Unit Commitment in Restructured Power systems

Gangavarapu Rabbuni

A Thesis Submitted to Indian Institute of Technology Hyderabad In Partial Fulfillment of the Requirements for The Degree of Master of Technology

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

Department of Electrical Engineering

June, 2014

Declaration

I declare that this written submission represents my ideas in my own words, and where others' ideas or words have been included, I have adequately cited and referenced the original sources. I also declare that I have adhered to all principles of academic honesty and integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I understand that any violation of the above will be a cause for disciplinary action by the Institute and can also evoke penal action from the sources that have thus not been properly cited, or from whom proper permission has not been taken when needed.

Cz. Rabburg

(Signature)

(G. Rabbuni)

EE12MID17

(Roll No)

ii

Approval Sheet

This thesis entitled 'Unit Commitment in Restructured Power Systems' by Mr. Gangavarapu Rabbuni is approved for the degree of Master of Technology from IIT Hyderabad.

Smoth ubal

Examiner: Dr. D. M. Vinod Kumar Professor Department of Electrical Engineering NIT Warangal

Mpnedeep

Examiner: Dr. Y. Pradeep Assistant Professor Department of Electrical IIT Hyderabad

Vaskar Sarhar

Adviser: Dr. Vaskar Sarkar Assistant Professor Department of Electrical IIT Hyderabad

K.V-

Chairman: Dr. K. Venkata Subbiah Assistant Professor Department of Mechanical and Aerospace IIT Hyderabad

Acknowledgements

First and foremost I would like to thank and express deep respect to my supervisor Dr. Vaskar Sarkar. Unless his profound care and guidance, the work I have done may not be possible and his guidance in unprecedented manner helped me in accomplishing this work.

I would also like to thank all my friends, batch mates, seniors and juniors especially my classmates Suresh, Bala Sai, Druva, patnaik and my seniors Sekhar, Manjunath, Yethendra, Umesh, Madhukar and my junior Sri Ram. I am lucky to have friends like this and make my stay in IIT-HYD happy, inspirational, helping in nature and unforgettable.

Last but not Least I would like to thank my Dad and Mom, without them I would not be in this place.

Gangavarapu Rabbuni

Dedicated to

Almighty and My Parents

Abstract

As the power industry across the world is experiencing a radical change by separation of transmission from generation activities, creation of competition by bidding or through provision of bilateral transactions in spot markets, there is need for the unit commitment in power industry with generation biddings, load biddings and bilateral transaction biddings.

In general Unit Commitment can be formulated as non-linear, large scale, mixed integer combinatorial optimization problem. For Better optimized result with quick response, piece-wise linearization of cost function and slack terms with high penalty factor are incorporated in unit commitment along with all generator, system, operator and line constraints.

In order to get convergence solution with UC, OPF is performed with fixed unit status from unit commitment solution by taking account of generator ramp rates.

Unit Commitment with 3-part generator bidding, load bidding and bilateral transaction with both elastic and inelastic parts is performed which is suitable for the recent power industry.

Nomenclature

List of Symbols

n	index of bus bar
h	index of period of hour
k	index of generator
ld	index of load
In	index of line
se	index of sections of cost function
t	index of bilateral transaction
m1	penalty factor
z1	slack term
Z	objective function
pmin	minimum generation limit
pmax	maximum generation limit
fcst	fixed cost
scst	start-up cost
Rdn	ramp down limit
Rup	ramp up limit
Rsup	start-up ramp limit
Rshdn	shutdown ramp limit
Тир	minimum up time limit
Tdn	minimum down time limit
a0	generator cost function double proportional term coefficient
a1	generator cost function proportional term coefficient
a2	generator cost function constant term
slope	slope of section in cost function
pload	load

blmtt	line limit
d	angle of bus
р	output power generation
р1	output power in section
u	unit status
ustrt	unit just start status
usht	unit just down status
bidprice_gen	bid price of generator
pmax_bid	elastic output generation limit
pmax_load	elastic load limit
pmax_biltra	elastic transaction limit
pload_fix	inelastic load
pload_var_price	elastic load price
pbiltra_fix	inelastic bilateral transaction
pbiltra_var_pric	e inelastic bilateral transaction price
pminloadprice	minimum load price of generator
pbidprice	bid price of generator
startupprice	start-up cost
pload_var	elastic load
pbiltra_var	elastic transaction
χ	reactance
δ	angle at bus
σ	must run status
ρ	must not run status

List of Acronyms

ISO	Independent system operator
GAMS	Generalised algebraic modelling system
OPF	Optimal power flow
UC	Unit commitment
SCUC	Security Constrained Unit Commitment
PBUC	Profit Based Unit Commitment

Contents

Declaration	Error! Bookmark not defined.
Approval Sheet	Error! Bookmark not defined.
Acknowledgements	iiv
Abstract	vi
Nomenclature	vii
List of Figures	xiii
List of Tables	xiv

1 In	troduc	tion	1
1	.1	Restructured Power systems	1
1	.2	Unit Commitment	2
	1.2.1	Cost function	4
	1.2.2	Constraints in Unit Commitment	4
	1.2.3	System Real Power Balance	4
	1.2.4	Unit Generation Limits	4
	1.2.5	Unit Initial Status	4
1.2.6 Ramp Rate Limits			
1.2.7 Minimum Up Time			
	1.2.8	Minimum Down Time	5
	1.2.9	Start Up Cost	5
	1.2.10) Musr run	6
	1.2.1	1 Musr not run	6
1.3	Unit	Commitment in Restructured Power systems	7
1.4	Scope	of Work	7
2 Pi	oblem	Formulation-Unit Commitment with Piece-wise linearization of Cost	
fund	tion		9

2.1.7	Objective Function	9
2.1.2	2 Load constraint	9
2.1.3	3 Generation Limit Constraint	9
2.1.4	Ramp up Limit	9
2.1.5	6 Ramp Down Limit	10
2.1.6	b Up Time Constraint	10
2.1.7	Down Time Constraint	10
2.1.8	3 Must Run Constraint	10
2.1.9	Must Not Run Constraint	10
2.1.7	0 Generating units state logic	10
2.1.7	1 Generating units state logic	10
2.2	Piece Wise Linearization Of Cost Function	11
2.3	Dealing Infeasibility With Penalty Factor	12
2.4	DC power Flow	12
3 Probler 3.1	n Formulation –Unit Commitment in Restructured environment Objective Function	13 13
3.1.2	2 Generation Limit Constraint	13
3.1.3	B Dc Power Flow	13
3.2	Unit Commitment in Restructured Environment	15
3.2.7	Objective Function	15
3.2.2	Power Balance Constraint	15
3.2.3	B Eleastic Limits	16
3.2.4	Network Capacity Constraint	16
3.2.5	Generation Limit Constraint	16
3.2.6	Ramp up Limit	16
3.2.7	' Ramp Down Limit	16
3.2.8	3 Up Time Constraint	16
3.2.9	Down Time Constraint	16
3.2.7	0 Must Run Constraint	16
3.2.7	1 Must Not Run Constraint	17
3.2.7	2 Generating units state logic1	17

	3.2.13 Generating units state logic2	17
4 Re	esults-Unit Commitment, UC With Piece-wise linearization of Cost function	18
4.	1 Unit Commitment	18
	4.1.1 Test System Lay Out	20
	4.1.2 Specifications	20
	4.1.3 Results	21
4.2 DC	UC with Piece-Wise Linearization of Cost Function, Dealing Infeasib Power Flow 4.2.1 Test System Layout 4.2.2 Specifications 4.2.3 Results	oility, 26 26 26 30
4.3	Discussion	44 44
	4.3.2 Unit commitment with piece-wise linear cost function	44
5 Re	sults- Unit Commitment in Restructured environment	45
5.	1 OPF With UC Status	45
	5.1.1 Specifications	45
	5.1.2 Results	45
5.2	UC in Restructured Environment 5.2.1 Test System Layout	51 51
	5.2.2 Specifications	51
	5.2.3 Results	51
6 Co	onclusion	63
Refe	rences	54

List of Figures

Figure 1.1: Vertically Integrated Utility	2
Figure 1.2: Representative Structure of Deregulated Power System	3
Figure 1.3: Outline of attempt to improve OPF solution	8
Figure 1.4: Test case	9
Figure 2.1: Piece Wise Linearization Of Cost Function	11
Figure 4.1: Test System1	18
Figure 4.2: Test System2	26
Figure 5.1: Test System3	51

List of Tables

Table 4.1: Specifications of Generator	11		
Table 4.2: Load			
Table 4.3: Output Generation of power in simple UC	20		
Table 4.4: Unit Status in simple UC	20		
Table 4.5: Just Start Status in simple UC	23		
Table 4.6: Just Shut down Status in simple UC	24		
Table 4.7: Specifications of generator	27		
Table 4.8: Load	28		
Table 4.9: Slope of cost function sections	28		
Table 4.10: Flow Limits	29		
Table 4.11: Initial Unit Status	29		
Table 4.12: Output power Generation in UC with Piece-wise linearization	31		
Table 4.13: Unit Status in in UC with Piece-wise linearization	32		
Table 4.14: Unit Just Start Status in UC with Piece-wise linearization	33		
Table 4.14: Unit Just Shutdown Status in UC with Piece-wise linearization	35		
Table 4.16: angle of Buses in in UC with Piece-wise linearization	36		
Table 4.17: First Section output Power Generation in UC with Piec	e-wise		
linearization	37		
Table 4.18: Second Section output Power Generation in UC with Piec	e-wise		
linearization	39		
Table 4.19: Third Section output Power Generation in UC with Piec	e-wise		
linearization	40		
Table 4.20: Fourth Section output Power Generation in UC with Piec	e-wise		
linearization	41		

Table	4.21:	Fifth	Section	output	Power	Generation	in	UC	with	Piece-wise
		linea	rization							43
Table	5.1: Fl	ow Lin	nits							45
Table	5.2: Lo	ad								45
Table	5.3: Sp	ecificat	tions of G	Senerator	-					46
Table	5.4: Ou	utput p	ower Ger	neration	in Simp	le UC				47
Table	5.5: Ou	utput p	ower Ger	neration	with Fix	ked unit Stat	us f	rom l	JC	48
Table	5.6: Ou	utput p	ower Ger	neration	with Im	proved Solut	ion			49
Table	5.7: Sp	ecificat	tion of ge	nerator						52
Table	5.8: Ur	nit Init	ial Status	5						52
Table	5.9: Bi	d Price	es and Ma	ax Bid L	imits					53
Table	5.10: e	lastic L	oad Pric	е						53
Table	5.11: 6	elastic	Bilateral	transact	ion Pric	e				53
Table	5.12: F	ixed B	ilateral t	ransactio	n Specif	fication				54
Table	5.13: F	ixed L	oad Speci	fication						54
Table	5.14: N	/lax Lo	ad Limit							54
Table	5.15: N	/lax Bil	ateral Tr	ansactio	n Limit					54
Table	5.16: C	Output	power G	eneratior	n in UC	with bidding	S			55
Table	5.17: L	Jnit Sta	atus in U	C with b	iddings					57
Table	5.18: L	Jnit Ju	st Start S	Status in	UC wit	h biddings				58
Table	5.19: L	Jnit Ju	st shutdo	wn Stati	us in UC	with biddin	gs			59
Table	5.20: a	ngle of	Buses							60
Table	5.21: (Output	Bilatera	l Transa	ction					62
Table	5.22: o	utput l	Load							62

Chapter 1

Introduction

1.1 Restructured Power Systems

The Power Industry across the world are being unbundled and opened up for competition with private players unlike in vertically integrated utilities where power sector was characterized by operation of a single utility generating, transmitting and distributing electric energy in its area of operation.

