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Abstract—In the remote health care monitoring applications,
the collected medical data from bio-medical sensors should
be transmitted to the nearest gateway for further processing.
Transmission of data contributes to a significant amount of power
consumption by the transmitter and increase in the network
traffic. In this paper we propose a low complex rule engine
based health care data acquisition and smart transmission system
architecture, which uses IEEE 802.15.4 standard for transferring
data to the gateway. The power consumed and the network
traffic generated by the device can be reduced by event based
transmission rather than continuous transmission of data. We
developed two different rule engines: static rule engine and
adaptive rule engine, which decides whether to transmit the
collected data based on the important features extracted from
the data, thereby achieving power saving. In this paper, ECG
data acquisition and transmission architecture is considered. The
metrics used for performance analysis are the amount of power
saving and reduction in network traffic. It is shown that the
proposed rule engine gives a significant reduction in energy
consumption and network traffic generated.

Keywords—Adaptive rule engine, IEEE 802.15.4, data rate,
energy consumption, ECG.

I. INTRODUCTION

In remote health care monitoring applications, the Body
Area Networks (BAN) provide a new paradigm for the WSNs
in monitoring the bio-medical sensors. The data collected by
the sensor nodes play a crucial role in further diagnosis.
For further diagnosis on the data collected, it has to be
transmitted to the central node or gateway node for further
processing and storage. In general ZigBee devices which uses
the same IEEE 802.15.4 PHY and MAC standard are used for
wireless transmission to the central node [1]. In every remote
monitoring application, one of the main limitations is power.
The sensor nodes that are used to collect data are generally
battery powered devices and frequent battery changes are also
difficult. In this kind of applications the power consumption
by the nodes should be reduced.

In the IoT enabled remote health care monitoring ap-
plications, the data collected from the sensors should be
accessible anytime and anywhere, which requires constant
network connectivity. If the remote health care monitoring
application, transmits the data continuously, the amount of
data generated will be huge. This also contributes to the hyper
connectivity scenario. In hyper connectivity each device which
has an ability to connect to the network will be connected to

the network. According to the predictions made by GSMA,
the total number of devices connected will be 15 billion by
around 2015 and 24 billion by the year 2020 [4], [5]. In remote
health care monitoring application we cannot make use of
the available bandwidth effectively, if we use the traditional
mode of transmitting the data continuously. It even leads to
loss of data due to delay and buffer overloading, which is
not acceptable particularly in the health care applications. An
analysis on the delay and the data loss that occur in the
WSNs based on ZigBee technology for transmission due to
channel overlapping when the number of nodes that transmit
data increase, has been made in [6]. The ZigBee uses only
limited number of channels for the transmission. Whenever a
ZigBee node has to transfer the data it first performs Clear
Channel Assessment (CCA). If the channel is free then the
ZigBee node is free to transmit the data to the destination,
else the node has to wait for some backoff time which is
decided by parameters like Maximum Backoff Number (NB)
and Minimum Backoff exponent (BE). A detailed working of
the CCA and CSMA-CA in IEEE 802.15.4 standard is given
in [1]. As the amount of data to be transferred increases due
to increase in the number of devices, the delay in transmission
and losses during the transmission increases.

In order to prevent this scenario, one solution is to reduce
the amount of data that is to be transmitted. In remote
ECG monitoring applications the data need not be transferred
continuously which will increase load on the network. In the
existing architectures for data acquisition and transmission
architectures [3], the traditional continuous transmission of
data was used, which leads to higher power consumption and
increase in the network traffic. In this paper, we propose an
intelligent rule engine based transmission mechanism through
which we can reduce the data losses due to delay in channel
access and buffer overloading at transmitter and achieve power
saving at the node. In this paper, we considered the remote
ECG data acquisition and smart transmission system, which
makes use of the rule engine controlled transmitter. The
architecture proposed is shown in Fig. 1. The rule engine plays
a prominent role in achieving the power saving and preventing
losses. From the ECG data collected by the sensors, some key
features like PR interval, QRS interval and QT interval are
calculated using the features extracted by the ECG feature
extraction block and are fed to the rule engine, which then
decides whether the data has to be transmitted or not. The
proposed architecture works on the 12 Lead ECG data and for



3 Lead to 12 Lead Conversion Feature Extraction

Rule EngineTransmitter

3 Lead ECG Data Acquisition

12 Lead ECG Data Conditioning and Acquisition Block

Transmitter

Fig. 1: 12 Lead ECG Data Acquisition and transmission
Architecture

any other health care monitoring applications, where power is
a critical limitation.

