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Abstract 

 

Presently a lot of effort is being deployed in the area of microgrid 

development. In this aspect, the work presented here is in the direction of 

developing and coordinating various operational modules in an isolated 

microgrid system.  

The work presented in this report looks at the prospects of incorporating a 

consumer side load-scheduling algorithm that works in conjunction with the 

unit commitment and economic load dispatch. The unit commitment and 

economic load dispatch are run a day in advance to determine generator 

outputs for the following day. From the microgrid operator point of view, 

the load side scheduling helps reduce the stress on the system especially 

during peak hours thereby ensuring system stability and security. From the 

consumers’ point of view, the dynamic electricity prices within a day, which 

are a reflection of this time varying stress on the system, encourage them to 

endorse such a scheme and reduce their bills incurred. Owing to 

unpredictable weather conditions, running unit commitment and economic 

load dispatch in advance does not guarantee planned real-time generation in 

the microgrid scenario. Such variability in forecasted generation must be 

handled in any microgrid, while accounting for load demand uncertainties. 

To address this issue a load side energy management system and power 

balance scheme is proposed in this paper. The objective is to ascertain 

uninterrupted power to critical loads while managing other non-critical loads 

based on their priorities.    
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Nomenclature 

 

MG             :  Microgrid 

ESS          :  Energy storage system 

DER  :  Distributed energy resources 

REG  :  Renewable energy generation 

DG  :  Distributed generation 

PV  :  Photo-voltaic 

WT  :  Wind turbine 

FC  :  Fuel cell 

MT  :  Micro turbine 

GAMS         :  General algebraic modeling system 

MIP  :  Mixed integer programming 

MILP  :  Mixed integer linear programming 

MINLP :  Mixed integer non-linear programming 

CAGR         :  Compound annual growth rate 

MAPE         :  Mean absolute percentage error 

MAi             :  Moving average at the instant i 

Oi          :  Observation of load demand at the instant i 

CMAi  :  Centered moving average at the instant i 

Si, Ii  :  Seasonal and irregularity components at instant i  

DSi  :  Deseasonalized component at instant i 

U(1X2)  :  Coefficient matrix for linear regression 
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(1 2)XU   :  Best obtainable coefficient matrix for linear regression 

F(NX1)  :  Column matrix of deseasonalized data 

e  :  error between deseasonalized data and linear approximation            

P                :  Projection matrix 

K          :  Kalman matrix 

t          :  Span over which offline optimization is performed 

SL              :  Total number of schedulable loads 

K(j)  :  Cost of unit power at time instant j 

Pconst(sl) :  Constant power requirement of schedulable load sl 

x(sl,j)  :  Status of schedulable load sl at time instant j 

d(sl,j)  :  Start-up status of schedulable load sl at time instant j 

E(sl)  :  Energy requirement of schedulable load sl 

T(sl)  :  Time required to finish load/task sl 

Te (sl)  :  Earliest time limit imposed on task sl 

Td(sl)  :  Latest time limit imposed on task sl 

CG  :  Total number of conventional generators 

R                :  Total number of renewable sources 

C          :  Cost function of conventional generator 

Cr  :  Cost function of renewable generator 

u(i,j)  :  Status of conventional generator i at instant j 

ur(r,j)  :  Status of renewable source r at instant j 

d(i,j)  :  Start-up status of conventional generator i at instant j 

f(i,j)  :  Shut-down status of conventional generator i at instant j 

Sup(i)  :  Start-up cost of conventional generator i 
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Sdn(i)  :  Shut-down cost of conventional generator i 

Pmin(i)         :  Minimum generation limit on conventional generator i 

Pmax(i) :  Maximum generation limit on conventional generator i 

Pr,min(r) :  Minimum generation limit on renewable source r 

Pr,max(r,j) :  Minimum generation limit on renewable source r at instant j 

P(i,j)           :  Power output of conventional generator i at instant j 

Pr(i,j)          :  Power output of renewable source r at instant j 

Rd(i)           :  Ramp down constraint of conventional generator i 

Ru(i)  :  Ramp up constraint of conventional generator i 

Rr,d(r)  :  Ramp down constraint of renewable source r 

Rr,u(r)  :  Ramp up constraint of renewable source r 

Ton(i,j)         :  Up time of conventional generator i at instant j 

Toff(i,j)         :  Down time of conventional generator i at instant j 

Tr,on(r,j)       :  Up time of renewable source r at instant j 

Tr,off(r,j) :  Down time of renewable source r at instant j 

MUT(i) :  Minimum up time of conventional generator i 

MDT(i) :  Minimum down time of conventional generator i 

MUTr(r)       :  Minimum up time of renewable source r 

MDTr(r)       :  Minimum down time of renewable source r 

Pinj(n,j)        :  Power injected at bus n at instant j 

Ag  :  Incidence matrix of conventional generators on bus network 

Agr  :  Incidence matrix of renewable sources on bus network 

Al          :  Incidence matrix of loads on bus network 

V                :  Per phase voltage of distribution network in volts 

( / )n k         :  Power angle at bus n or bus k 
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R(n,k)         :  Resistance of the line between bus n and bus k 

X(n,k)  :  Reactance of line between bus n and bus k 

flmax(line) :  Maximum active power transfer capability of line line 

Padj(k)  :  Adjustable load demand at instant k 

Pcurt(i,k)       :  Load demand of curtailable load i at instant k 

Pcrit(k)         :  Critical load demand at instant k 

Eo               :  User specified battery energy state 

status(cg,k) :  Status of conventional generator cg at instant k 

N  :  Number of curtailable loads 

Pgen(k)         :  Power generation at instant k 

                :  Penalty for reducing adjustable load demand 

)i             :  Penalty for disconnecting curtailable load i 

                 :  Penalty for using power sink 

    :  Penalty for change in battery state from specified value 

)cg   :  Penalty for ramping conventional generator cg 

Emin     :  Minimum energy state of the battery 

Emax            :  Maximum energy state of the battery 

Pbat-min         :  Minimum battery power flow limit 

Pbat-max         :  Maximum battery power flow limit 

Pc_min(cg) :  Maximum capacity of conventional generator cg 

Pc_max(cg) :  Minimum capacity of conventional generator cg 

Pramp-min(cg) :  Minimum ramping limit of unit cg in online problem 

Pramp-max(cg)  :  Maximum ramping limit of unit cg in online problem 

f                 :  Fraction of adjustable load demand that is compromised 

ucurt(i,k)  :  Status of curtailable load i at instant k 
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Psink(k)        :  Power dissipated in the sink at instant k 

Pbat(k)         :  Power output of the battery at instant k 

Pramp(cg,k)    :  Ramping support by unit cg at instant k 

s  :  Sampling time of online algorithm in minutes 
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Chapter 1 
 

Introduction 

   

The struggle between energy generation and energy demand has never been as 

vigorous as it is today. A large amount of energy generated today is produced from 

conventional energy sources.  These include sources like petroleum, natural gas, coal 

etc. These resources are classified as extinguishable. This simply means that their 

availability is limited and that the regeneration of these sources is governed by very 

slow natural processes. The ever increasing power demand due to the boom in 

population and improved standard of living has further overtaxed these dwindling 

resources. It is also worth mentioning that the use of conventional energy sources 

seem even bleaker due to their effect on the environment. The environmental effect 

of burning of fossil fuels has been profound and nothing short of disastrous. The 

conventional fuels, such as coal and oil are greatly responsible for the grim state of 

the earth’s protecting envelope-the atmosphere. 

As documented in [1], on Oct. 31, 2011, the estimated world population reached 7 

billion people, and it is growing at a rate of about 215,120 people per day. Since 

2005, generating capacity has increased at a 3.2% CAGR, a relatively healthy rate 

of growth given the poor economic conditions that have existed in many parts of 

the world since 2008. Of particular note, however, is the growth of generating 

capacity in the developing world. In these countries, the rate of growth (5.3%) is 
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almost twice that of the whole world and almost four times that of the 30 most 

developed countries, where electric generation is growing slowly, at a 1.5% CAGR.  

In our country power development was first started in 1897 in Darjeeling followed 

by the commissioning of the Hydro-power station at Sivasamudram in Karnataka 

during the year 1902. Since 1990, India has been one of the fastest growing markets 

for new electricity generation capacity. The country’s annual electricity generation 

has increased in the past 20 years by about 120 GW, from about 66 GW in 1991 to 

about 100 GW in 2001 to about 185 GW in 2011. In spite of being the 4th largest 

consumer of electricity, of the 1.4 billion people in the world who have no access to 

electricity, India accounts for over 300 million. To further aggravate the situation, 

more than 60% of the electric power that is generated is from thermal power plants 

and hence there is an urgent need to consider alternatives to existing sources of 

power supply that are renewable and also environment friendly. The only 

conventional form of power that is renewable and also environment friendly is 

hydro-electric power. Around 30% of electric power in India is generated from 

hydro-electric generation units but huge river valley projects are running into 

problems due to the vast tracts of land that are required for them and the 

imbalance they create in the ecology of the region. Around the world, the 

conventional power systems have been facing these problems and they have led to a 

new trend of generating power locally at distribution level by using non-

conventional/renewable energy sources like solar photovoltaic cells, wind power, 

biogas, and natural gas.  Other generation sources like fuel cells, stirling engines 

and micro turbines may also be used in contiguity with the above mentioned REG 

sources. These generation sources are integrated into the utility distribution 

network and termed as DERs.  This term has been introduced to distinguish this 

concept of generation from the conventional centralized generation scheme. The 

DERs are usually smaller than the conventional units used for bulk production. 

They are also connected to the distribution networks which usually operate at low 
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voltage or medium voltage levels. With the integration of these generation sources 

the conventional distribution network becomes an active network. 

1.1 Active distribution networks 

Power networks around the world are undergoing a transformation like never 

before. There is a major transformation from stable passive distribution networks to 

active distribution networks with DER penetration. The need to augment the 

conventional generation sources has further encouraged the integration of DG 

systems. Stand-alone and grid connected operation of DERs help in generation 

augmentation, thereby improving overall power quality and reliability. Also the 

physical proximity of the generation sources to the load helps circumvent wasteful 

transmission losses. The low operational costs and reduction of environmental 

pollution has been a key factor in preferring renewable energy sources.  In 

compliance with carbon-emission mitigation policies like Kyoto protocol many 

countries have agreed to bring down the use of fossil fuels. The present ‘fit-and-

forget’ strategy of DG employment needs to be changed in active network 

management. It should not only incorporate integration of DGs in distribution 

networks but also explore the avenue of demand side management. Such intelligent 

active distribution networks are bound to gain momentum. Several factors are in 

favour of the evolution of active distribution networks. These factors may include 

rising customer expectations of power quality, a need to establish a platform to 

incorporate REG sources and the need to better utilize and manage assets on the 

operator's part. Hence, in spite of the solid establishment of the conventional power 

system, these technical, economic and environmental benefits have led to the 

gradual development and integration of DERs. To facilitate this change a strong 

support infrastructure is needed. Also many economical and technical challenges 

have to be addressed. 

1.2 Microgrid 

Since power is generated at low voltage, it is possible to connect a DER separately 

to the utility distribution network or they may be interconnected to form what is 
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called a 'MG'. A MG is essentially an active distribution network defined as an 

integrated power delivery system. A MG consists of a low-voltage network 

composed of loads, renewable energy (RE) sources, and DG units operating as a 

single controllable load connected to the utility or the macrogrid. MGs are usually 

designed to supply loads for small communities or industries. Due to the 

penetration of REGs and conventional generation sources these MGs are active 

distribution networks. The generation sources of a MG are provided with power 

electronic interfaces for enhancing the flexibility of the system. The key differences 

between the MG and the utility grid are as follows: 

 The DGs in a MG are of much smaller capacity with respect to large 

generators in conventional power plants. 

 In MG, the power generated at distribution level can be directly fed to the 

distribution network. 

 The DGs used in MGs are normally installed close to the customer’s 

premises so that heat/electrical loads can be efficiently supplied with 

satisfactory voltage and frequency profile and negligible line losses. 