The reasons for power sector to allow for private players vary from country to country as most probably developed countries do this to achieve social welfare, on other hand developing countries do this for capacity addition through private players. And so the format of deregulation and its process has been different in different parts of the world.

Separation of transmission from generation activities is one of first tasks in restructuring process of power industry. The next step is creation of competition by bidding or through provision of bilateral transactions in spot markets.

In deregulated power system, ISO plays a central coordination role and performs important responsibility of providing system reliability and security. The ISO also ensures quality and safety. It is an independent authority ,does not involve in electricity trade. In this regard there are some services apart from basic energy and power delivery services called ancillary services such as scheduling and dispatch, frequency regulation, voltage control, generation reserves etc. These services are not integral part of the electric supply in deregulated environment.

1

Figure 1.1: Vertically Integrated Utility

From the Figure 1.1, it is said that there is only one utility with which customer dealt with. Thus, there are only two entities in power business: a monopoly utility and the customer.

From the Figure 1.2, it is noticeable that apart from vertically integrated utility and the customers, there are many more other entities present. It also observed that there are many alternative paths along which money flows unlike in regulated environment.

1.2 Unit Commitment

Unit commitment is the problem of determining the schedule of generating units with in a power system, subject to device and operating constraints results in great saving of electricity utilities.

Several optimizations techniques have been applied to the solution of unit commitment. Exhaustive Enumerating all possible combinations in [1], Priority list arranges at the generating units in start-up heuristic ordering by operating cost combined with transition costs in [2], Dynamic programming searches the solution space that consists of the units status for an optimal solution in [3], Integer and Mixed Integer programming solves the UC problem by reducing the solution search space systematically through discarding the infeasible subsets in [4], Branch and bound essentially determines a lower bound to the optimal solution and then finds near optimal feasible commitment schedule in [5], Lagrangian Relaxation decomposes the UC problem into a master problem and more manageable sub problems that are solved iteratively in [6] have been presented and are applied to the unit commitment.

Figure 1.2: Representative Structure of Deregulated Power System

Money Flow

·--->

In [7],[8] generic UC problem formulation and objective function as minimization of fuel costs by proper commitment of the available generating units. The total cost includes the total unit production cost, start-up cost and shut down cost. It is also proposed production cost is modelled as polynomial curve , a piece wise constant curve or piece wise linear curve. From [8], [9] cost function and start-up cost of generator are modelled by equations 1.1, 1.2,1.3.

The general objective of unit commitment is to minimize system total operating cost while satisfying all of the constraints. In general it can be formulated as non-linear, large scale, mixed integer combinatorial optimization problem with both binary and continuous variables. N units for total period of H intervals, the maximum number of possible combinations is $(2^N - 1)^H$. For 24-hour period with 5, 10 units, it becomes 6.2×10^{35} , 1.73×10^{72} respectively

1.2.1 Cost function

The cost function of generator is typically expressed as a quadratic function of generator as given by equation 1.1

$$C(p) = a + b^*p + c^*p^2 Rs/MWh$$
 (1.1)

Where,

C (p) is cost of production in Rs

P is amount of generation in MW

a,b,c are generator constants in hr, MWh, MWh, Mw^2h respectively.

1.2.2 Start-up cost:

Temperature and pressure of the thermal unit should be rolled slowly and such certain amount of energy must be expended to make unit on-line. This energy does not count in any Mw generation from the unit and this account to start-up cost.

There are two possible ways the unit can be turned down.one is to bring down unit to cool down and then heat back up to operating temperature in time for a scheduled turn on.

Start-up cost when cooling =
$$C_c (1 - \varepsilon^{-t/\alpha})^* F + C_f$$
 (1.2)

Where

 $C_c = \text{cold} - \text{start cost} (\text{MBtu})$

F = fuel cost

 C_f = fixed cost

 $\alpha \!=\!$ thermal time constraint for the unit

t = time (h) the unit was cooled

Second is banking. In that sufficient energy is input to boiler in order to maintain operating temperature.

Start –up cost When banking= $C_t * t^* F^* C_f$ (1.3)

Where

 C_t = Cost (MBtu/hr) of maintaining unit at operating temperature.

Different formulations of unit commitment like PBUC, SCUC ,unit commitment of power system with renewable energy sources along with respective constraints have been modelled in [10]. Ramp-rate characteristics in starting up and shutting down the generating units as well as increasing and decreasing power generation have studied briefly in [11].Non-linear constraints minimum up time and minimum down time and idea of linearizing them have described in [12].In the Sections 1.2.3 to 1.2.11, a brief discussion on constraint is attempted.

1.2.3 Constraints in Unit Commitment:

Each Individual Power System, Power pool may have different rules and different motives to operate. Respectively different constraints are placed on unit commitment problem as per requirement.

1.2.4 System Real Power balance :

The generated power from all the committed units must be equal to load demand.

1.2.5 Unit generation limits:

Under normal operating condition, each generator has limits of sustained generation and is called as generation limit. It is not economical to load the unit below the minimum limit and the unit should not be committed above the maximum limit.

1.2.6 Unit Initial Status:

The initial status value indicates the number of hours the unit has already been on or off before the schedule. It can be \pm . It's an important factor to determine whether the just committed units satisfy the minimum up time and minimum down time, it also effects the start-up calculations.

1.2.7 Ramp rate limits:

Usually Generators incur more maintenance cost when there are rapid changes in temperature or output generation, safe ramp up and safe ramp down rates are provided by manufacturer based on physical design.

Ramp up rate is the rate at which particular generator can increase its output generation in an hour. Ramp down rate is the rate at which particular generator can decrease its output generation in an hour.

Start-up Ramp rate is the rate at which particular generator can increase its output generation in an hour while bringing a unit on-line from off. Shut down Ramp down rate is the rate at which particular generator can decrease its output generation in an hour while bringing down a unit off from on-line.

1.2.8 Minimum up Time:

Thermal units usually need a crew to operate them in order to turn on and turned off. More over thermal unit can undergo only gradual temperature changes, and this necessitates into a time period of some hours required to bring unit on-line. These restrictions formulate minimum up time and minimum down constraint. Minimum up time is the time it should run, once it turned on. In Other sense it should not be turned off immediately.

1.2.9 Minimum down Time:

Minimum down is the time it should in decommitted mode, once it turned off.

1.2.10 **Must-run**:

For some purposes as supply for uses outside the plant itself or for voltage support on the transmission network etc., some units are given must-run status.

1.2.11 **Must not-run:**

For some maintenance reasons and on forced outages, some units are given must-not run status.

1.3 Unit Commitment in Restructured environment

In Restructured power system, markets were divided based on their approach to supply-side bidding. Some systems used "one-part" incremental energy bids that take care of all accounts, while some employed "three-part" bids.

In [12], multi block price bids are incorporated and solved the unit commitment. Optimal power flow with transmission and security and voltage constraints is incorporated in [14],[15] and penalty factor is added to limits of constraints in [15]. A set of heuristic rules is applied with OPF for unit commitment with network constraints in [16]. In [17] ,transaction bid, load bid, generation bid and their bid prices are discussed. In [18], [19] organization of restructured power systems and its structure are discussed. In [20] designing of competitive power markets are studied. Brief information relating to them is as follows.

The three parts are start-up costs, minimum load costs and energy bids.

Start-up costs are based on status of unit whether unit was cooled down or in hot start mode. If the unit was in banking mode then it becomes some constant function whereas when it is in cooling, it is in terms of exponential form. The minimum load cost is a fixed cost occurs whenever unit is on it is as called as noload cost because at this minimum level the units are no longer supplying electricity.

The energy bid is a incremental function of incremental costs to produce required MWh of energy. This is limited by minimum and maximum loads of generator.

1.4 Scope of work:

Traditional unit commitment with the objective of minimizing costs of generator such as production cost which is modelled as quadratic, start-up cost which is assumed to be in banking mode and shut down cost, is solved with generator limits, ramp up limits, up time and down time limits, must run and must not run constraints. Respective problem formulations are done in chapter 2, section 2.1 and is implemented on a test sytem1 with 10 generators and 24 hours. Results are presented in Section 4.1.

Figure 1.3: Outline of attempt to improve OPF solution

Piece wise linearization of quadratic cost function, adding slack term to inequality constraints with high penalty factor, adding DC power flow constraints is

the next consecutive step. Respective problem formulations are done in chapter 2, section 2.2 and is implemented on a test sytem2 with 10 generators and 24 hours.

Unit Commitment in Restructured power systems in tune with traditional unit commitment, with the objective of maximizing social welfare and with a provision of paying start-up cost and fixed cost only if the generator is not turned on by itself. It is explained with a test case as for generator G1 with minimum uptime of 3 hours is turned on h=4 by generator itself then up to minimum up time hours for that generator, even if generator turned on by Unit commitment, there should be no start-up cost and fixed cost are paid to the generator. In addition three part generator biddings, load bidding and bilateral transaction bidding is included to the unit commitment. Respective problem formulations are done in chapter 3, section 3.4 and is implemented on a test sytem3 with 10 generators and 24 hours.