The rest of the paper is organized as follows. Section II
discusses the proposed remote health care data monitoring and
smart transmission architecture system. Section III discusses
the performance of the proposed rule engine compared to
the traditional continuous transmission mechanism. Section IV
concludes the paper.

II. PROPOSED ADAPTIVE RULE ENGINE BASED DATA

ACQUISITION AND SMART TRANSMISSION ARCHITECTURE

In this section we discuss the architecture of the proposed
adaptive rule engine based data acquisition and smart transmis-
sion architecture shown in Fig. 1. The proposed architecture
consists of five functional units, which are briefly discussed in
the following sections.

A. 12 Lead ECG data conditioning and acquisition system

For performance analysis of the proposed rule engine, a
prototype of the ECG data acquisition and signal conditioning
system shown in Fig. 2, is developed in IIT Hyderabad. The
system is used to collect the ECG data from patient using
signal processing techniques for removal of the noise generally
generated from electrodes contact, body movements and power
line. The architecture of the acquisition system is shown in
Fig. 3. It contains various filtering and amplifying stages. The
standard 12 lead ECG acquisition system uses 10 electrodes
to collect the 12 Lead ECG data [7]. Recent developments in
the ECG data acquisition methodologies made it possible to
extract the 12 lead ECG data from 3 lead ECG data [8]. The
construction of the 3 lead ECG data acquisition system is easy
rather than the standard 12 lead ECG data acquisition system
due to the number of electrodes that are to be connected to
the body for monitoring of the data. The 3 lead ECG data
acquisition system only requires 4 electrodes that are to be
connected at 4 different parts of the body. Later the 12 lead
ECG data is extracted from the 3 lead ECG data collected.
The architecture for the 3 lead ECG data acquisition system
is shown in Fig. 2. The 3 lead ECG data is collected by using
4 electrodes which are placed on 4 different locations on the
body (RA (Right arm), LA (Left arm), LL (Left leg), RL (Right
leg)). Each lead measures potential difference between two
electrodes. For details about the lead’s measurement refer to
the TABLE I. The electrode placed in the RL (Right Leg)
location is used as the common node for the measurement of
the 3 leads.

Case Lead Potential diff. between Common node

1 Lead I RA & LA RL

2 Lead II RA & LL RL

3 Lead III LA & LL RL

TABLE I: Lead details in 3 Lead ECG data acquisition system

Fig. 2: Developed ECG data acquisition system

The processing architecture shown in Fig. 3 contains an
instrumentation amplifier at the beginning and followed by fil-
tering and amplification stages. The lower cut-off frequency is
0.5 Hz and the upper cut-off frequency is 100 Hz. Additionally
a notch filter has also been used for removing the power line
frequency. Finally for storing the digital data, ADC on the
Spartan-3E FPGA is used with a sampling rate of 1000 Hz.
A PQRST complex of the lead I from the collected data is
shown in Fig. 4. The complete analysis followed in this paper
is made using the lead I ECG data collected from the 9 patients
of several age groups collected using the in house developed
ECG data acquisition and conditioning system. The same can
be applied to the other leads with slight modifications in the
architecture.

B. ECG Feature Extraction

The present world is equipped technologically providing an
automated health prognosis. Usually signals from ECG (Elec-
trocardiogram) are analyzed based on the important features
like P, Q, R, S, T as shown in Fig. 5, through which a medical
professional annotates to classify the condition of a patient.
The P-wave in ECG signal represents atrial depolarization. The
QRS depicts the ventricular depolarization. The T-wave gives
the atrial and ventricular repolarization [9]. Earlier identifying
of these points were based on heuristics. Later on a notion
to automate this process, laid foundation for several signal
processing algorithms and finally has taken its shape to monitor
health of the patient remotely. Identifying these important
points by means of some automated algorithms is feature
extraction. In recent times there are several feature extraction
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Fig. 5: Extracted features from Lead-I ECG Data

algorithms available [10]-[11]. The state of the art delineation
algorithms exploited only R-peak to start with [12]. Then on
several other algorithms based on frequency analysis of the
ECG signal came into existence with which other points like
P, Q, S, T have been eventually identified. It is also essential
to have a track on algorithmic accuracy and computational
complexity, as in the case of remote health care monitoring
the power resources are limited. So further research evolved
in developing the low-complex delineation (feature extraction)
algorithms [13]-[14] which can be taken as a basis to make
classification of the ECG signal. The feature extraction that is
used here is based on the wavelet transform with a cascaded
filter bank structure. For more detailed working of the feature
extraction block, please refer to [13].