Also the MGs can operate in two modes namely - grid connected mode and islanded 

mode. From the utility point of view the MG can be seen as an electrical load that 

can be controlled in magnitude. The load could be constant, or the load could 

increase at night when electricity is cheaper, or the load could be held at zero 

during times of system stress. This ascertains its easy controllability and 

compliance with grid rules and regulations without hampering the reliability and 

security of the power utility. 

In grid connected mode, a MG is connected to the utility grid and can engage in 

bidirectional energy transportation. Since MGs are owned and managed by groups 

other than utility, this provides an opportunity to engage in energy business. The 

MG can buy power from the utility in case of any energy deficiency.  The MG can 

also sell power to the grid at a certain profitable price during peak hours when the 

utility grid is under stress. 
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In islanded or isolated mode of operation, the MG is disconnected from the utility 

and operated as a stand-alone unit. Although some MGs are designed to run in 

islanded mode, other MGs that are usually connected in grid connected mode may 

transfer operation to islanded mode of operation in case of certain contingencies like 

the occurrence of a fault or a scheduled maintenance or  when it is simply more 

economically convenient to operate in stand-alone mode. 

As specified in [2], the various technical and economic advantages of the MG are as 

follows: 

 It is safe to say that with large REG penetration MGs will have a much 

lesser environmental impact than the conventional thermal power plants. 

There is bound to be a reduction in emission of gaseous and particulate 

pollutants due to a close monitoring of the combustion process. Physical 

proximity of the consumers to the DGs may help increase awareness of 

customers towards judicious energy use. 

 Reduction of physical and electrical distance between generation and 

demand may help reduce feeder congestion and losses. 

 Power quality has also been predicted to improve with this decentralization 

of supply. In the MG scenario, we can achieve better supply demand 

matching along with a suppressed impact of large scale transmission and 

generation outages. 

 Cost savings is also affected through integration of multiple DG sets. As 

they are locally placed in plug and play mode, the transmission and 

distribution losses are drastically reduced or eliminated. When combined in 

a MG, the generated power can be shared locally among the customers and 

this again reduces the need to import/export power from/to the utility 

through long feeders. Also significant cost savings can be made by utilizing 

the heat produced during combined heat and power mode of various DG 

units. 
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 The development of market-driven operation procedures of MGs will lead to 

a significant reduction of market power exerted by established generation 

companies. The MGs also have the scope of providing various ancillary 

services which can be compensated with appropriate remuneration. 

 The fact that MGs can operate in complete autonomy makes it suitable for 

supplying power to remote areas of a country where supply from the 

national grid system is difficult to avail due to geographical topology or 

frequently disrupted due to severe climatic conditions or man-made 

disturbances. 

However, to enjoy these benefits, the smooth operation of the MG has to be ensured 

and this often demands proper planning. Planning may play an important part 

right from the inception of the MG when technicalities such as installed capacity, 

distribution capacity and siting of various installments have to be decided. Planning 

the day to day operation of the MG is also an important issue that can prove to be 

highly beneficial. Proper planning can facilitate savings in operational costs and 

may even help prevent overloads and failures. Hence, it becomes essential to 

perform load and REG forecasting. The output of such operations may be used to 

optimally co-ordinate the generation of the various DG sets.   

1.3 Load forecasting 

Load forecasts have long been recognized as the initial building block for all utility 

planning efforts.  

The forecasts for different time-horizons are implemented in different operations 

within a MG. For example long-term load forecasts are more relevant in the 

planning of the MG. Short-term load forecasting becomes a key player in deciding 

day-ahead operation of the MG. With supply and demand fluctuating and weather 

conditions ever varying, load forecasting has become vitally important for utilities. 

Short-term load forecasting can help estimate load flows and thus help in the 

economical scheduling of available resources and prevention of possible overloading. 

Timely implementations of such decisions lead to improved system reliability and 
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reduced cost of operation. Short-term load forecasts can also be useful in deciding 

the day-ahead real-time prices that the customers are charged. .  

1.4 Optimization of MG operation 

Electricity demand in a power system varies throughout the day, following 

approximate patterns that depend on regional characteristics, temperature, time of 

day, day of week and season of the year among other things. Due to this reason, it 

is not advisable to run all available units all the time, and it is necessary to decide 

in advance which generators are to startup, when to connect them to the network, 

the sequence in which the operating units should be shut down, and for how long. 

Decisions to change generator output to accommodate variation on hourly time 

scales are usually made by processes of unit commitment and economic dispatch [3]. 

Unit commitment establishes generator operating schedules in advance of the 

operating time and takes into account generator ramping capabilities and startup 

and shutdown costs. Unit commitment determines when to bring generators online 

and offline, and so is typically run one day in advance. Economic dispatch is the 

process of choosing the output levels for generators that are already online, with the 

objective of minimizing the total cost of meeting demand. Economic dispatch tends 

to be quite fast, and can be run within minutes of the operating time. Solutions to 

unit commitment and economic load dispatch may be obtained via multi-period 

optimization processes such as dynamic programming, lagrange relaxation, or mixed 

integer programming. 

A great deal of money can be saved by turning off the units when they are not 

needed for the time. The problem is of particular importance for scheduling thermal 

based generation units. As for other types of DG units like photo-voltaic panels, 

their aggregate costs are negligible so that their on-off statuses are not that 

important. The basic economics of optimal investment and available technologies 

need to be applied to the operation of MGs. The accumulated knowledge of power 

system operation in grid scale needs to be optimally applied in distribution level 

grid, i.e. the MG. 
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In addition to the above mentioned supply-side optimization, demand side 

optimization is also a field of immense potential for cost reduction. Load side 

strategies like load scheduling can go a long way in reducing the strain on the 

systems during peak hours. Direct load control can also help improve system 

reliability. The MG paradigm can help explore opportunities and challenges 

associated with implementing fully responsive, non-disruptive control strategies for 

aggregated electric loads [4]. 

The unique aspects of MG economics need to be utilized properly for its overall 

optimal operation. Unlike conventional distribution systems, MGs can provide 

heterogeneous levels of reliability to end-users as per necessity. The operational 

constraints of a conventional power system may not be similar to that of a MG. For 

example, in MG the stochastic nature of REGs results in time varying unit 

constraints. Also, due to their large space requirement sitting of these REGs cannot 

be close to populated areas. Another example of a constraint unique to the MG 

concept is the constraint on generation of noise levels. Though these are ignored in 

conventional power systems, they are to be considered in MG operation especially if 

generation sources are seated near residential areas [2]. 

In grid-connected mode, the MG has the flexibility of behaving as a load or a 

generator from the main grid point of view.  It could inject energy as a generator if 

its own consumers are satisfied and if the main grid is in need power. Conversely, 

the MG can also buy energy from the grid in case of any internal energy deficiency 

(when MG generation falls short of MG demand). It is important to incorporate 

this energy trade in the optimization problem formulation.  

1.5 Motivation 

As mentioned above the need for incorporating REGs into the generation 

framework has become vital. The deregulation in the electric power industry and 

pressing concerns about global environmental issues as well as the increasing energy 

consumption have led to an increase in installation capacity of DG sources and the 

stress on the system. While optimal operation of DG sets is an obvious objective, 



9 

there is also a need to explore the potential benefits of load management. Smart 

loads that may scheduled can come a long way in reducing the peak load, the need 

for higher installation capacity and the losses in the distribution system. 

Now a days, an increasing number of MG proposals have been targeting remote 

communities and non-integrated areas in developing countries and geographical 

islands [5]. Energy sources of these islanded or isolated MGs usually include 

distributed generators like micro turbine, fuel cell, etc. and/or renewable energy 

sources like solar panel farms and wind turbines, etc. These isolated grids form 

autonomous MGs that supply electricity and in some cases heat and hot water to 

residential and commercial consumers [6]. Optimal operation of an islanded MG is 

more of a necessity than a technological enhancement. One of the main concerns for 

these MGs is the problem of power balancing. 

It is clear that, in order to serve its purpose, it is important to provide a 

coordinated decision-making process, so as to balance demand and supply coming 

both from the DG sources and the distribution network. However, it is important 

not to forget that the primary characteristic of load control is that it must deliver a 

reliable resource to the power system while maintaining a level of service 

commensurate with customer expectations. A healthy respect to this point is 

essential for any demand-side management ventures. 

1.6 Objectives 

The scope of this work is to develop and assemble the various operational modules 

of a MG in order to meet certain meaningful objectives.  

The objectives of the work presented here are as follows : 

 To use the platform established by modern communication technologies for 

useful interactions between the end user and the service provider. 

 To provide an opportunity for customers to participate in operational 

planning so as to reduce incurred bills. 

 To employ demand side actions that may reduce the stress on the system. 
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 To schedule the production of the various generation units to meet the load 

demand at a minimum cost while meeting all the constraints. 

 To solve the problem of power balance under conditions of uncertain REG 

and load demand by tactfully employing load side elements and DG units. 

 

1.7 Outline of thesis 

This section has served as an introduction to the problem at hand. It has listed the 

basic properties of the MG. The following section will be showcasing the literature 

survey that has been conducted. The literature survey will serve as a glimpse into 

the nature of work that is currently going on in the MG paradigm. Sections have 

also been dedicated to describe the layout of the MG. This will introduce the reader 

to the nature and specifications of the MG on which the work documented in this 

report is conducted. Another section has been dedicated to the elucidation of the 

load forecasting module. Following sections will focus on the optimization strategy 

for cost reduction of DG sets considering various technical constraints. It will 

present a form of demand-side consumer participation that becomes relevant in the 

overall optimization problem.  A section has been reserved for the issue of power 

balancing. Here a real time optimization problem has been formulated to tackle 

power balancing problem. 

To sum it up, this work provides control algorithms that may be applied to any 

islanded MG irrespective of spatial distribution of loads and generators, number of 

buses, groups of loads etc. However, to elucidate the operation of the system we will 

be using a specific system which has been detailed in Chapter 3. 
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Chapter 2 
 

Literature Survey 

   

In the previous chapter, an introduction to the problem at hand was given. It 

showcased the shortcomings of the existing conventional grid. It spoke of how the 

existing power system is antiquated and inefficient in many ways. Furthermore, it 

was documented that the existing grid does not take full advantage of the advanced 

automations available today that could help prevent outages or help restore the 

system after outages. Also, the conventional grid did not speak of integrating 

renewable energy sources which have become an immediate necessity due to 

growing concerns of greenhouse gas emissions and shortage of non-renewable 

sources of energy. The introduction also dealt with some basic definitions and 

concepts unique to the MG paradigm, which has been gaining steam. This chapter 

consists of a brief literature survey which covers a sum-up of various research works 

focused on MGs, load forecasting, unit commitment and economic load dispatch 

and optimal demand-side management.  

2.1 The institution of Microgrids 

Ref. [7] served to provide an overview of the existing MG architecture and control 

mechanism. It also highlighted the importance of power and management strategies 

and described the potential approaches for market participation of the MG. As 

illustrated in Fig 2.1, the MG encompasses a portion of an electric power 

distribution network that is located downstream of the distribution substation, and 
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it includes a variety of DG units and a host of electricity/heat consumers. Although 

the MG in the figure usually operates in grid-connected mode, it has sufficient 

capacity, controls and operational strategies to at least provide power to a certain 

fraction of the load when it is disconnected from the grid. The MG that shall be 

introduced in our study is one that is almost incessantly working in such an 

islanded mode of operation. 

 

 

Figure 2.1: Typical MG layout including DGs and loads [7] 

In [8], the ongoing research, development and demonstration currently in progress 

in the European Union, United States, Canada and Japan have been documented. 