Figure 1.4: Test case

Chapter 2

Problem Formulation-Unit

Commitment with Piece-wise

linearization of Cost function

2.1 Unit Commitment

2.1.1 Objective Function

$$\sum_{h=0}^{24+\max(Tup,Tdn)-1} \sum_{k=1}^{n} C(p(k,h)) * u(k,h) + \sum_{h=0}^{24+\max(Tup,Tdn)-1} \sum_{k=1}^{n} (s(k) * (1 - u(k,h)))$$
(2.1)

Where

$$C(p(k,h)) = a + b * p(k,h) + c^* p(k,h)^2$$

s(k) is start –up cost When banking= $C_t * t^* F^* C_f$

 $C_t = \text{cost}$ (MBtu/hr) of maintaining unit at operating temperature.

 C_f = fixed cost

F = fuel cost

t = time(h) the unit was cooled

2.1.2 Load constraint

$\sum_{k=0}^{n} p(k,h) = pload(ld,h)$	(2.2)

2.1.3 Generation Limit Constraint

$$u(k,h) * pmin(k,h) \leq p(k,h) \leq u(k,h) * pmax(k,h)$$

$$(2.3)$$

2.1.4 Ramp up Limit

$$p(k,h) - p(k,h-1) \le ustrt(k,h) *Rstrt(k) + (1 - ustrt(k,h)) * Rup(k)$$
 (2.4)

2.1.5 Ramp Down Limit

$p(k, h-1) - p(k, h) \le usht(k, h) *Rsht(k) + (1 - usht(k, h)) *Rdn(k)$ (2.5)

2.1.6 Up Time Constraint

$$\sum_{\tau=h}^{(h+\max(Tup(k),Tdn(k))-1)} u(k,\tau) \leq ustrt(k,h) *Tup(k)$$
(2.6)

2.1.7 Down Time Constraint

$$\sum_{\tau=h}^{(h+\max(Tup(k),Tdn(k)))-1)} (1-u(k,\tau)) \leq usht(k,h) *Tdn(k)$$
(2.7)

2.1.8 Must Run Constraint

$$\sigma(k,h) * u(k,h) \le \sigma(k,h)$$
(2.8)

$\sigma\left(k,h\right) = 1$	if unit k is a must run for a hour

= 0 otherwise

2.1.9 Must Not Run Constraint

$$\rho(k,h) * (1 - u(k,h)) \le \rho(k,h)$$

$$\rho(k,h) = 1 \quad \text{if unit } k \text{ is a must not run for a hour}$$

$$= 0 \quad \text{otherwise}$$

$$(2.9)$$

2.1.10 Generating units state logic

$$\begin{aligned} -\alpha u(k, h - 1) &\leq ustrt(k, h) - (u(k, h) - u(k, h - 1)) &\leq \alpha u(k, h - 1) \end{aligned} (2.10) \\ -\alpha (1 - u(k, h - 1)) &\leq ustrt(k, h) &\leq \alpha (1 - u(k, h - 1)) \end{aligned}$$
(2.11)

2.1.11 Generating units state logic

$$\alpha(1 - u(k, h - 1)) \le usht(k, h) - (u(k, h - 1) - u(k, h)) \le \alpha(1 - u(k, h - 1))(2.12)$$

- $\alpha(1 - u(k, h - 1)) \le usht(k, h) \le \alpha u(k, h - 1)$ (2.13)

2.2 Piece Wise Linearization Of Cost Function

Figure 2.1: Piece Wise Linearization Of Cost Function

Where F_i is production $cost\left(\frac{Rs}{MWh}\right)$ $C(p(k,h)) = a + b * p(k,h) + c^*p(k,h)^2$ P_i is Production level of generator (MW) P_i^{min} is minimum production level of generator P_{i1}, P_{i2}, P_{i3} are sectional production levels of generator $C(p(k,h)) = C(pmin(k)) + \sum_{s=1}^{5} slope(se,k) * p1(k,h,se)$ (2.14) $P(k,h) = pmin(k) + \sum_{s=1}^{5} p1(k,h,se)$ (2.15)

$$0 \le p1(k, h, se) \le (pmin(k) - pmax(k))/5$$
 (2.16)

Where

slope(k, s) is slope of section s of k th generator

p1(k, h, se) is power output of k th generating unit at hour h in section s

2.3 Dealing Infeasibility With Penalty Factor

- $F(x) + M1^{*}Z1 + M2^{*}Z2$ (2.17)
- $f(x) \le c1 + Z1$ (2.18)

$$g(x) \le c2 + Z2$$
 (2.19)

Where

F(x) is objective function which is to be minimize

- f(x),g(x) are inequality constraints
- M1,M2 are penalty factors
- Z1,Z2 are slack terms

2.4 DC Power Flow

$$Flow = A_{line} * \chi^{-1} * \delta \tag{2.20}$$

$$Pinj(n,h) = \sum_{k} A_g(n,k) * p(k,h) - \sum_{ld} (A_d(n,ld) * pload(\mathsf{Id},\mathsf{h}))$$
(2.21)

Where

 $A_g(n,k) = 1$ if p(k) is from node n.

= -1 if p(k) is to node n.

= 0 if p(k) is not related to node n.

 $A_d(n, ld) = 1$ if pload (ld) is from node n.

= -1 if *pload* (*ld*) is to node n.

= 0 if pload (ld) is not related to node n.

$$-Flow_{min} \le Flow \le Flow_{max} \tag{2.22}$$

Chapter 3

Problem Formulation – UC in Restructured environment.

3.1 Optimal Power Flow

3.1.1 Objective Function	
Min (-W (p))	(3.1)
Where W (p) = $\sum_{h=0}^{24+\max(Tup,Tdn)-1}\sum_{k=1}^{n}p(k,h)*pbidprice(k)$	(3.2)
3.1.2 Generation Limit Constraint	
$u(k,h) * pmin(k,h) \leq p(k,h) \leq u(k,h) * pmax(k,h)$	(3.3)
3.1.3 DC Power Flow	
$Flow = A_{line} * \chi^{-1} * \delta$	(3.4)
$Pinj(n,h) = \sum_{k} A_g(n,k) * p(k,h) - \sum_{ld} (A_d(n,ld) * pload (Id,h))$	(3.5)
Where	
$A_g(n,k) = 1$ if $p(k)$ is from node n.	
= -1 if $p(k)$ is to node n.	
= 0 if $p(k)$ is not related to node n.	
$A_d(n, ld) = 1$ if pload (ld) is from node n.	
= -1 if <i>pload</i> (<i>ld</i>) is to node n.	
= 0 if <i>pload</i> (<i>ld</i>) is not related to node n.	

3.2.1 Objective Function

3.2 Unit Commitment in Restructured Environment

$\begin{aligned} & \text{Min} \{-W(p) \} \end{aligned}$ $& \text{(3.7)} \\ & \text{Where} \\ & \text{W(p) is social welfare =} \\ & \sum_{h=0}^{24+\max(Tup,Tdn)-1} \sum_{ld=1}^{2} pload_var(ld,h) * pload_var_price(ld,h) \\ & -\sum_{h=0}^{24+\max(Tup,Tdn)-1} \sum_{k=1}^{n} p(k,h) * pbidprice(k) \\ & -\sum_{h=0}^{24+\max(Tup,Tdn)-1} \sum_{k=1}^{n} ustrt(k,h) * fixed(k,h) * \\ & startupprice(k) \\ & -\sum_{h=0}^{24+\max(Tup,Tdn)-1} \sum_{k=1}^{n} pfixed(k,h) * pminloadprice(k) \\ & +\sum_{h=0}^{24+\max(Tup,Tdn)-1} \sum_{k=1}^{n} pbiltra_{var(t,h)} * \\ & pbiltra_var_price(t,h) \end{aligned}$

Here pfixed(k, h) is defined in such a way that pminloadprice(k) will not be paid to generator from just started hour till minimum up-time hours if there is turn on by generator itself for fixed load and bilateral transaction.

3.2.2 Power balance Constraint

$$Pinj(n, h) = \sum_{k} A_{g}(n, k) * p(k, h) - \sum_{ld} A_{d}(n, ld) * (pload _fix(Id, h)) +$$

$$\left(\sum_{ld} A_{1d}(n, ld) * pload _var(Id, h)\right) + \sum_{t} A_{bil}(n, t) * (pbiltra_fix(t, h) +$$

$$\sum_{t} A_{1bil}(n, t) * pbiltra_var(t, h)$$

$$Where$$

$$(3.9)$$

 $A_g(n,k) = 1$ if p(k) is from node n.

= -1 if p(k) is to node n.

= 0 if p(k) is not related to node n.

 $A_d(n, ld) = 1$ if $pload_fix(ld)$ is from node n.

= -1 if $pload_fix(ld)$ is to node n.

= 0 if *pload_fix* (*ld*) is not related to node n.

 $A_{1d}(n, ld) = 1$ if $pload_var(ld)$ is from node n.

= -1 if *pload_var* (*ld*) is to node n.

= 0 if *pload_var* (*ld*) is not related to node n.

 $A_{bil}(n, t) = 1$ if $pbiltra_fix(t)$ is from node n.

= -1 if $pbiltra_fix(t)$ is to node n.

= 0 if $pbiltra_fix(t)$ is not related to node n.

 $A_{1bil}(n, t) = 1$ if *pbiltra_var* (t) is from node n.

= -1 if $pbiltra_var(t)$ is to node n.

= 0 if $pbiltra_var(t)$ is not related to node n.