The data collected by the acquisition system will be fed to
the ECG feature extraction block, which gives us the important
features (P, Q, R, S, T) in the data. The features extracted
from the data are shown in Fig. 4. Here one can observe the
P wave, T wave, QRS Complex. We make use of the intervals
calculated from the extracted features in the rule engine to
classify the data as normal or abnormal.
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Fig. 6: Proposed Rule engine

C. Proposed Rule Engine

The rule engine is the key component in this architecture,
which aids for the low power consumption and the low network
traffic generation. It basically consists of two sections namely,
decision making and transmitter control shown in Fig. 6. The
decision making section makes use of the features extracted by
the feature extraction block. In this paper, two types of rule
engines are developed and their performances are evaluated
based on the data rate they generate and energy consumption.

1) Static Rule engine: The static rule engine consists of
”decision making” section and ”transmitter control” section.
Aim of the decision making section is to analyze the features
extracted from the collected data and to decide whether the
data is normal or abnormal. The decision made by the decision
maker will then be made use by the transmitter control section
for controlling the transmitter. The key features that doctors
use to classify the data are listed in the TABLE II. The values
listed in the TABLE II are normal ranges of the ECG data
for a healthy patient [2] and are used as the hard threshold,
which is the bounding limit of perfectly healthy ECG data. If
the values of the parameters are in the range listed in the table,
the data is then classified as a normal data else it is classified
as an abnormal data. Whenever the data is classified as the
abnormal data, the rule engine switches on the transmitter
and the data samples are transmitted to the gateway. At the
same time the samples that are already processed ahead of
the current abnormal data and the samples that will processed
after the current data samples are then stored from buffer in
to the local storage which resides on the node. The advantage
achieved by storing the data is, whenever the doctor is alarmed
with the abnormality, the doctor can query and monitor the
data that is stored in the local storage during the abnormality.
By using this kind of storage mechanism, the accuracy of the
diagnosis can be maintained by eliminating false alarms caused
sometimes due to the improper contact of the electrodes. The
steps involved in the static rule engine in order to classify the
data are given in Algorithm. 1.

The features (P, Q, R, S, T) extracted from the lead I
ECG data by the feature extraction block are fed to the
decision maker section. It then calculates the PR, QRS, QT
intervals. The intervals calculated are then compared with the
HardThreshold values shown in TABLE. II and makes a
decision. If any one of the three intervals calculated exceeds
the threshold value, the data is classified as an abnormal data
and triggers the control section to switch on the transmitter.
Then the control section takes the control signal given by the
decision making section and switches on the transmitter.



Algorithm 1 Static Rule Engine

Initial: Set HardThreshold values

1: procedure DECISION MAKER(ExtractedFeatures)
2: Comment: Calculate PR, QRS, QT intervals.
3: Calculate Data.PR interval ;
4: Calculate Data.QRS interval ;
5: Calculate Data.QT interval ;
6: if Data > HardThreshold then
7: Decide the patient is abnormal;
8: CONTROL SECTION(on);
9: Transmit the data;

10: Store the data samples in the local storage;
11: else
12: Decide the patient is normal;
13: Do not transmit the data;
14: end if
15: end procedure
16: procedure CONTROL SECTION(ControlSignal)
17: if ControlSignal == on then
18: Switch on the transmitter;
19: Wait for the data to be transmitted;
20: Switch off the transmitter;
21: else
22: Maintain transmitter in off state;
23: end if
24: end procedure

Case Parameter Normal Threshold

1 PR interval 0.12 - 0.20 Sec

2 QRS interval ≤ 0.12 Sec

3 QT interval ≤ 0.42 Sec

TABLE II: Threshold values of the intervals

2) Adaptive Rule Engine: The static rule engine discussed
above uses only a single hard threshold, with which it com-
pares the extracted features from the data. It gives a good per-
formance in some situations, but in some situations it performs
similar to the traditional continuous transmission architecture.
For a patient suffering from first degree atrioventricular block,
the PR interval always exceed 0.20 seconds, in this case the
data exceeds hard threshold always and leads to continuous
transmission of the data. It can be better optimized using this
adaptive rule engine. Doctors need not be informed every time,
the patient crosses the hard threshold. In the adaptive rule
engine, we make use of two thresholds, hard threshold and soft
threshold. The hard threshold is similar to the threshold used
in the static rule engine scenario and uses the same threshold
values as shown in TABLE. II. The soft threshold is an internal
variable, which is initialized to hard threshold and whenever
the sensed value exceeds the current soft threshold, the sensed
value is assigned to the soft threshold. Steps involved in the
adaptive rule engine are shown in ALGORITHM 2.