The article follows a series of symposiums started in Berkeley, California on June 

17, 2005, followed by a second in Montreal, Canada, on June 23, 2006 and by a 

third in Nagoya, Japan, on April 6, 2007. Presentations and other materials from 

these events are available online [9]. A particularly interesting example in Canada is 

the Ramea wind-diesel generator system in Canada. Traditionally, the remote 

and/or inaccessible parts of the Canadian landscape have been almost exclusively 

supplied by diesel generators. The Ramea project shown in Fig 2.2 is an example of 

islanded operation of the MG. It is an autonomous diesel-based system with 
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medium wind penetration. While diesel remains ultimately responsible for supplying 

the load, the system can absorb the total wind power generated as long as the diesel 

generator are loaded to at least 30% of its rated capacity. Another magazine article 

that looks into design and testing work conducted on MGs around the world is the 

Ref. [10]. A trend has clearly begun to appear in the area of power delivery. Around 

the world several such active experiments are being conducted covering an array of 

technologies. As is evident from the ongoing research, MG topologies and 

operational configurations are being defined and design criteria established for all 

possible MG applications. 

 

Figure 2.2: Ramea integrated wind-diesel project [8] 

An established reference for the MG paradigm that has served as a benchmark in 

system-architecture is the IEEE Smart Grid conceptual model.  
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Figure 2.3: Smart grid conceptual framework [11] 

The National Institute of Standards and Technology (NIST) smart grid conceptual 

model shown in Fig 2.3 provides a high-level framework for the smart grid that 

defines seven important domains: bulk generation, transmission, distribution, 

customers, operations, markets and service providers. It shows all the 

communications and energy/electricity flows connecting each domain and how they 

are interrelated. Each individual domain is itself comprised of important smart grid 

elements that are connected to each other through two-way communications and 

energy/electricity paths. These connections are the basis of the future, intelligent 

and dynamic power electricity grid. 

2.2 Short term load forecasting 

Short-term load forecasting has been useful in safe and economic planning operation 

of an electrical power system. It has been also used in start-up and shut-down 

schedules of generating units, overhaul planning and load management. One of the 

characteristics of electric power is that it cannot be stockpiled, that is, the power 

energy is generated, transmitted, distributed and consumed at the same time. In 

normal working condition, system generating capacity should meet load 

requirement anytime. If the system generating capacity is not enough, essential 

measures should be taken, such as adding generating units or importing some power 

from the neighboring network. On the other hand, if the system generating capacity 

is of surplus, essential measure should be taken too, such as shutting-down some 
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generating units, or outputting some power to neighboring network. Load variation 

trend and feature forecasting are essential for power dispatch, layout and design 

department of power system. So it is no wonder that a lot of work has been 

conducted in the area of load forecasting. 

Regression being one of the most popular statistical tools has been extensively used 

in this area. For electric load forecasting, regression has been used to model 

relationship of load consumption and other factors, such as weather, day type and 

customer class. Several research papers presented different regression models for 

next day peak forecasting. The model incorporated deterministic influences, such as 

holidays, stochastic influences such as average loads and exogenous influences such 

as weather conditions. Such an innovative use of linear regression based forecasting 

was used in Ref. [12]. 

Another popular technique used is the Time series model of load demand. Time 

series methods are based on the assumption that load data have an internal 

structure, such as auto-correlation or trend or seasonal variation. Time series 

models detect and explore such a structure. A host of time series models have been 

developed and used for the purpose of load forecasting; these include autoregressive 

moving average, autoregressive integrated moving average, autoregressive moving 

average with exogenous variables and autoregressive integrated moving average 

with exogenous variables. Ref. [13] describes a model based on autoregressive 

integrated moving average with exogenous variables for the implementation of 

short-term load forecasting in distributed power systems. 

In [14], the group proposes an artificial neural network based short-term load 

forecasting scheme that considers electricity price as one of the main characteristics 

of the system load, demonstrating the importance of considering pricing when 

predicting loading in today’s electricity markets. Historical load data from the 

Ontario hydro system as well as pricing information from the neighboring system 

were used for testing, showing the good performance of the proposed method. The 

traditional model in [14], which was altered to accommodate the effect of prices was 
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an additive load demand model. This model was assumed to be combination of four 

components. The four components were as follows: 

 Normal part of the load which is a set of standardized load shapes for each 

type of day that has been identified throughout the year. 

 Weather-sensitive part of the load which has been coupled to the season of 

the year. 

 Special-event part of the load which is associated with the occurrence of a 

special event leading to a significant deviation from the typical load 

demand. 

 Random part of the load which is represented by a zero-mean white noise. 

Another versatile load forecasting method was showcased in [15]. Here a set of rules 

have been formulated to serve as correction factors which help improve the 

accuracy of the base load prediction model. This was essentially framed as a 

multiplicative model. In some cases additive correction factors were also 

accommodated. The rules accounted for various weather non-sensitive parameters 

like season of the year, day of the week etc. It also considered a host of weather 

sensitive parameters like temperature, humidity, wind speed, solar insolation, cloud 

coverage etc. Rules were framed for selection of reference days. This detailed piece 

of research work showed results for both day-ahead predictions and week-ahead 

predictions. 

Ref. [16] relied on the use of artificial neural networks for time-series prediction. 

Artificial neural network is a network, in which a large number of processing units 

make extensive exchanges, and is the abstract, simplified simulation of the human 

brain. The nature of the neural network used to predict is related to the size of the 

network parameters. Network structure includes the number of neurons, the 

number of hidden layers and connection methods. For a given structure, the 

training process is to adjust the parameters to obtain the basic contact 

approximation. The error is defined as the root mean square error, and the training 

process can be regarded as an optimization problem to minimize this error. Usually 
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the available time-series data is divided into two parts: training data and test data. 

Training data is more than twice as much as test data in general. The most popular 

neural network model, the back propagation model was used for time-series 

prediction. Steps to implement the model were also explained in the paper. 

In the analysis of predicting power load forecasting based on least squares neural 

network, the instability of the time series could lead to decrease of prediction 

accuracy. On the other hand, neural network and chaos theories parameters must 

be carefully predetermined in establishing an efficient model. In order to solve the 

problems mentioned above, the work in Ref [17] established the neural network and 

chaos theory was established. Chaotic time Series method was used to find the 

optimal time lag. Then the time series is decomposed by wavelet transform to 

eliminate the instability. Chaotic time Series method is adopted to determine the 

parameters of neural network. The authors took the multilayer back propagation 

neural network, widely applied for short-term load forecasting combined with one 

tool of soft theory – rough set to reduce the influence due to drawbacks of the back 

propagation method such as low training speed and susceptibility to noise and weak 

interdependency data through attribution reduction with rough set. The rough set 

had a number of advantages which included the fact that it could deal with 

incomplete, uncertain and ambiguous data and complex data containing a large 

number of variables. Moreover, it could abstract knowledge or patterns from data – 

to draw rules from the load index system composed of maximum and minimum of 

load as goal attributes and temperature, humidity and sunlight time as condition 

attributes by calculating the former to each latter and the significance of each 

condition attributes in the condition set so as to reduce condition attributes which 

contain bad data. After attribute reduction, the noise data and weak 

interdependency data were eliminated, so the influences they have on back 

propagation during the initialization, study and training process could be avoided.  

Fuzzy set theory was introduced by Zadeh 1956. He demonstrated the application 

of the theory of fuzzy sets and fuzzy logic for control theory, treating input and 
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signals as fuzzy instead of crisp values. Measured data and input signals are 

inevitably loaded with errors due to measuring instrument and human collection 

errors. The theory of fuzzy sets describes variables in a range of values rather than 

a single crisp value, thus enabling efficient description of unreliable and inaccurate 

data. However, fuzzy logic theory describes the relation between fuzzy data 

governed by imprecise propositions which were referred to as approximate reasoning 

by Zadeh. Electric load demand depends on a collection of seasonal, weekly, and 

daily factors of weather, as well as human habits and social behavior. Any 

parametric load model that strives to depict the dependence of the load on these 

factors is subject to inaccurate and imprecise representation, partly due to 

measuring instrument and human collection errors in the data involved. 

In [18], the forecasting module was formed by combining the powers of neural 

network and fuzzy logic. Expert knowledge represented by fuzzy rules is used for 

preprocessing input data fed to a neural network. For training the neural network 

for day-ahead load forecasting, fuzzy if-then rules are used, in addition to historical 

load and weather data that are usually employed in conventional supervised 

learning methods. The fuzzy-neural network was trained on real data from a power 

system and evaluated for forecasting day-ahead load profiles based on forecast 

weather data and other parameters. 

 

Figure 2.4: Overall fuzzy-neural architecture documented in [18] 
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Fuzzy sets and fuzzy-rule based inference combined with statistical methods like 

regression have also been used for solving the load forecasting model [19]. 

2.3 The need for optimization in MG 

Optimization is all about maximizing or minimizing a cost function. When it comes 

to the system operator this translates into either maximizing profit or minimizing 

cost of production. Most of the power systems start off as monopoly. The monopoly 

provided the secure and relative cheap energy along with an uncontrollable 

bureaucratic organization. The deregulation philosophy broke the monolithic power 

sector into distinct parts, as generators, transmission, distribution, trader, etc. After 

the liberalization problems emerged in the supply, investment and price side. The 

state stepped back to control the uncontrolled free market. In the monopolistic case 

the organization prospers, the energy is supplied. If the company makes a loss, it 

will be covered by the state/owner. Normally the prices contain the reserves for 

long-term investment, some profit and the cost of the huge organization. In the 

deregulated environment the profit is the only driver. There is no investment 

without the hope of return and there is no energy supply if it is not profitable. 

In [20], a comparison was performed on various load sharing techniques, which 

include linear, non-linear and dynamic power sharing techniques.  

 

Figure 2.5: Fuel consumption comparison [20] 
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The linear power sharing technique was based on frequency droop scheme. In broad 

terms, this scheme uses a (small) change in the power bus frequency to determine 

the amount of power that each generator should put into the power bus. Also 

explained in the research article was the non-linear power sharing scheme. A 

nonlinear power-sharing scheme may be created by specifying a set of nonlinear 

power-deployment curves. However, they may be simplified to form piece-wise 

linear curves. The characteristics of each of these linear sections may be set 

according to a higher level regulating policy. For example, the policy could be to 

improve the efficiency of the system or to improve the dynamic response or to allow 

a particular reserve power within an operating range. The dynamic power sharing 

policy described in [20], allowed for the independent movement of the frequency 

intercept (y-axis intercept) of the different generators ergo facilitating a means to 

modify the amount of power each source contributes to the overall demand. The 

optimal power sharing scheme referred to in this paper points to a highly non-linear 

power sharing scheme which may be optimized for a specific purpose. Figure 2.5 

shows a comparison of the fuel consumption of the generating units under these 

schemes. 

In today’s scenario of dwindling conventional resources and deteriorating 

environmental conditions, the need to conduct system operation with not just 

minimal fuel consumption but also with a minimum impact on the environment has 

become very important.  

In case of optimization some parameters are set between predefined limits. 

Typically we look for the minimum or the maximum of the objective (or cost) 

function. In a simple case we have only one cost function; we call it single objective 

optimization, in other cases we look for the optimum of more values. This is the 

multi objective optimization. Such problems are dealt with when we are trying to 

minimize or maximize two or more quantities by performing optimization. Such is 

the case when the optimization module strives to reduce both the cost of production 

and the effect of generation on the environment. 
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2.4 Optimization for cost reduction of generator operation 

A lot of work has been conducted on optimization in the MG paradigm. This work 

is not restricted to the operation of the MG. Although the work presented in this 

paper focuses on optimization of operation of the MG, Ref. [20] presented a 

dynamic programming approach for multi-objective planning of electrical 

distribution systems. In this planning, the optimal feeder routes and branch 

conductor sizes of a distribution system are determined by simultaneous 

optimization of cost and reliability. The multiple planning objectives are 

minimization of installation and operational cost, and also interruption cost. The 

first objective function consists of the installation cost of new feeder branches and 

substations, maintenance cost of the existing and new feeder branches, and the cost 

of energy losses. The second objective function measures the reliability of the 

distribution network in terms of the associated interruption costs for all the 

branches, which includes the cost of non-delivered energy, cost of repair, and the 

customer damage cost due to interruptions. In [21], the focus was directed on 

formulation of installation capacity optimization for determining the optimum 

capacity of a stand-alone hybrid generation system. The capacity determination of 

a hybrid generation system becomes complicated as a result of the uncertainty in 

the renewable energy together with load demand and the nonlinearity of system 

components. 