3.2.3 elastic Limits

P (k,h) < pmax_bid(k)	(3.10)	ļ
-----------------------	--------	---

 $Pload_var(Id,h) < pmax_load(Id)$ (3.11)

$$pbiltra_var(t,h) < pmax_biltra(t)$$
 (3.12)

3.2.4 Network Capacity Constraint

 $-Flow_{min} \le Flow \le Flow_{max} \tag{3.13}$

3.2.5 Generation Limit Constraint

$$u(k,h) * pmin(k,h) \leq p(k,h) \leq u(k,h) * pmax(k,h)$$
(3.14)

3.2.6 Ramp up Limit

$$p(k,h) - p(k,h-1) \leq ustrt(k,h) * Rstrt(k) + (1 - ustrt(k,h)) * Rup(k)$$
 (3.15)

3.2.7 Ramp Down Limit

 $p(k, h - 1) - p(k, h) \le usht(k, h) *Rsht(k) + (1 - usht(k, h)) *Rsht(k)$ (3.16)

3.2.8 Up Time Constraint

$$\sum_{\tau=h}^{(h+\max(Tup(k),Tdn(k))-1)} u(k,\tau) \leq ustrt(k,h) *Tup(k)$$
(3.17)

3.2.9 Down Time Constraint

$$\sum_{\tau=h}^{(h+\max(Tup(k),Tdn(k)))-1)} (1-u(k,\tau)) \leq usht(k,h) *Tdn(k)$$
(3.18)

3.2.10 Must Run Constraint

$$\sigma(k,h) * u(k,h) \le \sigma(k,h)$$
(3.19)

 σ (k, h) = 1 if unit k is a must run for a hour = 0 otherwise

3.2.11 Must Not Run Constraint

$$\rho(k,h) * (1 - u(k,h)) \le \rho(k,h)$$

$$\rho(k,h) = 1 \quad \text{if unit } k \text{ is a must not run for a hour}$$

$$= 0 \quad \text{otherwise}$$
(3.20)

3.2.12 Generating units state logic

$$-u(k, h-1) \leq ustrt(k, h) - (u(k, h) - u(k, h-1)) \leq u(k, h-1)$$
(3.21)

$$-(1 - u(k, h - 1)) \le ustrt(k, h) \le (1 - u(k, h - 1))$$
(3.22)

3.2.13 Generating units state logic

$$(1 - u(k, h - 1)) \leq usht(k, h) - (u(k, h - 1) - u(k, h)) \leq 1 - u(k, h - 1)$$
(3.23)

$$-(1 - u(k, h - 1)) \le usht(k, h) \le u(k, h - 1)$$
(3.24)

Chapter 4

Results and discussion- UC with Piecewise linearization of Cost function

4.1 Unit Commitment

4.1.1 Test System Lay Out

Figure 4.1: Test System1

4.1.2 Specifications

Table 4.1 contains generators minimum power limit, maximum power limit, ramp up limit, ramp down limit, start-up ramp limit, shutdown ramp rate, minimum up time, minimum down time and generator cost function coefficients a0, a1, a2. Table 4.2 contains required load demand for 24 hours. All the generators are assumed to be off initially.

Gen.no	1	2	3	4	5	6	7	8	9	10
Pmin(MW)	300	130	165	130	225	50	250	110	275	75
Pmax(MW)	1000	400	600	420	700	200	750	375	850	250
Rdn (MW/hr)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Rup (MW/hr)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Rshdn (Mw/hr)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Rsup (Mw/hr)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Tup(hr)	1	5	2	1	4	3	1	5	2	1
Tdn(hr)	1	2	1	1	3	2	1	0	1	2
a0(\$/hr)	820	400	600	420	540	175	600	400	725	200
a1(\$/MWhr)	9.023	7.654	8.752	8.431	9.223	7.054	9.121	7.762	8.162	8.149
a2(\$/MWhr²)	0.00113	0.0016	0.00147	0.0015	0.00234	0.00515	0.00131	0.00171	0.00128	0.00452
S(k) \$	100	500	200	100	400	300	100	500	200	100

Table 4.1: Specifications of Generator

hr	1	2	3	4	5	6	7	8	9	10	11	12
Id=1(MW)	1025	1000	900	850	1025	1400	1970	2400	2850	3150	3300	3400
hr	13	14	15	16	17	18	19	20	21	22	23	24
ld=1(MW)	3275	2950	2700	2550	2725	3200	3300	2900	2125	1650	1300	1150

Table 4.2: Load

4.1.3 Results:

Minimized cost for 10 generators 24 hours period to meet load specified in Table 4.2 is 5.5837e+005 \$. Table 4.3 depicts generators cleared amount of power schedule for each hour up to 24 hours . Table 4.4, Table 4.5, Table 4.6 contains binary values. Table 4.4 shows the generators which are online in present hour. Table 4.5 shows the generators which are coming online from previous off state. For h=1, generators 2,6,8 10 are online and status in Table 4.4 are 1 .Table 4.5 shows the generators which are coming offline from previous on state. Generator 2 is scheduled 300 MW in 5 hour, 0 MW in 6 hour.it is coming off from on status and its status in Table 4.5 in 6 hour is 1.

P(k,h)	h=1	2	3	4	5	6	7	8	9	10	11	12
(MW)												
k=1	0	300	0	0	0	0	300	300	300	300	300	300
2	400	390	400	290	300	0	0	400	400	400	400	400
3	0	0	0	0	165	0	0	165	225	355	255	355

Table 4.3a: Output Generation of 1,2,3 Units Power in Simple UC for 1-12 hours

4	0	0	130	0	0	0	0	0	0	420	420	420
5	0	0	0	0	0	0	0	0	0	0	0	0
6	200	200	200	200	200	200	200	200	200	200	200	200
7	0	0	0	250	250	250	250	0	250	0	250	250
8	350	110	170	110	110	375	375	375	375	375	375	375
9	0	0	0	0	0	325	595	710	850	850	850	850
10	75	0	0	0	0	250	250	250	250	250	250	250

Table 4.3b: Output Generation of 4-10 Units Power in Simple UC for 1-12 hours

Table 4.3c: Output Generation of power for 13 - 24 hours in Simple UC

P(k,h)	h=13	14	15	16	17	18	19	20	21	22	23	24
k=1	300	300	300	300	300	300	300	300	300	0	0	0
2	400	400	400	400	400	400	400	400	400	0	0	0
3	230	165	0	0	350	405	255	275	0	0	0	0
4	420	410	130	175	0	420	420	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
6	200	200	200	200	200	200	200	200	200	200	200	200
7	250	0	250	0	0	0	250	250	0	250	250	325
8	375	375	375	375	375	375	375	375	375	375	375	375
9	850	850	795	850	850	850	850	850	600	575	275	0
10	250	250	250	250	250	250	250	250	250	250	200	250
u(k,h)	h=1	2	3	4	5	6	7	8	9	10	11	12
--------	-----	---	---	---	---	---	---	---	---	----	----	----
k=1	0	1	0	0	0	0	1	1	1	1	1	1
2	1	1	1	1	1	0	0	1	1	1	1	1
3	0	0	0	0	1	0	0	1	1	1	1	1
4	0	0	1	0	0	0	0	0	0	1	1	1
5	0	0	0	0	0	0	0	0	0	0	0	0
6	1	1	1	1	1	1	1	1	1	1	1	1
7	0	0	0	1	1	1	1	0	1	0	1	1
8	1	1	1	1	1	1	1	1	1	1	1	1
9	0	0	0	0	0	1	1	1	1	1	1	1
10	1	0	0	0	0	1	1	1	1	1	1	1

Table 4.4a: Unit Status in Simple UC for 1-12 hours

Table 4.4b: Unit Status of 1-5 Units in Simple UC for 13-24 hours

u(k,h)	h=13	14	15	16	17	18	19	20	21	22	23	24
k=1	1	1	1	1	1	1	1	1	1	0	0	0
2	1	1	1	1	1	1	1	1	1	0	0	0
3	1	1	0	0	1	1	1	1	0	0	0	0
4	1	1	1	1	0	1	1	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0

6	1	1	1	1	1	1	1	1	1	1	1	1
7	1	0	1	0	0	0	1	1	0	1	1	1
8	1	1	1	1	1	1	1	1	1	1	1	1
9	1	1	1	1	1	1	1	1	1	1	1	0
10	1	1	1	1	1	1	1	1	1	1	1	1

Table 4.4c: Unit Status of 6-10 Units in Simple UC for 13-24 hours

Table 4.5a: Just Start Status in Simple UC for 1-12 hours

ustrt(k,h)	h=1	2	3	4	5	6	7	8	9	10	11	12
k=1	0	1	0	0	0	0	1	0	0	0	0	0
2	1	0	0	0	0	0	0	1	0	0	0	0
3	0	0	0	0	1	0	0	1	0	0	0	0
4	0	0	1	0	0	0	0	0	0	1	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
6	1	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	1	0	0	0	0	1	0	1	0
8	1	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	1	0	0	0	0	0	0
10	1	0	0	0	0	1	0	0	0	0	0	0

ustrt(k,h)	h=13	14	15	16	17	18	19	20	21	22	23	24
k=1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	0	0	0	0	0	0
4	0	0	0	0	0	1	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	1	0	0	0	1	0	0	1	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0

Table 4.5a: Just Start Status in Simple UC for 13 -24 hours

Table 4.6: Just Shut Down Status of 1-5 Units in Simple UC for 1-12 hours

usht(k,h)	h=1	2	3	4	5	6	7	8	9	10	11	12
k=1	0	0	1	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	1	0	0	0	0	0	0
3	0	0	0	0	0	1	0	0	0	0	0	0
4	0	0	0	1	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0

r	1				1	1	1		1	1		
6	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	1	0	1	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	1	0	0	0	0	0	0	0	0	0	0

Table 4.6: Just Shut Down Status of 6-10 Units in Simple UC for 1-12 hours

Table 4.6: Just Shut Down Status in Simple UC for 13-24 hours

usht(k,h)	h=13	14	15	16	17	18	19	20	21	22	23	24
k=1	0	0	0	0	0	0	0	0	0	1	0	0
2	0	0	0	0	0	0	0	0	0	1	0	0
3	0	0	1	0	0	0	0	0	1	0	0	0
4	0	0	0	0	1	0	0	1	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0
7	0	1	0	1	0	0	0	0	1	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	1
10	0	0	0	0	0	0	0	0	0	0	0	0

- 4.2 UC with Piece-Wise Linearization of Cost Function, Dealing Infeasibility, DC Power Flow
- 4.2.1 Test System Lay Out

Figure 4.2: Test System2

4.2.2 Specifications

Table 4.7 contains generators minimum power limit, maximum power limit, sart up cost, fixed cost, ramp up limit, ramp down limit, start up ramp limit, shutdown ramp rate, minimum up time, minimum down time .Table 4.8 contains required load demand for 24 hours. Table 4.9 contains slopes of sections in generator cost function. Table 4.10 contains flow limits of each line and their Susceptance. Table 4.11 shows which units initial status and its generation in zero hour.