The input to the adaptive rule engine is same as the static
rule engine i.e. the features extracted from the ECG data. Ini-
tially the SoftThresold value is same as the HardThreshold .
Later the values of the SoftThreshold parameters are changed
based on the observed parameters of the data. In the first itera-
tion, the parameters observed from the data are compared with

Algorithm 2 Adaptive Rule Engine

Initial: Set HardThreshold values
Set SoftThreshold = HardThreshold
Set abnormal count=0 and start timer T;

1: procedure DECISION MAKER(ExtractedFeatures)
2: Comment: Calculate PR, QRS, QT intervals.
3: Calculate Data.PR interval ;
4: Calculate Data.QRS interval ;
5: Calculate Data.QT interval ;
6: if T expires then
7: Reset SoftThreshold ; Restart timer T;
8: end if
9: Decide the data is abnormal;

10: if Data > HardThreshold then
11: Decide the data is abnormal;
12: Store the data in local storage;
13: if Data > SoftThreshold then
14: CONTROL SECTION(on);
15: Transmit the data;
16: if abnormal Data.PR interval then
17: SoftThreshold .PR interval=
18: Data.PR interval ;
19: else if abnormal Data.QRS interval then
20: SoftThreshold .QRS interval=
21: Data.QRS interval ;
22: else if abnormal Data.QTinterval then
23: SoftThreshold .QT interval=
24: Data.QT interval ;
25: end if
26: Set abnormal count=0;
27: else
28: Do not change SoftThreshold parameters;
29: abnormal count = abnormal count+1;
30: end if
31: else
32: Decide the patient is normal;
33: Do not transmit the data;
34: end if
35: end procedure
36: procedure CONTROL SECTION(ControlSignal)
37: if ControlSignal == on then
38: Switch on the transmitter;
39: Wait for the data to be transmitted;
40: Switch off the transmitter;
41: else
42: Maintain transmitter in off state;
43: end if
44: end procedure

the HardThreshold values. If any of the parameter exceeds,
it is classified as an abnormal data and it is again compared
with the SoftThreshold . In the first iteration the values of the
parameters in SoftThreshold and HardThreshold are same.
Hence the parameters also exceed SoftThreshold , if they ex-
ceed HardThreshold . Then the parameter values in which the
data exceeded are assigned to the SoftThreshold parameters
i.e. if in a case the data of a patient has a QRS interval of
0.14 seconds, it will be classified as an abnormal data by
the static rule engine. The same will be the case in the first
iteration of the adaptive rule engine. Now in the adaptive rule



engine, the parameter QRS interval value is changed to 0.14
seconds. In the second iteration, if the same case is repeated,
the data will be classified as the abnormal data and the value
of the abnormal count value is incremented but the data
will not be transmitted. The value abnormal count is used
to determine the number of times the patient has crossed the
HardThreshold but is within the particular SoftThreshold . If
in the third iteration the data exceeds the QT interval threshold,
again the parameter QT interval in the Soft Threshold values
are adjusted accordingly. The parameter T indicates the time
to reset the soft threshold, which can be defined by the doctor.
After every T duration the soft threshold is reset to the hard
threshold value. If T is set to zero, the adaptive rule engine
works similar to the static rule engine.

III. PERFORMANCE ANALYSIS

The performance analysis of the proposed rule engine is
done on the lead I ECG data collected from 9 patients for
a duration of 30 seconds at a sampling rate of 1000 Hz,
using the in house developed data acquisition system at IIT
Hyderabad shown in Fig. 2. Performance metrics that are
used in evaluating are energy consumption and the data rate
generated. The performance of the proposed rule engine is
discussed briefly in the following sections.

A. Analysis on Energy Consumption

Analytic models for energy consumption of the sensor
nodes are done in [15], [18]. In the analysis, they have
considered energy consumed by the processor, transceiver
and sensors. Here in this paper we are considering only the
energy consumed by the transmitter as the other parameters
remain constant for the analysis. For the modeling of energy
consumption, the transmitter is assumed to operate only in
two states, on and off state. The energy consumed by the
transmitter can be modeled as the energy consumed in a
particular state and for the state transitions.