The following paragraphs will brief the reader on research studies performed on the 

optimization of MG optimization specifically. The optimization of operation of a 

MG is posed as a MILP problem in [22]. The system setup explained there included 

small DG sets, storage devices and controllable loads. The MG considered there was 

not an isolated one and avenues were made to enable energy trading with the 

upstream utility. The significance of this work lies in the simple co-ordination of 

generator operational costs, grid-trading costs and demand side management costs 

in the objective function. In this work no complex heuristics or decompositions were 

used and the full model was formulated and solved in an efficient way using 
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CPLEX solver. The advantage of this commercially available solver is that it is 

based on a branch and bound algorithm and hence when it terminates, the solution 

is known to be globally optimal. 

Ref. [23] deals with an optimization problem where the objective function is to 

maximize the expected profit enjoyed by the DG set owners over a period of time 

by coordinating the use of heuristic methods and dynamic programming. In [24], 

the objective is again to reduce the operational cost of a hybrid energy system. An 

economic index named levelised unit cost of electricity has been identified here. 

This is a function of the installation cost and the capital recovery factor. The 

operational cost of a unit is the product of this index and the real power output of 

the unit. 

In [25] a multi agent system was introduced for controlling the MG along with a 

classical distributed algorithm based on the symmetrical assignment problem for 

achieving the optimal energy exchange between the production units of the MG and 

the local loads, as well the main grid. Distributed algorithm based on the 

symmetrical assignment problem for the optimal energy exchange between the 

production units of the MG and the local loads, as well the main grid. 

In [26] the optimization problem involves minimization of a multi-objective cost 

function, which involves minimization of operational cost of the MG along with 

reduction of environmental effects. Although, they seem to be conflicting objective 

functions, in most conditions the operational costs of eco-friendly REGs are less. 

However, weight coefficient N is proposed to coordinate the proportion of 

generating cost objective and environmental cost objective. Ref. [27] also addresses 

a similar multi-objective optimization problem. A fuzzy system was used to choose 

one solution from the set of pareto optimal solutions obtained by solving the 

problem, that will satisfy all the objectives to some extent. Ref. [28] is yet another 

optimization problem where the objectives are to reduce operational cost and NOx 

emission levels. Weightings were tested to develop the trade off relations between  

the two objective functions. A fuzzy set was used to make the final decision. 
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In [29], the concept of optimization was extended to reactive power as well. The 

control variables in the real power optimization scheme continued to be the power 

outputs of the various generation units with the objective of minimizing the cost 

while that for the reactive power bus voltages, shunt capacitance/reactance and 

transformer tap positions were taken as the control variables with the objective of 

minimizing cost/losses. These two sub problems were solved simultaneously using 

particle swarm optimization. 

Ref. [30] also deals with two sub problems, one dealing with minimizing the 

overload and the other dealing with minimization of generation cost. Ref. [31], 

serves as a review paper on the various multi-objective optimization problems 

formulated and solved in this area with focus on various objective functions 

(conflicting and otherwise) and constraints.  

The Smart energy management system proposed in [32] includes power forecasting 

module, ESS and optimization module. The smart management of storage system 

and economic dispatch of the DG sets are bundled up into a single object 

optimization problem. The entire problem is solved using a derivative of the genetic 

algorithm. 

In [33] a hierarchical control strategy with three distinct levels has been proposed. 

As seen in Figure 2.6, the three levels are as follows 

 local micro source controllers and load controllers  

  MG system central controller  

 Distribution management system  

Here the distribution management system may control the operation of multiple 

MG establishments. 
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Figure 2.6: Hierarchical control strategy [33] 

In [34], local measurement of the MG load demand, wind power Generation and 

Solar Power generation as well as weather conditions serve as prerequisites to 

forecast the RE power generation and MG load demand. An artificial neural 

network ensemble is developed to predict 24-h-ahead photovoltaic generation and 1-

h-ahead wind power generation and load demand. Here, a fuzzy logic expert system 

is used for battery scheduling. The proposed approach can handle uncertainties 

regarding the fuzzy environment of the overall MG operation and the uncertainty 

related to the forecasted parameters. 

 

Figure 2.7: MIEM control structure based on fuzzy battery scheduling [27] 
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Due to stochastic nature of REG sources and invariable variations in forecasted and 

actual Load demand values, MG optimization will be incomplete without addressing 

the issues of inherent uncertainty. In [35], spinning reserve constraints have been 

formulated to address the issues due to uncertainty in forecast of load demand and 

prediction of wind velocity and irradiance. The spinning reserve is the extra 

generating capacity that is available by increasing the power output of generators 

that are already connected to the power system. For most generators, this increase 

in power output is achieved by increasing the torque applied to the turbine's rotor. 

It should also be noted that spinning reserve may positive or negative, i.e. the 

output of an online generator may be increased or decreased. In [28], it is assumed 

that variations in predicted load and output of REGs are within certain limits. 

Another interesting feature in [35], are the flow limit constraints.  These additional 

constraints further limit the inter-area power flow. Another paper which has 

addressed the security constraints associated with line overloads is Ref. [36]. Here 

the operational optimization with security constraints is performed with minimum 

deviation from the operational schedule without security constraints. 

In [37], the stochastic loads, probabilistic WT models and probabilistic PV models 

have been modeled. The spinning reserve amount is determined by maximizing the 

total profit while considering the unreliability of units and uncertainties caused by 

non-dispatchable units and loads. In order to reduce the computational burden, 

various uncertainties are aggregated and rounded to an equivalent distribution. The 

optimization is solved by MILP. The optimizer minimizes the total operational cost 

along with expected energy not served.  

An optimization algorithm was proposed in [38], which provided generation 

economic dispatch minimizing simultaneously the cost of primary reserve services, 

while ensuring the secure operation of the power system in the presence of 

disturbances. The primary reserves included security margins as constraints and 

these were extracted from decision trees developed for a number of pre-specified 

contingencies. The decision tree creates a chain rule path, which leads to secure or 
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insecure state of the system, following the pre-specified disturbance. Each set of 

rules that leads to a secure state is recorded as constraints set. The economic 

dispatch algorithm is executed for each pre-specified disturbance and each 

constraint set leading to a secure operating state of the system. 

As seen in Ref. [32], an ESS can also enter the unit commitment and economic load 

dispatch optimization problem. There the main objective of the storage module was 

to maximize the net present value. The net present value is determined through an 

economic analysis, over the storage module lifespan, considering its capital, 

operating and maintenance costs and parameters on which they depend, and energy 

purchase and sales costs. An equality constraint of the ESS periodical behavior was 

formulated to ensure that it does not dry up or overcharge. In fact the constraint 

dictates that it returns to its initial state of charge condition at the end of the day. 

Ref. [39] is yet another siting of the ESS in the cost minimization optimization 

problem. Here a knowledge based energy system is proposed for the scheduling of 

an ESS installed in a wind-diesel isolated power system. The main aim of this 

controller is to minimize the cost of operation of the system over a given period of 

time. The wind and load data are independent and considered as uncontrollable 

inputs. The controller must then schedule the diesel generation as well as the 

charging and discharging of the ESS in order to minimize the cost of operation, 

hour by hour, based on rules implemented in its knowledge base. Here the 

controller is tested and validated for both conditions, specifically when the diesel 

generator is in continuous and discontinuous operation. 

2.5 Demand side management strategies 

Traditional demand-management programs use direct load control, where portions 

of system load are under control of the utility. Electricity loads are well suited to 

providing reserves because they can respond very quickly (in many cases the ramp 

rate is constrained only by the speed of the communications network). For some 

time, system operators have used nonselective load shedding (i.e., disconnecting 

entire regions from the grid) as a measure of last resort to avoid system collapse. 
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Selective load shedding (i.e., disconnecting customers or specific customer loads 

based on prearranged agreements), on the other hand, has much more potential 

from the perspective of customer acceptance because noncritical loads can be 

targeted for shedding. Loads with significant energy storage capacity (thermal or 

electrical) are especially well suited for providing spinning reserve. This is because 

the time required to restore the system, and allow loads to return to normal, is 

often short enough that the end-use function may not suffer [40]. 

Ref. [41] presents a scenario in which a large number of end users possess 

controllable loads. Specifically speaking, the controllable loads used in their work 

were thermostatically controllable loads. Control strategies employed here may 

involve complete disconnection of the load for a particular period of time or a 

change in the thermostat settings. It was also assumed that only one control 

strategy can be applied to a particular load in a particular control window. The 

strategies introduced here involve reduction of load over a specified time via direct 

control of these controllable loads. This is done so by the formulation of an 

optimization problem. 

In Ref. [42], the controllable load is modeled in such a way that they can be 

scheduled to meet the REG. Here causal scheduling schemes are explored. Loads 

such as electric vehicles and thermostatic loads require a certain amount of energy 

over time. Here electric vehicles and thermostatic loads are clubbed together as 

their flexibility can absorb variability in REG. Both [43] and [44] also deal with 

load scheduling. In the former, the objective is to better utilize REG by shifting 

part of the load to periods with higher renewable generation. The electricity 

consumption of aggregated smaller loads which were referred to as deferrable loads, 

were shifted over time, and used (in aggregate) to compensate the random 

fluctuations in renewable generation. A real-time distributed deferrable load control 

algorithm was introduced to reduce the variance of aggregate load (load minus 

renewable generation) by shifting the power consumption of deferrable loads to 

periods with high renewable generation.  At every time step, the algorithm 
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minimizes the expected variance to go with updated predictions. In the latter the 

scheduling scheme is designed to follow a load curve while reducing the peak to 

average ratio. Here the objective was to reduce the sum of squared errors between 

the aggregate scheduled load and a specified target load profile.  

A lot of work has also been performed on rescheduling loads so that the stress on 

the system during peak hours may be reduced. This is sometimes termed as peak 

shaving. However, at first glance this might appear as a bleak plan formulated by 

the system operators to get their way around to enhance the reliability of their 

infrastructure. Hence, such rescheduling plans are laden with incentives to endorse 

customer participation. Efforts have even been made to better understand customer 

reaction to such rescheduling schemes. Ref. [45] investigates load-shifting behavior 

in response to dynamic pricing among both customers experienced with and new to 

demand response. 

The smart grid opens the possibility for demand-response programs. In order for 

end-users to obtain the maximal benefit from DR programs, low priority load 

should be shifted from the high energy price periods or should be operated at 

reduced power levels. To that end, Ref. [46] proposed a linear programming model, 

which reschedules the household appliances at relatively lower energy price periods 

to minimize the total energy cost in a day. Since this kind of rescheduling of a task 

creates inconvenience to the users, their model considered this inconvenience as 

disutility and modeled it as a function of delay. A disutility factor is defined which 

is a user defined adjustable parameter. Its value depends on the user’s tolerance of 

delay per appliance. It plays the same role as assigning weights to the disutility 

function. The constraints related to different power consumption patterns of 

different loads and the constraints imposed by the utility were considered to 

effectively model the appliance power consumption. 

A lot of work on energy demand rescheduling to reap financial benefits in the MG/ 

smart-grid paradigm was adopted from smart homes. Ref. [47] is one such example 

where an event driven smart home controller is used to facilitate automated 
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demand side management while enabling consumer economic savings. Here the 

optimization problem formulated is a binary linear programming problem, the 

output of which specifies the best time to run appliances in the smart household, 

under a virtual power threshold constraint, taking into account real power 

threshold and the forecast of consumption from non-schedulable loads. The 

optimization is performed each time the system is triggered by proper events, in 

order to tailor the controller action to the real-time dynamics of a household. Here 

different scenarios of controller operation have been analyzed. These include cases 

of home domain overload management, scheduling under a time of use tariff and 

demand side management. Fortunately, with the advent of the MG concept, 

projection of these strategies into a distribution level system has become simpler in 

comparison to the proposition of employing these strategies meaningfully in the 

conventional power grid. 