Gen.no	1	2	3	4	5	6	7	8	9	10
Pmin(MW)	150	10	150	10	10	10	10	10	10	10
Pmax(MW)	455	55	455	55	130	80	130	85	162	55
Fcst(\$)	50	50	50	50	50	50	50	50	50	50
Scost(\$)	50	50	50	50	50	50	50	50	50	50
Rdn(MW/hr)	142	52	142	147	185	148	163	186	178	176
Rup(MW/hr)	300	211	186	198	212	193	245	235	289	321
Rshdn(MW/hr)	480	15	1000	15	150	10	150	10	80	10
Rsup(MW/hr)	480	15	1000	15	150	10	150	10	120	10
Tdn(hr)	1	1	2	0	1	2	0	1	0	1
Tup(hr)	1	5	2	1	4	5	1	5	1	2

Table 4.7: Specifications of Generator

Table 4.8: Load

hr	1	2	3	4	5	6	7	8	9	10	11	12
ld=1 (Mw)	700	750	850	950	300	1100	1150	1200	1300	1400	1450	1500
hr	13	14	15	16	17	18	19	20	21	22	23	24
ld=1 (Mw)	1400	1300	200	1050	1000	400	600	750	1300	500	1000	800

Gen.No	Sec1	Sec2	Sec3	Sec4	Sec5
1	16.36328	16.42184	16.4804	16.53896	16.59752
2	27.84017	27.87131	27.90245	27.93359	27.96473
3	17.37191	17.40973	17.44755	17.48537	17.52319
4	27.33438	27.37434	27.4143	27.45426	27.49422
5	16.724	16.812	16.9	16.988	17.076
6	22.63024	22.80112	22.972	23.14288	23.31376
7	16.63082	16.72366	16.8165	16.90934	17.00218
8	27.78898	27.80794	27.8269	27.84586	27.86482
9	20.00805	20.22616	20.44426	20.66236	20.88047
10	26.03977	26.11411	26.18845	26.26279	26.33713

Table 4.9: Slope of Cost Function Sections

Table 4.10: Flow Limits

In	Susceptance(pu)	Power Rating Of
		lines(pu)
1	2.5	2.5
2	3.5	3.5
3	1.4	1.4

generator	U(k,0)	P(k,0)
1	1	200
2	0	0
3	0	0
4	0	0
5	0	0
6	0	0
7	1	50
8	0	0
9	0	0
10	0	0

Table 4.11: Initial Unit Status

4.2.3 Results:

Minimized cost for 10 generators 24 hours period to meet load specified in Table 4.8 is 2.5883e+005 \$. Slack terms off all the inequality limits such as z1,z2,z3,z4,z5,z6 are zero which shows obtained solution is optimal. Table 4.12 depicts generators cleared amount of power schedule for each hour up to 24 hours. Table 4.13, Table 4.14, Table 4.15 contains binary values. Table 4.13 shows the generators which are online from in present hour. Table 4.14 shows the generators which are coming online from previous off state. For h=1, generators 2,3,4,5,6,8,9 10 are coming online from off and status in Table 4.13 are 1. Table 4.15 shows the generators which are coming offline from previous on state. Generator 1 is scheduled 455 MW in 4 hour, 0 MW in 5 hour.it is coming off from on status and its status in Table 4.15 in 5 hour is 1. Table 4.16 contains bus angles at each hour to accommodate power flow as required by load. Table 4.17, Table 4.18, Table 4.19, Table 4.20, Table 4.21 contains output power in 5 sections of cost function. Generator 1, 1 hour in Table 4.12 is scheduled 455 MW. This is shared by five sections as 61MW in Table 4.17, 61MW in Table 4.18, 61MW in Table 4.19, 61MW

in Table 4.20, 61MW in Table 4.21 plus minimum generation of 150MW in Table 4.7.

modelstat=0 solvestat=1 z1:slack of pmax limit z1 = 0 z2:slack of pmin limit z2 = 0 z3:slack of flow upper limit z3 = 0 z4:slack of flow lower limit z4 = 0 z5:slack of rampup limit z5 = 0

z6:slack of rampdwn limit

z6 = 0

Table 4.12a: Output Power Generation of 1-4 Units in UC with Piece-wise linearization for

P(k, h)	h=0	h=1	2	3	4	5	6	7	8	9	10	11	12
(Mw)													
k=1	200	455	455	455	455	0	455	455	455	455	455	455	455
2	0	10	10	10	10	10	10	10	10	10	10	10	10
3	0	150	150	150	175	150	325	375	425	455	455	455	455
4	0	10	10	10	10	10	10	10	10	10	10	10	13
5	0	10	27	82	130	32	130	130	130	130	130	130	130

1-12 hours

Table 4.12b: Output Power Generation of 6-10 Units in UC with Piece-wise linearization for

[6	0	10	10	10	10	10	10	10	10	10	28	78	80
	7	50	25	58	103	130	58	130	130	130	130	130	130	130
	8	0	10	10	10	10	10	10	10	10	10	10	10	10
	9	0	10	10	10	10	10	10	10	10	80	162	162	162
ſ	10	0	10	10	10	10	10	10	10	10	10	10	10	55

1-12 hours

Table 4.12c: Output Power Generation in UC with Piece-wise linearization for 13-24 hours

P(k,h)	h=13	14	15	16	17	18	19	20	21	22	23	24
k=1	455	455	0	454	312	170	370	455	412	270	455	455
2	10	10	0	10	10	10	10	10	10	10	10	10
3	434	292	150	276	292	150	150	150	292	150	225	150
4	10	10	10	10	10	10	10	10	19	10	10	10
5	130	130	0	130	130	10	10	27	130	10	130	58
6	49	80	10	10	10	10	10	10	80	10	10	10
7	130	130	10	130	130	10	10	58	130	10	130	77
8	10	10	0	10	10	10	10	10	10	10	10	10
9	162	162	10	10	86	10	10	10	162	10	10	10
10	10	21	10	10	10	10	10	10	55	10	10	10

u(k, h)	h=0	h=1	2	3	4	5	6	7	8	9	10	11	12
k=1	1	1	1	1	1	0	1	1	1	1	1	1	1
2	0	1	1	1	1	1	1	1	1	1	1	1	1
3	0	1	1	1	1	1	1	1	1	1	1	1	1
4	0	1	1	1	1	1	1	1	1	1	1	1	1
5	0	1	1	1	1	1	1	1	1	1	1	1	1
6	0	1	1	1	1	1	1	1	1	1	1	1	1
7	1	1	1	1	1	1	1	1	1	1	1	1	1
8	0	1	1	1	1	1	1	1	1	1	1	1	1
9	0	1	1	1	1	1	1	1	1	1	1	1	1
10	0	1	1	1	1	1	1	1	1	1	1	1	1

Table 4.13a: Unit Status in in UC with Piece-wise linearization for 1-12 hours

Table 4.13b: Unit Status of 1-5 Units in UC with Piece-wise linearization for 13-24 hours

u(k,h)	h=13	14	15	16	17	18	19	20	21	22	23	24
k=1	1	1	0	1	1	1	1	1	1	1	1	1
2	1	1	0	1	1	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1	1	1	1	1	1
4	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	0	1	1	1	1	1	1	1	1	1

6	1	1	1	1	1	1	1	1	1	1	1	1
7	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	0	1	1	1	1	1	1	1	1	1
9	1	1	1	1	1	1	1	1	1	1	1	1
10	1	1	1	1	1	1	1	1	1	1	1	1

Table 4.13b: Unit Status of 6-10 Units in UC with Piece-wise linearization for 13-24 hours

Table 4.14a: Unit Just Start Status in UC with Piece-wise linearization for 1-12 hours

ustrt(k,h)	h=0	h=1	2	3	4	5	6	7	8	9	10	11	12
k=1	0	0	0	0	0	0	1	0	0	0	0	0	0
2	0	1	0	0	0	0	0	0	0	0	0	0	0
3	0	1	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
5	0	1	0	0	0	0	0	0	0	0	0	0	0
6	0	1	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	1	0	0	0	0	0	0	0	0	0	0	0
9	0	1	0	0	0	0	0	0	0	0	0	0	0
10	0	1	0	0	0	0	0	0	0	0	0	0	0

ustrt(k,h)	h=13	14	15	16	17	18	19	20	21	22	23	24
k=1	0	0	0	1	0	0	0	0	0	0	0	0
2	0	0	0	1	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	1	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	1	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0

Table 4.14b: Unit Just Start Status in UC with Piece-wise linearization for 12-24 hours

Table 4.15a: Unit Just Shutdown Status of 1-3 Units in UC with Piece-wise linearization for

1-1	2	hours	
-----	---	-------	--

usht(k, h)	h=0	h=1	2	3	4	5	6	7	8	9	10	11	12
k=1	0	0	0	0	0	1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0

5	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0

Table 4.15b: Unit Just Shutdown Status of 5-10 Units in UC with Piece-wise linearization

for 1-12 hours

Table 4.15c: Unit Just Shutdown Status in UC with Piece-wise linearization for 13-24 hours

usht(k,h)	h=13	14	15	16	17	18	19	20	21	22	23	24
k=1	0	0	1	0	0	0	0	0	0	0	0	0
2	0	0	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	1	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	1	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0

d(n,	h=1	2	3	4	5	6	7	8	9	10
h)										
radi										
ans										
n=1	0.0627									
	1	0.060299	0.060579	0.065234	0.009832	0.082056	0.087664	0.093271	0.087477	0.074393
2	0	0	0	0	0	0	0	0	0	0
3	-									
	0.0739									
	3	-0.08292	-0.09815	-0.11103	-0.04086	-0.12505	-0.12972	-0.13439	-0.1529	-0.17533

Table 4.16a: Angle at Buses in in UC with Piece-wise linearization for 1-10 hours

Table 4.1ba: Angle at Buses in in UC with Piece-wise linearization for 11-20 hours

d(n,	h=11	12	13	14	15	16	17	18	19	20
h)										
radi										
ans										
n=1	0.0678									
	5	0.062037	0.06929	0.047869	0.01271	0.076449	0.052374	0.03271	0.05514	0.060299
2	0	0	0	0	0	0	0	0	0	0
2	U	0	0	0	0	0	0	U	0	0
3	-									
	0.1865									
	4	-0.19736	-0.17807	-0.17422	-0.02393	-0.12037	-0.12564	-0.04393	-0.06262	-0.08292

d(n,h)	h=21	22	23	24
n=1	0.039607	0.043925	0.070841	0.06129
2	0	0	0	0
3	-0.17867	-0.05327	-0.1157	-0.09007

