(ktc+ktd)*y(4)*y(6)-kdb*y(4)*y(9) 

      &      +ktc*y(5)*y(5)-kfp*(y(4)*((y(9)/(y(8)*y(7)))* 

      &      (2*y(9)*y(7)-y(8)*y(8)))-y(6)*y(8)) 

  

   end if 

         flam0(1)= f(10) 

    lam0(1)= y(10) 

    flam1(1)= f(11) 

    lam1(1)= y(11) 

    flam2(1)= f(12) 

    lam2(1)=y(12) 

  

    fmu0(1)=f(13) 

    mu0(1)=y(13) 

    fmu1(1)=f(14) 

    mu1(1)=y(14) 

    fmu2(1)=f(15) 

    mu2(1)=y(15) 

  

  flam0(1)=(kfm*y(1)+kfs*y(3))*y(4)+2*fr*kd*y(2)-(kfm*y(1)+kfs*y(3)+ 

      &   (ktc+ktd)*y(4)+kfp*y(8)+kdb*y(7))*lam0(1) 

        

  flam1(1)= kp*y(1)*lam0(1)+(kfm*y(1)+kfs*y(3))*y(4)+2*fr*kd*y(2)- 

      & (kfm*y(1)+kfs*y(3)+(ktc+ktd)*y(4)+kfp*y(8)+kdb*y(7))*lam1(1) 

  

  flam2(1)=2*kp*y(1)*lam1(1)+(kfm*y(1)+kfs*y(3))*y(4)+2*fr*kd*y(2)- 

      & (kfm*y(1)+kfs*y(3)+(ktc+ktd)*y(4)+kfp*y(8)+kdb*y(7))*lam2(1) 

  

  fmu0(1)=(kfm*y(1)+kfs*y(3)+ktd*y(4)+kfp*y(8))*lam0(1)+ktc*lam0(1)* 

      &     lam0(1)/2-kfp*y(4)*mu1(1)-kdb*y(4)*mu0(1) 

        

  fmu1(1)=(kfm*y(1)+kfs*y(3)+ktd*y(4)+kfp*y(8))*lam1(1)+ktc*lam0(1)* 

      &     lam1(1)-kfp*y(4)*mu2(1)-kdb*y(4)*mu1(1) 

  

   if(mu0(1) .eq. 0 .or. mu1(1) .eq. 0) then 
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       fmu2(1)=(kfm*y(1)+kfs*y(3)+ktd*y(4)+kfp*y(8))*lam2(1)+ktc*(lam0(1) 

      &     *lam2(1)+lam1(1)*lam1(1))-kdb*y(4)*mu2(1) 

   else 

       fmu2(1)=(kfm*y(1)+kfs*y(3)+ktd*y(4)+kfp*y(8))*lam2(1)+ktc*(lam0(1) 

      &     *lam2(1)+lam1(1)*lam1(1))-kdb*y(4)*mu2(1)-kfp*y(4)*mu2(1)* 

      &     (2*mu2(1)*mu0(1)-mu1(1)*mu1(1))/mu1(1)*mu0(1) 

       

         

  end if 

  

       f(10)= flam0(1) 

  y(10)= lam0(1) 

  f(11)= flam1(1) 

  y(11)= lam1(1) 

  f(12)= flam2(1) 

  y(12)= lam2(1) 

  f(13)= fmu0(1) 

  y(13)= mu0(1) 

  f(14)= fmu1(1) 

  y(14)= mu1(1) 

  f(15)= fmu2(1) 

  y(15)= mu2(1) 

   

        i2=16 

  i1=16 

  do i=2,35       

     lam0(i)=y(i2) 

     lam1(i)=y(i2+1) 

     lam2(i)=y(i2+2) 

     mu0(i)=y(i2+3) 

     mu1(i)=y(i2+4) 

     mu2(i)=y(i2+5) 

  

     flam0(i)=f(i2) 

     flam1(i)=f(i2+1) 
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     flam2(i)=f(i2+2) 

     fmu0(i)=f(i2+3) 

     fmu1(i)=f(i2+4) 

     fmu2(i)=f(i2+5) 