The changes in ways to control loads, coupled with increased penetration of 

renewable energy sources, offer a new set of challenges in balancing consumption 

and generation. Increased deployment of energy storage devices in the distribution 

grid will help make this process happen more effectively and improve system 

performance. Various applications of energy storage devices have been looked into 

in references [48, 49]. As seen in [50, 51] energy storage acts an energy buffer by 

ensuring that inherent variations in REG are compensated; thereby reducing 

voltage fluctuations and improving power quality. The planning, sizing and sitting 

of energy storage devices are also looked into as an optimization problem. In the 

above mentioned references batteries have been presented to have a good market 

potential in peak-load deduction (peak shaving) at substations, storage of off-peak 

wind energy, power smoothing for large solar arrays and in providing ancillary 

services (frequency regulation, black start capability). Ref. [52] also shows the 

automatic power balancing by the use of an energy storage operating in DC voltage 

control mode. This DC voltage controller was designed using a typical PI regulator. 

Also separate load curtailment policies were discussed in case the power balancing 
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was not achieved due to insufficient power rating or energy rating of the energy 

storage. In AC systems as well ESS are used to mitigate power fluctuation and 

assist in voltage and frequency regulation. 

Demand side management techniques are becoming increasingly popular in tackling 

the issue of power balancing particularly when there is a large penetration of 

renewable DG sets, whose output levels are uncertain. In Ref. [53], the responsive 

loads have been centered as the potential solution to the reliable integration of wind 

generation into the power system. Loads can often respond to operator request 

almost instantaneously unlike DG units which may require time to produce a 

significant change in output. Also, since these loads are spatially distributed 

throughout the grid they provide the opportunity to devise spatially precise 

responses to contingencies. The level of spatial and temporal flexibility that comes 

with considering loads as a means of providing a certain kind of spinning reserve 

especially to support the growing penetration of REG units has been the crux of 

this work. Here the issue of uncertainty in a REG penetrated environment has been 

addressed by real time management of generator output along with the smart 

control of load values. Here the amount of reserves to be dispatched and/or the 

amount of load to be reduced is determined in such a way that the costs incurred 

are minimized. The real time balancing operations depend heavily on the day-ahead 

commitment schedule and real time conditions. However, it is worth mentioning 

that works such as the one in Ref. [54] has focused on the use DG ramping to deal 

with excursions in demand and prices. Here the ramping of DG sets beyond the 

traditional ramping rates to meet these wild excursions has been explored. Since 

this could affect the life of the rotor, a ramping cost has been formulated to address 

this. 

Ref. [55] tells us about the long term effects of demand side control and 

management on system. Effects on capacity margin and transmission upgrades were 

demonstrated. These demand response resources as they were termed were also seen 

as an alternative to additional generation. The benefits of these applications in 
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terms of reduced number of loss of load events as a result of voluntary load 

curtailments were also shown. 
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Chapter 3 
 

System Overview 

   

This section will introduce the reader to the system at hand. Following sections will 

present the general layout and components of the MG along with the different 

technical specifications of these entities. The MG essentially consists of a network of 

interconnected DG units and loads; all of which will be presented in this chapter.  

3.1 Network Layout 

 

Figure 3.1: Layout of the test network  
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As stated earlier the MG presented here is nothing more than an interconnection of 

DG sets catering for the needs of the local loads connected to the network. Figure 

3.1 depicts the network that is used in this work. The distribution voltage level of 

this MG is 415 V. As is seen from the figure a FC and a MT are connected to bus 

A. A diesel Generator is connected to bus B. Both the renewable sources, namely 

the WT and the PV panels are connected to bus C. The REGs are connected 

farther away from the loads as they require a lot of sitting space. The two sets of 

loads have been connected to bus A and bus B. Each load set further consists of 

various types of loads which have been classified. These will be described in a later 

section. For the case of my institute that has been considered in this work, the load 

readings from institute panel-1 and institute panel-2 have been clubbed to form 

LOAD-1 and the meter readings from the hostel and workshop panels have been 

aggregated to form LOAD-2. 

Table 3.1: Specifications of power lines 

Line Reactance/km 

(Ω/km) 

Resistance/km (Ω/km) Length of the 

line (km) 

Power rating 

(kW) 

1 0.1 0.2 9 60 

2 0.1 0.2 10 60 

3 0.1 0.2 8 60 

 

Table 3.1 showcases the various specifications of the connecting lines that have 

been used in the MG. The lines have been numbered in accordance to the Figure 

3.1. 

 
1 1 0 0 0 1 0

0 0 1 0 0 0 1

0 0 0 1 1 0 0

g gr lA A A       
     
     
     
          

    

The above three matrices represent the incidence of the three conventional DG sets, 

the two REG sources and the two loads respectively on the three bus network. 
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3.2 Generator specifications 

There are two types of DG units available in this MG setup namely- the 

dispatchable and the non-dispatchable DG set.  

Dispatchable generation refers to sources of electricity that can be dispatched at the 

request of power grid operators; that is, generating plants that can be turned on or 

off, or can adjust their power output on demand. The main reasons for which 

dispatchable power plants are needed are: 

 Load matching - slow changes in power demand between, for example, night 

and day, require changes in supply too, as the system needs to be balanced 

at all times. 

 Peak matching - short periods of time during which demand exceeds the 

output of load matching plants; generation capable of satisfying these peaks 

in demand is implemented through quick deployment of output by flexible 

sources. 

 Lead-in times - periods during which an alternative source is employed to 

supplement the lead time required by large coal or natural gas fueled plants 

to reach full output; these alternative power sources can be deployed in a 

matter of seconds or minutes to adapt to rapid shocks in demand or supply 

that cannot be satisfied by peak matching generators. 

 Frequency regulation or intermittent power sources - changes in the 

electricity output sent into the system may change quality and stability of 

the transmission system itself because of a change in the frequency of 

electricity transmitted; renewable sources such as wind and solar are 

intermittent and need flexible power sources to smooth out their changes in 

energy production. 

 Backup for base-load generators - Nuclear power plants, for example, are 

equipped with nuclear reactor safety systems that can stop the generation of 

electricity in less than a second in case of emergency. 
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Non-dispatchable generation is a term for an energy system that cannot be expected 

to provide a continuous output to furnish power on demand, because production 

cannot be correlated to load. Hydrocarbon-based or nuclear power plants are 

dispatchable, but solar and wind power are non-dispatchable (without some added 

component for storage), since the supply of sunlight or wind is periodic and cannot 

be predicted and controlled. Hence they fall under the category of non-dispatchable 

generation. In general the only types of renewable energy which are dispatchable 

are biofuel, biomass, hydropower with a reservoir, and concentrated solar power 

with thermal storage. 

In the following sub-sections the reader will find a few notable characteristics about 

the dispatchable and non-dispatchable DG sets used in this test MG. The term 

dispatchable generation will be used interchangeably with the term conventional 

generation. 

MTs are very popular as generating units in DG systems and as energy producers 

in combined heat and power systems. At present they hold maximum prospect to 

be used as micro sources for MGs. They are small and simple cycle gas-turbines 

with output ranges varying from 25 to 300 kW. They are designed to operate for 

extended periods of time and have little maintenance. They can run on most 

commercially available fuels. Here we will be considering one working on natural 

gas and another diesel based generator. 

The FC serves as a micro-source by directly converting the energy in a fuel into 

electrical energy. It consists of two electrodes (an anode and a cathode) and an 

electrolyte which is retained in a matrix. The operation is similar to that of a 

storage unit except that the products and reactants are not stored, but are 

continuously fed to the cell. Fuel is fed to the anode and the oxidant is fed to the 

cathode. The two streams are separated by an electrode-electrolyte system. 

Electrochemical oxidation and reduction take place at the electrodes to produce 

electricity. FCs have several advantages over mechanically rotating DG units. Due 

to higher efficiency and lower fuel oxidation temperature, FCs emissions are 
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minimal. Also since they are free from moving parts, they are free from vibrations 

and noise. A single FC produces an output voltage of barely 1V, hence they are 

connected in series and parallel depending on desired rating to form a FC system. 

The two non-dispatchable units used in this work are a WT energy conversion 

system and a photo-voltaic panel system. The main part of the wind energy 

conversion system is the WT which converts wind energy into electrical energy. The 

wind turbine captures the kinetic energy of the wind and transfers it to the 

induction generator through the gearbox. 

Solar PV systems are yet another eco-friendly micro-source. They are especially 

attractive because solar energy is free and inexhaustible. However, they do have 

certain disadvantages such as high installation cost and low energy efficiency. 

Studies have shown that smaller solar farms are more cost effective than large ones. 

This further indicates the effectiveness of connecting this generation directly into 

the customer circuits at low voltage distribution networks. 

The following tables hold the specifications of the conventional DG units. The cost 

function of these DG units is modeled as a quadratic function 
2( )C P P P      

Table 3.2: Conventional generator cost parameters 

DG unit µ  (Rs) ɸ  (Rs/kW) λ  (Rs/kW^2) Startup 

cost (Rs) 

Shutdown 

cost (Rs) 

FC 5 3.5 0.02 15 15 

MT 7 4 0.05 17 17 

Diesel 

Generator 

18 5 0.08 21 21 

 

Table 3.3: Conventional generator operational parameters 

DG unit Pmax(kW) Pmin 

(kW) 

Ramp up 

(kW/h) 

Ramp down 

(kW/h) 

MUT (h) MDT (h) 

FC 65 24 45 45 3 3 
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MT 60 24 45 45 3 3 

Diesel 

Generator 

100 35 60 60 3 3 

 

The above two tables show the various economic and technical parameters of the 

conventional generators. In Table 3.3 maxP  and minP  represent the maximum and 

minimum generation levels of each generator. Ramp up and ramp down constraints 

restrict the magnitude of rise or fall in generator level during consecutive intervals. 

MUT  and MDT  represent the minimum up time and minimum down time of the 

generators. 

The REGs are connected to bus C of the bus 3 of the MG. Their forecasted 

production is assumed to be available in this study. Fig 3.2 shows the predicted 

production of these non-dispatchable generation sources. 

 

Figure 3.2: Maximum REG production levels 

However, the power from the REGs is restricted by their installation capacities 

(Table 3.4). The specifications of the installed REGs are as follows. The parameters 

discussed in Table 3.4 and Table 3.5 are analogous to those discussed in Table 3.2 

and Table 3.3. 
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Table 3.4: REG cost parameters 

DG unit αr  (Rs) βr  (Rs/kW) γr  (Rs/kW^2) 

PV array 18 0.5 0 

WT 23 1.15 0.025 

 

Table 3.5: REG operational parameters 

DG unit Pmax(kW) Pmin (kW) Ramp up 

(kW/h) 

Ramp down 

(kW/h) 

PV array 50 0 -- -- 

WT 75 16 40 40 

 

3.3 Load specifications 

Although the loads are aggregated from the unit commitment point of view, the 

loads at bus A and bus B are categorized as critical loads, lower priority curtailable 

loads and lowest priority adjustable loads.   

The critical loads include the power supply to hospitals, banks, indoor lighting etc. 

The critical loads of the MG are prioritized above all other loads. The local power 

supply and ES systems should ensure that the critical loads are met at any cost. 

Since they hold the highest priority these loads are catered to even at the expense 

of the other classes of loads. 

The curtailable loads are prioritized just below the critical loads. As mentioned 

earlier, these loads are fed from separate feeders. Curtailable load control is 

analogous to on-off control. These loads can either be connected or disconnected for 

a particular time interval. From optimization algorithm perspective, curtailable 

loads add as many binary variables as the loads themselves. Such large number of 

binary variables result in combinatorial explosion and such optimization problems 

are hard to solve. One may consider simplifying the problem by lumping all the 

curtailable loads as a single entity. However, such simplification is not considered in 
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this paper. Furthermore, these arms have been provided with their own priorities 

(penalties for disconnection) in the objective function formulation. These priorities 

include energy constrained loads, i.e. they will fail to provide their primary-end use 

function if they do not receive sufficient amount of energy. Loads such as 

refrigerators, escalators in shopping complexes and segments of street lighting can 

be included in the curtailable loads section. 