Table 4.16c: Angle at Buses in in UC with Piece-wise linearization for 21-22 hours

Table 4.17a: First Section Output Power Generation in UC with Piece-wise linearization for

1-12 hours

P1(:, :,1)	h=0	h=1	2	3	4	5	6	7	8	9	10	11	12
(MW)													
k=1	0	61	61	61	61	0	61	61	61	61	61	61	61
2	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	25	0	61	61	61	61	61	61	61
4	0	0	0	0	0	0	0	0	0	0	0	0	3
5	0	0	17	24	24	22	24	24	24	24	24	24	24
6	0	0	0	0	0	0	0	0	0	0	14	14	14
7	0	15	24	24	24	24	24	24	24	24	24	24	24
8	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	30.4	30.4	30.4	30.4
10	0	0	0	0	0	0	0	0	0	0	0	0	9

P1(:,:,1)	h=13	14	15	16	17	18	19	20	21	22	23	24
k=1	61	61	0	61	61	20	61	61	61	61	61	61
2	0	0	0	0	0	0	0	0	0	0	0	0
3	61	61	0	61	61	0	0	0	61	0	61	0
4	0	0	0	0	0	0	0	0	9	0	0	0
5	24	24	0	24	24	0	0	17	24	0	24	24
6	14	14	0	0	0	0	0	0	14	0	0	0
7	24	24	0	24	24	0	0	24	24	0	24	24
8	0	0	0	0	0	0	0	0	0	0	0	0
9	30.4	30.4	0	0	30.4	0	0	0	30.4	0	0	0
10	0	9	0	0	0	0	0	0	9	0	0	0

Table 4.17b: First Section Output Power Generation in UC with Piece-wise linearization for

13-24 hours

Table 4.18a: Second Section Output Power Generation of 1-3 Units in UC with Piece-wise

linearization for 1-12 hours

P1(:, :,2)	h=0	h=1	2	3	4	5	6	7	8	9	10	11	12
(MW)													
k=1	0	61	61	61	61	0	61	61	61	61	61	61	61
2	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	61	61	61	61	61	61	61

4	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	24	24	0	24	24	24	24	24	24	24
6	0	0	0	0	0	0	0	0	0	0	4	14	14
7	0	0	24	24	24	24	24	24	24	24	24	24	24
8	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	30.4	30.4	30.4	30.4
10	0	0	0	0	0	0	0	0	0	0	0	0	9

Table 4.18b: Second Section Output of 4-10 Units in UC with Piece-wise linear cost

Table 4.18c: Second Section Output in UC with Piece-wise linearization for 13-24 hours

P1(:,:,2)	h=13	14	15	16	17	18	19	20	21	22	23	24
k=1	61	61	0	61	61	0	61	61	61	59	61	61
2	0	0	0	0	0	0	0	0	0	0	0	0
3	61	61	0	61	61	0	0	0	61	0	14	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	24	24	0	24	24	0	0	0	24	0	24	24
6	14	14	0	0	0	0	0	0	14	0	0	0
7	24	24	0	24	24	0	0	24	24	0	24	24
8	0	0	0	0	0	0	0	0	0	0	0	0
9	30.4	30.4	0	0	30.4	0	0	0	30.4	0	0	0
10	0	2	0	0	0	0	0	0	9	0	0	0

P1(:, :,3)	h=0	h=1	2	3	4	5	6	7	8	9	10	11	12
(MW)													
k=1	0	61	61	61	61	0	61	61	61	61	61	61	61
2	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	53	61	61	61	61	61	61
4	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	24	24	0	24	24	24	24	24	24	24
6	0	0	0	0	0	0	0	0	0	0	0	14	14
7	0	0	0	24	24	0	24	24	24	24	24	24	24
8	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	9.2	30.4	30.4	30.4
10	0	0	0	0	0	0	0	0	0	0	0	0	9

Table 4.19a: Third Section Output Power Generation in UC with Piece-wise linearization

for 1-12 hours

Table 4.19b: Third Section Output Power Generation of 1-3 Units in UC with Piece-wise linearization for 12-24 hours

P1(:,:,3)	h=13	14	15	16	17	18	19	20	21	22	23	24
k=1	61	61	0	61	40	0	61	61	61	0	61	61
2	0	0	0	0	0	0	0	0	0	0	0	0
3	61	20	0	4	20	0	0	0	20	0	0	0

4	0	0	0	0	0	0	0	0	0	0	0	0
5	24	24	0	24	24	0	0	0	24	0	24	0
6	11	14	0	0	0	0	0	0	14	0	0	0
7	24	24	0	24	24	0	0	0	24	0	24	19
8	0	0	0	0	0	0	0	0	0	0	0	0
9	30.4	30.4	0	0	15.2	0	0	0	30.4	0	0	0
10	0	0	0	0	0	0	0	0	9	0	0	0

Table 4.19b: Third Section Output Power Generation of 4-10 Units in UC with Piece-wise

linearization for 12-24 hours

Table 4 20a	Fourth	Section	Output	Power	Generation	in UC	with	Piece-wise	linearization
	i our tri	JUCTION	Output		Ocheration	11 00	vvitii		micanzation

P1(:, :,4)	h=0	h=1	2	3	4	5	6	7	8	9	10	11	12
(MW)													
k=1	0	61	61	61	61	0	61	61	61	61	61	61	61
2	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	42	61	61	61	61	61
4	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	24	0	24	24	24	24	24	24	24
6	0	0	0	0	0	0	0	0	0	0	0	14	14
7	0	0	0	21	24	0	24	24	24	24	24	24	24
8	0	0	0	0	0	0	0	0	0	0	0	0	0

for 1-12 hours

Table 4.20a: Fourth Section Output Power Generation of 9,10 Units in UC with Piece-wise

9	0	0	0	0	0	0	0	0	0	0	30.4	30.4	30.4
10	0	0	0	0	0	0	0	0	0	0	0	0	9

linearization for 1-12 hours

Table 4.20b: Fourth Section Output Po	wer Generation in UC	with Piece-wise	linearization
---------------------------------------	----------------------	-----------------	---------------

P1(:,:,4) h=13 k=130.4 30.4 30.4

for 12-24 hours

		1		Γ									
P1(:, :,5)	h=0	h=1	2	3	4	5	6	7	8	9	10	11	12
(MW)													
k=1	0	61	61	61	61	0	61	61	61	61	61	61	61
2	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	31	61	61	61	61
4	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	24	0	24	24	24	24	24	24	24
6	0	0	0	0	0	0	0	0	0	0	0	12	14
7	0	0	0	0	24	0	24	24	24	24	24	24	24
8	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	30.4	30.4	30.4
10	0	0	0	0	0	0	0	0	0	0	0	0	9

Table 4.21a : Fifth Section Output Power Generation in UC with Piece-wise linearization

for 1-12 hours

Table 4.21b : Fifth Section Output Power Generation in UC with Piece-wise linearization

for 12-24 hours

P1(:,:,5)	h=13	14	15	16	17	18	19	20	21	22	23	24
k=1	61	61	0	60	0	0	0	61	18	0	61	61
2	0	0	0	0	0	0	0	0	0	0	0	0
3	40	0	0	0	0	0	0	0	0	0	0	0

4	0	0	0	0	0	0	0	0	0	0	0	0
5	24	24	0	24	24	0	0	0	24	0	24	0
6	0	14	0	0	0	0	0	0	14	0	0	0
7	24	24	0	24	24	0	0	0	24	0	24	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	30.4	30.4	0	0	0	0	0	0	30.4	0	0	0
10	0	0	0	0	0	0	0	0	9	0	0	0

Table 4.21b : Fifth Section Output Power Generation of 4-10 Units in UC with Piece-wise

linearization for 12-24 hours

4.3 Discussion:

4.3.1 Unit Commitment with quadratic cost function

Modelstat=8 i.e. INTEGER SOLUTION

4.3.2 Unit commitment with piece-wise linear cost function

Modelstat=0	i.e.	MODEL STATUS	1 Optimal
Solvestat=1	i.e.	SOLVER STATUS	1 Normal Completion

By the above status, we can conclude that, Piece-Wise Linearization improves solution and so model status of Gams has improved.

Chapter 5

Results and discussion UC in Restructured environment.

5.1 OPF With UC Status

5.1.1 Specifications

Table 5.1 contains generators minimum power limit, maximum power limit, ramp up limit, ramp down limit, start-up ramp limit, shutdown ramp rate, minimum up time, minimum down time and bid price of generator. Table 5.3 contains required load demand for 24 hours. Table 5.2 contains flow limits of each line and their Susceptance.

In	Susceptance(pu)	Power flow limits(pu)
1	2.5	2.5
2	3.5	3.5
3	1.4	1.4

Table 5.2: Load for Each Hour

Ld(MW)	
1	Pload(ld,h)

Gen.no	1	2	3	4	5	6	7	8	9	10
Pmin(MW)	150	10	150	10	10	10	10	10	10	10
Pmax(Mw)	455	55	455	55	130	80	130	85	162	55
Rdn(MW/hr)	142	52	142	147	185	148	163	186	178	176
Rup(Mw/hr)	300	211	186	198	212	193	245	235	289	321
Rshdn(MW/hr)	480	15	1000	15	150	10	150	10	80	10
Rsup(Mw/hr)	480	15	1000	15	150	10	150	10	120	10
Bidprice_gen(\$)	455	55	448	10	130	10	10	10	162	10

Table 5.3: Specifications of Generator

5.1.2 **Results:**

Table 5.4 depicts generators cleared amount of power schedule for each hour up to 24 hours in unit Commitment. Table 5.5 depicts generators cleared amount of power schedule for each hour up to 24 hours by OPF which is performed by fixing unit status from unit commitment solution from Table 5.4 . Table 5.6 depicts generators cleared amount of power schedule for each hour up to 24 hours by proposed OPF given by Figure 3.1.