Econs = Estate + Etrans (1)

Estate =

∑

i

PTXLi

R
+ POffTOff (2)

Etrans =

n∑

j=1

Pon−offTon−off +

n∑

k=1

Poff−onToff−on

(3)

For the purpose of analysis, the transmitter is assumed
to operate at at 3.3 volts, consume 17 mA current in the
transmitting state and 0.02 µA in the off state. The Econs in
(1) shows the over all power consumption by the transmitter.
It is the sum of power consumed in the two states (on, off)
and energy consumed for state transitions (on to off, off to
on) by the transmitter. The PTX and Poff indicates the power
consumption in transmitting and off state respectively. Toff

is the total time the transmitter spent in the off state. Li

indicates the packet length to be transmitted and i indicates
the packet number. Pon−off and Poff−on indicates the power
consumed during the state transition from on to off and off
to on respectively and the corresponding transition times are
Ton−off and Toff−on. Fig. 7 plots Energy consumed by a
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Fig. 7: Energy consumption in all the three scenarios

patient node for transmitting Vs. patient id in three scenarios -
burst/continuous transmission, with static rule engine and with
adaptive rule engine. In the Fig. 7, one can observe the energy
consumed using continuous transmission for patient 1 is 0.085
J which is constant for all patients. The power consumed for
patient 1, in the static rule engine and adaptive rule engine
based transmissions are 0.032 J and 0.008 J respectively. The
performance of the adaptive rule engine based transmission
is good compared to the other two scenarios. In the case of
patient 2, the energy consumed in the static rule engine is 0.078
J, which is nearly same as in the continuous transmission. The
reason is, patient 2 is abnormal which leads his ECG data to
exceed the hard threshold in most of the cases. In the case of
patient 2 the adaptive rule engine performs well by consuming
an energy of 0.018 J in 30 seconds. In the case of patient 9, the
ECG data observed is normal all the time, which leads static
rule engine and adaptive rule engine behave in the same way.
From Fig. 7, we can observe that the proposed adaptive rule
engine yields significant energy saving compared to the other
two scenarios.

B. Analysis on Data Rate Generated / Network Load

Fig. 8 plots the data rate generated per patient Vs. the
patient id. The data rate generated depends on the number of
abnormal samples, that have to be transmitted. Each sample
is encoded using 12 bits symbol. From Fig. 8, it is observed
that the continuous transmission transmission for patient 1,
leads to a data rate of 12 K bps and remains constant for all
the patients, whereas the adaptive rule engine generates a data
rate of 1.6 K bps. The expected delay and losses in the burst
transmission scenario will be high compared to the static rule
engine and adaptive rule engine scenarios. Thus by using the
adaptive rule engine based transmission, the network traffic can
be significantly reduced compared to the other two scenarios.

C. Estimated Battery Lifetime

For the estimation of the battery life time, a 3.3 volt, 2300
mAh battery is considered. Fig. 9 plots the estimated life time
of the battery Vs. patient id. For patient 9 the energy consumed
is very less compared to other 8 patients, since he is a normal
person there is no much data to be transmitted. The battery
life time of the patient 9 is very high. For scaling purposes the
patient 9 is not included in the figure. For estimating battery
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life, power consumed by the patient in the 30 seconds interval
is considered as an average power consumption. In the Fig.
9, one can observe that the battery life time in the adaptive
rule engine based transmission scenario is far better than the
burst scenario in most of the cases. In the case of patient 5
the battery can last for upto 11.4 years in adaptive rule engine
based transmission scenario compared to 0.314 years in the
burst transmission scenario.

The analysis shown above is also performed using the ECG
data from ”The PTB Diagnostic ECG Database” data base
[16]-[17], which also yielded the similar performance.

IV. CONCLUSION

In this paper, we proposed an adaptive rule engine based
remote health care data acquisition and smart storage system.
Two kinds of rule engines: static rule engine and adaptive rule
engine were proposed and their performance is evaluated. For
the performance evaluation, ECG data of different patients of
different age groups were considered. The analysis show that
the adaptive rule engine based transmission mechanism gives
better performance by achieving very good energy savings
and significant reduction in the network traffic generated. The
adaptive rule engine based health care data acquisition and
smart transmission architecture can aid, low power and low

data rate networks, which is an important aspect of IoT enabled
health care systems.
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