The adjustable loads include clusters of low priority loads whose curtailment lead 

only to a compromise in the quality of comfort experienced by the end user. These 

include classes of loads which respond quickly to control commands. Heating and 

cooling loads like water heaters and air-conditioners can be categorized into 

adjustable loads. To further elucidate the operation of these loads, let us take the 

example of a central air conditioning system in a building that is subjected to this 

scheme. Power usage of the system is a minimum when ambient temperature is to 

be maintained. Maintaining temperatures other than the ambient temperature 

require more power. The larger the difference between the ambient temperature and 

set point the more power is required. Any compromise in set point can result in 

power savings. A mere change in the set points of these devices can be seen as a 

means of load control. 

The practicality of dispatching these prioritized loads depends much on how they 

are modeled. Various priority loads discussed above can be further elucidated 

through a couple of examples. First let us consider an example of street lighting. 

While modeling the street lighting load we can have one in every three street lights 

belong to critical load. The other two can belong to two different sets of curtailable 

loads. Since one in every three street lights belong to a critical load we can ensure 

that even in case of large disturbances, the streets will still be lit to a certain 

extent. Next, consider modeling air conditioners for large buildings. The power 

required to maintain the temperature of a centrally air conditioned office building 

at 25 °C will be much less compared to the power required to maintain the 

temperature at 21 °C. Additional power required to lower the temperature of the 
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building to 21 °C for end user comfort can be treated as an adjustable load which 

can be compromised (given low priority) to maintain power balance. The same 

ideas can be extended to the operation of heating loads such as water heaters. Thus 

in case studies presented later, the air conditioners and water heaters have been 

considered as purely adjustable loads. 

 

Figure 3.3: Load side layout 

As seen in the above figure, along with the above mentioned loads there also exist 

an energy storage unit and a power sink. Having an ESS (i.e. battery) gives the 

added advantage of leveraging stored energy to maintain power balance and to 

minimize the curtailment of priority loads. Further, batteries can also help achieve 

fault tolerance against failure of a small generation unit. Batteries provide 

opportunity for the operator to store energy when it is in excess and use the stored 

energy to compensate for increased load demand or decreased energy generation. As 

stated earlier, excessive discharging or charging of a battery can adversely affect 

battery health. Therefore, certain constraints on charging and discharging rate, as 

well as on the maximum and minimum energy level of the ES have been modelled. 

The details of which are given in Table 3.6. The battery power is considered 

positive when it is charging and it is negative when it is discharging. Here maxbatP  , 

minbatP  , maxE  and minE  are maximum and minimum battery power flow rates 

and energy levels respectively. 
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Table 3.6: ESS Specifications 

Pbat-max (kW) Pbat-min  (kW) Emax(kWh) Emin (kWh) 

20 -20 50 10 

 

The power sink is seen as an energy dump. It is where all the excess energy that is 

generated is dumped. Since this is a wasteful practice, the proposed strategy will 

minimize the use of the power sink. However, in the case of system operation 

without energy storage, it becomes imperative to use this provision to maintain 

power balance and mitigate over-voltages. 

3.4 Sum of all components 

Figure 3.4 brings forth all the different functional blocks in the MG and assembles 

them in the IEEE smart grid conceptual model [11]. The entire architecture of the 

MG has been layered into computer & IT layer, communication layer and physical 

layer. In the figure the green, blue and red arrows stand for information transfer, 

control stream and power flow respectively. As seen in the figure, information about 

past load is used to determine the day-ahead forecast and also set day-ahead prices 

which are a reflection of the stress on the system. This function falls under the 

market operations section. This information about the dynamic day-ahead prices is 

made available to the end-users. The customers may choose to schedule a set of 

loads in order to help alleviate the stress on the system while reaping some 

economic benefits. This optimal scheduling is done one day in advance and in the 

accumulator the load prediction is modified in accordance to the customer’s choice. 

Communication channels are made available between the customer and this module 

to transfer information regarding the customer’s decision and the load subjected to 

scheduling. Along with the REG forecasts, the predicted value of load helps plan 

the generation schedule for the following day. Control signals from the unit 

commitment and economic load dispatch module govern the generation levels of the 

DG sets in the MG.  
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However, owing to inevitable mismatches in generation and demand, the real-time 

load balancer module has been constructed. As the name suggests this module 

operates as an online control over load values. It has also been provided with 

control of the supporting ESS. Options for sudden ramping of online generator are 

also governed by this module. These interactions between the operator and the end 

user which is an integral part of demand side management come under the service 

provider domain.  
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 Figure 3.4: MG optimization workflow 
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Chapter 4 
 

Load forecasting module 

   

In this section, the first functional block of the workflow diagram will be explained 

and obtained results will be introduced. Here we have used the time series 

multiplicative model to predict future load demands.  

In this section, the first functional block of the workflow diagram will be explained 

and obtained results will be introduced. Here we have used the classical time series 

multiplicative model to predict future load demands. These models however, cannot 

capture the complex relationships between load demand and other factors like 

weather conditions and operational contingencies which may affect the system. 

However, these are simpler and faster and more importantly perform satisfactorily 

even with limited data to work with. Considering the window of time in which this 

module was commissioned, only a month’s worth of real-time load data from the 

institute was available.  

Time series models can developed in much the same way as a regression model. In 

our case the observation were considered as a product of components namely- 

Seasonal, irregularity and trend component. 

4.1 Time series model 

In this work, load demand data was collected over a month and sorted according to 

the day of the week. This constitutes a time series. A time series is a collection of 

observations of well-defined data items obtained through repeated measurements 
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over equally spaced intervals of time. Data collected irregularly or only once are not 

time series. 

Our observed time series can be decomposed into three components namely: trend 

component, seasonal component and irregular component. 

First off, if we are going to use a time series for prediction we need to find any 

trend that might exist in the data. As trends tend to be obscured by the random 

errors, some smoothing method is needed to iron out some of the “ups" and 

“downs". The simplest way of smoothing a time series is to use a moving average, 

which is based on averaging adjacent time periods. It essentially creates a series of 

averages of different subsets of the full data. Since the time period for our time 

series is 24, the moving average is going to average 24 observations while dropping 

down and capturing a new observation. That is, when calculating successive values, 

a new value comes into the sum and an old value drops out. It is important to note 

that here the mean is normally taken from an equal number of data on either side 

of a central value. This ensures that variations in the mean are aligned with the 

variations in the data rather than being shifted in time. 

 

12 11 10 11...... ......

24

i i i i i
i

O O O O O
MA

      


  (4.1)  

In the above equation iMA  and iO  refer to the moving average the measured 

power at the instant i . However, since the time period is an even number, the 

moving average values are not centered. Hence we need to perform a centered 

moving average of the given set. This is done by simply averaging 2 values of the 

moving averages while dropping down and capturing a new moving average value. 

This essentially helps smooth out the time series. This essentially takes out the 

seasonality and the irregularity components from the time series. The equation for 

centered moving average represented as iCMA  at instant i    
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  (4.2) 

The seasonal and irregular components are obtained from the equation below: 

 

,
i

i i

i

O
S I

CMA


  (4.3) 

The seasonal component consists of effects that are reasonably stable with respect 

to timing, direction and magnitude. It arises from systematic influences such as: 

demand during the hour of the day, end-user patterns, institute time table etc. 

Seasonality in a time series can be identified by regularly spaced peaks and troughs 

which have a consistent direction and approximately the same magnitude every 

similar day, relative to the trend. 

The irregular component (sometimes also known as the residual) is what remains 

after the seasonal and trend components of a time series have been estimated and 

removed. It results from short term fluctuations in the series which are neither 

systematic nor predictable.  

Smoothing gets rid of both the irregular component and the seasonal component. 

What we might like to do is just remove the seasonal effect and leave any trend 

and random ups and downs in the data.  

 

i
i

i

O
DS

S


  (4.4) 

The resulting series gives us what is called the “deseasonalized” data and it may 

give us a better idea of what is happening. 

As mentioned earlier, the cycle lasts 24 hours; hence we will have 24 seasonal 

components. Averaging each of the combined seasonal and irregular components 

combined for each of the 24 hours over the given observed data set is going to give 

the seasonal component.   
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Next we need to find the trend component. This requires us to perform simple 

linear regression with the deseasonalized set is going to serve as the Y-variable and 

number of the observation as the X-variable. 

Linear regressions suggests an approximation of the form   c dt f    

Over the entirety of the observations this can be written in matrix form as  

 

( 2) (2 1) ( 1)NX X NXA U F

  (4.5)     

Here the first column of A  matrix is filled with ones and the second column 

sequentially extends from 1 to N, where N is the total number of observations or 

measurements. The matrix U  contains the coefficients c and d. The matrix F  is a 

column matrix, which holds all the observed values. 

As the case may be, not all there may not be an exact solution to this system of 

equations. The  objective thus translates into finding the best value of c and d (
^

U  ) 

such that the error e  or 
^

F AU  is minimized. This is essentially called the 

method of least squares. If 
^

( )F AU  is the error in our approximation, the least 

square minimization becomes  

 

^ ^

min{ } min{( ) ( )}T Te e F AU F AU  

  (4.6) 

This can be solved either as an optimization problem or geometrically. Solving it 

geometrically has proven to be an easier option and it is as follows. 

Our system of equations is essentially AU F . The LHS basically gives a 

combination of columns. All possible combinations will give a plane of exact 

solutions. However, RHS is not an exact solution. Here we use the principle of 

projection to find the shortest distance between the desired point and a point on 

the plane. This shortest distance or error between the two is going to be a 

perpendicular. 
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Let 1a  and 2a  be the columns of the matrix A . The combinations of 1a and 2a  will 

give the plane of exact solutions. 

This gives  

 

1 0Ta e 

  (4.7) 

 

2 0Ta e 

  (4.8) 

The combination of the two will give 

 

^

^

0

( ) [0]
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A e

A F AU

A AU A F



  

    (4.9) 

This is the solution for the least square regression method. This can also be 

obtained by performing optimization. 

In recursive least squares algorithm, we would like to use the calculations that have 

already been made, in contrast to starting over from the beginning. The subscripts 

old  and new  have been used to signify this in the following equation. 

With the new entries, system becomes of the form  
^old old

new new

A F
U

A F

   
   

   
 or 

   
^

1 1 1A U F  . 

In such a case the update procedure is as follows: 

We additionally define another variable P  

 

1
0

TP A A 

  (4.10) 

 and it is updated as follows: 

 

1 1
1 0 1 1

TP P A A  

  (4.11) 

From this we get the Kalman matrix according to the equation  
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1 1
TK P A

  (4.12) 

The update equation for the vector 
^

U  is as follows: 

 

^

1 1 0 0 1 1( )T TU P A F A F 

  (4.13) 

The coefficients obtained c and d, are used to obtained the trend component of the 

given time series. Once this is obtained a mere multiplication gives the predicted 

values and this can be extended to include the forecast of a number of days. 

4.2 Results of the forecasting module 

The data from 3 weeks was used to develop the time series multiplicative model 

and it was tested against the data from the 4th week. Some load predictions may 

appear to be far more accurate than others and this partly because of exogenous 

factors, such as festival holidays, weather conditions and special technical 

workshops.  

4.2.1 Friday forecast 

The following graph shows the load prediction for Friday using time series 

forecasting with linear regression in the recursive least square sense. 

 

Figure 4.1: Friday load demand forecast 
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 MAPE = 6.31%. 

4.2.2 Saturday forecast 

The following graph shows the load prediction for Saturday using time series 

forecasting with linear regression in the recursive least square sense. 

 

Figure 4.2: Saturday load demand forecast 

MAPE= 6.42%. 

4.2.3 Sunday forecast 

 

Figure 4.3: Sunday load demand forecast 
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The above graph shows the load prediction for Sunday using time series forecasting 

with linear regression in the recursive least square sense. 

MAPE= 17.34%. 

4.2.4 Monday forecast 

The following graph shows the load prediction for Monday using time series 

forecasting with linear regression in the recursive least square sense. The forecast on 

Monday was not very accurate as two out of the three previous Mondays used to 

develop the model were holidays. 

MAPE= 15.81%. 