P(k,h)	h=1	2	3	4	5	6	7	8	9	10	11	12
(MW)												
k=1	455	455	455	455	0	455	455	455	455	455	455	455
2	10	10	10	10	10	10	10	10	10	10	10	10
3	150	150	150	175	150	325	375	425	455	455	455	455
4	10	10	10	10	10	10	10	10	10	10	10	13
5	10	27	82	130	32	130	130	130	130	130	130	130
6	10	10	10	10	10	10	10	10	10	28	78	80
7	25	58	103	130	58	130	130	130	130	130	130	130
8	10	10	10	10	10	10	10	10	10	10	10	10
9	10	10	10	10	10	10	10	10	80	162	162	162
10	10	10	10	10	10	10	10	10	10	10	10	55

Table 5.4a: Output Power Generation in Simple UC for 1-12 hours

Table 5.4b: Output power Generation in Simple UC for 12-24 hours

P(k,h)	h=13	14	15	16	17	18	19	20	21	22	23	24
k=1	455	455	0	454	312	170	370	455	412	270	455	455
2	10	10	0	10	10	10	10	10	10	10	10	10
3	434	292	150	276	292	150	150	150	292	150	225	150
4	10	10	10	10	10	10	10	10	19	10	10	10
5	130	130	0	130	130	10	10	27	130	10	130	58

6	49	80	10	10	10	10	10	10	80	10	10	10
7	130	130	10	130	130	10	10	58	130	10	130	77
8	10	10	0	10	10	10	10	10	10	10	10	10
9	162	162	10	10	86	10	10	10	162	10	10	10
10	10	21	10	10	10	10	10	10	55	10	10	10

Table 5.4c: Output power Generation of 6-10 Units in Simple UC for 12-24 hours

Table 5.5a: Output Power Generation with Fixed Unit Status from UC for 1-12 hours

P(k,h)	h=1	2	3	4	5	6	7	8	9	10	11	12
k=1	153	203	303	403	0	455	455	455	455	455	455	455
2	55	55	55	55	10	55	55	55	55	55	55	55
3	150	150	150	150	150	248	253	303	448	455	455	455
4	10	10	10	10	10	10	10	10	10	10	10	38
5	130	130	130	130	80	130	130	130	130	130	130	130
6	10	10	10	10	10	10	10	10	10	10	10	10
7	10	10	10	10	10	10	10	10	10	58	108	130
8	10	10	10	10	10	10	10	10	10	10	10	10
9	162	162	162	162	10	162	162	162	162	162	162	162
10	10	10	10	10	10	10	55	55	10	55	55	55

P(k,h)	h=13	14	15	16	17	18	19	20	21	22	23	24
k=1	455	455	0	455	453	150	150	203	455	150	453	253
2	55	55	0	55	55	10	10	55	55	10	55	55
3	455	448	150	153	150	150	150	150	448	150	150	150
4	10	10	10	10	10	10	10	10	10	10	10	10
5	130	130	0	130	130	30	130	130	130	130	130	130
6	10	10	10	10	10	10	10	10	10	10	10	10
7	58	10	10	10	10	10	10	10	10	10	10	10
8	10	10	0	10	10	10	10	10	10	10	10	10
9	162	162	10	162	162	10	110	162	162	10	162	162
10	55	10	10	55	10	10	10	10	10	10	10	10

Table 5.5b: Output Power Generation with Fixed unit Status from UC for 12-24 hours

Table 5.6a: Output Power Generation of 1-5 Units with Fixed Unit Status and Ramp rates

1-12 hours

P(k,h)	h=1	2	3	4	5	6	7	8	9	10	11	12
k=1	235	203	303	403	0	455	455	455	455	455	455	455
2	15	55	55	55	10	55	55	55	55	55	55	55
3	150	150	150	150	150	248	253	303	448	455	455	455
4	10	10	10	10	10	10	10	10	10	10	10	38
5	130	130	130	130	80	130	130	130	130	130	130	130

6	10	10	10	10	10	10	10	10	10	10	10	10
7	10	10	10	10	10	10	10	10	10	58	108	130
8	10	10	10	10	10	10	10	10	10	10	10	10
9	120	162	162	162	10	162	162	162	162	162	162	162
10	10	10	10	10	10	10	55	55	10	55	55	55

Table 5.6a: Output Power Generation of 6-10 Units with Fixed Unit Status and Ramp rates

1-12 hours

Table 5.6b: Output Power Generation with Fixed Unit Status and Ramp rates 13-24 hours

- 4												
P(k,h)	h=13	14	15	16	17	18	19	20	21	22	23	24
k=1	455	455	0	455	453	170	150	203	455	226	453	311
2	55	55	0	15	55	10	10	55	55	10	55	10
3	455	448	150	238	150	150	150	150	336	194	150	150
4	10	10	10	10	10	10	10	10	10	10	10	10
5	130	130	0	130	130	10	130	130	130	10	130	130
6	10	10	10	10	10	10	10	10	10	10	10	10
7	58	10	10	10	10	10	10	10	77	10	10	10
8	10	10	0	10	10	10	10	10	10	10	10	10
9	162	162	10	162	162	10	110	162	162	10	162	149
10	55	10	10	10	10	10	10	10	55	10	10	10

5.2 UC in Restructured Environment

5.2.1 Test System Lay Out

Figure 5.1: Test System

5.2.2 Specifications

Table 5.7 contains generators minimum power limit, maximum power limit, ramp up limit, ramp down limit, start up ramp limit, shutdown ramp rate, minimum up time, minimum down time. Table 5.8 shows which units initial status and its generation in zero hour. Table 5.9 contains minimum load price, bid price of generated power, start-up price of generator and maximum power bid power limit. Table 5.10 contains elastic load price. Table 5.11 contains fixed bilateral transaction price. Table 5.12 contains inelastic bilateral amount. Table 5.13 contains fixed load amount. Table 5.14 contains load limit. Table

5.15 contains maximum bilateral transaction limit. Table 5.16 contains flow limits of each line and their Susceptance.

Gen.no	1	2	3	4	5	6	7	8	9	10
Pmin(MW)	30	20	10	10	30	10	15	10	20	10
Pmax(MW)	455	55	455	55	130	80	130	85	162	55
Rdn(MW/hr)	142	52	142	147	185	148	163	186	178	176
Rup(MW/hr)	300	211	186	198	212	193	245	235	289	321
Rshdn(MW/hr)	480	15	1000	15	150	10	150	10	80	10
Rsup(MW/hr)	480	15	1000	15	150	10	150	10	120	10
Tup(hr)	1	5	2	1	4	5	1	5	1	2
Tdn(hr)	1	0	2	0	1	0	1	1	0	3

Table 5.7: Specification of generator

Table 5.8: Unit Initial Status of 1- 6 Units

generator	U(k,0)	P(k,0)
1	1	200
2	0	0
3	0	0
4	0	0
5	0	0
6	0	0

7	1	50
8	0	0
9	0	0
10	0	0

Table 5.8: Unit Initial Status of 1- 6 Units

Table 5.9: Bid Prices and Max Bid Limits

Gen.no	1	2	3	4	5	6	7	8	9	10
Pminloadprice(\$)	0	10	52	12	25	45	2	65	12	12
pmax_bid(Mw)	423	189	120	548	102	251	325	198	214	120
Pbidprice(\$)	20	20	40	50	10	60	45	65	15	40
Startupprice(\$)	20	30	50	12	0	12	86	10	45	20

Table 5.10: Elastic Load Price

hr	1	2	3	4	5	6	7	8	9	10	11	12
Ld=1(\$)	10	15	12	24	45	65	12	86	-95	12	45	0
hr	13	14	15	16	17	18	19	20	21	22	23	24
Ld=1	52	16	0	-56	1	12	12	45	25	-22	18	-9

Table 5.11: Max Bilateral Transaction Limit

t(MW)	
1	120

hr	1	2	3	4	5	6	7	8	9	10	11	12
trans=1(\$)	0	10	-20	17	20	-54	12	0	18	50	45	-25
hr	13	14	15	16	17	18	19	20	21	22	23	24
trans=1	5	0	-20	14	18	50	-10	21	-24	-25	14	0

Table 5.12: Elastic Bilateral Transaction Price

Table 5.13: Fixed Bilateral Transaction Specification

hr	1	2	3	4	5	6	7	8	9	10	11	12
trans=1(MW)	12	0	45	0	6	0	56	50	0	81	0	0
hr	13	14	15	16	17	18	19	20	21	22	23	24
trans=1	14	0	25	0	12	0	0	0	12	0	0	50

Table 5.14: Fixed Load Specification

hr	1	2	3	4	5	6	7	8	9	10	11	12
Id=1(MW)	200	100	200	100	50	100	150	100	40	100	150	140
	200	100	200	100		100	100	100	10	100	100	110
hr	13	14	15	16	17	18	19	20	21	22	23	24
							.,					
ld=1	120	200	45	00	100	50	00	70	100	50	100	150
	130	200	45	80	100	50	80	70	100	50	100	150

Table 5.15: Max Load Limit

ld(MW)	
1	100

5.2.3 **Results :**

Maximum social welfare obtained is -z = 32364 \$. Table 5.16 depicts generators cleared amount of power schedule for each hour up to 24 hours depending upon load bid price , power bid price, bilateral transaction bid price . Table 5.17, Table 5.18 , Table 5.19 contains binary values. Table 5.17 shows the generators which are online in present hour. Table 5.18 shows the generators which are coming online from previous off state. For h=1, generators 5,9 are coming online from off and status in Table 5.18 are 1.Table 5.19 shows the generators which are coming offline from previous on state. Generator 5 is scheduled 102 MW in 8 hour, 0 MW in 9 hour.it is coming off from on status and its status in Table 5.1 in 9 hour is 1. Table 5.20 contains bus angles at each hour to accommodate power flow.