  

     i2=i2+6 

  

    sum = 0.0 

    sum1= 0.0 

    sum2= 0.0 

    sum3= 0.0 

    sum4= 0.0 

    sum5= 0.0 

    sum6= 0.0 

    sum7= 0.0 

    sum8= 0.0 

    sum9= 0.0 

    sum10=0.0   

   do j=1,i-1 

     sum=sum+lam0(j)*mu0(i-j) 

     sum1=sum1+lam0(j)*mu1(i-j) 

     sum2=sum2+lam1(j)*mu0(i-j) 

          sum3=sum3+lam0(j)*mu2(i-j) 

     sum4=sum4+lam1(j)*mu1(i-j) 

          sum5=sum5+lam2(j)*mu0(i-j) 

         end do 

        do j=1,i 

     sum6=sum6+lam0(j)*lam0(i-j+1) 

     sum7=sum7+lam0(j)*lam1(i-j+1) 

     sum8=sum8+lam0(j)*lam2(i-j+1) 

     sum9=sum9+lam1(j)*lam1(i-j+1) 

     sum10=sum10+lam2(j)*lam0(i-j+1) 

   end do    

  

       flam0(i)= kfp*y(4)*mu1(i-1)+kdb*sum-(kfm*y(1)+kfs*y(3)+ 
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      &   (ktc+ktd)*y(4)+kfp*y(8)+kdb*y(7))*lam0(i) 

        

  flam1(i)=kp*y(1)*lam0(i)+kfp*y(4)*mu2(i-1)+kdb*(sum1+sum2)- 

      &   (kfm*y(1)+kfs*y(3)+(ktc+ktd)*y(4)+kfp*y(8)+kdb*y(7))*lam1(i) 

  

   if(mu0(i) .eq. 0 .or. mu1(i) .eq. 0) then 

  flam2(i)=2*kp*y(1)*lam1(i)+kdb*(sum3+2*sum4+sum5)- 

      &   (kfm*y(1)+kfs*y(3)+(ktc+ktd)*y(4)+kfp*y(8)+kdb*y(7))*lam2(i) 

        else 

  flam2(i)=2*kp*y(1)*lam1(i)+kdb*(sum3+2*sum4+sum5)- 

      &   (kfm*y(1)+kfs*y(3)+(ktc+ktd)*y(4)+kfp*y(8)+kdb*y(7))*lam2(i) 

      & +kfp*y(4)*mu2(i)*(2*mu2(i)*mu0(i)-mu1(i)*mu1(i))/mu1(i)*mu0(i) 

        end if 

         

        fmu0(i)=(kfm*y(1)+kfs*y(3)+ktd*y(4)+kfp*y(8))*lam0(i)+ktc*sum6/2- 

      &        kfp*y(4)*mu1(i)-kdb*y(4)*mu0(i) 

  

  fmu1(i)=(kfm*y(1)+kfs*y(3)+ktd*y(4)+kfp*y(8))*lam1(i)+ktc*sum7- 

      &        kfp*y(4)*mu2(i)-kdb*y(4)*mu1(i) 

    

 c      write(101,*) y(1),y(4),y(8),sum6 

   if(mu0(i) .eq. 0 .or. mu1(i) .eq. 0) then 

  

  fmu2(i)=(kfm*y(1)+kfs*y(3)+ktd*y(4)+kfp*y(8))*lam2(i)+ktc*(sum8/2+ 

      &      +sum9+sum10/2)-kdb*y(4)*mu2(i) 

  

   else 

  

       fmu2(i)=(kfm*y(1)+kfs*y(3)+ktd*y(4)+kfp*y(8))*lam2(i)+ktc*(sum8/2+ 

      &      +sum9+sum10/2)-kdb*y(4)*mu2(i)-kfp*y(4)*mu2(i)*(2*mu2(i)* 

      &      mu0(i)-mu1(i)*mu1(i))/mu1(i)*mu0(i) 

  

   end if 

  

          y(i1)= lam0(i) 
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     y(i1+1)= lam1(i) 

     y(i1+2)= lam2(i) 

     y(i1+3)= mu0(i) 

     y(i1+4)= mu1(i) 

     y(i1+5)= mu2(i) 

           

     f(i1)= flam0(i) 

     f(i1+1)= flam1(i) 

     f(i1+2)= flam2(i) 

     f(i1+3)= fmu0(i) 

     f(i1+4)= fmu1(i) 

     f(i1+5)= fmu2(i) 

  

     i1=i1+6 

       end do                                   

       do i =1,225 

          b(i) = 1 

          ir(i) = i 

          ic(i) = i   

       end do  

       return 

       end 

       subroutine Jacobian 

       return 

      end 

       