 

Figure 4.4: Monday load demand forecast 

4.2.5 Tuesday forecast 

The following graph shows the load prediction for Tuesday using time series 

forecasting with linear regression in the recursive least square sense. 
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Figure 4.5: Tuesday load demand forecast 

MAPE= 8.93%. 

4.2.6 Wednesday forecast 

The following graph shows the load prediction for Wednesday using time series 

forecasting with linear regression in the recursive least square sense. 

 

Figure 4.6: Wednesday load demand forecast 

MAPE= 6.81%.  

4.2.7 Thursday forecast 
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The following graph shows the load prediction for Thursday using time series 

forecasting with linear regression in the recursive least square sense. 

 

Figure 4.7: Thursday load demand forecast 

MAPE= 8.55%. 

These forecasts are then used in subsequent modules to set the unit prices in the 

MG and also as an input to the unit commitment and economic load dispatch 

module. The dynamic prices set by the operator will also be used by the customer 

to optimally schedule his load if he wishes to. Both these day-ahead modules will be 

looked into detail in the next chapter. 
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Chapter 5 
 

Day-ahead optimization module 

   

In this section, the day-ahead optimization schemes in the presented setup will be 

discussed. This basically includes a day-ahead consumer driven optimal load 

scheduling unit and a unit commitment and economic load dispatch unit. There is a 

sequential flow of information from the load forecasting unit to the first and the 

second unit of this module. 

The Information from the load forecasting unit may be used to define the day-

ahead prices that the customers may be charged.  

 

Figure 5.1: Day-ahead (Monday) prices 
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These prices are going to be directly proportional to the load demand or the stress 

on the system. This is done to discourage the use of electricity during the peak 

hours. Here the maximum price that the customer can be charged is multiplied with 

the normalized load demand forecast to get the day-ahead prices. All further 

analysis will be performed for the 4th Monday whose forecasted value is available in 

the previous chapter.  

The maximum price per unit in the S1 area (Andhra Pradesh and Karnataka) were 

obtained from the IEX [56]. It was taken as Rs 5.205/kWh. 

5.1 Offline optimization blocks 

5.1.1 Day ahead load scheduling 

This information about the dynamic day-ahead prices is going to be made available 

to the customer one day in advance (Sunday) via communication links. The 

customer has the choice to reschedule some of his loads away from the peak hours. 

This kindness towards the operator's  need to reduce the stress on the system which 

will eventually improve the reliability of the system and reduce the maintenance 

required is rewarded here. The dynamic prices itself provide an incentive to shift 

loads away from the forecasted peak hours as it will help reduce the bills incurred 

by the customer. The prices are a direct reflection of the stress on the system, i.e. 

consumers are charged higher prices when the stress (demand) on the system is 

higher. 

Here three loads have been identified for the purpose of load rescheduling. The 

details of these loads have been tabulated in the table below. These tasks or loads 

are all constant power loads with a fixed energy requirement. The customer also has 

the prerogative to set windows of operation for each of these tasks. These windows 

define the time window in which the task has to be started and completed. Also it 

has been assumed that once the task has been started it has to run continuously till 

the end.  
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Table 4.1: Schedulable load specifications 

Schedulable Load Energy 

Required 

(kWh) 

Power Level 

(kW) 

Earliest (time of 

Day) 

Deadline (Time 

of Day) 

Washing Machine 

Service 

45 15 18 24 

Electric Vehicle 

Charging 

150 30 1 8 

Maintenance 

Service 

40 8 9 15 

 

The process of optimal scheduling is solved as a MILP problem. The governing 

equations are as follows: 

 

  
     

,
1 1

min ,
t SL

const
x sl j

j sl

K j P sl x sl j
 



  (5.1) 

The above equation will serve as the objective function that is to be minimized. 

Here SL refers to the total number of schedulable loads. ( )K j  is the dynamic price 

at instant j . ( )constP sl  and ( , )x sl j  are power requirement of schedulable load sl  

and status (on/off) of the load sl  at time j . 

The following equation determines the time required to complete each task. Here 

( )E sl  is the energy requirement of the load sl . 

 

 
 

 
 

1

,
t

j const

E sl
x sl j T sl

P sl

 

  (5.2) 

The following three equations ensure that each task is initiated only once and 

completed within the stipulated time frame and to ensure the preemptive nature of 

the load. Here ( , )d sl j  is the switch-on variable. It is 1 when the task is switched 

from being inactive to being active. 
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 
1

, 1
t
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d sl j

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  (5.3) 

 
     , , , 1, , 1d sl j x sl t t j j j T sl     

  (5.4) 

 
      , 0 ,e dx sl j j T sl T sl  

  (5.5) 

The optimization program proceeds to relocate the schedulable loads in such a way 

that the customers incur minimum bills.  

5.1.2 Unit commitment and economic load dispatch unit 

Since In this section we define the MG economic scheduling problem. At every time 

step, the MG scheduler must take high level decisions regarding the status and also 

the generation level of each DG unit. The information from the revised forecast is 

going to be used by this unit to generate set points for the various DG units. 

MG economic optimization is achieved by designing the decision variables so that a 

cost functional representing the operating costs is minimized. The problem is solved 

as a MINLP problem. The governing equations of the optimization problem are as 

follows : 
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up dn
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d i j S i f i j S i

   

   

 



 

 
  (5.6) 

This will serve as the objective function to be minimized. i  and r  are the indices of 

conventional DGs and REG sources respectively while CG and R will serve as the 

total number of conventional and non-conventional (REG) DG sets. ( , )P i j  and 

rP ( , )i j  represent the generation levels of the conventional and renewable DG 

sets.C  and rC  are the quadratic cost functions of the conventional DGs and REG 

sources respectively. Similarly ( , )u i j  and ( , )ru r j  are the statuses of the 

conventional DGs and REG sources respectively. d  and f  are the switch-on and 

switch-off variables of conventional DG sets. ( )upS i  and ( )dnS i  are the costs 

associated with these two respective actions. 
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     min max,P i P i j P i 

  (5.7) 

 

     ,min ,max,r r rP r P r j P r 

  (5.8) 

The above two equations lay limits on the generation of both conventional 

DGs and REG sources available. 

 

       , , 1d uR i P i j P i j R i   

  (5.9) 

 

       , ,, , 1r d r r r dR r P r j P r j R r   

  (5.10) 

The above two equations restrict the ramping up and ramping down of the DG sets 

which restrict the increase or decrease in generation level with reference to its 

previous generation level. 

 

         , , 1 , 0onT i j MUT i u i j u i j   

  (5.11) 

 

         , , 1 , 0offT i j MDT i u i j u i j   

  (5.12) 

 

         , , , 1 , 0rr on r rT r j MUT r u r j u r j   

  (5.13) 

 

         , , , 1 , 0rr off r rT r j MDT r u r j u r j   

  (5.14) 

( / , )onT i r j  and ( / , )offT i r j  represent for how long each DG set has been on or off 

at time instant j .The above four equations implement the minimum up time and 

minimum down time of the DG units installed in the MG.  

The following equations have been used for developing the Load flow model of the 

MG. It is to be noted that the load balance equality constraint has also been 

included in this power flow formulation. 
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  (5.17) 

In the above equations ,n k  and l  stand for indices of buses and lines.V  is the 

operating per phase voltage of the distribution system in volts. ( , )injP n j  represent 

the power injected in bus n  and time instant j . ( , )R n k  and ( , )X n k  represent the 

resistance and reactance of the line connecting bus n  and bus k . / )n k  is the 

power angle at the particular bus.  maxfl line  is the maximum power handling 

capability of a line. The first equation serves to define the power injected at each 

node. The second accounts for nodal balance, which also encompasses the 

traditional load balance constraint that is so pivotal in every unit commitment and 

economic load dispatch model. The third equation sets flow limits on power flow 

between lines due to line limitations. 

5.2 Results for offline optimization module 

5.2.1 Results for load rescheduling module 
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Figure 5.2 Scheduled load values 

The results of the optimization problem are shown above and this becomes 

instrumental in revising the existing forecast. The forecast from the forecasting 

module and the revised forecast are also shown in the figure below. There is an 

obvious reduction in the peak demand of the system. It is important to keep in 

mind that the operation window plays a key role in determining the magnitude of 

peak reduction. 

 

Figure 5.3: Forecast and revised load forecast values 
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The problem was solved in the GAMS environment. Similar scheduling was also 

done for variable power schedulable loads. However, solving the objective 

function for non-preemptive nature of these loads was found to be NP hard. 

5.2.2 Results for unit commitment and economic load dispatch 

 

Figure: 5.4 Conventional generation levels 

 

Figure: 5.5 REG levels 

The above two diagrams show the generation of the conventional DGs and the 

REGs. It is to be noted that REG levels are not at their maximum even thought 
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they are the cheapest. This is set so that all the constraints for the present hour 

and coming hours may be satisfied. 
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Chapter 6 
 

Fault tolerant power balancer 

   

In this section, the online optimization module will be discussed. Here we focus on 

the prioritization and advanced control of load in conjunction with a controlled use 

of an energy storage device. Direct load control can often respond to the requests of 

the operator instantaneously whereas the generators are usually lugged down by 

their larger time constants. Such a use of load as a system service can also 

circumvent the use of  fast ramping but inefficient generators. In many cases an 

unforeseen increase in electrical demand causes the operator to bring increasingly 

inefficient generation online. Under such circumstances, it is possible that the 

supply side generation costs will be greater than the retail price. The use of direct 

load control under pre-agreed terms and conditions can help alleviate this problem. 

The ESS is also introduced to improve system reliability. Before delving deeper into 

the topic, the communication infrastructure which is an  important pre-requisite for 

this module will be briefly discussed.  

The control architectures discussed in the following sections have their own 

demands on the supporting communication infrastructure. The communication 

networks need to take into account the highly distributed nature of the loads. 

These loads are already embedded in the power system and communication 

platforms ranging from broad band connections to advanced metering infrastructure 

are becoming widely available. It may soon be the case that the only technical 
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impediment to reliable realization of utilization of loads for system services might 

be the development of necessary load models and control strategies. The most 

practical forms of load control tend to utilize control commands that re broadcast 

across all loads, rather than targeted to specific installations.  

The objectives of this method is to develop a novel load side operation and control 

method for the proposed system. Here we are going to explore opportunities to use 

load control schemes to achieve power balance that are competitive with 

conventional generator based approaches. Also we will be taking into consideration 

a large penetration of REG and rather realistic variations between forecasted load 

and actual load resulting in larger power imbalances compared to conventional 

power grids. Here the whole energy balancing issue as a real-time optimization 

problem which runs every 15 minutes. However, owing to the low run time of the 

algorithm the same can also be executed for smaller time intervals. 

6.1 Optimization module 

This section will give an overview of the optimization module. Three separate 

optimization problems have been constructed for cases depending on use of 

generator ramping and energy storage use. Here we taken the luxury of lumping the 

all adjustable loads as a single adjustable load whose value can be varied from full 

load value to zero. However, the curtailable loads have disunited and have been 

presented as three separate entities with their own separate priority values. 

Priorities refer to the penalty faced by the operator for compromising the end use 

performance of the load. The figure below is a representation of the optimization 

problem we will be looking at. 
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Figure: 6.1 Online optimization module 

Figure 6.2  shows the actual load demand on the 4th Monday that was collected 

from LOAD 1 (institute panel 1 and institute panel 2) and LOAD 2 (hostel panel 

and workshop panel). As mentioned earlier, the forecast on Monday is not the finest 

since the previous data sets used to develop the model included exogenous factors 

like holidays which were not taken into account during forecasting. However, this 

proves to be a good platform to depict the efficacy of the proposed power balancing 

scheme. The figure also shows actual generation values. There is bound to be some 

mismatch between the two owing to varying solar and wind conditions. Since we 

are not operating the REGs in maximum power point tracking fashion, the 

deviation in actual and anticipated REG level is going to be negative. 
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Figure 6.2: Actual load demand and generation levels 

Figure 6.3 shows the real-time distribution of load demand over 96 of these 15 

minute intervals. The load classification is in accordance to the briefing done in the 

System overview chapter. 