From Table 5.26, total amount of cleared power generation in hour1 is 200 MW, in hour 3 is 264 MW. From Table 5.20 and Table 5.13, total amount of elastic and elastic load cleared for h=1,3 also 200 264 MW. Table 5.21 and Table 5.12 shows cleared amount of elastic and inelastic bilateral transaction.

modelstat=0 solvestat=1 OPTIMAL VALUE OF THE OBJECTIVE FUNCTION Z: Z =-32364

P(k h)	h_0	h 1	•	-	_			_					
1 (K,11)	11-0	n=1	2	3	4	5	6	7	8	9	10	11	12
(MW)													
k=1	200	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	102	102	102	102	102	102	102	102	0	102	102	102
6	0	0	0	0	0	0	0	0	0	0	0	0	0
7	50	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	98	98	162	98	48	98	148	98	40	98	148	38
10	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 5.16a: Output power Generation in UC with biddings for 1-12 hours

Table 5.16b: Output power Generation in UC with Biddings for 12-24 hours

P(k,h)	h=13	14	15	16	17	18	19	20	21	22	23	24
k=1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	102	102	0	0	0	0	102	102	102	30	102	102

6	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	128	162	45	80	100	150	78	68	98	20	98	48
10	0	0	0	0	0	0	0	0	0	0	0	0

Table 5.16c: Output power Generation of 6-10 Units in UC with Biddings for 12-24 hours

Table 5.17a: Unit Status in UC with Biddings for 1-12 hours

u(k,h)		h=1	2	3	4	5	6	7	8	9	10	11	12
k=1	1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	1	1	1	1	1	1	1	1	0	1	1	1
6	0	0	0	0	0	0	0	0	0	0	0	0	0
7	1	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	1	1	1	1	1	1	1	1	1	1	1	1
10	0	0	0	0	0	0	0	0	0	0	0	0	0
u(k,h)	h=13	14	15	16	17	18	19	20	21	22	23	24	
--------	------	----	----	----	----	----	----	----	----	----	----	----	
k=1	0	0	0	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	0	0	0	
5	1	1	0	0	0	0	1	1	1	1	1	1	
6	0	0	0	0	0	0	0	0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	0	0	0	0	0	0	
9	1	1	1	1	1	1	1	1	1	1	1	1	
10	0	0	0	0	0	0	0	0	0	0	0	0	

Table 5.17b: Unit Status in UC with Biddings for 13-24 hours

Table 5.18a: Unit Just Start Status in UC with Biddings for 1-12 hours

ustrt(k,h)	h=0	h=1	2	3	4	5	6	7	8	9	10	11	12
k=1	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	1	0	0	0	0	0	0	0	0	1	0	0

6	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	1	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 5.18a: Unit Just Start Status of 6-10 Unitsin UC with Biddings for 1-12 hours

Table 5.18b: Unit Just Start Status in UC with biddings for 12-24 hours

ustrt(k,h)	h=13	14	15	16	17	18	19	20	21	22	23	24
k=1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	1	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0

u	sht(k,h)	h=0	h=1	2	3	4	5	6	7	8	9	10	11	12
	k=1	0	1	0	0	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	0	0	0	0	0	0	0	0	0	0
	5	0	0	0	0	0	0	0	0	0	1	0	0	0
	6	0	0	0	0	0	0	0	0	0	0	0	0	0
	7	0	1	0	0	0	0	0	0	0	0	0	0	0
	8	0	0	0	0	0	0	0	0	0	0	0	0	0
	9	0	0	0	0	0	0	0	0	0	0	0	0	0
	10	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 5.19a: Unit Just shutdown Status in UC with biddings for 1-12 hours

Table 5.19b: Unit Just shutdown Status in UC with biddings for 13-24 hours

usht(k,h)	h=13	14	15	16	17	18	19	20	21	22	23	24
k=1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	1	0	0	0	0	0	0	0	0	0

6	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0

Table 5.19b: Unit Just shutdown Status of 6-10 Units in UC with biddings for 13-24 hours

Table 5.20a: Angle at Buses for 1-10 hours

d(n,	h=1	2	3	4	5	6	7	8	9	10
h)r										
adia										
ns										
n=1										
	-0.0044	-0.0201	-0.0074	-0.0177	-0.0165	0.0004	-0.0228	-0.0075	-0.0159	-0.0122
2	0	0	0	0	0	0	0	0	0	0
3										
	-0.0496	-0.0416	-0.0755	-0.0403	-0.0329	-0.0336	-0.0593	-0.0271	-0.0301	-0.0498

Table 5.20b: Angle at Buses for 11-20 hours

d(n,	h=11	12	13	14	15	16	17	18	19	20
h)										
n=1										
	-0.0044	-0.0201	-0.0074	-0.0177	-0.0165	0.0004	-0.0228	-0.0075	-0.0159	-0.0122
2	0	0	0	0	0	0	0	0	0	0
3										
	-0.0496	-0.0416	-0.0755	-0.0403	-0.0329	-0.0336	-0.0593	-0.0271	-0.0301	-0.0498

Table 5.20c: Angle at Buses for 21-24 hours

d(n,h)	h=21	22	23	24
n=1	-0.0114	-0.0062	-0.0225	-0.0137
2	0	0	0	0
3	-0.0572	-0.0449	-0.0429	-0.0536

Table 5.21: Output Bilateral Transaction

hr	1	2	3	4	5	6	7	8	9	10	11	12
trans=1 (MW)	120	120	0	120	120	0	120	120	120	120	120	0
Hr	13	14	15	16	17	18	19	20	21	22	23	24
trans=1	120	120	0	120	120	120	0	120	0	0	120	120

Table 5.22: Output Load

Hr	1	2	3	4	5	6	7	8	9	10	11	12
ld=1 (MW)	0	100	64	100	100	100	100	100	0	100	100	0
Hr	13	14	15	16	17	18	19	20	21	22	23	24
ld=1	100	64	0	0	0	100	100	100	100	0	100	0

Chapter 6

Conclusion

The present thesis attempts to perform unit commitment in competitive power market . Unit commitment with quadratic cost function becomes complex as the solution takes long time for convergence and it gives integer solution, whereas unit commitment with piece-wise linearization of cost function gives fast and optimal solution. OPF is performed with fixed unit status from unit commitment solution by taking account of generator ramp rates for close convergence of OPF and UC solution. Unit Commitment with 3-part generator bidding, load bidding and bilateral transaction involving elastic and inelastic parts is performed as demanded by the recent power industry.

References

- R. C. Johnson, H. H. Happ, and W. J. Wright, "Large Scale Hydro-Thermal Unit Commitment-Method and Results," *IEEE Trans. Power App. Syst.*, vol. PAS-90, no. 3, pp. 1373-1384, May. 1971.
- [2] F. N. Lee and Q. Feng, "Multi-area unit commitment," *IEEE Trans. Power Syst.*, vol. 7, no. 2, pp. 591-599, May. 1992.
- [3] S. K. Tong and S. M. Shahidehpour, "Hydrothermal unit commitment with probabilistic constraints using segmentation method," *IEEE Trans. Power Syst.*, vol. 5, no. 1, pp. 276-282, Feb. 1990.
- [4] A. Turgeon, "Optimal scheduling of thermal generating units," *IEEE Trans. Autom. Control.*, vol. 23, no. 6, pp. 1000-1005, Dec. 1978.
- [5] G. S. Lauer, N. R. Sandell, D. P. Bertsekas, and T. A. Posbergh, "Solution of Large-Scale Optimal Unit Commitment Problems," *IEEE Power Eng. Rev.*, vol. PER-2, no. 1, pp. 23-24, Jan. 1982.
- [6] S. Ruzic and N. Rajakovic, "A new approach for solving extended unit commitment problem," *IEEE Trans. Power Syst.*, vol. 6, no. 1, pp. 269-277, Feb 1991.
- [7] G. B. Sheble and G. N. Fahd, "Unit commitment literature synopsis," *IEEE Trans. Power Syst.*, vol. 9, no. 1, pp. 128-135, Feb 1994.
- [8] C. K. Pang and H. C. Chen, "Optimal short-term thermal unit commitment," *IEEE Trans. Power App. Syst.*, vol. 95, no. 4, pp. 1336-1346, July 1976.
- [9] A. J. Wood and B. F. Wollenberg, *Power Generation, Operation, and Control.* New York: Wiley, 2003.
- [10] T. Logenthiran and D. Srinivasan, "Formulation of Unit Commitment (UC) problems and analysis of available methodologies used for solving the problems," *Sustainable Energy Technologies (ICSET), 2010. IEEE Int. Conf.*, vol., no., pp. 1-6, Dec. 2010.
- [11] C. Wang and S. M. Shahidehpour, "Effect of ramp rate limits on unit commitment and economic dispatch," *IEEE Trans. Power Syst.*, vol. 8, no.3, pp. 1341-1350, Aug. 1993.
- [12] N. Zendehdel, A. Karimpour, and M. Oloomi, "Optimal unit commitment using equivalent linear minimum up and down time constraints," *Power and Energy*

Conference, 2008. PECon 2008. IEEE 2nd Int. Conf., vol., no., pp. 1021-1026, Dec. 2008.

- [13] H. Ma and S. M. Shahidehpour, "Unit commitment with transmission security and voltage constraints," *IEEE Trans. Power Syst.*, vol. 14, no. 2, pp. 757-764, May 1999.
- [14] B. I. Ayuyev, P. M. Yerokhin, N. G. Shubin, V. G. Neujmin, and A. A. Alexandrov, "Unit commitment with network constraints," *Power Tech*, 2005. *IEEE Russia*, vol., no., pp. 1-5, June 2005.
- [15] H. Ma and S. M. Shahidehpour, "Unit commitment with transmission security and voltage constraints," *IEEE Trans. Power Syst.*, vol. 14, no. 2, pp. 757-764, May 1999.
- [16] H. Sasaki, T. Yamamoto, J. Kubokawa, T. Nagata, and H. Fujita, "A solution of unit commitment with transmission and voltage constraints by heuristic method and optimal power flow," *Power System Technology*, 2000. Proceedings. *PowerCon 2000. Int. Conf.*, vol. 1, no., pp. 357-362 vol. 1, 2000.
- [17] V. Sarkar and S. A. Khaparde, "DCOPF-based marginal loss pricing with enhanced power flow accuracy by using matrix loss distribution," *IEEE Trans. Power Syst.*, vol. 24, no. 3, pp. 1435-1445, Aug. 2009.
- [18] S. A. Khaparde and A. R. Abhyankar. *Restructured Power Systems* [Online]. Available: <u>http://nptel.ac.in/courses/108101005/</u>
- [19] A. M. Kulkarni. Power Systems operation and control [Online]. Available: <u>http://www.cdeep.iitb.ac.in/nptel/Electrical%20Engineering/Power%20System%2</u> <u>0Operation%20and%20Control/Course%20Objective.html</u>
- [20] H. Chao and H. G. Huntington, *Designing Competitive Electricity Markets*. Kluwer's International Series, 1998.