 

Figure 6.3: Actual load demand distribution 

6.2 Real-time power balancer problem formulation 

Here we will be looking at the general power balancer optimization problem. We 

will also be looking at variants of the generalized problem under specific cases in 

the following subsection. 
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6.2.1 Operation with ESS and generator ramping support (Case 1) 

The objective function formulation of the energy management system for real time 

power balancing for each instant with the use of battery and generator ramping is 

discussed in this section. The decision variables used here include ( )adjP k  which is 

the total adjustable load aggregate available for reduction at the time instant k, 

( , )u i k  which is the on/off status of the curtailable load i  at the time instant k . 

Here ( , )curP i k  is the value of demanded curtailable load i  at time instant k . The 

number of distinct curtailable load sets is N . ( )critP k  is the value of demanded 

critical load at time instant k . sin ( )kP k  gives the value of power dissipated in the 

dump. Where α, β and γ are the priority values of the adjustable, curtailable loads 

and the sink respectively. The number of distinct curtailable load sets is N . The f  

denotes a fraction of the adjustable load that should be curtailed for power 

balancing and naturally it varies from 0 to 1. The objective function has also gone 

ahead and incorporated the ESS in such a way that its energy state  always tries to 

always tries to return to a user specified value oE . A penalty  has also been 

defined for any deviation of the battery state ( )E k  at time k  from this specified 

value. In addition to the load side support units, the ramping ability of the 

dispatchable DG sets are also used in the power balancing scheme. The use of these 

ramping generators further helps quality of service enjoyed by the end-user. In the 

equation below, rP ( , )amp cg k and ( , )status cg k  refers to ramping power and on or 

off status of conventional generator cg  at time instant k . The total number of 

these dispatchable DG sets available is G . The formulation is such that only 

generators that have already been brought to run by the unit commitment module 

are made available for this ramping exercise. This has been done to avoid wasteful 

startup costs during the process of load balancing. A penalty )cg  has also been 

set on this sudden ramping of generators. The problem is solved as a MINLP 

problem and solved using couenne solver in GAMS. The formulation is as follows: 
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Subject to: 

 

0 1f 

  (6.2) 

The f  denotes a fraction of the adjustable load that should be curtailed for power 

balancing and naturally it varies from 0 to 1. 
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 min maxE E k E 

  (6.4) 

 

 _ min _ maxbat bat batP P k P 

  (6.5) 

The above three equations deal with the dynamics and constraints of the battery. 

( )batP k  is the power output of the battery. It may be positive or negative 

depending on whether the battery is charging up or discharging. s refers to the 

sampling time in minutes, here it is 15 minutes. The above constraints ensure that 

the battery energy levels and power flow are within the permissible lower and upper 

limits namely ( min max,E E ) and ( min max,P P ) respectively. 

 

     r_ min _ max, P ( , )ampC CP cg P cg k cg k P cg  

  (6.6) 

 

     min maxP ,ramp ramp rampP cg cg k P cg  

  (6.7) 
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The above two equations refer to the spinning reserves of the dispatchable units. 

Equation 6.12 defines a capacity of the generator which is slightly broader than the 

generation limits imposed on the sets during unit commitment problem. _ mincP  and 

_ maxcP  are the minimum and maximum capacities of the conventional generation 

limits.  minrampP cg
 and  maxrampP cg

 are minimum and maximum ramping values of a 

conventional DG unit in the sampling time s . A small scope for ramping is also 

included in Equation 6.7. The restriction on the value of this online ramping is to 

ensure that it is within the hourly ramping capacity of the generator. It is to be 

noted that rP ( , )amp cg k  is used to update the value of generation level of the 

dispatchable DG sets and this value is used in subsequent runs of the algorithm. 

The equation given below gives the power balance equation of the system at each 

sampling instant. 

 

   (6.8) 

Although the formulation gives the user complete flexibility to set different relative 

priorities for the different components, in my run of the algorithm, curtailable loads 

have higher priority compared to adjustable loads. Additionally, the priority levels 

of the curtailable loads increase from 1 to N . The wasteful dumping of power when 

generation is greater than demand is highly discouraged and a large penalty value 

( )is set on it. Furthermore, the value of   is chosen greater than   but less than 

all the  s. As a consequence the battery will try to attain its optimal energy value 

even at the expense of the adjustable load, while curtailable loads are provided for 

even if battery energy level deviate from its desired value. However, the choice of 

these weights are completely flexible and they may be chosen differently for a given 

application.  

Also, here the curtailable loads have been lumped together to form three 

controllable loads. The priorities of these loads with respect to the ramping of the 
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three generators in this study follow the inequality: 

1) 1) 3 3                  . So in case of an energy shortage, the diesel 

generator will ramp up only to cater for the highest priority curtailable load. 

In this mode of operation the optimization module dictates the levels of various 

loads with the provision of standby power in the form of ESS and generator 

support. Here the loads are adjusted and curtailed according to their priorities. In 

all the cases catering for the critical load is imperative and no compromise can be 

made. 

6.2.2 Operation under the occurrence of a fault (Case 2) 

In this scenario, the operation of the power balancer is studied under the occurrence 

of a fault. Here a fault refers to the outage of one of the DG sets.  

6.2.3 Operation with only ESS support (Case 3) 

The problem formulation in this section is the same as the one in the previous 

section except for the fact that the option of generator ramping has been removed. 

So the power balancer can only avail support from the ESS. This has been logically 

implemented by increasing the penalty for using the generator ramping to a very   

large value. This in effect becomes the same as denying access to the ramping 

capabilities of the conventional generator. This is going to result in slightly 

deteriorated performance as far load reliability is concerned. Also since the option 

of ramping down production is not available the excess power dissipated at the 

power sink is also going to be more.  

6.2.4 Operation without ESS or generator ramping support (Case 4) 

This case features an additional handicap where the support of the ESS is also 

removed. This can be the representation of the scenario where the ESS is not 

available due to its inherently high installation cost. The scenario translates into 

mathematics by setting the value of   along with those of  s to a very high value. 

6.3 Results for power balancing module for various cases 

6.3.1 Results for Case 1 
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This subsection will hold the results for the first case study in this chapter namely, 

the operation of the load balancer with ESS and generator ramping support. Figure 

6.4 shows the catered curtailable load profile. The lower priority adjustable loads 

are controlled to accommodate both the curtailable loads and the return of the 

battery to its specified state. The use of power sink is done so only when the 

generation is greater than demand and if dealing with that is beyond the technical 

constraints of both the ESS and the ramping generators. Hence not a lot of power is 

wasted at the sink. Figure 6.5 shows the catered adjustable loads and the power 

dissipated at the sink. 

 

Figure 6.4: Catered curtailable loads (Case 1) 
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Figure 6.5: Catered adjustable loads and power dissipated (Case 1) 

Figure 6.6 and 6.7 are depictions of the battery energy level and power level 

respectively. The next figure 6.8 shows the real time ramping of the three 

dispatchable generators. It is seen that the larger diesel generator which is not 

online (according to the unit commitment scheme) most of the time does not 

contribute much to this online load balancing. This is also because the penalty for 

ramping the unit is large and hence utilized only to provide for the higher priority 

loads. 

 

Figure 6.6: Battery energy states (case 1) 



72 

 

Figure 6.7: Battery power flow (Case 1) 

 

 

Figure 6.8: Conventional generator ramping (Case 1) 

6.3.2 Results for Case 2 

Here the MT is subjected to a fault which results in it being inoperative. This 

results in a fall in the real time generation fault as shown in Fig 6.15. This also 

implies that this DG set will not be available for providing reserves during real time 

power balancing operation. As is evident from the figure the fault occurs at 12 in 
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the pm and persists for a good 3 hours. Figure 6.16 shows that in spite of this large 

reduction in generation, the curtailabe loads especially those falling under the 

higher priority are catered for even during most of the time instants from 49-60. It 

is also worth mentioning that even under these circumstances, serving the critical 

load is maintained as an imperative. The figures following show the behavior of the 

other elements included in our scheme in response to this drop in generation due to 

fault. 

 

Figure 6.9: Generation under fault 

 

Figure 6.10: Catered curtailable loads (Case 2) 
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Figure 6.11: Catered adjustable loads and power dissipated (Case 2) 

 

Figure 6.12: Battery energy states (Case 2) 



75 

 

Figure 6.13: Battery power flow (Case 2) 

 

Figure 6.14: Conventional generator ramping (Case 2) 

6.3.3 Results for Case 3 

Here the performance of the proposed power-balancing algorithm for a system with 

only ESS support is considered. In this operation the optimization module dictates 

the levels of various loads with the provision of a standby energy source. The 

catered profiles of the curtailable loads under this scheme are shown in Figure 6.15. 

Although there is a deterioration in the end-user services, due to the ESS some of 

the curtailable loads are still catered for. Figure 6.16 shows the adjusted values of 
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the adjustable loads and the power dumped. As was in the previous case, the 

adjusted loads have been controlled to accommodate the curtailable loads and the 

return of the battery energy state to the user specified state.  

 

Figure 6.15: Catered curtailable loads (Case 3) 

 

Figure 6.16: Catered adjustable loads and power dissipated (Case 3) 

Furthermore, Figure 6.17 shows the variation of battery energy states during the 

span of this day. Corresponding power flow to and from the battery are also shown 

in Figure 6.18. Here positive values of battery power signify charging and negative 

values signify the discharging of the battery. 
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Figure 6.17: Battery energy states (Case 3) 

 

Figure 6.18: Battery power flow (Case 3) 

6.3.4 Results for Case 4 

Figure 6.19 and 6.20 represent the loads that have been catered for. It is seen that 

without the supporting units even the higher priority curtailable loads are not 

properly catered for. Also, there is a large unchecked dissipation of power whenever 

the generation exceeds the demand. 
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Figure 6.19: Catered curtailable loads (Case 4) 

 

Figure 6.20: Catered adjustable loads and power dissipated (Case 4) 
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Chapter 7 
 

Conclusions and Future work 

   

This work has strived to bring together various optimization modules that could 

prove to be useful in the MG paradigm. It has also linked these modules and shown 

their tandem operation to generate meaningful results. 

Provided with more data, the load forecasting module can be made more accurate. 

This is something worth looking into in the future. If more data regarding power 

consumption is made available there is also scope for developing more advanced 

forecasting modules like neural network modules, fuzzy system modules etc. This 

will also provide an avenue to take into account exogenous factors like weather, 

holidays, probability of special events etc. 

In subsequent modules, a multi-period optimization scheme has been proposed to 

solve the problem of unit commitment and economic load dispatch in an isolated 

MG. Various constraints on the DG units were also included along with restrictions 

on inter-bus power flow. The distribution system was implemented using the power 

flow model of the MG. Participation from the consumer-side was also considered 

during objective function formulation.  Load scheduling from the consumer side 

helped reduce the energy charges incurred by the consumers for specific tasks. It 

also helped reduce the stress on the system during peak hours. This served as a 

quid pro quo arrangement between end users and the MG operator. The fault 
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tolerant load balancer scheme was proposed as a novel online optimization strategy 

for balancing generation and demand. 

In the unit commitment and economic load dispatch module, only active power 

requirement of the system has been considered in the optimization problem; future 

work can include reactive power requirement of the system as well.  

In the fault tolerant load balancer module we have explored various control 

strategies to attain power balance. Although the use of fast ramping generators is 

not particularly attractive considering the nature of this MG, this work has 

proposed a scheme in which a healthy balance between the various options is 

struck. The present operation of the fault tolerant balancer can be further be 

improved to increase end user performance. Although the present scheme prioritizes 

the loads and caters for the high priority ones, it may compromise end user comfort 

to a certain extent for considerable variations in generation and demand.  

Another unexplored area is the pricing of energy and the remuneration the end-

users will be awarded for tolerating various contingencies. Although a simplified 

price determination module was presented, it depends on various other factors 

which are worth exploring in this scenario. This work has also not looked into the 

compensation the customers should be given for participating in activities that 

could compromise their comfort like the power balancer operation. 
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